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1. Introduction. A holomorphic vector bundle E → N over a compact Kähler
manifold (N,ω) is called stable if every coherent holomorphic subsheaf F of E satisfies

0 < rank F < rank E =⇒ µω(F ) < µω(E),

where µω is the ω-slope of the sheaf given by

µω(E) =
degω(E)

rank E
=

∫

N
c1(E, h) ∧ ωn−1

rank E
.

Here c1(E, h) is the first Chern form of E with respect to a Hermitian metric h. The
famous theorem of Donaldson [7, 8] (for algebraic manifolds only) and Uhlenbeck-Yau
[24, 25] says that an irreducible vector bundle E → N is ω-stable if and only if it
admits a Hermitian-Einstein metric (i.e. a metric whose curvature, when the 2-form
part is contracted with the metric onN , is a constant times the identity endomorphism
on E). This correspondence between stable bundles and Hermitian-Einstein metrics
is often called the Kobayashi-Hitchin correspondence.

An important generalization of this theorem is provided by Li-Yau [15] for complex
manifolds (and subsequently due to Buchdahl by a different method for surfaces [3]).
The major insight for this extension is the fact that the degree is well-defined as long
as the Hermitian form ω on N satisfies only ∂∂̄ωn−1 = 0. This is because

degω(E) =

∫

N

c1(E, h) ∧ ωn−1

and the difference of any two first Chern forms c1(E, h)− c1(E, h′) is ∂∂̄ of a function
on N . But then Gauduchon has shown that such an ω exists in the conformal class of
every Hermitian metric on N [9, 10]. (Such a metric on N is thus called a Gauduchon
metric.) The book of Lübke-Teleman [18] is quite useful, in that it contains most of
the relevant theory in one place.

An affine manifold is a real manifold M which admits a flat, torsion-free con-
nection D on its tangent bundle. It is well known (see e.g. [20]) that M is an affine
manifold if and only if M admits an affine atlas whose transition functions are locally
constant elements of the affine group

Aff(n) = {Φ: R
n → R

n, Φ: x 7→ Ax+ b}.

(In this case, geodesics ofD are straight line segments in the coordinate patches ofM .)
The tangent bundle TM of an affine manifold admits a natural complex structure, and
it is often fruitful to think of M as a real slice of a complex manifold. In particular,
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local coordinates x = (x1, . . . , xn) on M induce the local frame y = (y1, . . . , yn) on
TM so that every tangent vector y can be written as y = yi ∂

∂xi . Then zi = xi+
√
−1yi

form holomorphic coordinates on TM . We will usually denote the complex manifold
TM as MC.

Cheng-Yau [4] proved the existence of affine Kähler-Einstein metrics on appropri-
ate affine flat manifolds. The setting in this case is that of affine Kähler, or Hessian,
metrics (see also Delanoë [6] for related results). A Riemannian metric g on M is
affine Kähler if each point has a neighborhood on which there are affine coordinates
{xi} and a real potential function φ satisfying

gij dx
idxj =

∂2φ

∂xi∂xj
dxidxj .

Every Riemannian metric g on M extends to a Hermitian metric gij dz
idzj on TM .

The induced metric on MC is Kähler if and only if the original metric is affine Kähler.
An important class of affine manifolds is the class of special affine manifolds, those

which admit a D-covariant constant volume form ν. If such an affine manifold admits
an affine Kähler metric, then Cheng-Yau showed that the metric can be deformed to
a flat metric by adding the Hessian of a smooth function [4]. There is also the famous
conjecture of Markus: A compact affine manifold admits a covariant-constant volume
form if and only if D is complete. In the present work, we will use a covariant-constant
volume form to convert 2n-forms on the complex manifold TM = MC to n-forms on
M which can be integrated. The fact that Dν = 0 will ensure that ν does not provide
additional curvature terms when integrating by parts on M .

The correct analog of a holomorphic vector bundle over a complex manifold is a
flat vector bundle over an affine manifold. In particular, the transition functions of a
real vector bundle over an affine flat M may be extended to transition functions on
TM by making them constant along the fibers of MC →M . In the local coordinates
as above, we require the transition functions to be constant in the y variables. Such
a transition function f is holomorphic over TM exactly when

0 = ∂̄f =
∂f

∂zi
dzi =

(

1

2

∂f

∂xi
+

√
−1

2

∂f

∂yi

)

dzi =
1

2

∂f

∂xi
dzi,

in other words, when the transition function is constant in x. In this way, from any
locally constant vector bundle E →M , we can produce a locally constant holomorphic
vector bundle of the same rank EC →MC.

The existence of Hermitian-Einstein metrics on holomorphic vector bundles over
Gauduchon surfaces has been used by Li-Yau-Zheng [16, 17], and also Teleman [23],
based on ideas in [16], to provide a new proof of Bogomolov’s theorem on compact
complex surfaces in Kodaira’s class VII0. Teleman has recently extended these tech-
niques to classify surfaces of class VII with b2 = 1 [22].

The theory we present below is explicitly modeled on Uhlenbeck-Yau and Li-
Yau’s arguments. We have found it useful to follow the treatment of Lübke-Teleman
[18] fairly closely, since most of the relevant theory for Hermitian-Einstein metrics on
Gauduchon manifolds is contained in [18]. Our main theorem is

Theorem 1. Let M be a compact special affine manifold without boundary
equipped with an affine Gauduchon metric g. Let E → M be a flat complex vec-
tor bundle. If E is g-stable, then there is an affine Hermitian-Einstein metric on
E.
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A similar result holds for flat real vector bundles overM (see Corollary 33 below).

We should remark that the affine Kähler-Einstein metrics produced by Cheng-Yau
in [4] are examples of affine Hermitian-Einstein metrics as well: The affine Kähler-
Einstein metric g on the affine manifold M can be thought of as a metric on the flat
vector bundle TM , and as such a bundle metric, g is affine Hermitian-Einstein with
respect to g itself as an affine Kähler metric on M . Cheng-Yau’s method of proof is
to solve real Monge-Ampère equations on affine manifolds (and they also provide one
of the first solutions to the real Monge-Ampère equation on convex domains in [4]).

It is worth pointing out, in broad strokes, how to relate the proof we present
below to the complex case: The complex case relies on most of the standard tools of
elliptic theory on compact manifolds: the maximum principle, integration by parts, Lp

estimates, Sobolev embedding, spectral theory of elliptic operators, and some intricate
local calculations. The main innovation we provide to the affine case is Proposition
3 below, which secures our ability to integrate by parts on a special affine manifold.
Moreover, by extending a complex flat vector bundle E → M to a flat holomorphic
vector bundle EC →MC as above, we can ensure that the local calculations on M are
exactly the same as those on MC, and thus we do not have to change these calculations
at all to use them in our proof. The maximum principle and spectral theory work the
same way in our setting as well. The Lp and Sobolev theories in the complex case do
not strongly use the ambient real dimension 2n of the complex manifold: and in fact,
reducing the dimension to n helps matters.

There are a few other small differences in our approach on affine manifolds as
compared to the case of complex manifolds: First of all, we are able to avoid the
intricate proof of Uhlenbeck-Yau [24, 25] that a weakly holomorphic subbundle of
a holomorphic vector bundle on a complex manifold is a reflexive analytic subsheaf
(see also Popovici [19]). The corresponding fact we must prove is that a weakly flat
subbundle of a flat vector bundle on an affine manifold is in fact a flat subbundle. We
are able to give a quite simple regularity proof in the affine case below in Proposition
27, and the flat subbundle we produce is smooth.

Another small difference between the present case and the complex case concerns
simple bundles. The important estimate Proposition 14 below works only for simple
bundles E (bundles whose only endomorphisms are multiples of the identity). This
does not affect the main theorem in the complex case, for Kobayashi [12] has shown
that any stable holomorphic vector bundle over a compact Gauduchon manifold must
be simple. For a flat real vector bundle E over an affine manifold, there are two
possible notions of simple, depending on whether we require every real locally constant
section of End(E) (R-simple), or every complex locally constant section of End(E)⊗R

C (C-simple), to be a multiple of the identity. Since Kobayashi’s proof relies on taking
an eigenvalue, we must do a little more work in Section 11 below to address the case
of R-simple bundles.

In Sections 2 and 3 below, we develop some of the basic theory of (p, q) forms with
values in a flat vector bundle E over M , affine Hermitian connections, and the second
fundamental form. The basic principle behind these definitions is to mimic the same
formulas of the holomorphic vector bundle EC → MC. One interesting side note in
this story is Lemma 1, which notes for a metric on a real flat vector bundle (E,∇)
over M , the dual connection ∇∗ on E is equivalent to the Hermitian connection on
EC →MC.

Section 4 contains our main technical tool, which allows us to integrate (p, q)
forms by parts on a special affine manifold. Then in Section 5, we prove the easy
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parts of the theory of affine Hermitian-Einstein metrics: vanishing, uniqueness, and
stability theorems for affine Hermitian-Einstein metrics, most of which are due to
Kobayashi in the complex case. The proofs we present are easier than in the complex
case, since we need only consider subbundles, and not singular subsheaves, in our
definition of stability. In Section 6, we produce affine Gauduchon metrics on special
affine manifolds.

Then in Sections 7 to 10, we prove Theorem 1, following the continuity method of
Uhlenbeck-Yau, as modified by Li-Yau for Gauduchon manifolds and as presented in
Lübke-Teleman [18]. Since our local calculations are designed to be exactly the same
as the complex case, we omit some of these calculations. On the other hand, we do
emphasize those parts of the proof which involve integration, as this highlights the
main difference between our theory on affine manifolds and the complex case. The
regularity result in Section 10 is much easier than that of Uhlenbeck-Yau [24, 25].
Finally, in Section 11, we address the issue of R- and C-simple bundles, to prove a
version of the main theorem, Corollary 33 for R-stable flat real vector bundles.

We should also mention Corlette’s results on flat principle bundles on Riemannian
manifolds:

Theorem 2. [5] Let G be a semisimple Lie group, (M, g) a compact Riemannian
manifold, and P a flat principle G-bundle over M . A metric on P is defined to be
a reduction of the structure group to K a maximal compact subgroup of G, and a
harmonic metric is a metric on P so that the induced π1(M)-equivariant map from
the universal cover M̃ to the Riemannian symmetric space G/K is harmonic. Then
P admits a harmonic metric if and only if P is reductive in the sense that the Zariski
closure of the holonomy at every point in M is a reductive subgroup of G.

This theorem is extended to reductive Lie groups G by Labourie [14].
If G is the special linear group, then we may consider the flat vector bundle (E,∇)

associated to P . Then the reductiveness of P is equivalent to the condition on E that
any ∇-invariant subbundle has a ∇-invariant complement. For M a compact special
affine manifold equipped with an affine Gauduchon metric g, our Theorem 1 produces
an affine Hermitian-Einstein bundle metric on a flat vector bundle E when it is slope-
stable. If we assume E is irreducible as a flat bundle, then our slope-stability condition
is a priori weaker than Corlette’s: we require every proper flat subbundle of E to have
smaller slope, while Corlette requires that there be no proper flat subbundles of E. It
should be interesting to compare the harmonic and affine Hermitian-Einstein metrics
on E when they both exist.

It is well known that an affine structure on a manifold M is equivalent to the
existence of an affine-flat (flat and torsion-free) connection D on the tangent bundle
TM , which induces a flat connection on a principle bundle over M with group G =
Aff(n,R) the affine group. The affine group is not semisimple (or even reductive),
and so Corlette’s result does not apply directly to study this case. On a special affine
manifold, however, D induces a flat metric on an n-principal bundle, and Corlette’s
result applies on TM as a flat n-bundle. Thus, Corlette’s result cannot see that D is
torsion-free. On the other hand, the affine Hermitian-Einstein metric we produce does
essentially use the fact that D is torsion-free: this ensures the induced almost-complex
structure on MC is integrable. So the affine Hermitian-Einstein metrics should be able
to exploit the affine structure on M .

I would like to thank D.H. Phong, Jacob Sturm, Bill Goldman and S.T. Yau
for inspiring discussions. I am also grateful to the NSF for support under grant
DMS0405873.
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2. Affine Dolbeault complex. On an affine manifold M , there are natural
(p, q) forms (see Cheng-Yau [4] or Shima [20]), which are the restrictions of (p, q)
forms from MC. We define the space of these forms as

Ap,q(M) = Λp(M) ⊗ Λq(M)

for Λp(M) the usual exterior p-forms on M . If xi are local affine coordinates on M ,
then we will denote the induced frame on Ap,q by

{dzi1 ∧ · · · ∧ dzip ⊗ dz̄j1 ∧ · · · ∧ dz̄jq},

where we think of zi = xi +
√
−1 yi as coordinates on MC as above.

The flat connection D induces flat connections on the bundles Λq(M) of q-forms
of M . Therefore, the exterior derivative d extends to operators

dD ⊗ I : Λp(M) ⊗ Λq(M) → Λp+1(M) ⊗ Λq(M),

I ⊗ dD : Λp(M) ⊗ Λq(M) → Λp(M) ⊗ Λq+1(M),

for I the identity operator and dD the exterior derivative for bundle-valued forms
induced from D. These operators are equivalent to the operators ∂ and ∂̄ restricted
from MC. We find it useful to use the exact restrictions of ∂ and ∂̄ (so that, insofar
as possible, all the local calculations we do are the same as in the case of complex
manifolds). The proper correspondences are, for ∂ and ∂̄ acting on (p, q) forms,

∂ = 1
2 (dD ⊗ I), ∂̄ = (−1)p 1

2 (I ⊗ dD).

A Riemannian metric g on M gives rise to a natural (1, 1) form given in local
coordinates by ωg = gijdz

i ⊗ dz̄j. This is of course the restriction of the Hermitian
form induced by the extension of g to MC.

There is also a natural wedge product on Ap,q, which we take to be the restriction
of the wedge product on MC: If φi ⊗ ψi ∈ Api,qi for i = 1, 2, then we define

(φ1 ⊗ ψ1) ∧ (φ2 ⊗ ψ2) = (−1)q1p2(φ1 ∧ φ2) ⊗ (ψ1 ∧ ψ2) ∈ Ap1+p2,q1+q2 .

Consider the space of (p, q) forms Ap,q(E) taking values in a complex (or real)
vector bundle E → M . If ∇ is a flat connection on E, and h is a Hermitian metric on
E (positive-definite if E is a real bundle), then we consider the Hermitian connection,
or Chern connection, on EC → MC. Recall the Hermitian connection is the unique
connection on a Hermitian holomorphic vector bundle over a complex manifold which
both preserves the Hermitian metric and whose (0, 1) part is equal to the natural ∂̄
operator on sections of E. Any locally constant frame s1, . . . , sr over E →M extends
to a holomorphic frame over EC → MC, where we have the usual formula (see e.g.
[13]) for the Hermitian connection: If hαβ̄ = h(sα, sβ), then the connection form is a
EndE-valued (1, 0) form

θα
β = hαγ̄ ∂hβγ̄ .

In passing from (p, q) forms on MC to (p, q) forms on M , we use the following
convention:

(1) dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq 7→ dzi1 ∧ · · · ∧ dzip ⊗ dz̄j1 ∧ · · · ∧ dz̄jq .



106 J. LOFTIN

As we will see in the next section, this convention will make all the important curvature
quantities on E → M to be real in the case E is a real vector bundle equipped with
a real positive-definite metric.

There is also a natural map from (p, q) forms on M to (q, p) forms on M , which is
the restriction of complex conjugation on MC: If α ∈ Λp(M), β ∈ Λq(M) are complex
valued forms, then we define

(2) α⊗ β = (−1)pqβ̄ ⊗ ᾱ.

At least when E is a real bundle and h is a real positive-definite metric, the
Hermitian connection described above, when restricted to M , has an interpretation
in terms of the dual connection of ∇ with respect to h. Recall that the dual connection
∇∗ is defined on E →M by

d[h(s1, s2)] = h(∇s1, s2) + h(s1,∇∗s2)

(see e.g. [1]). Then we may define operators ∂∇,h and ∂̄∇ on Ap,q(E) as follows: For
φ ∈ Ap,q and σ ∈ Γ(E),

∂∇,hσ = ∇∗σ ⊗ 1
2 ,

∂̄∇σ = 1
2 ⊗∇σ,

∂∇,h(σ · φ) = (∂∇,hσ) ∧ φ+ σ · ∂φ,
∂̄∇(σ · φ) = (∂̄∇σ) ∧ φ+ σ · ∂̄φ.

On M , we consider the pair (∂∇,h, ∂̄∇) to form an extended Hermitian connection
on E, and the extended connection is equivalent to the Hermitian connection on
EC → MC: The Hermitian connection on EC → MC is given by d∇,h = ∂∇,h + ∂̄∇ :
Λ0(EC) → Λ1(EC).

Also note that the difference ∇∗ −∇ is a section of Λ1(EndE). This is a similar
construction to the first Koszul form on a Hessian manifold (see e.g. Shima [20]).

We have the following lemma, whose proof is a simple computation:

Lemma 1. If (E,∇) is a flat real vector bundle over an affine manifold M , and E
is equipped with a positive-definite metric h, then the extended Hermitian connection
on E (when considered as a complex vector bundle with Hermitian metric induced
from h) is given by

(∂∇,h, ∂̄∇) = (∇∗ ⊗ 1
2 ,

1
2 ⊗∇)

for ∇∗ the dual connection of ∇ on E with respect to the metric h.

The curvature form Ω ∈ A1,1(EndE) is given by

Ωα
β = ∂̄θα

β = −hαη̄∂∂̄hβη̄ + hαζ̄hǫη̄∂hβη̄ ∧ ∂̄hǫζ̄.

If we write Ωα
β = Rα

βī dz
i ∧ dz̄j, then

Rα
βī = −hαη̄ ∂

2hβη̄

∂zi∂z̄j
+ hαζ̄hǫη̄ ∂hβη̄

∂zi

∂hǫζ̄

∂z̄j
.

These same formulas represent the restriction of the curvature form of EC → MC to
M . On M , we call this the extended curvature form (and we still use the symbols
dzi, dz̄j to represent elements of Ap,q on M).
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We use a Riemannian metric g on M to contract the (1, 1) part of an extended
curvature form to form a section of EndE = E∗⊗E which we call the extended mean
curvature. A metric on E is said to be affine Hermitian-Einstein with respect to g if
its extended mean curvature Kα

β is a constant γ times the identity endomorphism of
E. In index notation, we have

Kα
β = gīRα

βī = γ Iα
β .

(Here we extend the Riemannian metric g to a Hermitian metric gī on MC, and I is
the identity endomorphism on E.)

Given a Hermitian locally constant bundle (E, h) on M , the trace Rα
αī is called

the extended first Chern form, or extended Ricci curvature. This first Chern form is
give by

c1(E, h) = −∂∂̄ log dethαβ̄,

and it may naturally be thought of as the extended curvature of the locally constant
line bundle detE with metric det h.

The extended first Chern form and the extended mean curvature are related by

(3) (trK)ωn
g = n c1(E, h) ∧ ωn−1

g .

3. Flat vector bundles. In this section, we collect some facts about flat vector
bundles, and representations of the fundamental group, and vector-bundle second
fundamental forms. The field K will represent either R or C.

A section s of a flat vector bundle (E,∇) over a manifold M is called locally
constant if ∇s = 0. Every flat vector bundle has local frames of locally constant
sections, given by parallel transport from a basis of a fiber Ex for x ∈ M . For
this reason, flat vector bundles are sometimes referred to as locally constant vector
bundles.

A flat K-vector bundle of rank r naturally corresponds to a representation ρ of
fundamental group into GL(r,K). For M̃ the universal cover of M , the fundamental
group π1(M) acts on total space M̃ × K

r equivariantly with respect to the action

γ : (x, y) → (γ(x), ρ(γ)(y)).

In this picture, a flat subbundle of rank r′ is given by an inclusion M̃ × K
r′ ⊂

M̃ ×K
r as trivial bundles, where π1 acts on M̃ × K

r′

. In other words, we require for
every γ ∈ π1 and y ∈ R

r′

, ρ(γ)(y) ∈ R
r′

.
Let (E,∇) be a flat complex vector bundle over an affine manifold M , and h is a

Hermitian metric on E. The geometry of flat subbundles of E follows as in the case
of holomorphic bundles on complex manifolds. Let F be a flat subbundle of E (i.e.
F is a smooth subbundle of E whose sections s satisfy ∇Xs is again a section of F
for every vector field X on M). Then for any section s of F , we may split ∂∇,hs into
a part in F and a part h-orthogonal to F :

∂∇,hs = ∂∇F ,hF s+A(s).

As the notation suggests, the first term on the right ∂∇F ,hF s is the (1, 0) part of
the affine Hermitian connection induced on F by ∇ and h. The second term A is a
Hom(F, F⊥)-valued (1, 0) form called the second fundamental form of the subbundle
F of E. Note we only need consider ∂∇,hs since the second fundamental form is



108 J. LOFTIN

of (1, 0) type in the complex case. We have the following proposition (see e.g. [13,
Proposition I.6.14])

Proposition 2. Given (E,∇), h, F and A as above, A vanishes identically if
and only if F⊥ is a flat vector subbundle of (E,∇) and the orthogonal decomposition

E = F ⊕ F⊥

is a direct sum of flat vector bundles.

4. Integration by parts. The main difference we will discuss between complex
and affine manifolds is in integration theory. On an n-dimensional complex manifold,
an (n, n) form is a volume form which can be integrated, while on an affine manifold,
an (n, n) form is not a volume form. Here we make a crucial extra assumption to
handle this case adequately: We assume our affine manifold M is equipped with a
D-invariant volume form ν. Equivalently, we assume the linear part of the holonomy
of D lies in SL(n,R). We call such an affine manifold (M,D, ν) a special affine
manifold. This important special case of affine manifold is quite commonly used:
in Strominger-Yau-Zaslow’s conjecture [21], a Calabi-Yau manifold N near the large
complex structure limit in moduli should be the total space of a (possibly singular)
fibration with fibers of special Lagrangian tori over a base manifold which is special
affine. (The D-invariant volume form is the restriction of the holomorphic (n, 0) form
on N .) Also, a famous conjecture of Markus states that a compact affine manifold
(M,D) admits a D-invariant volume form if and only if D is complete.

From now on, we assume that M admits a D-invariant volume form ν. Then ν
provides natural maps from

An,p → Λp,ν ⊗ χ 7→ (−1)
n(n−1)

2 χ;

Ap,n → Λp,χ⊗ ν 7→ (−1)
n(n−1)

2 χ.

(The choice of sign is to ensure that for every Riemannian metric g, ωn
g /ν has the same

orientation as ν.) We use division by ν to denote both of these maps. In particular,
χ ∈ An,n can be integrated on M by considering

∫

M

χ

ν
.

The reason we require ν to be D-invariant is to allow the usual integration by
parts formulas for (p, q) forms to work on the affine manifold M . The main result we
need is the following:

Proposition 3. Suppose (M,D) is an affine flat manifold equipped with a D-
invariant volume form ν. Then if χ ∈ An−1,n,

∂χ

ν
= d

( χ

2ν

)

.

Also, if χ ∈ An,n−1,

∂̄χ

ν
= (−1)n d

( χ

2ν

)

.
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Proof. We may choose local affine coordinates x1, . . . , xn on M so that ν =
dx1 ∧ · · · ∧ dxn, and write χ ∈ An−1,n locally as

χ =

n
∑

i=1

fi dz
1 ∧ · · · ∧ ̂dzi ∧ · · · ∧ dzn ⊗ dz̄1 ∧ · · · ∧ dz̄n,

∂χ =
1

2

n
∑

i=1

(−1)i−1 ∂fi

∂xi
dz1 ∧ · · · ∧ dzn ⊗ dz̄1 ∧ · · · ∧ dz̄n,

χ

ν
= (−1)

n(n−1)

2

n
∑

i=1

fi dx
1 ∧ · · · ∧ ̂dxi ∧ · · · ∧ dxn,

d
(χ

ν

)

= (−1)
n(n−1)

2

n
∑

i=1

(−1)i−1 ∂fi

∂xi
dx1 ∧ · · · ∧ dxn.

(Note that when restricted to M , dzi = dz̄i = dxi.) The computation is similar for
χ ∈ An,n−1.

To each Riemannian metric g on an affine manifold M , there is a natural nonde-
generate (1, 1) form given by ωg = gij dx

i ⊗ dxj for xi local coordinates on M . (The
metric g is naturally extended to a Hermitian metric on MC and ωg is the restriction
of the Hermitian form of g to M ⊂ MC.) A metric g on M is said to be affine
Gauduchon if ∂∂̄(ωn−1

g ) = 0. We will see in the next section that every conformal
class of Riemannian metrics on a compact special affine manifold M contains an affine
Gauduchon metric.

Note that by our convention (1) our definition of first Chern form is a real (1, 1)
form on M , even though it is the restriction of an imaginary 2 form on MC.

A locally constant vector bundle E over a special affine manifold (M, ν) equipped
with an affine Gauduchon metric g has a degree given by

(4) degg E =

∫

M

c1(E, h) ∧ ωn−1
g

ν
.

Recall the affine first Chern form c1(E, h) = −∂∂̄ log dethαβ̄ for any Hermitian metric
h on E. The degree is well-defined because

• For any other metric h′ on E,

c1(E, h
′) − c1(E, h) = ∂∂̄(log dethαβ̄ − log deth′αβ̄),

which is ∂∂̄ of a function on M .
• Proposition 3 above allows us to integrate by parts to move the ∂∂̄ to ωn−1

g .
• The metric g is affine Gauduchon.

Note we do not expect the degree to be an integer (see e.g. Lübke-Teleman [18]
for counterexamples in the complex case).

The slope of a flat vector bundle E over a special affine manifold M equipped
with an affine Gauduchon metric g is defined to be

µg =
deggE

rankE
.

Such a complex flat vector bundle E is called C-stable if every flat subbundle F of E
satisfies

(5) µg(F ) < µg(E).
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A real flat vector bundle E is called R-stable if (5) is satisfied by any flat real vector
subbundle F of E, while such an E is called C-stable if the complex vector bundle
E ⊗R C is C-stable.

5. Affine Hermitian-Einstein metrics. In this section, we will check some of
the basic properties of Hermitian-Einstein metrics extend to the affine case: a vanish-
ing theorem of Kobayashi, uniqueness of affine Hermitian-Einstein metrics on simple
bundles, and stability of flat bundles admitting affine Hermitian-Einstein metrics.
These roughly form the easy part of the Kobayashi-Hitchin correspondence between
stable bundles and Hermitian-Einstein metrics. The hard part, to prove the existence
of Hermitian-Einstein metrics, will be addressed in the Sections 7 to 10 below.

We have the following vanishing theorem of Kobayashi [13]

Theorem 3. Let (E,∇) be a flat vector bundle over a compact affine manifold
M equipped with a Riemannian metric g. Assume E admits an affine Hermitian-
Einstein metric h with Einstein factor γh. If γh < 0, then E has no nontrivial locally
constant sections. If γh = 0, then any locally constant section s of E satisfies ∂hs = 0
for ∂h = ∂∇,h.

Proof. For s any locally constant section of E, compute

trg∂∂̄|s|2 = −γh|s|2 + |∂hs|2

and apply the maximum principle.
The following uniqueness proposition follows Lübke-Teleman [18, Prop. 2.2.2]

Proposition 4. If (E,∇) is a simple flat vector bundle over a compact affine
manifold M with Riemannian metric g, then any g-affine-Hermitian-Einstein metric
on E is unique up to a positive scalar.

Proof. Let h1, h2 be two affine Hermitian-Einstein metrics on E with Einstein
constants γ1, γ2. Then there an endomorphism f of E satisfying h2(s, t) = h1(f(s), t)

for all sections s, t, and since h1, h2 are both Hermitian, f
1

2 is well-defined.
Then the connection ∇′ = f

1

2 ◦∇ ◦ f− 1

2 is a flat connection on E. Let E′ signify
the new flat structure ∇′ induces on the underlying vector bundle of E, and let E
signify the original flat structure ∇. Then f

1

2 is a locally constant section of the flat
vector bundle Hom(E,E′), h1 is affine Hermitian-Einstein with Einstein constant γ2

on E′, and so the metric induced on Hom(E,E′) by h1 on E′ and h2 on E is affine
Hermitian-Einstein with Einstein constant γ2 − γ2 = 0.

Therefore, Theorem 3 applies, to show that ∂Hom(f
1

2 ) = 0 for ∂Hom the (1, 0) part
of the affine Hermitian-Einstein connection on Hom(E,E′). A computation as in [18]
then implies that ∂1f = 0 for ∂1 the (1, 0) part of the affine Hermitian connection on
(E, h1). Since f is h1-self-adjoint, this implies ∂̄(f∗) = ∂̄f = 0.

So since (E,∇) is simple, f is a multiple of the identity.
The following theorem is due to Kobayashi in the Kähler case [13]. The proof

in the present case is simpler because we need only deal with subbundles and not
singular subsheaves in the definition of stability.

Theorem 4. Let E be a flat vector bundle over a compact special affine manifold
M equipped with an affine Gauduchon metric g. If E admits an affine Hermitian-
Einstein metric h with Einstein constant γ, then either E is g-stable or E is an
h-orthogonal direct sum of flat stable vector bundles, each of which is affine Hermitian-
Einstein with Einstein constant γ.
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Proof. Consider E′ a flat subbundle of E. Then it suffices to prove that µ(E′) ≤
µ(E) with equality only in the case that the h-orthogonal complement of E′ ⊂ E is also
a flat subbundle of E. By Proposition 2 above, it suffices to show that µ(E′) ≤ µ(E)
with equality only if the second fundamental form of E′ ⊂ E vanishes.

We compute, as in [18, Proposition 2.3.1] or [13, Proposition V.8.2] that for
s = rankE′, r = rankE, that

µgE =
1

rn

∫

M

trKE

ωn
g

ν

=
γ

n

∫

M

ωn
g

ν
,

µgE
′ =

1

sn

∫

M

trKE′

ωn
g

ν

=
γ

n

∫

M

ωn
g

ν
− 1

sn

∫

M

|A|2
ωn

g

ν
.

Thus µgE ≤ µgE
′ always, with equality if and only if the second fundamental form

A is identically 0.

For the exact sequence of flat bundles 0 → E′ → E → E′′ → 0, the extended
curvatures R′, R, and R′′ of the Hermitian connections induced by h on E′, E, E′′

respectively, satisfy

R =

(

R′ +A ∧A∗ ∗
∗ R′′ +A∗ ∧A

)

(see e.g. Kobayashi [13, Proposition I.6.14]). So the vanishing of A implies that the
mean curvatures K ′ = trgR

′ of E′ and K ′′ = trgR
′′ of E′′ satisfy the Hermitian-

Einstein condition if K does. Thus, in the case of equality µgE = µgE
′, E splits

into proper flat affine Hermitian-Einstein summands E′ and E′′. The theorem then
follows by induction on the rank r.

6. Affine Gauduchon metrics. Given a smooth Riemannian metric g on an
affine manifold M with parallel volume form ν, define the operator from functions to
functions given by

(6) Q(φ) =
∂∂̄(φωn−1

g )

ωn
g

.

If we can find a smooth, positive solution toQ(φ) = 0, then φ
1

n−1 g is affine Gauduchon.

Consider the adjoint Q∗ of Q with respect to the inner product

(7) 〈φ, ψ〉g =

∫

M

φψ
ωn

g

ν
.

Note that we are not integrating with respect to the volume form of g. We can avoid
extra curvature terms by using the volume form ωn

g /ν instead (these terms are worked
out in the case of affine Kähler manifolds by Shima [20]). Compute, using Proposition
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3 above,

〈φ,Q∗(ψ)〉g = 〈Q(φ), ψ〉g

=

∫

M

∂∂̄(φωn−1
g )

ωn
g

ψ
ωn

g

ν

=

∫

M

φ
∂∂̄ψ ∧ ωn−1

g

ν
,

Q∗(ψ) =
∂∂̄ψ ∧ ωn−1

g

ωn
g

=
1

4n
gij ∂2ψ

∂xi∂xj
=

1

n
trg∂∂̄ψ.

We have the following lemma

Lemma 5. The kernel of Q∗ consists of only the constant functions. The only
nonnegative function in the image of Q∗ is the zero function.

Proof. Both statements follow directly from the strong maximum principle.
The index of Q (and of Q∗) is 0, as it is an elliptic second-order operator on

functions. The previous lemma shows the kernel of Q∗ is one-dimensional, and thus
the cokernel of Q∗ (which may be identified with the kernel of Q by orthogonal
projection) is one-dimensional as well. We want to exhibit a positive function in the
one-dimensional space kerQ.

Let φ ∈ kerQ be not identically zero. If ψ is not in the image of Q∗, then
〈φ, ψ〉g 6= 0. This is because the dimension of the cokernel of Q∗ is one, and the
functional

ψ 7→ 〈φ, ψ〉g
is not identically zero but is zero on the image of Q∗. If φ assumes both positive and
negative values, then we can find a positive function ψ on M so that 〈φ, ψ〉g = 0. But
Lemma 5 above shows this ψ is not in the range of Q∗, a contradiction. Therefore, φ
does not assume both positive and negative values. Assume without loss of generality
that φ ≥ 0.

Now, since φ ∈ kerQ is not identically zero, and since Q is an elliptic linear
operator, the strong maximum principle shows that φ > 0. C∞ regularity of φ is
standard. So the above discussion has proved

Theorem 5. If M is a compact affine manifold with covariant-constant volume
form ν, then every conformal class of Riemannian metrics on M contains an affine
Gauduchon metric unique up to scaling by a constant.

We will need the following lemma later.

Lemma 6. If g is an affine Gauduchon metric on a compact special affine mani-
fold, then the kernel of Q consists only of the constant functions.

Proof. If ∂∂̄ωn−1
g = 0, then the definition (6) shows that in local affine coordinates,

Q is an elliptic operator of the form

Q(φ) = aij ∂2φ

∂xi∂xj
+ bj

∂φ

∂xj
.

So the strong maximum principle applies, and any function in the kernel of Q must
be constant.
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7. The continuity method. Consider a compact affine manifold M equipped
with a covariant-constant volume form ν and an affine Gauduchon metric g, and a
flat complex vector bundle E over M , together with a Hermitian metric h0. Let K0

be the extended mean curvature of (E, h0). Equations (3) and (4) show

∫

M

(trK0)
ωn

g

ν
= n degg E,

and therefore for any affine Hermitian-Einstein metric on E (satisfying K = γ IE), γ
must satisfy

(8) γ

∫

M

ωn
g

ν
= n

degg E

rankE
= nµgE.

Let h0 be a background Hermitian metric E. Then any other Hermitian metric
h on E is given may be represented by an endomorphism f of E, so that for sections
s, t,

h(s, t) = h0(f(s), t) ⇐⇒ fη
α = hηβ̄

0 hαβ̄ .

The new metric h is Hermitian if and only if f is Hermitian self-adjoint and positive
with respect to h0. Here are some standard formulas for how the extended connection
form θ, curvature Ω, first Chern form c1 and mean curvature K change when passing
from h0 to h:

θ = θ0 + f−1∂0f,(9)

Ω = ∂̄θ = Ω0 + ∂̄(f−1∂0f),(10)

K = K0 + trg[∂̄(f−1∂0f)],(11)

c1(E, h) = c1(E, h0) − ∂∂̄ log det f,(12)

trK = trK0 − trg∂∂̄(log det f).(13)

Note that in a locally constant frame, f−1∂0f may be written as (f−1)α
η (∂0f)η

β . The
term ∂0f is the extended Hermitian connection induced from (E, h0) onto EndE
acting on f :

(∂0f)α
β = ∂fα

β − (θ0)
η
βf

α
η + (θ0)

α
η f

η
β .

Equation (11) shows that we want to solve the equation

K0 − γ IE + trg[∂̄(f−1∂0f)] = 0.

We will solve this by the continuity method. In particular, for ǫ ∈ [0, 1], consider the
equation

(14) Lǫ(f) = K0 − γ IE + trg[∂̄(f−1∂0f)] + ǫ log f = 0.

Note that since f is an endomorphism of E which is positive Hermitian with respect
to h0, log f is well-defined.

Assume the background data g and h0 are smooth. Let

J = {ǫ ∈ (0, 1] : there is a smooth solution to Lǫ(f) = 0}.
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We will use the continuity method to show that J = (0, 1] for any C-simple flat vector
bundle E, and then later show that we may take ǫ → 0 if E is C-stable. (If E is
C-stable, it is automatically C-simple—see Proposition 30 below.)

The first step in the continuity method is to show 1 ∈ J and so J is nonempty.
The proof will also provide an appropriately normalized initial metric h0 on E.

Proposition 7. Given a compact special affine manifold M with an affine
Gauduchon metric and a flat vector bundle E. Then there is a smooth Hermitian
metric h0 on E so that there is a smooth solution f1 to L1(f) = 0. The metric h0

satisfies the normalization trK0 = r γ for r the rank of E and γ given by (8).

Proof. We first produce the metric h1 the metric satisfying the L1 equation, and
then we will produce h0 from h1.

Given an arbitrary background metric h′0, equation (13) above shows that if h1 =
eρh′0 satisfies trK1 = r γ if and only if

(15) trg∂∂̄ρ =
1

r
trK ′

0 − γ

for r the rank of E. Note the right-hand side satisfies

(16)

∫

M

(

1

r
trK ′

0 − γ

)

ωn
g

ν
= 0.

Lemma 6 shows that the kernel of Q consists of only constants. Equation (16) then
shows that the right-hand side of (15) is orthogonal to kerQ with respect to the inner
product (7), and so must be in the image of Q∗ = 1

n trg∂∂̄.
Now define f1 = exp(−K1 + γIE) and

(h0)αβ̄ = (f−1
1 )η

α(h1)ηβ̄ .

Then we may check as in Lübke-Teleman [18, Lemma 3.2.1] that h0 is a Hermitian
metric and that, with respect to h0, f1 satisfies L1(f1) = 0. Moreover,

trK0 = trK1 + trg∂∂̄ log det f1

= trK1 + trg∂∂̄ tr(−K1 + γIE)

= trK1 = r γ.

So for the choice of h0 derived in Proposition 7, we have

Corollary 8. 1 ∈ J .

8. Openness. Consider Herm(E, h0) to be the space of endomorphisms of the
vector bundle E which are Hermitian self-adjoint with respect to h0. In particular, we
may check as in e.g. [18, Lemma 3.2.3] that for f a positive Hermitian endomorphism
of E, the operator

L̂(ǫ, f) = fLǫ(f) = fK − γf + ǫf log f ∈ Herm(E, h0).

Let 1 < p <∞ and k be a sufficiently large integer.
Assume ǫ ∈ J—in other words, there is a smooth solution fǫ to Lǫ(f) = 0 ⇐⇒

L̂(ǫ, f) = 0. Then we will use the Implicit Function Theorem to show that there is
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a δ > 0 so that for every ǫ′ ∈ (ǫ − δ, ǫ + δ), there is a solution to L̂(ǫ′, f) = 0 in
Lp

kHerm(E, h0). Then, for k large enough, we can bootstrap to show C∞ regularity

of each solution fǫ′ to L̂(ǫ′, fǫ′) = 0. Thus (ǫ− δ, ǫ+ δ) ∩ (0, 1] ⊂ J and J is open.
So as usual, everything boils down to the checking the hypothesis of the Implicit

Function Theorem:

Ξ =
δ

δf
L̂(ǫ, f) : Lp

kHerm(E, h0) → Lp
k−2Herm(E, h0)

should be an isomorphism of Banach spaces. The operator δ
δf L̂(ǫ, f) is Fredholm and

elliptic. The next thing to check is that the index of the operator Ξ is 0.

Lemma 9. The index of Ξ is 0.

Proof. To check this, we need only look at the symbol. For φ ∈ Herm(E, h0),
compute

Ξ(φ) ≡ trg ∂̄∂0φ,

where ≡ denotes equivalence up to zeroth- and first-order derivatives of φ. Moreover,
if φ, ξ ∈ Herm(E, h0), then we may compute

(17) ∂̄ [h0(∂0φ, ξ)] = h0(∂̄∂0φ, ξ) − h0(∂0φ, ∂0ξ).

Here h0 acts only on the End(E) part of the quantities, and not on the differential
form parts: For φ1, φ2 sections of End(E), and λi ∈ Api,qi ,

(18) h0(φ1 ⊗ λ1, φ2 ⊗ λ2) = h0(φ1, φ2)λ1 ∧ λ̄2.

The ∂0 in the last time is because of the convention (2) and the fact that h0 is C-
antilinear in the second slot, while the minus sign in front of the last term is because
of (18).

Now we use (17) to compute the highest-order terms of the adjoint Ξ∗ of Ξ with
respect to the inner product

〈φ, ξ〉End(E) =

∫

M

h0(φ, ξ)
ωn

g

ν
.

Then compute using (17) and Proposition 3:

〈φ,Ξ∗ξ〉End(E) = 〈Ξφ, ξ〉End(E)

=

∫

M

h0(trg∂̄∂0φ, ξ)
ωn

g

ν

= n

∫

M

h0(∂̄∂0φ, ξ) ∧ ωn−1
g

ν

= −n
∫

M

h0(∂0φ, ∂0ξ) ∧ ωn−1
g − h0(∂0φ, ξ) ∧ ∂̄ωn−1

g

ν

= n

∫

M

h0(φ, ∂̄∂0ξ) ∧ ωn−1
g + T

ν

=

∫

M

h0(φ, trg ∂̄∂0ξ)ω
n
g + T

ν
,
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where T represents terms that involve no derivatives of φ and only zeroth- or first-
order derivatives of ξ. Therefore, we see

Ξ∗(φ) ≡ trg ∂̄∂0φ ≡ Ξ(φ).

Since Ξ and Ξ∗ have the same symbols, they are homotopic as elliptic operators, and
thus have the same index. Since the sum of the indices of Ξ and Ξ∗ is 0, they each
must have index 0.

Since the index of Ξ is 0, it suffices to show Ξ is injective to apply the Implicit
Function Theorem. In order to do this, we apply the following crucial estimate,
essentially due to Uhlenbeck-Yau.

Proposition 10. Let α ∈ R, ǫ ∈ (0, 1], f be a positive and Hermitian endomor-
phism of E with respect to h0, and φ ∈ Herm(E, h0). Assume L̂(ǫ, f) = 0 and

δ

δf
L̂(ǫ, f)(φ) + αf log f = Ξ(φ) + αf log f = 0.

Then if η = f− 1

2φf− 1

2 ,

−trg∂∂̄|η|2 + 2ǫ|η|2 + |∂f
0 η|2 + |∂̄fη|2 ≤ −2αh0(log f, η),

where ∂f
0 = Ad f− 1

2 ◦∂0 ◦Ad f
1

2 and ∂̄f = Ad f
1

2 ◦ ∂̄ ◦Ad f− 1

2 , |∂f
0 η|2 = trgh0(∂

f
0 η, ∂

f
0 ),

and |∂̄fη|2 = −trgh0(∂̄
fη, ∂̄fη).

Proof. This is a local calculation on M , which by our definitions of extended
Hermitian connections, p, q forms, etc., is the same as the calculation on MC. So we
refer the reader to [18, Proposition 3.2.5].

Proposition 11. J is open.

Proof. By the discussion above, we need only check that Ξ in injective. This
follows from the previous Proposition 10 with α = 0. In this case,

−trg∂∂̄|η|2 + 2ǫ|η|2 ≤ 0,

and the maximum principle implies |η|2 = 0. So η = 0 and φ = 0. Ξ is injective.

9. Closedness.

Lemma 12. If f is a Hermitian positive endomorphism of E with respect to h0

which solve Lǫ(f) = 0 for ǫ > 0, then det f = 1.

Proof. Taking the trace of the definition (14) and using Proposition 7, we see that

−trg∂∂̄ log det f + ǫ log det f = 0.

The maximum principle then implies log det f = 0.
We introduce some more notation. Let f = fǫ represent the family of solutions

constructed for ǫ in the interval (ǫ0, 1] in Corollary 8 and Proposition 11. Define

m = mǫ = max | log fǫ|, φ = φǫ =
dfǫ

dǫ
, η = ηǫ = f

− 1

2

ǫ φǫf
− 1

2

ǫ .

We can immediately verify

Lemma 13. The trace tr ηǫ = 0.
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Proof. Compute

tr η = tr (f− 1

2φf− 1

2 ) = tr

(

f−1 df

dǫ

)

=
d

dǫ
(log det f) = 0

by Lemma 12 above.

Proposition 14. Let E be a C-simple complex flat vector bundle over a compact
special affine manifold M . On M , consider the L2 inner products on Ap,q(EndE)
given by h0, g and the volume form ωn

g /ν. Then there is a constant C(m) depending
only on M , g, h0, ν and m = mǫ so that for η = ηǫ,

‖∂̄fη‖2
L2 ≥ C(m)‖η‖2

L2 .

Remark. In the following sections, C(m) will denote a constant depending on m
and the other objects noted above, but the particular constant may change with the
context. C will similarly denote a constant depending only on the initial conditions
M , g, h0 and ν, but not on ǫ or m.

Proof. Let ψ = f− 1

2 ηf
1

2 . Then pointwise,

|∂̄fη|2 = |f 1

2 ∂̄ψf− 1

2 |2 ≥ C(m)|∂̄ψ|2.

Integrate over M with respect to the volume form ωn
g /ν to find that

‖∂̄fη‖2
L2 ≥ C(m)‖∂̄ψ‖2

L2 = C(m)〈∂̄∗∂̄ψ, ψ〉,

where ∂̄∗ is the adjoint of ∂̄ with respect to the L2 inner products on A0,0(EndE) and
A0,1(EndE). It is straightforward to check that ∂̄∗∂̄ : A0,0(EndE) → A0,0(EndE) is
elliptic, and it is self-adjoint by formal properties of the adjoint.

Now trψ = tr (f− 1

2 ηf
1

2 ) = tr η = 0, and so for IE the identity endomorphism of
E,

〈ψ, IE〉L2 =

∫

M

h0(ψ, IE)
ωn

g

ν
=

∫

M

tr(ψIE)
ωn

g

ν
= 0,

since h0(ψ, IE) = tr(ψI∗E) for I∗E = IE the adjoint of IE with respect to h0. Since E is
C-simple, this shows that ψ is L2-orthogonal to the kernel of ∂̄ on EndE. Therefore,
since ∂̄∗∂̄ is self-adjoint and elliptic, there is a constant λ1 > 0 (the smallest positive
eigenvalue of ∂̄∗∂̄) so that

〈∂̄∗∂̄ψ, ψ〉L2 ≥ λ1‖ψ‖2
L2.

Therefore,

‖∂̄fη‖2
L2 ≥ C(m)〈∂̄∗∂̄ψ, ψ〉L2 ≥ C(m)‖ψ‖2

L2 ≥ C(m)‖η‖2
L2 .

Now we need the following consequence of a subsolution estimate of Trudinger
[11, Theorem 9.20]:

Proposition 15. If u is a C2 nonnegative function on M which satisfies

trg∂∂̄u ≥ λu + µ
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for λ ≤ 0 and µ real constants, then

max
M

u ≤ B(‖u‖L1 + |µ|)

for B a constant only depending on g, ν and λ.

Now we bound |φ| = |φǫ| in terms of m.

Proposition 16. Given E a C-simple complex flat vector bundle over a compact
special affine manifold M , maxM |φǫ| ≤ C(m).

Proof. Proposition 10 above shows that

−trg∂∂̄|η|2 + |∂̄fη|2 ≤ 2| log f | · |η|.

Since
∫

M
trg∂∂̄|η|2ωn

g /ν = 0, we have

‖∂̄fη‖2
L2 ≤ C(m) ‖η‖L2 .

But then Proposition 14 implies

C(m) ‖η‖2
L2 ≤ ‖∂̄fη‖2

L2 ≤ C(m) ‖η‖L2 =⇒ ‖η‖L2 ≤ C(m).

But then we also have from Proposition 10 that

−trg∂∂̄|η|2 ≤ 2| log f | · |η| ≤ m |η|2 +m,

and Proposition 15 then shows that

max
M

|η|2 ≤ C(m)(‖η‖2
L2 +m) ≤ C(m).

The result follows since φ = f
1

2 ηf
1

2 .
The following lemma follows is a local calculation as in [18, Lemma 3.3.4.i].

Lemma 17.

− 1
2 trg∂∂̄| log f |2 + ǫ | log f |2 ≤ |K0 − γIE | · | log f |.

Corollary 18. m ≤ ǫ−1C.

Proof. Apply the maximum principle to Lemma 17 for C = maxM |K0 − γIE |.
Corollary 19. m ≤ C(‖ log f‖L2 + 1)2.

Proof. Lemma 17 implies

−trg∂∂̄| log f |2 ≤ | log f |2 + max
M

|K0 − γIE |2.

Then Proposition 15 applies to show

m ≤ C(‖ log f‖2
L2 + 1),

which implies the corollary.
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Lemma 20. Consider the operator ∂̄∗0 ∂̄0 acting on sections of End(E), where the
adjoint is with respect to the inner product 〈·, ·〉End(E). Then for each section ψ of
End(E),

∂∗0∂0ψ =
1

n
trg∂̄∂0ψ −

∂0ψ ∧ ∂̄ωn−1
g

ωn
g

.

Proof. Since

∂̄[h0(∂0ψ1, ψ2) ∧ ωn
g ] = [h0(∂̄∂0ψ1, ψ2) − h0(∂0ψ1, ∂0ψ2)] ∧ ωn−1

g

− h0(∂0ψ1, ψ2) ∧ ∂̄ωn−1
g ,

Proposition 3 and Stokes’ Theorem show that

∫

M

h0(∂
∗
0∂0ψ1, ψ2)

ωn
g

ν
=

∫

M

h0(∂0ψ1, ∂0ψ2) ∧ ωn−1
g

ν

=

∫

M

h0(∂̄∂0ψ1, ψ2) ∧ ωn−1
g

ν

−
∫

M

h0(∂0ψ1, ψ2) ∧ ∂̄ωn−1
g

ν

=
1

n

∫

M

h0(trg ∂̄∂0ψ1, ψ2)
ωn

g

ν

−
∫

M

h0(∂0ψ1, ψ2) ∧ ∂̄ωn−1
g

ν

Proposition 21. Assume E is a C-simple complex flat vector bundle over M a
compact special affine manifold. Suppose there is an m ∈ R so that mǫ ≤ m for all
ǫ ∈ (ǫ0, 1]. Then for all p > 1 and ǫ ∈ (ǫ0, 1],

‖φǫ‖Lp
2
≤ C(m)(1 + ‖fǫ‖Lp

2
),

where C(m) may depend on p as well as m and the initial data.

Proof. The variation φ = φǫ satisfies

0 =
δ

δf
L̂(ǫ, f)(φ) + f log f

= φ[K0 − γIE + ǫ log f + trg ∂̄(f−1∂0f)]

− f trg ∂̄(f−1φf−1∂0f) + f trg ∂̄(f−1∂0φ)

+ f log f + ǫf

(

δ

δf
log f

)

(φ).

One computes then that

trg(∂̄∂0φ) = −φ(K0 − γIE + ǫ log f) − trg(∂̄f ∧ f−1φf−1∂0f)

+ trg(∂̄f ∧ f−1∂0φ) + trg(∂̄φ ∧ f−1∂0f)

− f log f − ǫf

(

δ

δf
log f

)

(φ).
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Then Lemma 20 above shows that for the operator Λ = n ∂∗0∂0 + IE

(19)

Λφ =−φ[K0 − (γ + 1)IE + ǫ log f ] − trg(∂̄f ∧ f−1φf−1∂0f)

+ trg(∂̄f ∧ f−1∂0φ) + trg(∂̄φ ∧ f−1∂0f)

− f log f − ǫf

(

δ

δf
log f

)

(φ) − n
∂0φ ∧ ∂̄ωn−1

g

ωn
g

.

The operator Λ: Lp
2(EndE) → Lp(EndE) is elliptic, self-adjoint, and is continuously

invertible, since ∂∗0∂0 has nonnegative spectrum. Therefore, there is a C satisfying

‖φ‖Lp
2
≤ C‖Λφ‖Lp ,

where as usual C depends only on the initial data and p.
So we consider the Lp norms of the 7 terms on the right-hand side of (19): The

first term is bounded by C(m) by Proposition 16, and the fifth is also bounded by
C(m). Proposition 16 and Hölder’s inequality shows the second term is bounded by
C(m)‖f‖2

L2p

1

. The third and fourth terms are both bounded by C(m)‖f‖L2p
1

‖φ‖L2p
1

.

A local computation shows the sixth term is bounded by C(m), and the last term is
clearly bounded by C‖φ‖L2p

1

. So, altogether,

‖φ‖Lp
2
≤ C(m)(1 + ‖φ‖L2p

1

+ ‖φ‖L2p
1

‖f‖L2p
1

+ ‖f‖2
L2p

1

).

An interpolation inequality of Aubin [2, Theorem 3.69] states that

‖ψ‖L2p
1

≤ C‖ψ‖
1

2

L∞
‖ψ‖

1

2

Lp
2

+ ‖ψ‖L2p .

Since both ‖f‖L∞, ‖φ‖L∞ ≤ C(m), a simple computation allows us to prove the
proposition.

Corollary 22. Assume there is a smooth family of solutions fǫ to Lǫ(fǫ) = 0,
and that there is a uniform m so that mǫ ≤ m for all ǫ ∈ (ǫ0, 1]. Then for all
ǫ ∈ (ǫ0, 1], ‖fǫ‖Lp

2
≤ C(m), where C(m) does not depend on ǫ.

Proof. Since φǫ = d
dǫfǫ,

d

dǫ
‖fǫ‖Lp

2
≥ −‖φǫ‖Lp

2
≥ −C(m)(1 + ‖fǫ‖Lp

2
).

Then simply integrate this ordinary differential inequality.

Proposition 23. Assume E is a C-simple flat complex vector bundle over M
a compact special affine manifold. Then J = (0, 1]. Moreover, if ‖fǫ‖L2 is bounded
independently of ǫ ∈ (0, 1], then there exists a smooth solution f0 to the Hermitian-
Einstein equation L0(f0) = 0.

Proof. The first statement will follow if we can show J is closed. In particular, all
we need to show is that if J = (ǫ0, 1] for ǫ0 > 0, then there is a smooth solution fǫ0 to
Lǫ0(fǫ0) = 0. Corollaries 18 and 22 and then shows there is a constant C satisfying
‖fǫ‖Lp

2
≤ C for all ǫ ∈ (ǫ0, 1]. We will use this uniform estimate below to show the

existence of fǫ0 .
Under the hypotheses of the second statement of the proposition, on the other

hand, Corollaries 19 and 22 together show that there is a C so that for all ǫ ∈ (0, 1],
‖fǫ‖Lp

2
≤ C.
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Therefore, to prove the whole proposition, we may assume that for ǫ0 ∈ [0, 1),
there is a constant C and a smooth family of solutions fǫ of Lǫ(fǫ) = 0 exists and
satisfies ‖fǫ‖Lp

2
≤ C. We will find a sequence ǫi → ǫ+0 so that fǫ0 = lim fǫi

is the
solution we require.

Choose p > n. In this case, Lp
1 maps compactly into C0, and so log : Lp

1(EndE) →
Lp

1(EndE) is continuous on its domain and the product of two functions in Lp
1 is also

in Lp
1. (See e.g. [18].)
The uniform Lp

2 bound implies there is a sequence ǫi → ǫ0 so that fǫi
→ fǫ0

converges weakly in Lp
2, and strongly in Lp

1 and C0. Then compute, in the sense of
distributions, for α a smooth section of End(E),

〈Lǫ0(fǫ0), α〉End(E) = 〈Lǫ0(fǫ0) − Lǫi
(fǫi

)〉End(E)

=

∫

M

h0(trg[∂̄(f−1
ǫ0 ∂0fǫ0 − f−1

ǫi
∂0fǫi

)], α)
ωn

g

ν

+

∫

M

h0(ǫ0 log fǫ0 − ǫi log fǫi
, α)

ωn
g

ν
.

The second term goes to zero as ǫi → ǫ0 since fǫi
→ fǫ0 in C0. Using Proposition 3,

the first term can be written as

n

∫

M

h0(f
−1
ǫ0 ∂0fǫ0 − f−1

ǫi
∂0fǫi

, ∂0α) ∧ ωn−1
g

ν

+ n

∫

M

h0(f
−1
ǫ0 ∂0fǫ0 − f−1

ǫi
∂0fǫi

, α) ∧ ∂̄ωn−1
g

ν
.

Both these terms converge to 0 since f−1
ǫi
∂0fǫi

→ f−1
ǫ0 ∂0fǫ0 in Lp. Therefore,

Lǫ0(fǫ0) = 0 in the sense of distributions.
Now we can compute in much the same way, for fǫ0 ∈ Lp

2, trg ∂̄∂0fǫ0 ∈ Lp
1.

Therefore, fǫ0 ∈ Lp
3, and we can bootstrap further to show that fǫ0 is smooth and is

a classical solution to Lǫ0(fǫ0) = 0.

10. Construction of a destabilizing subbundle. In this section, we will
construct a destabilizing flat subbundle of E if lim supǫ ‖fǫ‖L2 = ∞. For a sequence
ǫi → 0, we will rescale by the reciprocal ρi of the largest eigenvalue of fǫi

. Then we
will show that the limit

lim
σ→0

lim
i→∞

(ρifǫi
)σ

exists and all of its eigenvalues are 0 or 1. A projection to the destabilizing subbundle
will be given by IE minus this limit.

Proposition 24. If ǫ > 0, 0 < σ ≤ 1, and f satisfies Lǫ(f) = 0, then

− 1

σ
trg∂∂̄(trfσ) + ǫ h0(log f, fσ) + |f−σ

2 ∂0(f
σ)|2 ≤ −h0(K0 − γIE , f

σ).

Proof. This is a local computation, for which we refer to [18, Lemma 3.4.4].
To rescale fǫ properly, consider the largest eigenvalue λ(ǫ, x) of log fǫ(x) for x ∈

M , and define

Mǫ = max
x∈M

λ(ǫ, x), ρǫ = e−Mǫ .

Then since det fǫ = 1, ρǫ ≤ 1 and we have the following straightforward lemma:

Lemma 25. Assume lim supǫ→0 ‖fǫ‖L2 = ∞. Then
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1. ρǫfǫ ≤ IE.
2. For each x ∈M , there is an eigenvalue of ρǫfǫ less than or equal to ρǫ.
3. maxM ρǫ|fǫ| ≥ 1.
4. There is a sequence ǫi → 0 so that ρǫi

→ 0.

Proposition 26. There is a subsequence ǫi → 0 so that ρǫi
→ 0 and so that

fi = ρǫi
fǫi

satisfies
1. fi converges weakly in L2

1 to an f∞ 6= 0.
2. As σ → 0, fσ

∞ converges weakly in L2
1 to f0

∞.

Proof. First of all, note that since each fσ
ǫ is positive-definite and self-adjoint

with respect to h0,

(20) |fσ
ǫ | ≤ tr fσ

ǫ ≤
√
r |fσ

ǫ |.

Let σ ∈ (0, 1]. Then Proposition 24, Corollary 18, and (20) show

trg∂∂̄(tr fσ
ǫ ) ≥ ǫ h0(log fǫ, f

σ
ǫ ) + h0(K0 − γIE , f

σ
ǫ )

≥ −(ǫmǫ + C)|fσ
ǫ |

≥ −C|fσ
ǫ | ≥ −C tr fσ

ǫ ,

where, as usual, C is a (changing) constant depending only on the initial data. Now
Proposition 15, Lemma 25 and (20) show that

(21) 1 ≤ max
M

ρσ
ǫ |fσ

ǫ | ≤ max
M

ρσ
ǫ tr fσ

ǫ ≤ Cρσ
ǫ ‖tr fσ

ǫ ‖L1 ≤ C‖ρσ
ǫ f

σ
ǫ ‖L2.

On the other hand, Lemma 25 shows

‖ρσ
ǫ f

σ
ǫ ‖L2 ≤ ‖IE‖L2 = C,

and so it remains to estimate ‖∂0(f
σ
i )‖L2 to get uniform bounds on ‖fσ

i ‖L2

1
.

Compute for ǫ = ǫi,

‖∂0f
σ
i ‖2

L2 =

∫

M

|∂0(ρ
σ
ǫ f

σ
ǫ )|2

ωn
g

ν

≤
∫

M

|(ρǫfǫ)
− σ

2 ∂0(ρ
σ
ǫ f

σ
ǫ )|2

ωn
g

ν

≤ ρσ
ǫ

∫

M

1

σ
trg∂∂̄(trfσ

ǫ )
ωn

g

ν
− ρσ

ǫ

∫

M

h0(ǫ log fǫ +K0 − γIE , f
σ
ǫ )

ωn
g

ν

=
ρσ

ǫ n

σ

∫

M

∂∂̄(trfσ
ǫ ) ∧ ωn−1

g

ν
−

∫

M

h0(ǫ log fǫ +K0 − γIE , ρ
σ
ǫ f

σ
ǫ )

ωn
g

ν

= −
∫

M

h0(ǫ log fǫ +K0 − γIE , ρ
σ
ǫ f

σ
ǫ )

ωn
g

ν

≤ Cmax
M

(ρǫfǫ)
σ ≤ C,

where we have used Lemma 25 to show (ρǫfǫ)
−σ

2 ≥ IE to derive the second line from
the first; Proposition 24 for the third line; Proposition 3, Stokes’ Theorem, and the
fact that g is affine Gauduchon to get the fifth line; and finally Corollary 18 and
Lemma 25 to derive the sixth line. Note the final bound C is independent of σ and ǫ.
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For σ = 1, therefore, we have uniform L2
1 bounds on fi, and so there is an L2

1-
weakly-convergent subsequence which we may assume converges in L2 and almost
everywhere on M . For simplicity, we still call this subsequence fi. The bound (21)
shows that f∞ = lim fi is not zero in L2.

The almost everywhere convergence of fi → f∞ shows that f∞ is h0-adjoint and
positive semidefinite almost everywhere. Lemma 25 shows that each eigenvalue of f∞
is in [0, 1]. Therefore, by considering a (measurable) frame which diagonalizes f∞
at almost every point, it is clear that fσ

∞ converges to a limit f0
∞ pointwise almost

everywhere as σ → 0.
Moreover, the uniform bounds on ‖fσ

i ‖L2
1

for all σ ∈ (0, 1] show that ‖fσ
∞‖L2

1
is

also uniformly bounded independent of σ, and so for each sequence σj → 0, there is

a subsequence σjk
so that f

σjk
∞ converges weakly in L2

1, strongly in L2 and pointwise
almost everywhere to f0

∞. Thus fσ
∞ → f0

∞ weakly in L2
1 as σ → 0.

Now let π = IE − f0
∞.

Proposition 27. The endomorphism π = IE−f0
∞ is an h0-orthogonal projection

onto a flat subbundle of E. In other words, it satisfies π2 = π, π∗ = π and (IE −
π)∂̄π = 0 in L1. Moreover, π is a smooth endomorphism of E. So the locally constant
subbundle F = π(E) is smooth.

Proof. First we show that π = π∗, π = π2, and (1 − π)∂̄π = 0 in L1 only. Then
we will finish the proof with a discussion of regularity.

To show π = π∗ almost everywhere, recall f0
∞ is a pointwise almost-everywhere

limit of fσ
∞, and f∞ is a pointwise almost-everywhere limit of fi, which satisfies

fi = f∗
i .

To show π2 = π in L1, use Proposition 26 to compute

π2 = lim
σ→0

(IE − fσ
∞)2 = IE − 2 lim

σ→0
(fσ

∞ + f2σ
∞ ) = 1 − 2f0

∞ + f0
∞ = π.

To show (1 − π)∂̄π = 0 in L1, compute since π = π∗ = π2 that

|(IE − π)∂̄π| = |∂̄(IE − π)π| = |[∂̄(IE − π)π]∗| = |π∂0(IE − π)|.

(Here ∗ represents the adjoint with respect to h0 only, and not with respect to any
Hodge-type star on the affine Dolbeault complex Ap,q(EndE).) So we will show that

‖π∂0(IE − π)‖L2 = 0.

Since the eigenvalues of fi are between 0 and 1, a local computation (see e.g. [18, p.
87]) implies that

0 ≤ s+ σ
2

s
(IE − fs

i ) ≤ f
−σ

2

i

for 0 ≤ s ≤ σ
2 . Then, as above, Proposition 24 shows that

∫

M

|(IE − fs
i )∂0(f

σ
i )|2

ωn
g

ν
≤

(

s

s+ σ
2

)2 ∫

M

|f−σ
2

i ∂0(f
σ
i )|2

ωn
g

ν

≤
(

s

s+ σ
2

)2 ∫

M

|ǫi log fi +K0 − γIE ||fi|σ
ωn

g

ν

≤
(

s

s+ σ
2

)2

C.
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Since {(IE − fs
i )∂0(f

σ
i )}∞i=1 is a bounded sequence in L2, weak compactness in L2

allows us to take i→ ∞ to find

∫

M

|(IE − fs
∞)∂0(f

σ
∞)|2

ωn
g

ν
≤

(

s

s+ σ
2

)2

C.

Now we let s → 0 first so that IE − fs
∞ → IE − f0

∞ = π strongly in L2 as s → 0 by
the uniform L2

1 bounds. So

∫

M

|π∂0(f
σ
∞)|

ωn
g

ν
= 0.

By definition, limσ→0 ∂0f
σ
∞ converges weakly in L2 to ∂0(IE−π), and so

∫

M |π∂0(IE−
π)|ω

n
g

ν = 0.
It remains to show that π = π2 = π∗ and π∂̄(IE − π) = 0 in L1 implies that

π is smooth. The regularity of F = π(E) is a local issue, and so we restrict to a
local coordinate chart and a locally constant frame. By an argument of Popovici [19,
Lemma 0.3.3], we can assume h0 is the standard flat metric with regards to the locally
constant frame.

In terms of the standard flat metric, in order to show that F = π(E) is a smooth
flat vector bundle, it suffices to show that

∂̄π = 0 ⇐⇒ ∇π = 0.

At each x ∈M , π(x) can be considered as a map from C
r to C

r of some rank k.
The conditions π satisfies are then

π2 = π, π∗ = π, (IE − π)∂̄π = 0,

for ∗ the conjugate transpose. Now π is L2
1 when restricted to almost every coordinate

line segment, with variable t on the segment. Then the last condition on π becomes

(I − π)
dπ

dt
= (I − π)π̇ = 0.

The adjoint of this equation is then

0 = (π̇)∗(I − π)∗ = π̇(I − π).

Differentiating π2 = π and applying π̇ = ππ̇, we also have

π̇π = 0.

Adding these two equations shows that

π̇ = (I − π)π̇ + ππ̇ = 0

in the sense of distributions. So π is constant along almost every coordinate line
segment. Then it is easy to see that π is constant almost everywhere, and thus is
equal to a constant matrix in the sense of distributions.

We should remark that this simple proof works because d/dt is a real operator.
More properly, on an affine manifold, ∂̄ is a real operator: We may ignore our con-
vention (2), and instead map ∂̄ to the real operator 1

2∇ via the a natural map from
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A0,1(EndE) → Λ1(EndE) induced by dzi 7→ dxi. So π∗ = π implies π̇∗ = π̇. This
fails in the case of complex manifolds, and the proof to show that the image of π is
a coherent analytic subsheaf is quite a bit more involved (Uhlenbeck-Yau [24, 25]),
although see the simplification by Popovici [19].

Proposition 28. The flat subbundle F = π(E) ⊂ E is a proper subbundle. In
other words,

0 < rankF < rankE.

Proof. First of all, note that rankF is a constant over M , since it is equal to the
rank of π as an endomorphism, and π is locally constant.

Now f0
∞ = limσ→0 f

σ
∞ is not identically zero since f∞ 6= 0 (Proposition 26), and

the eigenvalues of fσ
∞ are nonnegative and nondecreasing as σ → 0. So π = IE − f0

∞

is not identically IE . Since π is a projection, rankπ < rankE.
On the other hand, Lemma 25 (there is everywhere on M an eigenvalue of fi

which is bounded by ρi → 0) shows that f∞ has a nontrivial kernel at almost every
point. Therefore, f0

∞ does as well, and π = IE − f0
∞ cannot be identically 0. So

rankπ > 0.

Proposition 29. The flat subbundle F = π(E) is a destabilizing subbundle of
E. In other words,

deggE

rankE
= µgE ≤ µgF =

deggF

rankF
.

Proof. Recall

µgE =
1

r

∫

M

c1(E, h) ∧ ωn−1
g

ν
=

1

nr

∫

M

trK0

ωn
g

ν
,

and for s = rankF and KF the extended mean curvature of the extended Hermitian
connection on F with respect to the Hermitian metric h0|F the restriction of h0 to F .

µgF =
1

s

∫

M

c1(F, h0|F ) ∧ ωn−1
g

ν
=

1

ns

∫

M

trKF

ωn
g

ν
.

The Chern-Weil formula (see e.g. Kobayashi [13]) shows that trKF = tr(K0π) −
|π⊥∂0π|2 for π⊥∂0π the second fundamental form of the subbundle F ⊂ E. Now

π⊥∂0π = (IE − π)∂0π = ∂0π − π∂0π = ∂0π.

If we define K0 = K0 − γIE , then trK0 = 0 and

µgF =
1

ns

∫

M

[tr (K0π) − |∂0π|2]
ωn

g

ν
+
γ

n

∫

M

ωn
g

ν
,

while (8) shows µgE = γ
n

∫

M

ωn
g

ν . Therefore, in order to show µgF ≥ µgE, we need to
show

(22)

∫

M

tr(K0π)
ωn

g

ν
≥

∫

M

|∂0π|2
ωn

g

ν
.
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Since π = lim
σ→0

lim
i→∞

(IE − fσ
i ) strongly in L2 and trK0 = 0,

∫

M

tr(K0π)
ωn

g

ν
= − lim

σ→0
lim

i→∞

∫

M

tr(K0fσ
i )
ωn

g

ν
.

Compute, using equation (14),

−
∫

M

tr(K0fσ
i )
ωn

g

ν
=

∫

M

ǫi tr(log fǫi
· fσ

i )
ωn

g

ν

+

∫

M

tr{[trg∂̄(f−1
i ∂0fi)]f

σ
i }
ωn

g

ν

≥
∫

M

tr{[trg ∂̄(f−1
i ∂0fi)]f

σ
i }
ωn

g

ν

= n

∫

M

tr{[∂̄(f−1
i ∂0fi)]f

σ
i } ∧ ωn−1

g

ν

= n

∫

M

tr[(f−1
i ∂0fi) ∧ ∂̄(fσ

i )] ∧ ωn−1
g

ν

+ n

∫

M

tr[(f−1
i ∂0fi)f

σ
i ] ∧ ∂̄ωn−1

g

ν
,

where the inequality follows from a local calculation as in [18, p. 89] and the last
equality follows from Proposition 3 and integration by parts. Now a local computation
shows that the last integral above satisfies

∫

M

tr[(f−1
i ∂0fi)f

σ
i ] ∧ ∂̄ωn−1

g

ν
=

1

σ

∫

M

∂[tr(fσ
i )] ∧ ∂̄ωn−1

g

ν
= 0

by integration by parts since g is affine Gauduchon. On the other hand, the other
term

n

∫

M

tr[(f−1
i ∂0fi) ∧ ∂̄(fσ

i )] ∧ ωn−1
g

ν
=

∫

M

tr trg[(f
−1
i ∂0fi) ∧ ∂̄(fσ

i )]
ωn

g

ν

=

∫

M

trg h0(f
−1
i ∂0fi, ∂0(f

σ
i ))

ωn
g

ν

≥
∫

M

|f−σ
2

i ∂0(f
σ
i )|2

ωn
g

ν

≥ ‖∂0(f
σ
i )‖2

L2

= ‖∂0(IE − fσ
i )‖2

L2 .

Here, the second line follows from the first since h0(A,B) = tr(AB∗) for B∗ the h0-
adjoint of B, the third line follows by a local computation [18, Lemma 3.4.4.i], and
the fourth line follows since fi ≤ IE .

Therefore,

−
∫

M

tr(K0fσ
i )
ωn

g

ν
≥ ‖∂0(IE − fσ

i )‖2
L2 ,

and since ∂0π is the weak L2 limit of ∂0(IE − fσ
i ),

lim
σ→0

lim
i→∞

‖∂0(IE − fσ
i )‖2

L2 ≥ ‖∂0π‖2
L2 .
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This proves the proposition.
This proposition completes the proof of Theorem 1.

11. Simple bundles. Some of this section is a simplified version of Kobayashi
[13, Section V.7].

Proposition 30. Every C-stable flat vector bundle E over a compact special
affine manifold M is C-simple.

Proof. Consider a locally constant section f of E∗ ⊗ E, and let a ∈ C be an
eigenvalue of E at a point x ∈M . Then f − aIE is a locally constant endomorphism
of E which has a 0 eigenvalue at x. ConsiderH = (f−aIE)(E). Thus rankH < rankE.
We use the C-stability to show H = 0. If rankH > 0, then the stability of E implies
that

µ(H) < µ(E).

But we can also identify H with the quotient bundle E/ ker(f − aIE), which implies

µ(E) < µ(H),

which provides a contradiction. Thus H = 0 and f = aIE for the constant a ∈ C.
The proof is completed by the following proposition.

Proposition 31. If E is a C-stable flat vector bundle over a compact special
affine manifold M , then any flat quotient vector bundle H over E satisfies µ(E) >
µ(H).

Proof. If

0 → F → E → H → 0

is an exact sequence of flat vector bundles on M , then

(23) degF + degH = degE.

The proof of (23) is to compute the affine first Chern form.
In terms of a locally constant frame s1, . . . , sr of E, and for hαβ̄ = h(sα, sβ) as

above, the first Chern form is

(24) c1(E, h) = −∂∂̄ log dethαβ̄.

We will show that there are natural frames and metrics so that c1(E) = c1(F )+c1(H).
On each sufficiently small open set U ⊂ M , there is a locally constant frame

{s1, . . . , sr} so that {s1, . . . , sr′} is a locally constant frame of the subbundle F (for
r′ ≤ r the rank of F ). Then the equivalence classes {[sr′+1], . . . [sr]} form a locally
constant frame of the quotient bundle H (here, at x ∈ U , [s(x)] = s(x) + Fx ∈
Ex/Fx = Hx).

We assume E admits a Hermitian metric h. Then h|F is a Hermitian metric
on F . Now there is an orthonormal frame {t1, . . . , tr} of E so that t1, . . . , tr′ are
sections of F . Then the change-of-frame matrix A = (Aβ

α) satisfying tα = Aβ
αsβ is

block-triangular of the form

(25) A =

(

P ∗
0 Q

)

,
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where P is the change-of-frame matrix on F taking {s1, . . . , sr′} to {t1, . . . , tr′}. The
metric h allows us to identify the quotient bundle H with the orthogonal complement
F⊥ of F in E by orthogonal projection. Under this identification, the matrix Q is the
change-of-frame matrix on F⊥ taking {[sr′+1], . . . , [sr]} to {tr′+1, . . . , tr}. Note (25)
shows detA = (detP )(detQ).

Now note that the metric h = (hαβ̄) can be recovered from a change of frame

matrix A by h = (AĀ⊥)−1—i.e., Aγ
αhγǫĀ

ǫ
β = δαβ for the Kronecker δαβ. Then the

formulas (24) and (25) show that c1(E) = c1(F ) + c1(H).
So the degree addition formula (23) follows from the definition (4). Now

µg(F ) < µg(E) ⇐⇒ µg(H) > µg(E),

which proves the proposition.
Finally, we consider the case of real flat vector bundles. Now let E be a real

flat vector bundle over a compact special affine manifold M equipped with an affine
Gauduchon metric g. Such a vector bundle E is said to be R-stable if every real flat
subbundle F of E satisfies

0 < rankF < rankE =⇒ µg(F ) < µg(E).

It is obvious that the C-stability of E ⊗R C implies the R-stability of E, but the
converse may not be true.

Proposition 32. Let E be an R-stable flat real vector bundle over M a compact
special affine manifold. As a complex flat vector bundle, E ⊗R C satisfies one of the
following:

• E ⊗R C is C-simple.
• E ⊗R C = V ⊕ V̄ , where V is a C-stable flat complex vector subbundle of
E ⊗R C and V̄ is its complex conjugate as a subbundle of E ⊗R C.

Proof. Case 1: Every real locally constant section of EndE has only real eigen-
values at every point x ∈ M . In this case, let f be a real locally constant section of
EndE, and let a ∈ R be an eigenvalue of f at a point x ∈M . Then f − aIE is a real
section of EndE and, following the proof of Proposition 30 above, f − aIE must be
identically 0, since E is R-stable. So f = aIE . The same is true for a complex locally
constant section of EndE by considering real and imaginary parts. Thus E ⊗R C is
C-simple in this case.

Case 2: There is a real locally constant section f of EndE with an eigenvalue
a /∈ R at a point x ∈ M . Then g = (f − aI) ◦ (f − āI) is a real section of End(E).
Again, as in the proof of Proposition 30, g must be identically 0. So we have the
following splitting into eigenbundles

E ⊗R C = Ea ⊕ Eā = Ea ⊕ Ea.

Now we show that Ea and Eā must each be C-stable. Let F be a flat complex
subbundle of Ea. Then it is easy to see that F ⊕ F̄ is a real subbundle of Ea ⊕
Ea = E ⊗R C. The C-stability of Ea follows from the observation that the slope
µ(F ) = µ(F ⊕ F̄ ) for any flat subbundle F of Ea.

This observation may be proved by noting that rank(F ⊕ F̄ ) = 2 rankF , and
that the degree deg(F ⊕ F̄ ) = 2 degF also. The degree calculation can be verified by
choosing a Hermitian metric h on F and extending it to F ⊕ F̄ by setting

(26) h(ξ, η̄) = h(ξ̄, η) = 0, h(ξ̄, η̄) = h(ξ, η)
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for ξ, η sections of F .

Corollary 33. Any R-stable flat real vector bundle E over a compact special
affine manifold M admits a real Hermitian-Einstein metric.

Proof. If E is C-stable, then we are done. If not, the previous proposition shows
that E ⊗R C = V ⊕ V̄ for V a complex stable flat subbundle. Then V admits a
Hermitian-Einstein metric. It extends to a real Hermitian-Einstein metric on E ⊗R C

by using (26) above.
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