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BÄCKLUND TRANSFORMATIONS AND DARBOUX

INTEGRABILITY FOR NONLINEAR WAVE EQUATIONS∗
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Abstract. We prove that second-order Monge-Ampère equations for one function of two vari-
ables are connected to the wave equation by a Bäcklund transformation if and only if they are
integrable by the method of Darboux at second order.
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1. Introduction. Roughly speaking, a Bäcklund transformation is a method for
generating new solutions for a given partial differential equation by starting with a
‘seed’ solution to the same (or a different) PDE and solving an auxiliary system
of ODEs. Bäcklund’s original example was a transformation that produced new
pseudospherical surfaces from old, and it is equivalent to the following system:

vx − ux = 1
2 sin((u+ v)/2),

vy + uy = − 1
2 sin((u − v)/2).

(1.1)

Given an arbitrary smooth function u(x, y), this overdetermined system for v is incon-
sistent. However, if u satisfies the sine-Gordon equation uxy = sinu then the system
is consistent, and the function v(x, y), determined up to a constant of integration,
will also satisfy the sine-Gordon equation. The transformation works in reverse, too:
given a solution v(x, y) for sine-Gordon, the system determines a 1-parameter family
of solutions u(x, y) for the same PDE.

It is this type of Bäcklund transformation—connecting solutions of two second-
order Monge-Ampère PDE in the plane, not necessarily the same equation—which is
the general subject of this paper. (A second-order Monge-Ampère equation is a PDE
where the highest-order derivatives may appear nonlinearly but only in the form of the
determinant of the Hessian.) Another important example of this type is the system

zx − ux = −2 exp((u+ z)/2),

zy + uy = exp((u− z)/2).
(1.2)

In this example, if z(x, y) satisfies the wave equation (in characteristic coordinates,
zxy = 0), then the system determines a 1-parameter family of solutions of Liouville’s
equation uxy = eu, and conversely. Bäcklund transformations of this subtype—where
one of the two PDE involved is the standard wave equation—are the specific concern
of this paper.

Liouville’s equation also has the rare property that it is Darboux-integrable—in
other words, it can be solved by the method of Darboux. (This will be defined below.)
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The main point of this paper is that this is not a coincidence; more precisely, we will
prove

Theorem 1. Let (M5, I) be a hyperbolic Monge-Ampère system. If there is a
normal Bäcklund transformation with 1-dimensional fibers linking this system with
the wave equation, then the first prolongation of I is Darboux-integrable. Conversely,
if the first prolongation of I is Darboux-integrable, then near any point p ∈ M there
is an open set U ⊂ M around p such that the restriction of I to U is linked to the
wave equation by a normal Bäcklund transformation.

The technical terms in this theorem must be explained. Any single PDE or system
of PDE may be re-cast as an exterior differential system (EDS) or differential ideal
(i.e., an ideal, with respect to wedge product, in the ring of differential forms on a
manifold, that is also closed under the exterior derivative), in a way that solutions are
in one-to-one correspondence with submanifolds to which all the differential forms in
the EDS pull back to be zero. (These submanifolds, which must usually also satisfy a
nondegeneracy condition, are known as integral manifolds of the EDS.) In particular,
a Monge-Ampère equation in the plane can be re-cast as the following type of EDS:

Definition. A Monge-Ampère exterior differential system is a differential ideal
I on a 5-dimensional manifold M, such that near any point of M, I is generated
algebraically by one 1-form θ and two 2-forms Ω1,Ω2. (Hence, dθ must equal a linear
combination of the Ω’s, plus possibly a wedge product with θ as factor.) The 1-form
θ is required to be a contact form, i.e., θ ∧ dθ ∧ dθ 6= 0. A Monge-Ampère system is
hyperbolic if the Ω’s may be chosen so that both are decomposable.

For example, for Liouville’s equation we may take M to be R
5 with coordinates

x, y, u, p, q, and let

θ = du − p dx− q dy, Ω1 = (dp− eudy) ∧ dx, Ω2 = (dq − eudx) ∧ dy. (1.3)

(Note that dθ = −Ω1 − Ω2.) Given a solution u = f(x, y) of the PDE, we can
construct a surface Σ ⊂ R

5 such that i∗θ = 0, i∗Ω1 = i∗Ω2 = 0 (where i : Σ →֒ R
5 is

the inclusion map) by setting u = f(x, y), p = fx(x, y) and q = fy(x, y). Conversely,
any surface Σ satisfying i∗θ = 0, i∗Ω1 = i∗Ω2 = 0 and the nondegeneracy condition
i∗dx ∧ dy 6= 0 is the graph of a solution constructed in this way.

In the body of the paper, we will also use another type of EDS:

Definition. A Pfaffian exterior differential system is a differential ideal I on an
arbitrary manifold M, defined by a vector bundle I ⊂ T ∗M, such that a differential
form belongs to I if and only if it is a linear combination of wedge products involving
sections of I or their exterior derivatives. (In practice, our Pfaffian systems will be
specified by giving a list of 1-forms that span the fiber of I at each point.) The rank
of a Pfaffian system is the rank of the vector bundle.

A Pfaffian system satisfies the Frobenius condition or is said to be integrable if
the exterior derivative of any section of I is in the algebraic ideal generated by I.
Any Frobenius system is locally equivalent to a (possibly underdetermined) system of
ordinary differential equations; see Chapter 1 in [8].

Theorem 1 is about relations between exterior differential systems; in particular,
we have the following definition from [8]:
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Definition 1.1. A Bäcklund transformation between two exterior differential
systems (M, I) and (M, I) is a manifold B equipped with submersions π : B → M

and π : B → M (see diagram below) and vector bundles J, J ⊂ T ∗B such that
(i) the fibers of π and π are transverse in B;
(ii) the rank of J equals the dimension of the fibers of π, and sections of J pull back
to the fibers of π to span the cotangent space of each fiber;
(iii) J is similarly related to the fibers of π;
(iv) the algebraic ideal J generated by π∗I and sections of J is the same as the
algebraic ideal generated by π∗I and sections of J , and J is a differential ideal.

M M

B

�
��/

S
SSw

π π

The impact of the last condition is that if N ⊂ M is an integral manifold of I,
then sections of J pull back to π−1(N) to satisfy the Frobenius condition, so that
integral manifolds of J inside π−1(N) may be constructed by solving ODE; moreover,
the image under π of each of these integral manifolds is an integral manifold of I.
Because the definition is symmetric, this also works in the other direction: given an
integral manifold of I, we can solve a Frobenius system on the inverse image in B to
obtain a family of integral manifolds of I. For example, given a solution z(x, y) of
the wave equation, substitution in (1.2) gives an overdetermined system of ODE for
a solution u(x, y) of Liouville’s equation, and in this context the Frobenius condition
is exactly the compatibility condition for the ODE system.

The condition of normality for Bäcklund transformations, assumed in Theorem
1, will be explained in §2.

A hyperbolic Monge-Ampère system is a special case of hyperbolic EDS:

Definition. A hyperbolic EDS of class k is a differential ideal defined on a mani-
fold of dimension k+4 that, near any point of the manifold, is generated algebraically
by k 1-forms and two decomposable 2-forms.

Associated to a given hyperbolic EDS I of class k are two characteristic distri-
butions, one corresponding to each decomposable 2-form generator. At each point,
the distribution is given by the 2-dimensional subspace of the tangent space anni-
hilated by the k 1-forms of the system and the factors of the chosen decomposable
2-form. (These annihilators form a rank k + 2 Pfaffian system, known as a charac-
teristic system of I.) A hyperbolic EDS I is integrable by the method of Darboux, or
Darboux-integrable for short, if both characteristic distributions have two independent
first integrals, i.e., functions which are constant along all curves tangent to the distri-
bution, and whose differentials are pointwise linearly independent from the 1-forms of
I. Such functions are also known as characteristic invariants, since they are constant
along integral curves of the distribution.

The Darboux-integrability condition has the virtue that it is easy to check, using
only differentiation and linear algebra, by calculating the successive derived systems of
each characteristic system. An extensive discussion of hyperbolic EDS and Darboux-
integrability, with worked-out examples, is available in Chapter 6 of [8]. For the
purposes of this paper, we will need a few more facts about the method of Darboux:
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• It is known that any Monge-Ampère system which is Darboux-integrable
(i.e., has two characteristic invariants for each distribution) is equivalent to
the standard wave equation under a contact transformation (see, e.g., Thm.
2.1 in [2]).

• If a hyperbolic Monge-Ampère system I has a pair of independent first in-
tegrals for exactly one of its characteristic distributions, then I is said to be
integrable by the method of Monge or Monge-integrable for short. (The analo-
gous term for hyperbolic EDS of arbitrary class k is Darboux semi-integrable.)

• If a hyperbolic EDS of class k fails to be Darboux-integrable, it is possible
that its prolongation, which is a hyperbolic EDS of class k + 2, is Darboux-
integrable. Thus, a given Monge-Ampère system may lead to a hyperbolic
system that is Darboux-integrable only after sufficiently many prolongations.

Prolongation of an EDS is essentially the process of adding higher derivatives as new
variables and adjoining to the ideal the differential equations satisfied by the higher
derivatives. For example, for Liouville’s equation we add variables r and t to stand
for uxx and uyy respectively, and adjoin the 1-forms θ1 = dp− r dx− eudy, θ2 = dq−
eudx−t dy. The new ideal is a Pfaffian system on R

7 (with coordinates x, y, u, p, q, r, t)
generated by 1-forms θ0, θ1, θ2. (Note that the 2-forms Ω1 and Ω2 given in (1.3) are
now in the ideal generated algebraically by these θ0, θ1, θ2.) The set of algebraic
generators of the new ideal is completed by computing the exterior derivatives of
θ1, θ2, and these are expressible as linear combinations of the decomposable forms
Ω′

1 = (dr−peudy)∧dx, Ω′
2 = (dt− qeudx)∧dy, modulo multiples of θ0, θ1, θ2. (Thus,

the new ideal is a hyperbolic EDS of class 3.) Let ∆1,∆2 be the corresponding
characteristic distributions for the prolongation (i.e., ∆i is annihilated by θ0, θ1, θ2
and the factors of Ω′

i). To see that the system is Darboux-integrable, note that
x, r − 1

2p
2 are invariants for ∆1 and y, t− 1

2q
2 are invariants for ∆2.

Remark. Both Darboux-integrability and the transformation (1.2) enable one to ex-
press all solutions of Liouville’s equation via specifying two arbitrary functions and
integrating systems of ODE, and these two solution methods are equivalent, although
Darboux’s method requires one to solve more ODEs. For, as mentioned above, sub-
stituting the wave equation solution z = f(x)+g(y) in (1.2) produces two compatible
ODEs for u(x, y). Given an initial value for u, these may be integrated simultaneously
in the x- and y-directions to propagate a solution over an open set in the xy-plane.
On the other hand, under Darboux’s method we obtain ODEs by setting one invariant
in each characteristic system to be an arbitrary function of the other, yielding in this
case the equations

px − 1
2p

2 = φ(x), qy − 1
2q

2 = ψ(y),

which, together with ux = p and uy = q, may be integrated to obtain the solution.
(In fact, the data for these two methods are related by φ = f ′′ and ψ = g′′, but in
other cases we cannot expect the relationship to be this simple.)

Next, we will put Theorem 1 in context with other results both classical and
modern. Much of what was known in the 19th century about solving second-order
PDE for one function of two variables was summarized in Goursat’s treatise [6]. In
Volume 2, §181 of that work, we find the following result:

Theorem 2 (Darboux-Goursat). Suppose that a second-order PDE for z as a
function of x, y has the property that there exists a Pfaffian system

dFi = Φi dα+ Ψidβ, 1 ≤ i ≤ ℓ,
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and formulas

x = V1, y = V2, z = V3, (1.4)

where Φi, Ψi, V1, V2, V3 are functions of F1, . . . , Fℓ, α, β, f(α), g(β) and finitely many
of the derivatives of f and g, such that (1.4) satisfies the Frobenius condition for
arbitrary choices of functions f and g, and gives an implicit solution of the PDE for
arbitrary choices of initial data for the Frobenius system. Then the PDE is Darboux-
integrable after finitely many prolongations.

The hypotheses of the Darboux-Goursat theorem are fulfilled if the given PDE
is linked to the standard wave equation by a Bäcklund transformation. (For, the
d’Alembert formula gives solutions of the wave equation uαβ = 0 in the form u =
f(α) + g(β) for arbitrary f and g, and the Pfaffian system in the theorem is given
by the equations of the Bäcklund transformation.) Compared with the Darboux-
Goursat theorem, one direction of our theorem has a stronger hypothesis (essentially,
that ℓ = 2 and only first derivatives of f and g are involved) and a stronger conclusion
(that at most one prolongation is required to get Darboux-integrability).

In Theorem 6.5.14 in [8] it is shown, by an elementary argument, that Darboux-
integrability of the prolongation implies that there is a Bäcklund transformation be-
tween the prolongation (not the original Monge-Ampère system, but one defined by
an EDS on a 7-dimensional manifold) and the wave equation (defined by an EDS
on a 5-dimensional manifold). However, this asymmetric transformation–relating the
2-jets of solutions of one PDE to the 1-jets of another—is less than satisfying, com-
pared to more symmetrical transformations like (1.2). Our analysis in §4 shows that
it is a much more delicate matter to show that there exists a Bäcklund transforma-
tion between two Monge-Ampère systems. We should also note that the argument
given in [8] for the other direction (Bäcklund-equivalence to the wave equation implies
Darboux-integrability) is unfortunately incorrect, and the proof we give in §3 of this
paper is along completely different lines.

We now briefly outline the rest of the paper. In §2 we set up the basic machinery
required for the first half of the proof, namely, the G-structure for Bäcklund transfor-
mations originally introduced by the first author in [3]. In §3 we prove the forward
direction in our theorem by following the implications (for the invariants of the G-
structure) of the existence of a Bäcklund transformation to the wave equation. In
§4 we prove the converse direction by constructing, for any given Darboux-integrable
Monge-Ampère equation, an involutive exterior differential system whose solutions are
such transformations. In §5, we discuss our results in the context of earlier classifica-
tions of Darboux-integrable equations and of Bäcklund transformations to the wave
equation; we also outline an alternate proof technique for the converse direction, which
can in some examples be used to establish global existence of the transformation. In
§6 we discuss further steps in our research program.

We are grateful to the referee who read the first version of this paper, and gave
us many useful comments and suggestions.

2. G-structure for Bäcklund transformations. The material in this section
is taken from the first author’s paper [3]; additional details may be found there.

Suppose that (M, I) and (M, I) are hyperbolic Monge-Ampère systems, with

I = {θ,Ω1,Ω2}, I = {θ,Ω1,Ω2}.
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As a special case of Definition 1.1, we define a Bäcklund transformation between
(M, I) and (M, I) to be a 6-dimensional submanifold B ⊂ M × M for which the
pullbacks to B of the forms Ω1,Ω2,Ω1,Ω2 have the property that

Ωi ≡ Ωi mod {θ, θ}, i = 1, 2.

(The vector bundles J, J ⊂ T ∗B mentioned in Definition 1.1 are in this case spanned
by the pullbacks of θ and θ, respectively.) A Bäcklund transformation is normal in the
sense of Theorem 1 if the pullbacks to B of the 2-forms dθ, dθ are linearly independent
modulo {θ, θ}.

Now let J be the ideal on B generated by the pullbacks of I and I; according to
the conditions above, J is generated algebraically by the forms {θ, θ, dθ, dθ}.

Since I and I are hyperbolic, locally there exist 1-forms ω1, ω2, ω3, ω4 on B such
that {θ, θ, ω1, ω2, ω3, ω4} is a coframing of B (i.e., a set of 1-forms that restricts, at
each point, to be a basis for the cotangent space of B) and

J = {θ, θ, ω1 ∧ ω2, ω3 ∧ ω4}.

(It is important to note that θ and θ are each separately determined up to a scalar
multiple, since each determines the contact structure on a 5-manifold.) Any such
coframing has the property that

dθ ≡ A1 ω
1 ∧ ω2 +A2 ω

3 ∧ ω4 mod {θ, θ},
dθ ≡ A3 ω

1 ∧ ω2 +A4 ω
3 ∧ ω4 mod {θ, θ}

for some nonvanishing functions A1, A2, A3, A4. Since dθ, dθ are required to be lin-
early independent 2-forms at each point of B, we must have A1A4 −A2A3 6= 0.

By rescaling the ωi and adding multiples of θ and θ to the ωi if necessary, we can
arrange that

dθ ≡ A1 ω
1 ∧ ω2 + ω3 ∧ ω4 mod θ, (2.1)

dθ ≡ ω1 ∧ ω2 +A2 ω
3 ∧ ω4 mod θ

for some nonvanishing functions A1, A2 on B with A1A2 6= 1. This coframing is not

unique; any other such coframing {θ̃, θ̃, ω̃1, ω̃2, ω̃3, ω̃4} has the form
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, (2.2)

where b11b22 − b12b21 6= 0, a11a22 − a12a21 6= 0. (The inverse is included for greater
ease of computation in carrying out the method of equivalence.) A coframing satis-
fying (2.1) is called adapted, and the group G of matrices of the above form is called
the structure group of the equivalence problem. (In fact, the most general choice of
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structure group would include a discrete component interchanging the distributions
{ω1, ω2} and {ω3, ω4}. However, this freedom does not contribute anything crucial to
the structure group, and it is easier to work with a connected group.) The associated
G-structure is the principal G-bundle P → B whose local sections are precisely the
adapted coframings over a neighborhood of B.

In [3], it is shown that P has structure equations
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B1 θ ∧ θ + C1 ω
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3 ∧ ω4
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(2.3)

for some functions Ai, Bi, Ci and 1-forms αi, βi on P . These equations are chosen so
that the matrix in (2.3) takes values in the Lie algebra g of G; this is a standard step
in the method of equivalence. (See [5] for details.)

The 1-forms αi, βi are linearly independent from each other and from θ, θ, ωi; they
are called pseudoconnection forms, or more concisely (but imprecisely) connection
forms on P . They are well-defined only up to transformations of the form

α1 7→ α1 + r1 ω
1 + r2 ω

2, β1 7→ β1 + s1 ω
3 + s2 ω

4,

α2 7→ α2 + r2 ω
1 + r3 ω

2, β2 7→ β2 + s2 ω
3 + s3 ω

4, (2.4)

α3 7→ α3 + r4 ω
1 − r1 ω

2, β3 7→ β3 + s4 ω
3 − s1 ω

4,

α4 7→ α4 − r1 ω
1 − r2 ω

2, β4 7→ β4 − s1 ω
3 − s2 ω

4.

Remark. The coefficients Ai, Bi, Ci are called torsion functions. They may be inter-
preted as the components of well-defined tensors associated to the Bäcklund transfor-
mation, as follows.

A hyperbolic Monge-Ampère system naturally equips the underlying manifold M5

with a line bundle L ⊂ T ∗M and two rank 3 characteristic bundles K1,K2 ⊂ T ∗M

whose intersection is L. (The generator 1-form θ is a section of L, and the factors of
the decomposable generator 2-forms Ω1 and Ω2 span a complement of L within K1

and K2, respectively.) The G-structure for the Bäcklund transformation shows that
B6 is equipped with a well-defined splitting of its cotangent bundle:

T ∗B = L⊕ L⊕W1 ⊕W2, (2.5)
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where L and L are the pullbacks of the Monge-Ampère line bundles from M and M

respectively, and W1,W2 are spanned by ω1, ω2 and ω3, ω4 respectively. The normal
Bäcklund condition implies that

π∗Ki = L⊕Wi, π∗Ki = L⊕Wi, i = 1, 2.

The splitting (2.5) induces a corresponding splitting of Λ2T ∗B, whose summands
include the line bundles L⊗L, Λ2W1 and Λ2W2. We may then define a natural map
from sections of L to sections of Λ2W1, given by

δ0 : θ 7→ projection of dθ into Λ2W1.

But this map is linear under multiplication by functions, and so gives a well-defined
map between the corresponding vector bundles. The structure equations (2.3) show
that A1ω

1∧ω2 is the value of δ0 applied to the first member θ of the coframe. Hence,
A1 is the component, with respect to the given coframe, of a well-defined tensor in
L∗ ⊗ Λ2W1. Similarly, A2 is the component of a well-defined tensor in L

∗ ⊗ Λ2W2.
We may similarly define a map on sections of W1 by

δ1 : ω 7→ projection of dω into L1 ⊗ L2,

which again is linear under multiplication by functions. The structure equations
show that B1θ ∧ θ and B2θ ∧ θ give the value of δ1 on the basis sections ω1, ω2 of
W1, respectively. Thus, the vector [B1 B2] gives the components, with respect to
the coframe, of a well-defined tensor in W ∗

1 ⊗ L1 ⊗ L2. In a similar way, we see
that [B3 B4] are the components of a tensor in W ∗

2 ⊗ L1 ⊗ L2, [C1 C2] are the
components of a tensor in W ∗

1 ⊗Λ2W2, and [C3 C4] are the components of a tensor in
W ∗

2 ⊗ Λ2W1, all defined by taking the exterior derivative of a section and projecting
into the appropriate summand of Λ2T ∗B.

The following results are proved in [3]:

Proposition 2.1. The vectors [B1 B2], [B3 B4], [C1 C2], [C3 C4] are
relative invariants: given any point m ∈ B, they are each either zero for every adapted
coframing at m, or nonzero for every adapted coframing at m.

Proposition 2.2. If [C1 C2] = [C3 C4] = [0 0], then [B1 B2] = [B3 B4] =
[0 0] as well, and (M, I) and (M, I) are each contact equivalent to the Monge-Ampère
system representing the standard wave equation.

Proposition 2.3. If [C1 C2] = [0 0] (resp., [C3 C4] = [0 0]), then [B1 B2] =
[0 0] (resp., [B3 B4] = [0 0]) as well, and (M, I) and (M, I) are each Monge-
integrable.

Proposition 2.4. Suppose that the vectors [C1 C2] and [C3 C4] are both
nonzero. Then the vectors [B1 B2] and [B3 B4] are either both zero or both nonzero.

If [B1 B2] = [B3 B4] = [0 0], then the differential ideal generated by
{ω1, ω2, ω3, ω4} is a Frobenius system. (The converse is true as well.) It follows
that locally, there exists a 4-manifold V which is a quotient of B and for which the 1-
forms ω1, ω2, ω3, ω4 are semi-basic for the projection ρ : B → V. (Here “locally” refers
to the fact that any point in B has a neighborhood which possesses such a quotient,
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and “semi-basic” means that the restrictions of the ωi to the fibers of the projection
vanish identically. See [8] for details.) In fact, this quotient factors through each of
the quotients π : B → M and π : B → M, as shown by the following commutative
diagram.

M M

B

�
�	

@
@R

π π

?

ρ

V

@
@R

�
�	

The vanishing of the vector [B1 B2] implies that the span of {ω1, ω2} is unchanged
along the fibers of ρ, and is thus the pullback via ρ of a well-defined rank 2 sub-bundle
of T ∗V. When the vector [B3 B4] also vanishes, the ideal {ω1 ∧ ω2, ω3 ∧ ω4} is the
pullback via ρ of a well-defined hyperbolic system H of class 0 on V, and I, I are both
integrable extensions of H.

Bäcklund transformations of this type are called holonomic. One can test whether
a Bäcklund transformation is holonomic by checking whether the Pfaffian system on
B spanned by the intersection of the basic forms for π with the basic forms for π is
Frobenius. Note that the basic forms for π are spanned by the Cartan system1 of I,
and the basic forms for π are spanned by the Cartan system of I.

Holonomic Bäcklund transformations are generally considered less interesting
than non-holonomic Bäcklund transformations because of their limited capacity to
generate new solutions, which we now explain. Given an integral surface N of (M, I),
solving the Frobenius system J on π−1(N) produces a 1-parameter family of integral
surfaces Nλ of (M, I). Reversing the process, beginning with any one of the inte-
gral manifolds Nλ, in turn produces a 1-parameter family of integral surfaces Nλ,µ of
(M, I). In general, this results in a 2-parameter family of integral surfaces of (M, I),
and iterating the process produces an ever-increasing family of new integral surfaces
for both Monge-Ampère systems.

For example, consider the system (1.2). If we substitute the trivial solution
z(x, y) = 0 of the wave equation into (1.2), the resulting overdetermined PDE system
for u yields the 1-parameter family of solutions

u(x, y) = −2 ln(−x− 1
2y − c1) (2.6)

to Liouville’s equation. Reversing the process, substituting (2.6) into (1.2) produces
a PDE system for z which has a 2-parameter family of solutions:

z(x, y) = 2 ln(−y − c2) − 2 ln(2x+ 2c1 − c2). (2.7)

Finally, substituting (2.7) into (1.2) produces a PDE system for u which has a 3-
parameter family of solutions:

u(x, y) = −2 ln
(

c3xy+(c2c3−1)x+(c1c1− 1
2c2c3− 1

2 )y+(c1c2c3− 1
2c

2
2c3−c1)

)

. (2.8)

It is clear that the solutions (2.6) form a proper subset of the solutions (2.8), since
the argument of the latter contains an xy term.

For the system (1.2), and for non-holonomic Bäcklund transformations in general,
successive iterations of this process continue to produce new solutions. However, if the

1The Cartan system for a given EDS I is the smallest Frobenius system that contains I.
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Bäcklund transformation is holonomic, then all integral surfaces of (M, I) and (M, I)
produced by this process must lie in the inverse image of a single integral surface of
(V,H). It follows that successive iterations can produce no more than a 1-parameter
family of integral surfaces for each Monge-Ampère system.

3. Proof that Bäcklund implies Darboux. Now suppose that we have a
Bäcklund transformation as in §2, and that the Monge-Ampère system (M5, I) is
contact equivalent to the standard wave equation ZXY = 0. We can choose local
coordinates (X,Y, Z, P,Q) on M such that I is generated by the forms

θ = dZ − P dX −QdY, Ω1 = dX ∧ dP, Ω2 = dY ∧ dQ.

There is a unique local section σ = (θ, θ, ω1, ω2, ω3, ω4) : B → P satisfying

θ = dZ − P dX −QdY,

ω1 = dX + C1θ,

ω2 = dP + C2θ, (3.1)

ω3 = dY + C3θ,

ω4 = dQ+ C4θ

for some functions Ci on B. (Note that, because specifying this portion of the cofram-
ing determines a unique local section of P , the 1-form θ is also uniquely determined.)
The functions Ci are the pullbacks under σ of the corresponding torsion functions,
and this coframing has A1 ≡ 1. When the structure equations (2.3) are pulled back to
B via σ, the 1-forms αi, βi—which were linearly independent from the 1-forms θ, θ, ωi

on P—must pull back to some linear combinations of these 1-forms.
Now we embark on the process of comparing the structure equations (2.3) to those

for the explicit coframing above. First, note that

0 = d(dX) = d(ω1 − C1θ) ≡ −(α1 ∧ ω1 + α2 ∧ ω2 + C1ω
1 ∧ ω2) mod θ.

Therefore, by choosing r2, r3 appropriately in (2.4), we may assume that

α1 = a10θ + a11ω
1 + 1

2C1ω
2, α2 = a20θ − 1

2C1ω
1

for some functions a10, a11, a20 on B. Similar considerations of d(dP ), d(dY ), d(dQ)
modulo θ yield similar expressions for the remaining connection forms:

α1 = a10θ + a11ω
1 + 1

2C1ω
2, β1 = b10θ + b13ω

3 + 1
2C3ω

4,

α2 = a20θ − 1
2C1ω

1, β2 = b20θ − 1
2C3ω

3,

α3 = a30θ + 1
2C2ω

2, β3 = b30θ + 1
2C4ω

4,

α4 = a40θ − 1
2C2ω

1 + a42ω
2, β4 = b40θ − 1

2C4ω
3 + b44ω

4.

Next, a straightforward computation shows that for the coframing (3.1),

dθ = θ ∧ (C2ω
1 − C1ω

2 + C4ω
3 − C3ω

4) + ω1 ∧ ω2 + ω3 ∧ ω4.

Comparing this with the first structure equation in (2.3) yields

b13 = 3
2C4, b44 = − 3

2C3.
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In order to continue this comparison, we need to introduce derivatives of the functions
A2, Ci. So, set

dA2 = A2,0θ +A2,0θ +A2,1ω
1 +A2,2ω

2 +A2,3ω
3 +A2,4ω

4,

dC1 = C1,0θ + C1,0θ + C1,1ω
1 + C1,2ω

2 + C1,3ω
3 + C1,4ω

4,

dC2 = C2,0θ + C2,0θ + C2,1ω
1 + C2,2ω

2 + C2,3ω
3 + C2,4ω

4, (3.2)

dC3 = C3,0θ + C3,0θ + C3,1ω
1 + C3,2ω

2 + C3,3ω
3 + C3,4ω

4,

dC4 = C4,0θ + C4,0θ + C4,1ω
1 + C4,2ω

2 + C4,3ω
3 + C4,4ω

4.

Comparing the structure equations (2.3) for dωi with the derivatives of the explicit
forms ωi in (3.1) yields

a10 = C1,1 − C1C2, b10 = C3,3 − C3C4

a20 = C1,2 + C2
1 , b20 = C3,4 + C2

3 ,

a30 = C2,1 − C2
2 , b30 = C4,3 − C2

4 ,

a40 = C2,2 + C1C2, b40 = C4,4 + C3C4,

in addition to the following relations among the torsion and its derivatives:

B1 = −C1,0, C1,3 = C1C4, C3,1 = C2C3,

B2 = −C2,0, C1,4 = −C1C3, C3,2 = −C1C3, (3.3)

B3 = −C3,0, C2,3 = C2C4, C4,1 = C2C4,

B4 = −C4,0, C2,4 = −C2C3, C4,2 = −C1C4.

While we don’t have an explicit coordinate representation for θ, we can still
explore the consequences of d(dθ) = 0. Computing d(dθ) ≡ 0 modulo θ yields

a11 =
−2A2,1 + C2(A2 + 2)

2A2
, a42 =

−2A2,2 − C1(A2 + 2)

2A2
,

A2,0 = A2(C3,3 + C4,4 − C1,1 − C2,2).

Then computing d(dθ) ≡ 0 modulo θ, ω1, ω2 yields

A2,0 = C1,2 + C2,2 −A2(C3,3 + C4,4) −
C1

A2
A2,1 −

C2

A2
A2,2 − C3A2,3 − C4A2,4.

(Note that the fact that θ is a contact form implies that A2 cannot be zero.)
At this point, all coefficients in the structure equations (2.3) have been expressed

in terms of the functions A2, C1, C2, C3, C4 and their first derivatives. In addition, we
have relations among the derivatives that amount to an overdetermined PDE system
for these five functions on B. Necessary compatibility conditions for this system may
be found by computing d(dA2) = d(dCi) = 0. In particular, computing

d(dC1) ≡ d(dC2) ≡ 0 mod θ, θ, ω1, ω2,

d(dC3) ≡ d(dC4) ≡ 0 mod θ, θ, ω3, ω4
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yields

C1,0 = −A2C1,0 − C2C1,2 + C1(−C1,1 + C3,3 + C4,4),

C2,0 = −A2C2,0 − C1C2,1 + C2(−C2,2 + C3,3 + C4,4), (3.4)

C3,0 = −C3,0 − C4C3,4 + C3(C1,1 + C2,2 − C3,3),

C4,0 = −C4,0 − C3C4,3 + C4(C1,1 + C2,2 − C4,4).

At this point, we have derived all the relations among the torsion functions on B

and their derivatives that will be needed in order to prove that (M, I) is Darboux-
integrable after at most one prolongation. The proof of Darboux-integrability is di-
vided into two main cases. In §3.1, we prove Darboux-integrability under the as-
sumption that the vectors [C1 C2], [C3 C4] are both nonzero. This case is further
divided into three subcases, depending on the ranks of certain Frobenius systems that
arise during the proof. Precise statements of the results are contained in Propositions
3.1, 3.2, and 3.3. In §3.2, we prove Darboux-integrability under the assumption that
exactly one of the vectors [C1 C2], [C3 C4] vanishes; the precise result is contained
in Proposition 3.4. As noted in §2, it is not necessary to consider the case where
[C1 C2], [C3 C4] both vanish, since in that case both Monge-Ampère systems are
contact equivalent to the standard wave equation.

3.1. Case 1: [C1 C2], [C3 C4] are both nonzero. Without loss of generality,
we may assume that C2 and C4 are nonzero. Consider the exterior derivatives of the
ratios C1

C2
and C3

C4
. A straightforward computation shows that

d

(

C1

C2

)

≡ 0 mod θ, θ, ω1, ω2;

therefore, d
(

C1

C2

)

must lie in the last derived system of K1 = {θ, θ, ω1, ω2}—i.e., the

largest integrable subsystem of K1, denoted by K(∞)
1 . Similarly,

d

(

C3

C4

)

≡ 0 mod θ, θ, ω3, ω4,

so d
(

C3

C4

)

must lie in the last derived system of K2 = {θ, θ, ω3, ω4}.
First, consider the system K1. In order to compute its first derived system K(1)

1 ,
we must find those 1-forms in K1 whose exterior derivatives are zero modulo the linear
span of the 1-forms in K1. To this end, we compute:

dθ ≡ ω3 ∧ ω4

dθ ≡ A2 ω
3 ∧ ω4

dω1 ≡ C1 ω
3 ∧ ω4

dω2 ≡ C2 ω
3 ∧ ω4



































mod K1.

Therefore, K(1)
1 = {θ −A2θ, ω

1 − C1θ, ω
2 − C2θ}. Observe that

ω1 − C1θ = dX, ω2 − C2θ = dP.
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Therefore, the rank 2 subsystem {ω1−C1θ, ω
2−C2θ} = {dX, dP} of K(1)

1 is integrable,

and the next derived system K(2)
1 (i.e., the first derived system of K(1)

1 ) contains this

rank 2 system. The only question is whether, in fact, K(2)
1 = K(1)

1 —i.e., whether K(1)
1

itself is integrable. In either case, we will have K(2)
1 = K(∞)

1 . A computation shows
that

d(θ −A2θ) ≡ θ ∧ [(A2,3 +A2C4(A2 − 1))ω3 + (A2,4 −A2C3(A2 − 1))ω4] mod K(1)
1 ,

(3.5)

so the rank of K(∞)
1 is either 3 or 2, depending on whether or not the 1-form in

brackets vanishes.
Similarly, we can compute that

K(1)
2 = {θ − θ, ω3 − C3θ, ω

4 − C4θ} = {θ − θ, dY, dQ}.

So K(∞)
2 contains the rank 2 subsystem {ω3 − C3θ, ω

4 − C4θ} = {dY, dQ}, and a
computation shows that

d(θ − θ) ≡ −θ ∧
[

(A2,1 + C2(A2 − 1))

A2
ω1 +

(A2,2 − C1(A2 − 1))

A2
ω2

]

mod K(1)
2 .

(3.6)

So the rank of K(∞)
2 is either 3 or 2, depending on whether or not the 1-form in

brackets vanishes.
Now we must divide into cases depending on the ranks of these derived systems.

3.1.1. Case 1.1: K(∞)
1 and K(∞)

2 both have rank 3. In this case, we have
the following result:

Proposition 3.1. If [C1 C2], [C3 C4] are both nonzero and K(∞)
1 and K(∞)

2

both have rank 3, then the system (M, I) is contact equivalent to the standard wave
equation.

Proof. By Theorem 2.1 of [2], it suffices to show that (M, I) is Darboux-integrable,
i.e., that each of the characteristic systems {θ, ω1, ω2} and {θ, ω3, ω4}—which are
well-defined on M even though the 1-forms ωi are not—contains a rank 2 integrable
subsystem.

The hypothesis that K(∞)
1 and K(∞)

2 both have rank 3 implies that the expressions
(3.5) and (3.6) must both vanish identically; therefore,

A2,1 = −C2(A2 − 1), A2,2 = C1(A2 − 1),

A2,3 = −A2C4(A2 − 1), A2,4 = A2C3(A2 − 1).

Using these conditions, a straightforward computation shows that

{θ, ω1, ω2}(1) = {A2ω
1 − C1θ, A2ω

2 − C2θ},
{θ, ω3, ω4}(1) = {A2ω

3 − C3θ, A2ω
4 − C4θ},

and that each of these derived systems is integrable.

3.1.2. Case 1.2: Exactly one of K(∞)
1 and K(∞)

2 has rank 3. Without loss

of generality, we may assume that K(∞)
2 has rank 2 and is equal to {dY, dQ}, and

that K(∞)
1 has rank 3. It follows that (3.5) vanishes identically and that (3.6) does
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not. Since all our results are local, we will assume that we are working on an open
set where (3.6) is nonzero. The vanishing of (3.5) implies that

A2,3 = −A2C4(A2 − 1), A2,4 = A2C3(A2 − 1).

Recall that the function C3

C4
satisfies

d

(

C3

C4

)

∈ K(∞)
2 = {dY, dQ}.

It follows that C3

C4
is a function of Y and Q alone. Now consider the 1-form

ω̃3 = ω3 − C3

C4
ω4 = dY − C3

C4
dQ.

This 1-form is contained in the span of ω3, ω4, and we have

dω̃3 ≡ 0 mod ω̃3;

so ω̃3 is a multiple of an exact 1-form, say ω̃3 = λd˜Y . Moreover, because ω̃3 is ex-
pressed solely in terms of Y and Q, λ and ˜Y may be chosen to be functions depending
only on Y and Q, and which are therefore well-defined on M. The crucial point here
is that there exists an exact 1-form in the span of {ω3, ω4} which is well-defined on
M. Then we have

dY ∧ dQ = ω̃3 ∧ dQ = λd˜Y ∧ dQ = d˜Y ∧ d ˜Q,

where

˜Q(˜Y ,Q) =

∫ Q

0

λ(˜Y , t) dt.

Since

dθ = dX ∧ dP + d˜Y ∧ d ˜Q,

Pfaff’s Theorem (see Ch. 1 of [8]) implies that there exists a function ˜Z on M such
that

θ = d ˜Z − P dX − ˜Qd˜Y .

We can now repeat all our constructions starting with the coordinate system
(X, ˜Y , ˜Z,P, ˜Q), but now our adapted coframing σ will have the additional property

that ω3 = d˜Y and C3 = 0. Thus we will drop the tildes and assume that C3 = 0 for
the remainder of this subsection.

Proposition 3.2. If [C1 C2], [C3 C4] are both nonzero, K(∞)
1 has rank 3,

and K(∞)
2 has rank 2, then the system (M, I) is Monge-integrable, and it becomes

Darboux-integrable after one prolongation.

Proof. The same argument as that given in Case 1.1 shows that the characteristic
system {θ, ω1, ω2} on M contains a rank 2 integrable subsystem; therefore, (M, I) is
Monge-integrable.
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In order to prove the second half of the Proposition, we will need to make use of
relations among the second derivatives of the functions A2, C1, C2, C4. These will be
denoted as, e.g.,

dA2,0 = A2,00θ +A2,00θ +A2,01ω
1 +A2,02ω

2 +A2,03ω
3 +A2,04ω

4.

Note that, although (for example) the A2,ij are second derivatives of A2, because
we are working in a coframing rather than in coordinates, we cannot assume that
A2,ij = A2,ji.

Computing d(dA2) ≡ 0 mod {θ, ω3, ω4} shows that

A2,10 = A2(C4,41 − C1,11 − C2,21 + C2(C1,1 + C2,2 − C4,4))

+A2,1(C4,4 − C2,2 − C1C2) +A2,2(C2,1 − C2
2 ),

A2,20 = A2(C4,42 − C1,12 − C2,22 + C1(C4,4 − C1,1 − C2,2))

+A2,1(C1,2 + C2
1 ) +A2,2(C4,4 − C1,1 + C1C2),

A2,21 = A2,12 + (A2 − 1)

(

C1,1 + C2,2 −
A2,1

A2
C1 −

A2,2

A2
C2

)

.

Next, computing d(dC4) ≡ 0 mod {θ, θ} shows that

C4,34 = C4,43 + (A2 − 1)C4,0 + C4(C1,1 + C2,2),

C4,31 = C2(C4,3 + C2
4 ),

C4,32 = −C1(C4,3 + C2
4 ),

C4,41 = C2C4,4,

C4,42 = −C1C4,4.

Now computing d(dC4) ≡ 0 mod θ shows that

C4,01 = C4C2,0 +
((A2 + 1)C1 −A2,1)

A2
C4,0,

C4,02 = −C4C1,0 −
((A2 + 1)C2 +A2,2)

A2
C4,0,

C4,30 = C4,03 −A2C4C4,0,

C4,40 = C4,04,

and then computing d(dC4) ≡ 0 mod θ shows that

C4,30 = C4(C1,13 + C2,23 − C4,43 + C4,0) + (C4,3 − C2
4 )(C1,1 + C2,2) − C4,03,

C4,40 = C4(C1,14 + C2,24 − C4,44) + C4,4(C1,1 + C2,2) − C4,04,

C1,12 = −C2,22 + (A2 − 1)C1,0 − C1C4,4 +
((A2 − 1)C1 − A2,2)

A2C4
C4,0,

C2,21 = −C1,11 − (A2 − 1)C2,0 + C2C4,4 −
((A2 − 1)C2 + A2,1)

A2C4
C4,0.
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Next, computing d(dC1) ≡ 0 mod {θ, θ} yields

C1,13 = C4(C1,1 + C1C2),

C1,14 = 0,

C1,23 = C4(C1,2 − C2
1 ),

C1,24 = 0,

C1,21 = −C2,22 − 2C1C4,4 + 2(A2 − 1)C1,0 +
((A2 − 1)C1 −A2,2)

A2C4
C4,0.

Similarly, computing d(dC2) ≡ 0 mod {θ, θ} yields

C2,13 = C4(C42,1 + C2
2 ),

C2,14 = 0,

C2,23 = C4(C2,2 − C1C2),

C2,24 = 0,

C2,12 = −C1,11 + 2C2C4,4 − 2(A2 − 1)C2,0 −
((A2 − 1)C2 +A2,1)

A2C4
C4,0.

Computing d(dC1) ≡ 0 mod {ω2, ω3, ω4} yields

C1,10 = C2C2,22 − C1C1,11 −A2C1,01 + ((2 −A2)C2 −A2,1)C1,0 + C4,4(C1,1 + 2C1C2)

− ((A2 − 1)C1 −A2,2)

A2C4
C2C4,0,

C1,10 = C1,01 +
(A2,1 − C2)

A2
C1,0,

and computing d(dC2) ≡ 0 mod {ω1, ω3, ω4} yields

C2,20 = C1C1,11 − C2C2,22 −A2C2,02 + ((A2 − 2)C1 −A2,2)C2,0 + C4,4(C2,2 − 2C1C2)

+
((A2 − 1)C2 +A2,1)

A2C4
C1C4,0,

C2,20 = C2,02 +
(A2,2 + C1)

A2
C2,0,

Now computing d(dA2) ≡ 0 mod ω3 yields

A2,10 =
1

A2

[

−C1A2,11 − C2A2,12 +A2,1(C1C2 + C2,2) +A2,2(−C2,1 + C2
2 )

]

− (A2 − 1)C2,0 − C2(C1,1 + C2,2) − ((A2 − 2)C2 + 2A2,1)C4,4

− ((A2 − 1)C2 +A2,1)

A2C4
C4,0,

A2,20 =
1

A2

[

−C1A2,12 − C2A2,22 −A2,1

(

C1,2 +
C2

1

A2

)

+A2,2

(

C1,1 −
C1C2

A2

)]

+ (A2 − 1)C1,0 +
C1

A2
(C1,1 + C2,2) + ((A2 − 2)C1 − 2A2,2)C4,4

+
((A2 − 1)C1 −A2,2)

A2C4
C4,0,
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and

A2,14 = A2,24 = C4,44 = 0.

Finally, we need two additional relations which do not become apparent until we
differentiate the equations for dC4,3 and dC4,4. Computing d(dC4,3) ≡ 0 mod {θ −
θ, ω3, ω4 − C4θ} yields

(C4C4,03−((A2+1)C2
4 +C4,3)C4,0)θ∧[(A2,1 +C2(A2−1))ω1+(A2,2−C1(A2−1))ω2].

Note that the right-hand factor is precisely (3.6), which we have assumed is nonzero.
Therefore,

C4,03 =
C4,0(C4,3 + (A2 + 1)C2

4 )

C4
.

Precisely the same argument applied to d(dC4,4) shows that

C4,04 =
C4,0C4,4

C4
.

With these relations in hand, consider the characteristic system K = {θ, ω3, ω4}
of I—which is well-defined on M, even though ω4 is not. We need to show that

after one prolongation, the corresponding characteristic system K′
of the prolongation

contains a rank 2 integrable subsystem. In order to perform this computation, we
need to construct a basis for K consisting of 1-forms which are well-defined on M.
Fortunately, θ and ω3 are already well-defined on M. For the remaining 1-form, it
will be convenient to choose a 1-form which is contained in the first derived system

K(1)
= {ω4 − C4 θ, ω

3}. To this end, introduce functions τ, g on B such that the
1-form

ψ = eτ (ω4 − C4 θ − g ω3)

is well-defined on M. (The fact that K(1)
is well-defined on M guarantees the existence

of such functions.) As before, we denote the derivatives of these functions by

dτ = τ0θ + τ0θ + τ1ω
1 + τ2ω

2 + τ3ω
3 + τ4ω

4,

dg = g0θ + g0θ + g1ω
1 + g2ω

2 + g3ω
3 + g4ω

4,

and similarly for second derivatives.
Because ψ is well-defined on M, dψ contains no terms involving θ. This, in turn,

determines the partial derivatives τ0, g0:

τ0 = C4,4,

g0 = C2
4 − C4,3 − gC4,4.

We will also need to make use of relations among the second derivatives of τ, g.
These are determined by computing d(dτ) = d(dg) = 0; this is a straightforward
computation, which we omit here for the sake of brevity.

We can define a partial prolongation I ′
of I on M × R as follows. (Note that

Darboux-integrability of the partial prolongation implies Darboux-integrability of the
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full prolongation.) Let t be a new coordinate on the R factor; then the partial prolon-

gation I ′
is generated by the 1-forms θ, θ

′
= ψ− tω3, and the 2-form ω1 ∧ ω2. Again,

this system is well-defined on M × R, even though ω1, ω2 are not.
A straightforward computation shows that

dθ
′ ≡ −π1 ∧ ω3 mod {θ, θ′},

where

π1 = dt− (tτ1 − eτg1)ω
1 − (tτ2 − eτg2)ω

2.

The corresponding characteristic system of I ′
is

K′
= {θ, θ′, π1, ω

3}.

We will now compute the derived systems of K′
and show that the second derived

system K′(2)
is a Frobenius system of rank 2; this will complete the proof of the

Proposition. In order to compute the first derived system, we compute:

dθ ≡ ω1 ∧ ω2

dθ
′ ≡ 0

dπ1 ≡ Eω1 ∧ ω2

dω3 ≡ 0







































mod {θ, θ′, π1, ω
3}

(the last line following from C3 = 0), where

E = eτC2
4 + (eτg4 − tτ4)C4 − eτC4,3 − (eτg + t)C4,4 + (eτg0 − tτ0).

Let π2 = π1 − Eθ, so that

K′(1)
= {θ′, π2, ω

3}.

Next we compute the derived system of K′(1)
:

dθ
′ ≡ C4

A2
θ ∧

[

(A2,1 + C2(A2 − 1))ω1 + (A2,2 − C1(A2 − 1))ω2
]

dπ2 ≡ F

A2
θ ∧

[

(A2,1 + C2(A2 − 1))ω1 + (A2,2 − C1(A2 − 1))ω2
]

dω3 ≡ 0



































mod {θ′, π2, ω
3},

where

F = eτC2
4 + (eτg4 − tτ4)C4 − eτC4,3 − (eτg + t)C4,4.

Once again, we see the bracketed 1-form in (3.6) appearing. Since this 1-form is

assumed to be nonzero, the derived system K′(2)
has rank 2 and is spanned by the

forms ω3 and

π3 = C4π2 − Fθ.
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Finally, another computation shows that

dπ3 ≡ 0

dω3 ≡ 0







mod {π3, ω
3};

therefore, K′(2)
is integrable.

3.1.3. Case 1.3: K(∞)
1 and K(∞)

2 both have rank 2. Now we assume that the
bracketed 1-forms in both (3.5) and (3.6) are nonzero. By the same argument as that
given in the previous case, we may assume that C1 = C3 = 0, with ω1 = dX, ω3 = dY .

Proposition 3.3. If [C1 C2], [C3 C4] are both nonzero and K(∞)
1 and K(∞)

2

both have rank 2, then the system (M, I) becomes Darboux-integrable after one pro-
longation.

Proof. The proof is very similar to that of Proposition 3.2. We must now consider
both characteristic systems

K1 = {θ, ω1, ω2}, K2 = {θ, ω3, ω4}

of I. As before, these systems are both well-defined on M, even though ω2 and ω4

are not. We introduce functions ρ, τ, f, g on B such that the 1-forms

η = eρ(A2ω
2 − C2θ − fω1), ψ = eτ (ω4 − C4θ − gω3)

are well-defined on M. These forms have the property that

K(1)

1 = {η, ω1}, K(1)

2 = {ψ, ω3}.

We construct the prolongation I ′
of I on M × R

2 as follows. Let r, t be new

coordinates on the R
2 factor; then the prolongation I ′

is generated by the 1-forms
θ, θ1 = η − rω1, θ2 = ψ − tω3, and their exterior derivatives.

The remainder of the proof consists of applying the argument of Proposition 3.2

to each of the characteristic systems K′

1,K
′

2 of the prolongation I ′
. The argument

varies only in the details of the calculations, and so we omit it for the sake of brevity.

3.2. Case 2: One of the C-vectors vanishes. Without loss of generality,
assume that [C1 C2] = [0 0], and that C4 6= 0. By Proposition 2.3, it follows that
[B1 B2] = [0 0] as well.

Proposition 3.4. If [C1 C2] = [0 0], then the system (M, I) is Monge-
integrable, and it becomes Darboux-integrable after at most one prolongation. Fur-
thermore, the Bäcklund transformation B ⊂ M × M is holonomic.

Proof. It follows from Proposition 2.3 that (M, I) is Monge-integrable; in fact, the
characteristic system {θ, ω1, ω2} contains {ω1, ω2} = {dX, dP} as a rank 2 integrable
subsystem.

Now consider the other characteristic system K = {θ, ω3, ω4} of I. One easily
computes that the first derived system of K is

K(1) = {ω3 − C3θ, ω
4 − C4θ}.
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In order to find the second derived system, we compute:

d(ω3 − C3θ) ≡
C3

A2
θ ∧ (A2,1ω

1 +A2,2ω
2)

d(ω4 − C4θ) ≡
C4

A2
θ ∧ (A2,1ω

1 +A2,2ω
2)















mod K(1).

If A2,1 = A2,2 = 0, then K(1) is integrable; in this case, I is Darboux-integrable and
hence contact equivalent to the standard wave equation. Therefore, we assume that
A2,1 and A2,2 are not both zero.

In order to prove the second statement, we will construct a partial prolongation of
I and proceed as in §3.1.2. But first we need to derive relations among the derivatives
of the torsion functions.

Picking up where we left off at (3.4), consider d(dC3), d(dC4). Computing
d(dC3) ≡ d(dC4) ≡ 0 mod {θ − θ, ω3 − C3θ, ω

4 − C4θ} yields

C3,0 = C4,0 = 0.

From (3.3), it follows that B3 = B4 = 0; therefore, the Bäcklund transformation is
holonomic, as claimed.

We now have

dC3 = C3,3(ω
3 − C3θ) + C3,4(ω

4 − C4θ) = C3,3dY + C3,4dQ,

dC4 = C4,3(ω
3 − C3θ) + C4,4(ω

4 − C4θ) = C4,3dY + C4,4dQ. (3.7)

It follows that C3, C4 are functions of Y and Q alone. Now the same argument as that
given in §3.1.2 shows that we may assume C3 = 0; moreover, C4 remains a function of
Y and Q alone when we do so. Computing d(dC4) = 0 yields the following relations
among the second derivatives of C4:

C4,30 = −C4C4,34, C4,40 = −C4C4,44, C4,43 = C4,34,

C4,30 = C4,40 = C4,31 = C4,32 = C4,41 = C4,42 = 0.

Now consider the characteristic system K = {θ, ω3, ω4}. As we computed above
(recalling that C3 = 0), its first derived system is

K(1) = {ω3, ω4 − C4θ}.

As in §3.1.2, choose functions g, τ so that the 1-form

ψ = eτ (ω4 − C4 θ − g ω3)

is well-defined on M, and construct the partial prolongation I ′
of I and the 1-form θ

′

as we did there. Similar calculations to those of §3.1.2 show that the corresponding

characteristic system K′
of I ′

has a rank 2 integrable subsystem. This completes the
proof.
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4. Proof that Darboux implies Bäcklund.

4.1. The non-Monge-integrable case. In this subsection (M, I) is assumed to
be a hyperbolic Monge-Ampère system which is Darboux-integrable after one prolon-
gation, but not Monge-integrable. We will construct a canonical coframing associated
to the prolongation. We will then use this coframing to construct an integrable ex-
tension J of (M, I) in such a way that J defines a Bäcklund transformation between
(M, I) and the standard wave equation ZXY = 0.

Lemma 4.1. Near any point of M, there exists a coframing (θ, π1, π2, η
1, η2) such

that θ spans the 1-forms of I, and the characteristic systems C1, C2 of I have derived
flags

C1 = {θ, π1, η
1} ⊃ {π1, η

1} ⊃ {η1} = C(∞)
1 ,

C2 = {θ, π2, η
2} ⊃ {π2, η

2} ⊃ {η2} = C(∞)
2 .

Proof. By a result of Juráš [10], (M, I) is locally contact equivalent to a system
encoding a PDE of the form

uxy = F (x, y, u, p, q).

Thus, there are local coordinates x, y, u, p, q near the given point of M such that I is
generated by the 1-form θ = du − p dx − q dy and the 2-forms (dp − F dy) ∧ dx and
(dq−F dx)∧ dy. It is easy to verify that the coframing given by θ, η1 = dx, η2 = dy,
π1 = dp− F dy − Fqθ, and π2 = dq − F dx− Fpθ has the properties claimed.

In terms of the local coframing on M given by the lemma, the prolongation
(M′, I ′) is defined as follows: let M′ = M×R

2, with coordinates r, t on the R
2 factor,

and let I ′ be the Pfaffian system on M′ generated by θ and the forms

θ1 = π1 − rη1, θ2 = π2 − tη2. (4.1)

Lemma 4.2. Near any point of M′ there exists a coframing (θ, θ1, θ2, η
1, η2, π3, π4)

such that I ′ is generated by θ, θ1, θ2, satisfying

dθ = −θ1 ∧ η1 − θ2 ∧ η2 mod θ

dθ1 = −π3 ∧ η1 mod θ, θ1

dθ2 = −π4 ∧ η2 mod θ, θ2,

(4.2)

with the derived flags of the characteristic systems of I ′ given by

C′
1 = {θ, θ1, θ2, η1, π3} ⊃ {θ, θ1, η1, π3} ⊃ {θ1, η1, π3} ⊃ {η1, π3} = C′

1
(∞)

,

C′
2 = {θ, θ1, θ2, η2, π4} ⊃ {θ, θ2, η2, π4} ⊃ {θ2, η2, π4} ⊃ {η2, π4} = C′

2
(∞)

.

Proof. Let θ, η1 = dx, η2 = dy be part of the local coframing on M (pulled back
to M′) constructed in the proof of Lemma 4.1, and let θ1, θ2 be defined as in (4.1).
Then

dθ1 ≡ −(dr − (DxF )dy) ∧ dx mod θ, θ1,

dθ2 ≡ −(dt− (DyF )dx) ∧ dy mod θ, θ2,
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where

DxF = Fx + Fup+ Fpr + FqF,

DyF = Fy + Fuq + FpF + Fqt.

For the moment, let π3 = dr − (DxF )dy. Because dπ3 ≡ 0 modulo dx, π3, θ, θ1, θ2, it

follows that π3 lies in C′
1
(1)

. Moreover, we may subtract a multiple of θ from π3 to

ensure that π3 lies in C′
1
(2)

.

Next, we prove that the last derived system of C′
1 has rank 2, rather than rank

3. (A similar argument applies to C′
2.) Suppose that C′

1
(2)

= {θ1, η1, π3} is integrable.
From (4.1), it is clear that this is equivalent to the statement that {π1, η

1, π3} is
integrable—i.e., that dπ1 ≡ dη1 ≡ dπ3 ≡ 0 modulo π1, η

1, π3. But π1 and η1 are
both well-defined on M, so their exterior derivatives do not involve π3. It follows

that dπ1 ≡ dη1 ≡ 0 modulo π1, η
1, and C(1)

1 = {π1, η
1} is integrable, contrary to the

hypothesis that (M, I) is not Monge-integrable.

The conditions in Lemma 4.2 are preserved by changes of coframing of the form



































θ̃

θ̃1

θ̃2

η̃1

η̃2

π̃3

π̃4



































=



































c 0 0 0 0 0 0

0 a1c 0 0 0 0 0

0 0 a2c 0 0 0 0

0 0 0 a−1
1 0 0 0

0 0 0 0 a−1
2 0 0

0 0 0 b1 0 a2
1c 0

0 0 0 0 b2 0 a2
2c



































−1 

































θ

θ1

θ2

η1

η2

π3

π4



































, (4.3)

with a1, a2, c 6= 0. Let G ⊂ GL(7,R) be the group of such transformations, and let P
be the G-structure on M′ of which the coframing of Lemma 4.2 is a section.

After absorbing as much torsion as possible and differentiating to uncover relations
among the torsion, P has structure equations
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

































dθ

dθ1

dθ2

dη1

dη2

dπ3

dπ4



































= −



































γ 0 0 0 0 0 0

0 γ + α1 0 0 0 0 0

0 0 γ + α2 0 0 0 0

0 0 0 −α1 0 0 0

0 0 0 0 −α2 0 0

0 0 0 β1 0 γ + 2α1 0

0 0 0 0 β2 0 γ + 2α2



































∧



































θ

θ1

θ2

η1

η2

π3

π4



































−



































θ1 ∧ η1+θ2 ∧ η2

π3 ∧ η1+(A2θ2+B2η
2) ∧ θ

π4 ∧ η2+(A1θ1+B1η
1) ∧ θ

0

0

2C1θ1 ∧ π3

2C2θ2 ∧ π4



































. (4.4)

Because of the dimensions of the derived flags of the characteristic systems (given
in Lemma 4.2), A1, B1 are not both zero, and A2, B2 are not both zero. Furthermore,
we can choose a local section σ : M′ → P satisfying the conditions that η1 = dx,
η2 = dy, and the forms π3, π4 are integrable; i.e.,

dπ3 ≡ 0 mod π3, dπ4 ≡ 0 mod π4.

To see why, note that {η1, π3} is a Frobenius system, and so it is spanned locally by
two exact 1-forms. Thus we can adjust π3 by adding multiples of η1 in order to make
it a multiple of an exact form. Similarly, we can add multiples of η2 to π4 in order
to make π4 a multiple of an exact form. However, we cannot independently scale π3

and π4 to make both of them exact.
This choice of section is not unique; it is determined up to a transformation of

the form



































θ̃

θ̃1

θ̃2

η̃1

η̃2

π̃3

π̃4



































=



































c 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 c 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 c 0

0 0 0 0 0 0 c



































−1 

































θ

θ1

θ2

η1

η2

π3

π4



































(4.5)
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with c 6= 0. However, we can make the choice of σ unique (albeit slightly non-
canonical) as follows: since π3, π4 are integrable 1-forms, we must have

π3 = egdξ1, π4 = ehdξ2

for some functions ξ1, ξ2, f, g on M′. Using the remaining scaling freedom, we can
arrange that h = −g; the resulting coframing σ : P → M is uniquely determined.

When we pull back the structure equations via σ, the pseudoconnection forms α1,
α2, β1, β2, γ become semi-basic. By making use of the remaining ambiguity in these
forms and the conditions imposed thus far on the coframing, we can assume that

α1 = (D1 + E1)η
1

α2 = (D2 + E2)η
2

β1 = 2D1π3

β2 = 2D2π4

γ = −C1θ1 − C2θ2 − E1η
1 − E2η

2 + F1π3 + F2π4

for some functions Ci, Di, Ei, Fi. Then the structure equations for this coframing
become:

dθ = θ ∧ (−C1θ1 − C2θ2 − E1η
1 − E2η

2 + F1π3 + F2π4) − θ1 ∧ η1 − θ2 ∧ η2

dθ1 = θ1 ∧ (−C2θ2 − E2η
2 + F1π3 + F2π4) +D1θ1 ∧ η1 − π3 ∧ η1 + θ ∧ (A2θ2 +B2η

2)

dθ2 = θ2 ∧ (−C1θ1 − E1η
1 + F1π3 + F2π4) +D2θ2 ∧ η2 − π4 ∧ η2 + θ ∧ (A1θ1 +B1η

1)

dη1 = 0 (4.6)

dη2 = 0

dπ3 = π3 ∧ (C1θ1 − C2θ2 + E1η
1 − E2η

2 + F2π4)

dπ4 = π4 ∧ (−C1θ1 + C2θ2 − E1η
1 + E2η

2 + F1π3).

(Note that these torsion functions are completely unrelated to those in §2 and §3.)

As in §3, we will need to compute relations among the derivatives of the torsion
functions in order to show that (M, I) has a Bäcklund transformation to the wave
equation. We begin by differentiating the structure equations (4.6). Using notation
similar to that in §3, we denote derivatives as, e.g.,

dA1 = A1,0θ +A1,1θ1 +A1,2θ2 +A1,3η
1 +A1,4η

2 +A1,5π3 +A1,6π4.

(Note that since this coframing is defined on a different manifold from that in §3, the
indexing of the derivatives is different as well.)

Computing d(dθ) = d(dθ1) = d(dθ2) = d(dπ3) = d(dπ4) = 0 yields the following
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equations for the derivatives of the torsion functions:

dA1 = A1,0θ + A1,1θ1 − 3A1C2θ2 + A1,3η
1
− A1(D2 + 2E2)η

2 + A1F3π3 + A1F2π4

dA2 = A2,0θ − 3A2C1θ1 + A2,2θ2 − A2(D1 + 2E1)η
1 + A2,4η

2 + A2F3π3 + A2F2π4

dB1 = B1,0θ + (A1,3 − A1D1)θ1 − 2B1C2θ2 + B1,3η
1
− B1(D2 + E2)η

2 + A1π3

dB2 = B2,0θ − 2B2C1θ1 + (A2,4 − A2D2)θ2 − B2(D1 + E1)η
1 + B2,4η

2 + A2π4

dC1 = A1C2θ + C1,1θ1 − C1C2θ2 + C1,3η
1
− ( 1

2
A1 + C1E2)η

2 + C1,5π3 + C1F2π4

dC2 = A2C1θ − C1C2θ1 + C2,2θ2 − ( 1
2
A2 + C2E1)η

1 + C2,4η
2 + C2F1π3 + C2,6π4 (4.7)

dD1 = B1C2θ + D1,1θ1 + 3
2
A2θ2 + D1,3η

1 + 1
2
(3B2 − B1)η

2 + (2C1 − E1,5)π3

dD2 = B2C1θ + 3
2
A1θ1 + D2,2θ2 + 1

2
(3B1 − B2)η

1 + D2,4η
2 + (2C2 − E2,6)π4

dE1 = B1C2θ + (C1,3 − C1D1)θ1 + 1
2
A2θ2 + E1,3η

1 + 1
2
(B2 − B1)η

2 + E1,5π3

dE2 = B2C1θ + 1
2
A1θ1 + (C2,4 − C2D2)θ2 + 1

2
(B1 − B2)η

1 + E2,4η
2 + E2,6π4

dF1 = (2C1F1 − C1,5)θ1 − C2F1θ2 + (C1 + E1F1 − E1,5)η
1
− E2F1η

2 + F1,5π3 + F1,6π4

dF2 = −C1F2θ1 + (2C2F2 − C2,6)θ2 − E1F2η
1 + (C2 + E2F2 − E2,6)η

2 + F1,6π3 + F2,6π4.

Because A1 appears as a derivative of B1, and A1, B1 cannot vanish simultane-
ously, B1 cannot vanish on any open set in M′. In fact, B1 cannot vanish identically
on any fiber of the projection M′ → M, and the same is true of B2. Henceforth we
restrict to the dense open set in M′ where B1, B2 are both nonzero, and note that
this set surjects onto M.

We may obtain further relations among the derivatives of the torsion functions by
differentiating equations (4.7). Computing d(dA1) ≡ d(dB1) ≡ 0 modulo θ, θ1, η

1, π4

yields

A1,0 = A1(C2,4 −D2,2 − C2D2), B1,0 = B1(C2,4 −D2,2 − C2D2).

Then computing d(dB1) ≡ 0 modulo θ, θ1, η
1 yields C2,6 = C2F2. Similar considera-

tions of d(dA2) and d(dB2) show that

A2,0 = A2(C1,3 −D1,1 − C1D1), B2,0 = B2(C1,3 −D1,1 − C1D1), C1,5 = C1F1.

It will now be convenient to derive several equations and solve them simultane-
ously. First, d(dC1) ≡ 0 modulo θ1, η

1 implies that

A1(C2,2 − C2
2 ) = A2(C1,1 − C2

1 ) (4.8)

A1(3C2,4 −D2,2 − 3C2D2) = 2B2(C1,1 − C2
1 ). (4.9)

Additionally, d(dC2) ≡ 0 modulo θ2, η
2 implies that

A2(3C1,3 −D1,1 − 3C1D1) = 2B1(C2,2 − C2
2 ). (4.10)

Finally, d(dD1) ≡ 0 modulo θ1, η
1, π3 implies that

B1(3C2,4 −D2,2 − 3C2D2) = B2(3C1,3 −D1,1 − 3C1D1). (4.11)

The general solution to equations (4.8)-(4.11) is most easily expressed in terms of a
new torsion function H , such that

C1,1 = C2
1 −A1H, D1,1 = 3(C1,3 − C1D1) + 2B1H,

C2,2 = C2
2 −A2H, D2,2 = 3(C2,4 − C2D2) + 2B2H.
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Next, we need information about the derivatives of C1,3 and C2,4. Computing
d(dC1) ≡ 0 modulo θ1 yields

dC1,3 = (C2A1,3 − 1
2A1A2 +B1C1C2)θ + C1,31θ1 + (1

2A2C1 − C2C1,3)θ2

+ C1,33η
1 − 1

2 (A1,3 + 2E2C1,3 + C1(B1 −B2))η
2

+ (F1C1,3 − C1E1,5 + 2C2
1 −A1H)π3 + F2C1,3π4,

and computing d(dC2) ≡ 0 modulo θ2 yields

dC2,4 = (C1A2,4 − 1
2A1A2 +B2C1C2)θ + (1

2A1C2 − C1C2,4)θ1 + C2,42θ2

− 1
2 (A2,4 + 2E1C2,4 + C2(B2 −B1))η

1 + C2,44η
2

+ F1C2,4π3 + (F2C2,4 − C2E2,4 + 2C2
2 −A2H)π4.

Now, computing d(dC1) = d(dC2) = 0, d(dD1) ≡ 0 modulo η1, π3, and d(dD2) ≡
0 modulo η2, π4 yields four different expressions for dH . Taking linear combinations
of these expressions shows that

A1(A1,3 −A1D1) = B1(A1,1 −A1C1) (4.12)

A2(A2,4 −A2D2) = B2(A2,2 −A2C2). (4.13)

Equations (4.12) and (4.13) may be solved by introducing new torsion functions J1, J2,
such that

A1,1 = A1C1 +A1J1 A2,2 = A2C2 +A2J2

A1,3 = A1D1 +B1J1 A2,4 = A2D2 +B2J2.

Then the various expressions for dH may be combined to show that

C1,31 = 2C1C1,3 − C2
1D1 +A1C2 − 1

2A1J2 − (A1D1 +B1J1)H

C2,42 = 2C2C2,4 − C2
2D2 + A2C1 − 1

2A2J1 − (A2D2 +B2J2)H,

and

dH =
(

H(C1,3 − C1D1 +B1H + C2,4 − C2D2 +B2H) − 1
2C1J2 + C2J1

)

θ

+ C1Hθ1 + C2Hθ2 + (D1H + 1
2J2)η

1 + (D2H + 1
2J1)η

2 + F1Hπ3 + F2Hπ4.

They also imply the relation

H(C1,3 − C1D1 +B1H) − 1
2C1J2 = H(C2,4 − C2D2 +B2H) − 1

2C2J1. (4.14)

The equations for dA1, dA2 now take the form:

dA1 = −2A1(C2,4 − C2D2 +B2H)θ +A1(C1 + J1)θ1 − 3A1C2θ2

+ (A1D1 +B1J1)η
1 −A1(D2 + 2E2)η

2 +A1F3π3 +A1F2π4 (4.15)

dA2 = −2A2(C1,3 − C1D1 +B1H)θ − 3A2C1θ1 +A2(C2 + J2)θ2

−A2(D1 + 2E1)η
1 + (A2D2 +B2J2)η

2 +A2F3π3 +A2F2π4. (4.16)
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Now, computing d(dB1) ≡ 0 modulo θ1, η
1 yields

C2,44 = (D2 −E2)C2,4 +C2D2,4 −HB2,4 − (D2 +E2)B2H +C2D2E2 +B2(C1 − J1).

Similarly, computing d(dB2) ≡ 0 modulo θ2, η
2 yields

C1,33 = (D1 −E1)C1,3 +C1D1,3 −HB1,3 − (D1 +E1)B1H +C1D1E1 +B1(C2 − J2).

Next, computing d(dA1) = 0 shows that

dJ1 = 4A1C2θ + (C1J1 +A1K1)θ1 − C2J1θ2

+ (2C1,3 − 2C1D1 + 2B1H + 2C2,4 − 2C2D2 + 2B2H +D1J1 +B1K1)η
1

− (2A1 + E2J1)η
2 + F1J1π3 + F2J1π4

for some function K1. Similarly, computing d(dA2) = 0 shows that

dJ2 = 4A2C1θ − C1J2θ1 + (C2J2 +A2K2)θ2 − (2A2 + E1J2)η
1

+ (2C1,3 − 2C1D1 + 2B1H + 2C2,4 − 2C2D2 + 2B2H +D2J2 +B2K2)η
2

+ F1J2π3 + F2J2π4

for some function K2. But now computing d(dH) ≡ 0 modulo θ, θ1, θ2 yields

B1(K1 + 4H) = B2(K2 + 4H).

It follows that

K1 = −4H +B2M

K2 = −4H +B1M

for some function M . Computing d(dH) ≡ 0 modulo θ2, η
1 and d(dH) ≡ 0 modulo

θ1, η
2 shows that

A1M = A2M = 0. (4.17)

Claim. M = 0.

Proof. Suppose not. Then by (4.17), A1 = A2 = 0. Therefore, equations (4.15)
and (4.16) reduce to

0 = dA1 = B1J1η
1

0 = dA2 = B2J2η
2.

Since B1, B2 are nonzero, it follows that J1 = J2 = 0. Then

0 = dJ1 = (2C1,3 − 2C1D1 − 2B1H + 2C2,4 − 2C2D2 + 2B2H +B1B2M)η1

0 = dJ2 = (2C1,3 − 2C1D1 + 2B1H + 2C2,4 − 2C2D2 − 2B2H +B1B2M)η2.

Subtracting the two coefficients above yields

4(B2 −B1)H = 0,

so either B1 = B2 or H = 0.
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First suppose that B1 = B2. Then

0 = d(B2 −B1) ≡ −2B1(C1θ1 − C2θ2) mod θ, η1, η2,

so C1 = C2 = 0. It follows that C1,3 = C2,4 = 0 as well. But now

0 = dJ1 = B2
1M,

so M = 0, as desired.
Now suppose that H = 0. Computing d(dC1,3) − C1d(dD1) ≡ 0 modulo θ yields

B2
1B2M = 0,

so M = 0 in this case as well.
Finally, computing d(dH) = 0, keeping the relation (4.14) in mind, yields two

additional relations:

2C2(2C1,3 − 2C1D1 + 2B1H)

+ (2C2 − J2)(2C2,4 − 2C2D2 + 2B2H) +A2(4C1 − J1) = 0 (4.18)

(2C1 − J1)(2C1,3 − 2C1D1 + 2B1H)

+ 2C1(2C2,4 − 2C2D2 + 2B2H) +A1(4C2 − J2) = 0. (4.19)

We now have all the relations that will be needed for the involutivity calculation
below.

Now suppose that M = R
5 carries a Monge-Ampère system I representing the

wave equation ZXY = 0, generated algebraically by the contact form

θ = dZ − P dX −QdY (4.20)

and the 2-forms dP ∧ dX and dQ ∧ dY . If there were a Bäcklund transformation
B ⊂ M × M, then Z would be a local coordinate on the fibers of B → M and the
functions X,Y, P,Q on B would satisfy the Bäcklund condition

{dP ∧ dX, dQ ∧ dY } ≡ {π1 ∧ η1, π2 ∧ η2} mod θ, θ (4.21)

(see the definition at the beginning of §2).
Accordingly, we let B = M×R, with coordinate Z on the second factor. We will

show that, on an open neighborhood of any point of B, there exist functions X,Y, P,Q
such that the ideal J = I ∪{θ} on B (where θ is defined as in (4.20)) gives a Bäcklund
transformation between (M, I) and (M, I). We will do this by setting up an EDS
whose integral manifolds correspond to functions satisfying these conditions; once we
know that this EDS is involutive, an application of the Cartan-Kähler Theorem will
prove the existence of the desired Bäcklund transformations.

Let B′ = M′ × R, again with Z as the coordinate on the second factor; we
extend the projection M′ → M to a projection B′ → B by the identity on the
second factor. It will be convenient to set up our EDS in terms of the coframing
(θ, θ, θ1, θ2, η

1, η2, π3, π4) on B′. Thus, we will regard X,Y, P,Q as functions on B′,
but require that

dX, dY, dP, dQ ∈ {θ, θ, θ1, θ2, η1, η2}
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so that they are in fact well-defined on B. In order to satisfy the Bäcklund condition
(4.21), we will furthermore require that

{dX, dP} ⊂ {θ, θ, θ1, η1}, {dY, dQ} ⊂ {θ, θ, θ2, η2}. (4.22)

From this, and the structure equations (4.6), it follows that {dX, dP} (resp., {dY, dQ})
is the largest integrable subsystem of {θ, θ, θ1, η1} (resp., {θ, θ, θ2, η2}). Therefore,

η1 = dx ∈ {dX, dP}, η2 = dy ∈ {dY, dQ},

and by a contact transformation on M, we may assume that X = x, Y = y. Thus,
we will set

θ = dZ − P dx−Qdy,

and condition (4.22) becomes

dP ∈ {θ, θ, θ1, η1}, dQ ∈ {θ, θ, θ2, η2}.

Suppose that

dP = P0θ + P0θ + P1θ1 + P3η
1 (4.23)

dQ = Q0θ +Q0θ +Q2θ2 +Q4η
2. (4.24)

Observe that normality of the Bäcklund transformation requires that P1, Q2 6= 0 and
P1 6= Q2.

Remark. Equations (4.23)-(4.24) give an overdetermined system of first-order
partial differential equations for functions P and Q. The process of generating com-
patibility conditions for such systems can be carried out systematically by computing
the exterior derivatives of the 1-form equations, and using the fact that the repeated
exterior derivative of a function is zero. Moreover, applying Cartan’s Test for in-
volutivity (see [8], Chapter 7) to the resulting EDS will tell us when we can stop
differentiating: if the system is involutive then no further compatibility conditions
arise through differentiation, and solutions exist that may be constructed by applying
the Cartan-Kähler Theorem.

Differentiating (4.23) modulo θ, θ, θ1, η
1 yields

(P0 + P0Q2) θ2 ∧ η2 = 0,

and differentiating (4.24) modulo θ, θ, θ2, η
2 yields

(Q0 +Q0P1) θ1 ∧ η1 = 0.

Therefore, because the 1-forms θ, θ, θ1, θ2, η
1, η2 are linearly independent on B, we

have P0 = −P0Q2, Q0 = −Q0P1, and we may write

dP = P0(θ −Q2θ) + P1θ1 + P3η
1 (4.25)

dQ = Q0(θ − P1θ) +Q2θ2 +Q4η
2.

Note that neither P0 nor Q0 can vanish identically: for, if P0 = 0, then differentiating
(4.25) shows that P1 = 0 as well, which contradicts the hypothesis of normality. (A
similar argument applies to Q0.)
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Differentiating equations (4.25) modulo various combinations of 1-forms leads to
the following expressions for the exterior derivatives of P0, P1, P3, Q0, Q2, Q4:

dP0 = −P0Q02θ + P00(θ −Q2θ) + P01θ1 + P03η
1

dP1 = P01(θ −Q2θ) −
(A1Q2 + C1Q0P1)

Q0

θ1 − C2P1θ2

− (B1Q2 +Q0(E1P1 + P0(Q2 − P1)))

Q0

η1 − E2P1η
2 + F1P1π3 + F2P1π4

dP3 = (P03 + P 2
0
)(θ −Q2θ) −

(B1Q2 +Q0((D1 + E1)P1 + 2P0(Q2 − P1)))

Q0

θ1

+ P33η
1 + P1π3 (4.26)

dQ0 = −Q0P01θ +Q00(θ − P1θ) +Q02θ2 +Q04η
2

dQ2 = Q02(θ − P1θ) − C1Q2θ1 −
(A2P1 + C2P0Q2)

P0

θ2

− E1Q2η
2 − (B2P1 + P0(E2Q2 +Q0(P1 −Q2)))

P0

η2 + F1Q2π3 + F2Q2π4

dQ4 = (Q04 +Q2
0
)(θ − P1θ) −

(B2P1 + P0((D2 + E2)Q2 + 2Q0(P1 −Q2)))

P0

θ2

+Q44η
2 +Q2π4.

Now computing d(dP1) ≡ 0 modulo θ − Q2θ and d(dQ2) ≡ 0 modulo θ − P1θ
yields

P00 =
1

Q0P
2
1Q2(Q2 − P1)

(

2C1(P1 − 2Q2)P1Q2P
2
0
Q0 + 2C2P

2
1Q2P0Q

2
0

+ 2(C1,3 − C1D1 +B1H)P 2
1Q2P0Q0 +A1(P1 −Q2)Q

2
2P

2
0

+A2P
3
1Q

2
0

)

Q00 =
1

P0P1Q2
2(P1 −Q2)

(

2C1P1Q
2
2P

2
0
Q0 + 2C2(Q2 − 2P1)P1Q2P0Q

2
0

+ 2(C2,4 − C2D2 +B2H)P1Q
2
2P0Q0 +A1Q

3
2P

2
0

+A2(Q2 − P1)P
2
1Q

2
0

)

P01 = −P0(A1Q2 + 2C1Q0P1)

Q0P1
(4.27)

Q02 = −Q0(A2P1 + 2C2P0Q2)

P0Q2

P03 = −P0(B1Q2 + (D1 + E1)P1Q0 + (2Q2 − P1)P0Q0)

P1Q0

Q04 = −Q0(B2P1 + (D2 + E2)Q2P0 + (2P1 −Q2)P0Q0)

Q2P0

.

This leaves only P33 and Q44 as undetermined second derivatives of P and Q.
We are now ready to set up our exterior differential system. Let ̂B = B × R

10,
with coordinates P , Q, P0, P1, P3, Q0, Q2, Q4, P33, Q44 on the R

10 factor. Let W
be the rank 8 Pfaffian EDS on ̂B generated by the 1-forms

Θ1 = dP − P0(θ −Q2θ) − P1θ1 − P3η
1,

Θ2 = dQ−Q0(θ − P1θ) −Q2θ2 −Q4η
2,
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and similar forms Θ3, . . . ,Θ8 prescribing conditions (4.26) for dP0, dP1, dP3, dQ0,
dQ2, and dQ4, substituting the values (4.27) for P00, P01, P03, Q00, Q02, Q04. Integral
manifolds of W satisfying the independence condition θ∧θ∧θ1∧θ2∧η1∧η2∧π3∧π4 6= 0
are in one-to-one correspondence with the desired functions P,Q defining a Bäcklund
transformation.

The structure equations for this EDS have the form:
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mod Θ1, . . . ,Θ8,

(4.28)
where

Π1 ≡ dP33

Π2 ≡ dQ44

}

mod θ, θ, θ1, θ2, η
1, η2, π3, π4,

and Ψ1, . . . ,Ψ8 are 2-forms which are quadratic in the forms θ, θ, θ1, θ2, η
1, η2, π3, π4,

with coefficients which are polynomial functions of the two quantities

(

2HP1(Q2 − P1)Q
2
0
+Q2(2C1Q2 + J1(P1 −Q2))Q0 +A1Q

2
2

)

P0

− 2C2P
2
1Q

2
0

+ 2(C2,4 − C2D2 +B2H)Q0P1Q2, (4.29)

(

2HQ2(P1 −Q2)P
2
0

+ P1(2C2P1 + J2(Q2 − P1))P0 +A2P
2
1

)

Q0

− 2C1Q
2
2P

2
0

+ 2(C1,3 − C1D1 +B1H)P0P1Q2. (4.30)

In order to find integral manifolds, we must restrict W to the locus Z ⊂ ̂B defined by
the simultaneous vanishing of (4.29) and (4.30). (These relations could also be found
more directly, by computing d(dP1) = d(dQ2) = 0.) While relations of this sort could
easily lead to hopeless incompatibility for the PDE system given by (4.25) and (4.26),
it turns out that differentiating these quantities yields no new relations.

A case-by-case analysis, based on the vanishing or non-vanishing of various torsion
coefficients of (M, I), shows that the functions P0, Q0, P1, Q2 are all nonzero on an
open subset Z0 ⊂ Z which is surjective for the projection Z → B. Since normality
requires that these functions be generically nonzero, we further restrict W to this
open subset.

Let W denote the pullback of W to Z0; W is a rank 6 Pfaffian EDS on Z0.
Because differentiating the equations defining Z yields no new relations, W is torsion-
free; moreover, it is straightforward to check that W is involutive with last nonzero
Cartan character s1 = 2. (See [8] for a discussion of Cartan’s test and involutivity.)
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Therefore, it follows from the Cartan-Kähler Theorem that local integral manifolds
exist and are parametrized by 2 functions of one variable.

We summarize this result as:

Proposition 4.3. Let (M, I) be a hyperbolic Monge-Ampère system which is not
Monge-integrable, and which is Darboux-integrable after one prolongation. Then near
any point p ∈ M there is an open set U ⊂ M around p such that the restriction of I
to U is linked to the wave equation by a normal Bäcklund transformation; moreover,
the set of all such Bäcklund transformations is parametrized by 2 functions of one
variable. Up to contact transformations, all such Bäcklund transformations preserve
the space of independent variables x, y.

4.2. The Monge-integrable case. In this subsection (M, I) is assumed to be a
hyperbolic Monge-Ampère system which is Monge-integrable and Darboux-integrable
after one prolongation. As explained below, we will construct a canonical coframing
associated to the partial prolongation of I, and then proceed as in §4.1.

A similar argument to that of Lemma 4.1 can be used to prove:

Lemma 4.4. Near any point of M, there exists a coframing (θ, π1, π2, η
1, η2) such

that θ spans the 1-forms of I, and the characteristic systems C1, C2 of I have derived
flags

C1 = {θ, π1, η
1} ⊃ {π1, η

1} ⊃ {η1} = C(∞)
1 , C2 = {θ, π2, η

2} ⊃ {π2, η
2} = C(∞)

2 .

Indeed, the same coframing as that given in the proof of Lemma 4.1 satisfies the
conditions of Lemma 4.4. Note that this lemma only assumes the Monge-integrability
of (M, I).

In terms of the local coframing on M given by the lemma, the partial prolongation
(M′, I ′) is defined as follows: let M′ = M×R, with coordinate r on the R factor, and
let I ′ be the Pfaffian system on M′ generated by θ, the 1-form θ1 = π1 − rη1, and the
2-form π2 ∧ η2.

Lemma 4.5. Near any point of M′ there exists a coframing (θ, θ1, π2, η
1, η2, π3)

such that I ′ is generated by θ, θ1, and π2 ∧ η2, satisfying

dθ = −θ1 ∧ η1 − θ2 ∧ η2 mod θ

dθ1 = −π3 ∧ η1 mod θ, θ1,
(4.31)

with the derived flags of the characteristic systems of I ′ given by

C′
1 = {θ, θ1, η1, π3} ⊃ {θ1, η1, π3} ⊃ {η1, π3} = C′

1
(∞)

,

C′
2 = {θ, θ1, π2, η

2} ⊃ {θ, π2, η
2} ⊃ {π2, η

2} = C′
2
(∞)

.

Proof. As in the proof of Lemma 4.2, the usual or “full” prolongation of I on
M × R

2 is generated by θ, θ1 and θ2 = π2 − t η2. We may construct the coframing
(θ, θ1, θ2, η

1, η2, π3, π4) on M × R
2 precisely as in Lemma 4.2, and this coframing

satisfies the structure equations (4.2).
The hypothesis of Darboux-integrability implies that the characteristic system

K1 = {θ, θ1, θ2, η1, π3}



BÄCKLUND TRANSFORMATIONS AND DARBOUX INTEGRABILITY 47

of the prolongation contains a rank 2 Frobenius system. As in Lemma 4.2, it follows
from the structure equations and the construction of π3 that

K(1)
1 = {θ, θ1, η1, π3}.

However, this system is well-defined on M′ = M × R, and it coincides with the
characteristic system C′

1 given in the statement of the present Lemma. It follows that

we may adjust π3 so that it lies in the rank 2 Frobenius system C′
1
(∞)

.
Note that the second characteristic system C′

2 is simply the sum of I ′ and the
pullback of the characteristic system C2 of I, and the structure of its derived flag
follows from that of C2.

The conditions in Lemma 4.5 are preserved by changes of coframing of the form
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, (4.32)

with a1, a2, c 6= 0. Let G ⊂ GL(6,R) be the group of such transformations, and let P
be the G-structure on M′ of which the coframing of Lemma 4.5 is a section.

After absorbing as much torsion as possible and differentiating to uncover relations
among the torsion, P has structure equations
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. (4.33)

Because of the dimensions of the derived flags of the characteristic systems (given
in Lemma 4.5), A,B are not both zero. Furthermore, we can choose a local section
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σ : M′ → P satisfying the conditions that η1 = dx, η2 = dy, π2 is exact, and π3 is
integrable. The resulting coframing is uniquely determined.

When we pull back the structure equations via σ, the pseudoconnection forms
α1, α2, β1, β2, β3, γ become semi-basic. By making use of the remaining ambiguity
in these forms and the conditions imposed thus far on the coframing, we can assume
that

α1 = Eη1, α2 = 0, β1 = Gπ2, β2 = 0, β3 = (−H + 2E)π3, γ = Fπ2 +Gη2

for some functions E,F,G,H . Then the structure equations for this coframing be-
come:

dθ = θ ∧ (Fπ2 +Gη2) − θ1 ∧ η1 − π2 ∧ η2

dθ1 = θ1 ∧ (Fπ2 + Eη1 +Gη2) − π3 ∧ η1 + θ ∧ (Aπ2 +Bη2)

dπ2 = 0 (4.34)

dη1 = 0

dη2 = 0

dπ3 = π3 ∧ (−Cθ1 + Fπ2 +Hη1 +Gη2).

Once again, we will need to compute relations among the derivatives of the torsion
functions in order to show that (M, I) has a Bäcklund transformation to the wave
equation. We begin by differentiating the structure equations (4.34). We denote
derivatives as, e.g.,

dA = A0θ +A1θ1 +A2π2 +A3η
1 +A4η

2 +A5π3.

Computing d(dθ) = d(dθ1) = d(dπ3) = 0 yields the following equations for the
derivatives of the torsion functions:

dA = A0θ +ACθ1 +A2π2 −AEη1 +A4η
2

dB = B0θ +BCθ1 +A4π2 −BEη1 +B4η
2

dC = C1θ1 + CFπ2 + C3η
1 + CGη2 + C5π3

dE = E1θ1 + 2Aπ2 + E3η
1 + 2Bη2 − Cπ3 (4.35)

dF = ACθ + F2π2 +Aη1 + F4η
2

dG = BCθ + F4π2 +Bη1 +G4η
2

dH = (CE − C3)θ1 +Aπ2 +H3η
1 +Bη2 +H5π3.

We may obtain further relations among the derivatives of the torsion functions by
differentiating equations (4.35). Computing d(dF ) ≡ d(dG) ≡ 0 modulo π2, η

2 and
recalling that A,B cannot vanish simultaneously yields

A0 = A(C3 − CE), B0 = B(C3 − CE), C1 = −C2, C5 = 0.

Then computing d(dA) ≡ d(dB) ≡ 0 modulo θ, π2, η
2 yields

E1 = 2(CE − C3),

and d(dC) = 0 implies that

dC3 = (C2E − 2CC3)θ1 + (AC + FC3)π2 + C33η
1 + (BC +GC3)η

2 − C2π3.
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Finally, computing d(dA) ≡ d(dB) ≡ 0 modulo π2, η
2 yields

C33 = CE3 + EC3.

We now have all the relations that will be needed for the involutivity calculation
below.

Now suppose that M = R
5 carries a Monge-Ampère system I representing the

wave equation ZXY = 0, generated algebraically by the contact form

θ = dZ − P dX −QdY (4.36)

and the 2-forms dP ∧ dX and dQ ∧ dY . As in §4.1, if there were a Bäcklund trans-
formation B ⊂ M × M, then Z would be a local coordinate on the fibers of B → M

and the functions X,Y, P,Q on B would satisfy the Bäcklund condition

{dP ∧ dX, dQ ∧ dY } ≡ {π1 ∧ η1, π2 ∧ η2} mod θ, θ. (4.37)

As in §4.1, let B′ = M′ ×R, again with Z as the coordinate on the second factor;
we extend the projection M′ → M to a projection B′ → B by the identity on the
second factor. We will regard X,Y, P,Q as functions on B′, but require that

dX, dY, dP, dQ ∈ {θ, θ, θ1, π2, η
1, η2}

so that they are in fact well-defined on B. In order to satisfy the Bäcklund condition
(4.37), we will furthermore require that

{dX, dP} ⊂ {θ, θ, θ1, η1}, {dY, dQ} ⊂ {θ, θ, π2, η
2}. (4.38)

The same argument as that given in §4.1 shows that by a contact transformation
on M, we may assume that X = x. However, the same is not true for Y : the system
{θ, θ, π2, η

2} on B contains a rank 3 integrable subsystem, so we cannot necessarily
arrange to have η2 ∈ {dY, dQ}. There are three different, geometrically natural
conditions that we could impose on the intersection of the rank 2 Pfaffian systems
{dY, dQ} and {π2, η

2}, each of them potentially leading to a different type of Bäcklund
transformation:

1. {dY, dQ} ∩ {π2, η
2} has rank 1 and is spanned by a non-integrable 1-form.

2. {dY, dQ} ∩ {π2, η
2} has rank 1 and is spanned by an integrable 1-form.

3. {dY, dQ} ∩ {π2, η
2} has rank 2.

In cases (2) and (3) we can arrange that Y = y via contact transformations on M and
M, but in case (1) this is not possible.

4.2.1. Case (1). In this case we have

θ = dZ − P dx−QdY,

and condition (4.38) becomes

dP ∈ {θ, θ, θ1, η1}, dY, dQ ∈ {θ, θ, π2, η
2}.

Suppose that

dP = P0θ + P0θ + P1θ1 + P3η
1

dQ = Q0θ +Q0θ +Q2π2 +Q4η
2 (4.39)

dY = Y0θ + Y0θ + Y2π2 + Y4η
2.
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Normality of the Bäcklund transformation requires that P1 6= 0, Q2Y4 − Q4Y2 6= 0,
and P1 6= Q2Y4 −Q4Y2.

The argument proceeds in much the same fashion as that of §4.1: differentiating
equations (4.39) leads to relations among the derivatives of P,Q, Y . Eventually we are
led to a Pfaffian exterior differential system W whose integral manifolds satisfying the
independence condition θ ∧ θ ∧ θ1 ∧ π2 ∧ η1 ∧ η2 6= 0 are in one-to-one correspondence
with the desired functions P,Q, Y defining a Bäcklund transformation. This EDS
is involutive with last nonzero Cartan character s3 = 1. Therefore, local integral
manifolds exist and are parametrized by 1 function of three variables.

If we impose the additional condition that the Bäcklund transformation be holo-
nomic, we find that the resulting EDS is involutive with last nonzero Cartan character
s2 = 2. Therefore, among the Bäcklund transformations of this type, there is a small,
proper subset, parametrized by 2 functions of two variables, consisting of holonomic
transformations.

4.2.2. Case (2). In this case, we can use contact transformations on M and M

to arrange that {dY, dQ} ∩ {π2, η
2} is spanned by η2 = dy = dY . Then we have

θ = dZ − P dx−Qdy,

and condition (4.38) becomes

dP ∈ {θ, θ, θ1, η1}, dQ ∈ {θ, θ, π2, η
2}.

Suppose that

dP = P0θ + P0θ + P1θ1 + P3η
1, (4.40)

dQ = Q0θ +Q0θ +Q2π2 +Q4η
2.

Normality of the Bäcklund transformation requires that P1, Q2 6= 0 and P1 6= Q2.
Differentiating equations (4.40) leads to relations among the derivatives of P,Q,

and to a Pfaffian exterior differential system W whose integral manifolds satisfying the
independence condition θ∧θ∧θ1∧π2∧η1∧η2 6= 0 are in one-to-one correspondence with
the desired functions P,Q defining a Bäcklund transformation. This EDS is involutive
with last nonzero Cartan character s2 = 1. Therefore, local integral manifolds exist
and are parametrized by 1 function of two variables.

If we impose the additional condition that the Bäcklund transformation be holo-
nomic, we find that the resulting EDS is involutive with last nonzero Cartan character
s1 = 3. Therefore, among the Bäcklund transformations of this type, there is a small,
proper subset, parametrized by 3 functions of one variable, consisting of holonomic
transformations.

4.2.3. Case (3). In this case, we can use contact transformations on M and M

to arrange that η2 = dy = dY, π2 = dQ. Then we have

θ = dZ − P dx−Qdy,

and condition (4.38) becomes

dP ∈ {θ, θ, θ1, η1}.

Suppose that

dP = P0θ + P0θ + P1θ1 + P3η
1. (4.41)
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Normality of the Bäcklund transformation requires that P1 6= 0 and P1 6= 1.

Differentiating equation (4.41) leads to relations among the derivatives of P , and
to a Pfaffian exterior differential system W whose integral manifolds satisfying the
independence condition θ ∧ θ ∧ θ1 ∧ π2 ∧ η1 ∧ η2 6= 0 are in one-to-one correspondence
with the desired functions P defining a Bäcklund transformation.

The involutivity calculation in this case depends on the torsion functions in the
structure equations (4.34). If

AG−BF = AC+F (CE−C3) = AF 2+FA2−AF2 = BF 2+FA4−AF4 = 0, (4.42)

then W is involutive with last nonzero Cartan character s2 = 1, and so local integral
manifolds exist and are parametrized by 1 function of two variables. Otherwise, there
are no solutions with P1 6= 0, and hence no normal Bäcklund transformations of this
type.

Observe that in this case, the G-structure on the Bäcklund transformation B (cf.
§2) will satisfy the condition that (omitting obvious pullback notations)

{ω3, ω4} = {π2, η
2} = {dY, dQ}.

Therefore, all transformations of this type satisfy the hypotheses of Proposition 3.4
and so are holonomic.

We summarize these results as:

Proposition 4.6. Let (M, I) be a hyperbolic Monge-Ampère system which is
Monge-integrable, and Darboux-integrable after one prolongation. Then there exist
Bäcklund transformations of types (1) and (2) above between (M, I) and the standard
wave equation (M, I), and of type (3) if the torsion functions of (M, I) satisfy (4.42).
The generic Bäcklund transformation is of type (1) and does not preserve the space
of independent variables. There are both holonomic and non-holonomic Bäcklund
transformations of types (1) and (2), and all Bäcklund transformations of type (3)
are holonomic.

5. Examples. In this section we review the classifications of second-order
Darboux-integrable Monge-Ampère equations, due to Goursat and Vessiot, and dis-
cuss the connection between our results and the work of Zvyagin. We will also give
examples of a method for explicitly solving for Bäcklund transformations linking these
equations to the wave equation.

5.1. The Goursat-Vessiot List. Goursat [7] studied non-linear PDE of the
form

uxy = F (x, y, u, ux, uy) (5.1)

which are Darboux-integrable at the 2-jet level, classifying them up to complex contact
transformations that preserve the form (5.1). Using Lie-theoretic techniques, Vessiot
[11] reproduced Goursat’s classification, expanded to include linear equations, and
showed that some of the equations on Goursat’s list were equivalent under more gen-
eral contact transformations. Recently, Biesecker [1] re-proved Vessiot’s classification
using Cartan’s method of equivalence, with respect to real contact transformations.
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Retaining Goursat’s numbering, the list is:

(x+ y)uxy = 2
√
uxuy; (I)

u uxy =
√

1 + u2
x

√

1 + u2
y; (II)

(sinu)uxy =
√

1 + u2
x

√

1 + u2
y; (III)

u uxy = ±φ(ux)ψ(uy), (IV)

where φ(t), ψ(t) satisfy the ODE df/dt± t/f = K for some nonzero constant K;

(x+ y)uxy = γ(ux)γ(uy), (V)

where γ is implicitly defined by γ(t) − 1 = exp(t− γ(t));

ux − u
uxy

uy
= f

(

x,
uxy

uy

)

; (VI)

uxy = eu
√

1 + (ux)2; (VII)

ux − y uxy = f(x, uxy); (VIII)

uxy = eu; (IX)

uxy = uxe
u, ; (X)

uxy =

(

1

u+ x
+

1

u+ y

)

uxuy. (XI)

(In (VI) and (VIII) the function f is arbitrary.) To Goursat’s original list, Ves-
siot added representatives of the two equivalence classes of Darboux-integrable linear
equations:

uxy = a(x, y)ux + b(x, y)uy − a(x, y)b(x, y)u, (XII)

where h(x, y) = −ax and k(x, y) = −by must satisfy the system (ln h)xy = 2h − k,
(ln k)xy = 2k − h with h 6= k; and finally,

uxy =
2u

(x+ y)2
. (XIII)

In the above list, we have replaced Goursat’s original versions of (VII) and (XI)
by simpler equations that Vessiot showed were equivalent to them by contact transfor-
mations; see [11], part 2, pages 5 and 6, respectively. Vessiot also observed that (VI)
is contact-equivalent to (X), and (VIII) may be reduced by a contact transformation
to the special case

uxy =
ux

x+ y
. (VIII*)

Our Theorem 1, together with Goursat’s classification, implies the following

Corollary 3. If a second-order Monge-Ampère PDE for one function of two
variables is linked to the standard wave equation by a normal Bäcklund transformation
with 1-dimensional fibers, then the PDE is either equivalent to the wave equation by a
contact transformation, or equivalent to one of the equations (I)-(XIII) in the above
list.
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5.2. Zvyagin’s List. Zvyagin [14] investigated second-order Monge-Ampère
equations linked to the standard wave equation by a Bäcklund transformation, and
asserted that all such transformations that are non-holonomic are exhausted by a list
of six examples in addition to Liouville’s equation. Zvyagin did not publish a proof
of this classification, and did not give explicit forms for the Monge-Ampère equations
for some of the transformations on his list. He did give an explicit transformation for
Goursat-Vessiot equation (I):

√
p−

√
P =

√

Z − u

x− y
,

√
q −

√

Q = −
√

Z − u

x− y
, (Z.I)

where, as in §4, Z is the solution to the wave equation, with x- and y- derivatives P
and Q. (The x- and y-coordinates are preserved by the transformation.)

Corollary 3 implies that every one of Zvyagin’s transformations must be iden-
tifiable with an equation on the Goursat-Vessiot list. We have calculated explicit
forms for certain transformations on Zvyagin’s list, and we can identify the following
transformations as belonging to equations (II), (III), and (VII), respectively:

ZP − up =
√

Z2 − u2
√

1 + P 2, ZQ− uq =
√

Z2 − u2
√

1 +Q2; (Z.II)

p =
(sinhZ + 1

2e
−w)P + e(Z−w)/2

√
P 2 − 1

− sinu
,

q =
(sinhZ − 1

2e
−w)Q+ e−(w+Z)/2

√

Q2 − 1

− sinu
, (Z.III)

where w is related to u and Z by cosu = coshZ − 1
2e

−w;

p = (1 − 2eu+Z)P − 2e(u+Z)/2
√

eu+Z − 1
√

P 2 + 1,

q = −Q− e(u−Z)/2
√

eu+Z − 1. (Z.VII)

Each of the above transformations, which preserve the x- and y-coordinates, may be
verified as being non-holonomic. To see how this is done, suppose that the transfor-
mation equations, when solved for p and q, take the form

p = f(x, y, u, Z, P ), q = g(x, y, u, Z,Q). (5.2)

The Cartan system for the Monge-Ampère equation is spanned by dx, dy, du, dp and
dq, while the Cartan system for the wave equation is spanned by dx, dy, dZ, dP, dQ.
Recall from §2 that a transformation is holonomic if the intersection of these systems
is Frobenius. In light of the transformation equations (5.2), the intersection of these
two systems is spanned by dx, dy, dp − fu du and dq − gu du. The last two 1-forms
are congruent modulo dx and dy to

ξ1 = fPdP + fZdZ, ξ2 = gQdQ+ gZdZ,

respectively. To check that the system {dx, dy, ξ1, ξ2} is not Frobenius, compute

dξ1 ∧ ξ1 ∧ ξ2 ≡ gQ(fuZfP − fPufZ)dP ∧ dQ ∧ du ∧ dZ,
dξ2 ∧ ξ1 ∧ ξ2 ≡ fP (guZgQ − gQugZ)dP ∧ dQ ∧ du ∧ dZ mod dx, dy. (5.3)

In each case, the coefficients on the right are nonzero, and we conclude that the
transformation is non-holonomic.
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5.3. Solving for Bäcklund transformations. In this subsection, we will set
up systems of PDE whose solutions are Bäcklund transformations to the wave equa-
tion for some examples on the Goursat-Vessiot list. Although the existence of these
transformations follows from the arguments of §4, here we will be able to go further
in writing down explicit formulas for the transformations. Because we will work with
specific Monge-Ampère equations on the list, we can take advantage of explicit for-
mulas for the characteristic invariants. (These invariants are computed, for example,
in the dissertation of M. Biesecker [1].)

The general approach is as follows. We write a PDE on the list in the form

s = F (x, y, u, p, q). (5.4)

This form always has x and y as characteristic invariants, and we assume these are
the only functionally independent invariants up to first order for the equation (i.e.,
we assume that the equation is not Monge-integrable). The Bäcklund transformation
must take these invariants to corresponding characteristic invariants for the wave
equation. By employing a change of variables on the wave equation side, of the form
X 7→ φ(X), Y 7→ ψ(Y ), and interchanging X and Y if necessary, we may assume that
the transformation has

x = X, y = Y.

Now suppose that the remaining equations defining the Bäcklund transformation take
the form

p = f(x, y, u, Z, P,Q), q = g(x, y, u, Z, P,Q). (5.5)

The Monge-Ampère system on R
5 encoding the PDE (5.4) is generated alge-

braically by the contact form θ = du− p dx− q dy and the 2-forms

Ω1 = (dp− F (x, y, u, p, q)dy) ∧ dx, Ω2 = (dq − F (x, y, u, p, q)dx) ∧ dy.

The defining property of the Bäcklund transformation is that substituting (5.5) into
Ω1,Ω2 must make them congruent to linear combinations of dP ∧dx and dQ∧dy (the
2-forms defining the Monge-Ampère system for the wave equation) modulo θ and the
contact form on the wave equation side,

θ = dZ − P dx−Qdy.

In fact, Ω1 must become congruent to a multiple of dP ∧ dx and Ω2 congruent to a
multiple of dQ ∧ dy. Using (5.5), we compute

Ω1 ≡ ((fy + fug + fZQ− F )dy + fPdP + fQdQ) ∧ dx mod θ, θ,

and

Ω2 ≡ ((gx + guf + gZP − F )dx+ gPdP + gQdQ) ∧ dy mod θ, θ.

We immediately conclude that fQ = gP = 0, so that the transformation is of the form

p = f(x, y, u, Z, P ), q = g(x, y, u, Z,Q), (5.6)
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and f, g must satisfy two additional first-order PDEs,

fy = F (x, y, u, f, g)− fug − fZQ, (5.7)

gx = F (x, y, u, f, g)− guf − gZP. (5.8)

We derive additional first- and second-order PDEs that f and g must satisfy by
differentiating the conditions so far. Taking derivatives with respect to Q in (5.7) and
P in (5.8) gives

fZ = (Fq − fu) gQ, gZ = (Fp − gu) fP , (5.9)

where the partials Fp = ∂F/∂p and Fq = ∂F/∂q are taken and then evaluated with p
and q given by (5.6). As we will see in specific cases below, this will sometimes imply
that f and g must be linear in P and Q.

In what follows, let J1 and J2 denote the second-order characteristic invariants for
the given PDE (whose existence makes the equation Darboux-integrable), expressed
in terms of x, y, u, p, q and the second-order jet coordinates r and t. (We make the
convention that J1 is invariant along the characteristic curves where x is constant,
and J2 is invariant when y is constant.) Then the Bäcklund transformation must take
J1 and J2 to second-order characteristic invariants for the wave equation. In order to
compute these additional constraints, we must take total x- and y-derivatives in (5.6)
to deduce how the second-order jet coordinates r and t transform in terms of those
of the wave equation:

r = fx + fuf + fZP + fPR, t = gy + gug + gZQ+ gQT. (5.10)

Requiring that, under these substitutions, J1 transforms to be a function of only
x, P,R, and J2 transforms to be a function of only y,Q, T , will lead to additional
second-order PDEs which f and g must satisfy.

We now turn to specific examples.

Equation IX (Liouville’s equation). In this case, F = eu, and the equations
(5.7) through (5.9) become

fy = eu + fu(QgQ − g), (5.11)

gx = eu + gu(PfP − f), (5.12)

fZ = −fugQ, (5.13)

gZ = −gufP . (5.14)

As mentioned in §1, the characteristic invariants are

J1 = r − 1
2p

2, J2 = t− 1
2q

2.

Under (5.6), the first invariant transforms as

r − 1
2p

2 = fx + fuf + fZP + fPR− 1
2f

2.

Requiring that this be a function of x, P,R only immediately implies that fP can
depend on x and P only, and that the remaining terms have no dependence on u, Z
or y. This gives us 6 additional second-order PDEs for f :

fPu = fPy = fPZ = 0, ∂u, ∂y, ∂Z(fx + fuf + fZP − 1
2f

2) = 0. (5.15)
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Similarly, we also get

gQu = gQy = gQZ = 0, ∂u, ∂x, ∂Z(gy + gug + gZQ− 1
2g

2) = 0. (5.16)

Note that some of these second-order equations are redundant, in light of the deriva-
tives of (5.13) and (5.14).

Next, we derive additional equations by differentiation. Note that (5.11) shows
that fu cannot be identically zero; then, taking a Q derivative of (5.13) shows that
gQQ = 0. Similarly, fPP = 0, so that f and g are linear in P and Q. Thus, we may
set

f(x, y, u, P, Z) = f0(x)P+f1(x, y, u, Z), g(x, y, u,Q, Z) = g0(y)Q+g1(x, y, u, Z).

In particular, taking the terms in (5.15), (5.16) that are linear in P and Q respectively
gives

∂u

(

(f0 − g0)f1
u − f0f1

)

= 0, ∂u

(

(g0 − f0)g1
u − g0g1

)

= 0. (5.17)

Furthermore, equating the Z-derivative of (5.11) with the y-derivative of (5.13), and
using the u-derivatives of these equations to determine fyu and fZu, gives the com-
patibility condition

(g0 − f0)f1
ug

1
u = g0

yf
1
u + eug0;

we similarly derive

(f0 − g0)f1
ug

1
u = f0

xg
1
u + euf0.

Adding and differentiating with respect to u, and using the values for f1
uu and g1

uu

given by (5.17), shows that f0 = −g0 = k for some nonzero constant k, and f1
ug

1
u =

1
2e

u. Integrating the remaining equations shows that the most general form for the
transformation is

p = kP + 2 exp

(

u+ kZ + v(x) + w(y)

2

)

+ v′(x),

q = −kQ+ exp

(

u− kZ − v(x) − w(y)

2

)

− w′(y),

(5.18)

where v(x), w(y) are arbitrary functions.
Using the calculation (5.3), it is easy to verify that none of these transformations

is holonomic.

In the next two examples, we will analyze the system of PDEs that f and g must
satisfy using the techniques of exterior differential systems.

Equation XIII. This PDE,

s = F (u, x, y) :=
2u

(x + y)2
,

has second-order characteristic invariants

J1 = r +
2p

x+ y
, J2 = t+

2q

x+ y
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in the x- and y-directions respectively (see [1], Appendix A). Substituting for p and
r from (5.6) and (5.10) yields

J1 =

(

fx + fuf + fZP +
2f

x+ y

)

+ fPR,

so that fP and the expression in parentheses must be functions of x and P only.
Similarly, we have

J2 =

(

gy + gug + gZQ+
2g

x+ y

)

+ gQT,

hence gQ and the expression in parentheses must be functions of y and Q only.

In this case, (5.7) through (5.9) specialize to

fy = F − (g −QgQ)fu, (5.19)

gx = F − (f − PfP )gu, (5.20)

fZ = −gQfu, (5.21)

gZ = −fP gu. (5.22)

If fu were identically zero, then fZ would also be identically zero, but then fy = F =
2u/(x + y)2 would give a contradiction. So, we may assume that fu and (similarly)
gu are nonzero on an open dense set. It then follows from (5.21) that gQQ = 0 and
from (5.22) that fPP = 0, i.e., f and g are again linear in P and Q.

Differentiating (5.20),(5.22) with respect to x and Z, and equating mixed partials,
enables us to solve for fPx as

fPx = fu(fP − gQ) − 2fP

gu(x+ y)2
, (5.23)

while from (5.19),(5.21) we similarly obtain

gQy = gu(gQ − fP ) − 2gQ

fu(x+ y)2
. (5.24)

To encode the PDEs that f and g must satisfy as an exterior differential sys-
tem, we will use x, y, u, Z, P,Q as independent variables, and use f, fx, fu, fP , r1 and
g, gy, gu, gQ, t1 as dependent variables. (The role of r1 and t1 will be made clear
below.) We will regard these variables as coordinates on R

16. As stated above, we
restrict to the open subset U ⊂ R

16 where fP , fu, gQ and gu are nonzero.

The generator 1-forms are ψ1 through ψ6, where

ψ1 = −df + fxdx+ fudu+ fPdP + fZdZ + fydy,

ψ2 = −dg + gydy + gudu+ gQdQ+ gZdZ + gxdx,

ψ3 = −dfP + fPxdx,

ψ4 = −dgQ + gQydy,

with fy, fZ , gx, gZ given by equations (5.21) through (5.20) and fPx, gQy given by
(5.23) and (5.24). The remaining generators ψ5, ψ6 encode the rest of the condition
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that the second-order characteristic invariants be preserved. Differentiating the first
term in J1 gives

d

(

fx + fzP + fuf +
2f

x+ y

)

≡ d(fx) + Pd(fZ) +

(

d(fu) − 2 dy

(x+ y)2

)

f

+

(

fu +
2

x+ y

)

(

fuθ − gQfuθ + Fdy
)

mod ψ1, dx, dP.

Let η1 be the 1-form on the right; then for any Bäcklund transformation η1 must be
a linear combination of dx and dP . In fact, since only the first term in η1 can contain
dP , the coefficient of dP in η1 must be fPx. Thus, our remaining generators are

ψ5 = η1 − fPxdP − r1dx, ψ6 = η2 − gQydQ− t1dy,

where, based a similar calculation of dJ2, we set

η2 = d(gy) +Qd(gZ) +

(

d(gu) − 2 dx

(x+ y)2

)

g +

(

gu +
2

x+ y

)

(

guθ − fP guθ + Fdx
)

.

We seek to construct integral manifolds of the given differential ideal, i.e., sub-
manifolds of U to which all the forms in the ideal pull back to be zero. An integral
element for an EDS is an infinitesimal version of an integral manifold, i.e., a subspace
in the tangent space to U at some point, to which all the forms in the ideal restrict
to be zero. Because we want integral manifolds which are graphs of functions of
x, y, u, P,Q, Z, we will only consider integral elements which are 6-dimensional, and
to which the differentials dx, dy, du, dP, dQ, dZ restrict to be linearly independent; we
will call these admissible integral elements.

Applying Cartan’s Test to the Pfaffian system generated by ψ1, . . . , ψ6 shows that
it has last nonzero Cartan character s1 = 4, but is not involutive, as the space of ad-
missible integral elements has 2-dimensional fiber at each point. However, the system
becomes involutive after one prolongation, and this establishes the existence of the
required Bäcklund transformations. The last nonzero Cartan character of the involu-
tive prolongation is s1 = 2. By the Cartan-Kähler Theorem (see [8], Chapter 7) we
conclude that 6-dimensional integral submanifolds, satisfying the independence con-
dition, exist through every point of U, and that the construction of such submanifolds
depends on a choice of 2 functions of one variable.

The additional 1-forms that generate the prolongation include

ψ7 = d(fu) +

(

f2
u + 2

fu

x+ y

)

dx+

(

fugu − 2

(x+ y)2

)

dy,

ψ8 = d(gu) +

(

g2
u + 2

gu

x+ y

)

dy +

(

fugu − 2

(x+ y)2

)

dx,

which are actually defined on the original manifold R
16. These forms vanish on all

integral elements of the original system, and if they had been included in the ideal, it
would have been involutive with s1 = 2.

The vanishing of ψ7, ψ8 implies that fu and gu are functions of x and y only.
Moreover, forms ψ7, ψ8 define a smaller Pfaffian system, involving only fu, gu as func-
tions of x and y, which satisfies the Frobenius condition. This means that fu(x, y) and
gu(x, y) can be determined by solving systems of ODE. Once these are determined,
substituting the solutions into (5.23) and (5.24) gives a Frobenius system which may
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be solved for the functions fP (x) and gQ(y). Then f and g may be determined by
integrating first-order PDE, with f including an arbitrary function of x and g an
arbitrary function of y.

For example, by observing that fu + gu must satisfy a Riccati equation as a
function of x+ y, we are led to a solution

fu =
y

(x + y)x
, gu =

x

(x+ y)y
.

Substituting these into (5.23),(5.24) leads to fP + gQ = k(x+ y)/(xy) for a constant
k. It is simplest to choose k = 0 with fP = 1 and gQ = −1. Integrating then gives
the solution

f = P +
y(u+ Z)

x(x+ y)
, g = −Q+

x(u − Z)

y(x + y)
.

Proposition 5.1. All Bäcklund transformations between (XIII) and the wave
equation are holonomic.

Proof. As noted in §5.2, the holonomic condition is equivalent to the Pfaffian
system on B6 spanned by dx, dy and

dp− fudu ≡ (−gQfu)dZ + fPdP, dq − gudu ≡ (−fP gu)dZ + gQdQ, mod dx, dy

being Frobenius. It is straightforward to check that d(fP dP −gQfudZ) and d(gQdQ−
fP gudZ) are zero modulo dx, dy and the 1-forms of the above EDS. (For example,
d(fP ) ≡ 0 modulo dx, dy, ψ1, . . . , ψ8, and the same is true for d(gQ) and d(fu).)

Equation IV. This PDE has the form

s = F (u, p, q) := ±α(p)β(q)

u
,

where α and β are arbitrary solutions of the ODE df/dt ± t/f = K for some fixed
K 6= 0. (We will take the plus sign in these equations, the computation for the other
sign being completely analogous.) In this case, (5.9) takes the form

fZ =

(

α(f)

u

(

K − g

β(g)

)

− fu

)

gQ, (5.25)

gZ =

(

β(g)

u

(

K − f

α(f)

)

− gu

)

fP . (5.26)

(From now on, instead of writing α(f) and β(g), α and β will be understood to be
composed with f(x, y, u, Z, P ) and g(x, y, u, Z,Q) respectively.)

Unlike in previous examples, here it is not valid to conclude that f and g are
linear in P and Q. In fact, differentiating (5.25) with respect to Q gives

0 = (uβfu − (Kβ − g)α)gQQ +
(β2 − (Kβ − g)g)

β2
αg2

Q, (5.27)

enabling us to determine gQQ. (If the coefficient in front were identically zero, then
β(q) would be identically equal to a constant times q, which contradicts K 6= 0.)
Similarly, differentiating (5.26) yields

0 = (uαgu − (Kα− f)β)fPP +
(α2 − (Kα− f)f)

β
f2

P . (5.28)
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The characteristic invariants for (IV) are

J1 =
r

α
− α

u
, J2 =

t

β
− β

u
.

Substituting for p and r from (5.6) and (5.10) gives

J1 =
fx + fuf + fZP + fPR

α
− α

u
, (5.29)

so that fP /α must be a function of x and P only. Setting the derivatives of this with
respect to u, y, and Z equal to zero yields

fPu =

(

K − f

α

)

fP fu

α
, fPy =

(

K − f

α

)

fP fy

α
, fPZ =

(

K − f

α

)

fP fZ

α
,

(5.30)
where fy is given by (5.7) and fZ is given by (5.25). Similarly, from the T coefficient
in J2 we get that gQ/β must be a function of y and Q only, and hence

gQu =

(

K − g

β

)

gQgu

β
, gQx =

(

K − g

β

)

gQgx

β
, gQZ =

(

K − g

β

)

gQgZ

β
.

(5.31)
We may also differentiate (5.25) and (5.26) to obtain equations for fPx and gQy.

We encode the various first- and second-order partial differential equations for
f and g derived so far into an exterior differential system generated by 1-forms
ψ1, . . . , ψ6, as we did for equation (XIII). Unlike the previous example, we do not
need to prolong, but instead obtain integrability conditions which take the form

αgu = βfu, (5.32)

and

(uβfu − (Kβ − g)α)gQ = (uαgu − (Kα− f)β)fP . (5.33)

(Note that, by using (5.25), (5.26), this implies that αgZ = βfZ .) With these con-
ditions incorporated into the EDS, it becomes involutive with last nonzero character
s1 = 2.

Solutions of this system may be obtained by observing that the quantities

λ =
fu

α
, µ =

fZ

α
, γ = α− (λf + µP )u, δ = β − (λg + µQ)u (5.34)

must be functions of x, y, u and Z only, and satisfy the following compatible system
of first-order PDE:

∂λ

∂u
= −uλ

3 + Kλ
2
−

2

u
λ,

∂µ

∂u
= −

(u2λ2
− Kuλ + 1)

u
µ,

1

γ

∂γ

∂u
=

1

δ

∂δ

∂u
= (K − uλ)λ,

∂λ

∂Z
=

∂µ

∂u
,

∂µ

∂Z
= (K − uλ)µ2

,
1

γ

∂γ

∂Z
=

1

δ

∂δ

∂Z
= (K − uλ)µ,

∂λ

∂x
= −

(u2λ2
− Kuλ + 1)

u2
γ,

∂µ

∂x
= (K − uλ)

γµ

u
,

∂δ

∂x
= (K − uλ)

γδ

u
,

∂λ

∂y
= −

(u2λ2
− Kuλ + 1)

u2
δ,

∂µ

∂y
= (K − uλ)

δµ

u
,

∂γ

∂y
=

∂δ

∂x
.
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A solution (γ, δ, λ, µ) to this PDE system may be constructed by integrating succes-
sively in the u-direction, the Z-direction, the x-direction and the y-direction. (Note
that the x-dependence of γ and the y-dependence of δ are given by arbitrary func-
tions.) Once γ and δ are known, they implicitly determine f and g.

Using (5.3), one can check that the resulting Bäcklund transformations are holo-
nomic if and only if, in the above system, u2λ2 − Kuλ + 1 = 0. Thus, holonomic
transformations exist, and depend on fewer arbitrary constants but the same number
of arbitrary functions. For example, if K = 2, then a solution to the above system is
given by

λ =
1

u
, µ =

−1

Z − v(x) − w(y)
, γ =

v′(x)u

Z − v(x) − w(y)
, δ =

w′(y)u

Z − v(x) − w(y)
.

Then, using (5.34), a holonomic Bäcklund transformation is implicitly defined by

α(p) − p =
(v′(x) − P )u

Z − v(x) − w(y)
, β(q) − q =

(w′(y) −Q)u

Z − v(x) − w(y)
.

5.4. Summary. Besides equations (IV) and (XIII) discussed above, we have
also investigated the exterior differential system for Bäcklund transformations to the
wave equation for equations (V), (VII), (IX), (XI) and (XII). Even if explicit formulas
are not available, in each case we use the Cartan-Kähler Theorem to determine (in
terms of the last nonzero Cartan character) the size of the solution set, in both the
holonomic and non-holonomic cases. The results are summarized in the table below.

Equation Monge-Integrable Holonomic BTs Non-holonomic BTs
I no yes, s1 = 2 yes, s1 = 2
II no no yes, s1 = 2
III no no yes, s1 = 2
IV no yes, s1 = 2 yes, s1 = 2
V no yes, s1 = 2 yes, s1 = 2
VI yes yes, s2 = 2 yes, s3 = 1
VII no no yes, s1 = 2
VIII yes yes, s2 = 2 yes, s3 = 1
IX no no yes, s1 = 2
X yes yes, s2 = 2 yes, s3 = 1
XI no yes, s1 = 2 no
XII no yes, s1 = 2 no
XIII no yes, s1 = 2 no

Note that the approach described in §5.3 is not feasible for the Monge-integrable
equations (VI, VIII and X), but for completeness we include them in the table, to-
gether with the results from the analysis in §4.2. The Cartan character for the system
for holonomic Bäcklund transformations for such equations is variable, depending on
whether one considers the cases (1), (2), or (3), as described in §4.2.

It is interesting to note that equations (I), (IV) and (V) have both holonomic and
non-holonomic transformations, in roughly the same degree of generality. In fact, it
is possible that these two kinds of Bäcklund transformations linking the same pair
of equations may be closely related. In our previous paper [4], we pointed out that
the transformation (Z.I) is a composition of two simpler transformations, a holonomic
Bäcklund transformation to the wave equation, and a contact transformation from
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the wave equation to itself. It is possible that, more generally, the non-holonomic
transformations for these equations are obtainable from holonomic transformations in
this way.

6. Concluding Remarks. In this section, we will indicate some interesting
directions in which the results in this paper might be extended, and some important
questions about Bäcklund transformations to which the techniques in this paper may
be relevant.

1. The set of equivalence classes (under contact transformations) of second-
order Monge-Ampère equations to which the results of §3 in this paper apply
is relatively small, confined to the equations on the Goursat-Vessiot list. It
would be interesting to see if the arguments in that section could be applied to
hyperbolic systems of class k > 1. In other words, given a hyperbolic system I
of class k, linked to the standard wave equation by a Bäcklund transformation,
can one prove that the prolongation of I is Darboux-integrable? Likewise,
given a hyperbolic EDS I of class k, such that its prolongation is Darboux-
integrable, does there exist a Bäcklund transformation between I and the
Monge-Ampère system for the standard wave equation? (The argument given
at the end of Chapter 7 in [8] shows that there is a Bäcklund transformation
between the wave equation and the prolongation of I; however, for practical
purposes it is desirable to have a Bäcklund transformation between systems of
as low an order as possible, so that one has a smaller system of ODE to solve
in order to construct solutions.) These hyperbolic systems would include,
for example, the Monge-Ampère equations which are Darboux-integrable at
third order, which have not been classified and are thought to comprise a
much larger set.

2. It is a theorem of Sophus Lie that no Monge-Ampère equation of the form
uxy = f(u) is Darboux-integrable (after arbitrary many prolongations) ex-
cept when f(u) = exp(au + b) for constants a and b (see [6], Chapter IX).
Consequently, important equations like sine-Gordon cannot have a Bäcklund
transformation to the wave equation. Instead, the Bäcklund transformation
(1.1) for sine-Gordon produces solutions to the same PDE as we started with.
This is known as an auto-Bäcklund transformation;2 such transformations
play an important role in the theory of completely integrable PDE [9].
It is therefore of interest to try to identify those Monge-Ampère equations
which have non-trivial auto-Bäcklund transformations. We remark that for
such transformations, the Monge-Ampère systems I on M and I on M must
be contact-equivalent, i.e., there must be a diffeomorphism Φ : M → M which
pulls back I to I.

M M

B

�
��/

S
SSw

-Φ

π π

Necessary conditions for the existence of such a diffeomorphism may be de-
rived from the fact that it is required to preserve the differential invariants of

2This terminology is not universally accepted; Hongyou Wu [12] has proposed that transforma-
tions between different PDEs be known as Miura transformations, and the term Bäcklund transfor-
mation be reserved for what we are calling auto-Bäcklund transformations.
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the Monge-Ampère systems. (See [2], §2.1, for a derivation of these invariants
using the method of equivalence.)

3. Our previous paper [4] began the exploration of parametric Bäcklund trans-
formations using the method of equivalence. Such transformations contain
an arbitrary parameter in the Bäcklund system; for example, an arbitrary
nonzero parameter λ may be interpolated in the sine-Gordon auto-Bäcklund
transformation (1.1) to give

vx − ux =
λ

2
sin((u + v)/2),

vy + uy = − 1

2λ
sin((u− v)/2).

One observes that this system differs from (1.1) merely by scaling x by λ and
y by λ−1—a change of variables which is a symmetry of the sine-Gordon equa-
tion but not of the system (1.1). This scaling symmetry can also be applied to
the Bäcklund transformation (1.2), to produce a parametric transformation

zx = ux − 2λ exp((u + z)/2), zy = −uy +
1

λ
exp((u− z)/2),

where u(x, y) satisfies Liouville’s equation and z(x, y) solves the wave equa-
tion. (In fact, this transformation is derived from the most general form (5.18)
by setting k = 1 and choosing v(x) = 2 lnλ and w(y) = 0.) In [4] it is shown
that these transformations can be generated from a non-parametric Bäcklund
transformation by starting with a symmetry vector field on M, choosing a lift
into B6 which is not a symmetry of the Pfaffian system J, but such that pulling
J back to B×R via the 1-parameter family of diffeomorphisms generated by
the lift gives a family of transformations. The same approach can be taken
with other transformations discussed in §4.1; for example, the transformation
(Z.II) may be generalized to a parametric transformation

zzx − λuux =
√

z2 − λu2
√

λ+ z2
x, zzy − λuuy =

√

z2 − λu2
√

λ+ z2
y

for λ > 0, where u satisfies (II) and z solves the wave equation. (This is
obtained by starting with the symmetry of (II) that simultaneously scales u,
x and y.)
With these examples in evidence, and given the importance of parametric
Bäcklund transformations in the study of ‘soliton’ equations, it is desirable
to characterize those transformations that may be made to depend on an
arbitrary parameter by lifting symmetry vector fields.
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[13] M. Yu. Zvyagin, Classification of Bäcklund transformation of Second-Order Partial Differen-

tial Equations, Mat. Zametki, 29 (1981), pp. 829–842 (English translation: Math. Notes,
29 (1981), pp. 422–429).

[14] –, Second order equations reducible to zxy = 0 by a Bäcklund transformation, Dokl. Akad.
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