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A SIMPLE APPROACH TO THE STRUCTURE
THEOREM FOR NEFVALUE MORPHISMS*

HIDETOSHI MAEDA'

Abstract. Let L be an ample line bundle on a smooth complex projective variety X of di-
mension n, let 7 be the nefvalue of (X, L), and let ¢ : X — W be the nefvalue morphism of (X, L).
A simple approach to the complete structure theorem for nefvalue morphisms with 7 > n — 2 is
developed.
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Introduction. In this paper varieties are always assumed to be defined over the
field C of complex numbers.

Let X be a smooth projective variety of dimension n > 1, and let L be an ample
line bundle on X. Assume that the canonical bundle Kx of X is not nef. Then, as
is well known, 7 = min{t € R | Kx + tL is nef} is a positive rational number, and 7
is called the nefvalue of (X, L). Keep in mind that 7 is the unique rational number
characterized by the condition that Kx + 7L is nef but not ample. Write 7 = u /v for
two coprime positive integers u,v. Then the complete linear system |m(vKx + ul)|
for m > 0 defines a surjective morphism ¢ : X — W onto a normal projective variety
W with connected fibers such that vKx 4+ ul = ¢* A for some ample line bundle A
on W, and ¢ is called the nefvalue morphism of (X, L).

Assume that 7 > n — 2. Then the structure of nefvalue morphisms is supplied,
for example, in Chapter 7 of [BS]. The purpose of this paper is to complement the
above structure theorem perfectly and to offer the complete structure theorem. The
precise statement of our result is as follows:

THEOREM. Let L be an ample line bundle on a smooth projective variety X of
dimension n > 1, let 7 be the nefvalue of (X, L), and let ¢ : X — W be the nefvalue
morphism of (X, L). Assume that 7 > n — 2. Then one of the following holds:

(i) T=n+1, ¢(X) is a point, and (X, L) = (P™, Opn(1)).

Forn > 2,

(ii-1) 7 = n, ¢(X) is a point, X is a quadric hypersurface Q™ in P+ and L =
Ogr (1);

(ii-2) 7 = n, X is a P"1-bundle over a smooth projective curve W, and Lp =
Opn-1(1) for any fiber F =P~ of ¢;

(ii-3) 7 =3/2, ¢(X) is a point, and (X, L) = (P2, Op2(2)).
Forn > 3,

(ii-1) T=n—1, ¢(X) is a point, and Kx + (n — 1)L = Ox;

(iii-2) 7 =n—1, W is a smooth projective curve, and any fiber F' of ¢ is a quadric
hypersurface in P™ with Lrp = Op(1);

(iii-3) 7 = n — 1, X is a P 2-bundle over a smooth projective surface W, and

Ly = Opn-2(1) for any fiber F =P"~2 of ¢;
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(ii-4) 7 = n —1, ¢ expresses X as the blow-up of a smooth projective variety W
at a nonempty finite set B of points, and there exists an ample line bundle H on W
such that L = ¢*H @ Ox(—¢~*(B)) and that Kw + (n — 1)H is ample;

(iii-5) 7 =5/2, ¢(X) is a point, and (X, L) = (P*, Ops(2));

(iii-6) 7 =4/3, ¢(X) is a point, and (X, L) = (P3, Ops(3));

(iii-7) 7 =3/2, ¢(X) is a point, and (X, L) = (Q3, Og:(2));

(iii-8) 7 = 3/2, X is a P2-bundle over a smooth projective curve W, and Ly =
Op2(2) for any fiber F = P? of ¢.

The core of this study is to investigate the case where 7 = n — 1. At this point
scrolls and quadric fibrations come into being. Their structure results are discussed, for
example, in [BS, Theorem 14.1.1 and Theorem 14.2.1] by using families of unbreakable
rational curves. On the other hand, the method developed here relies heavily on [I]. At
least for the case 7 = n — 1, our method seems to be simple and direct. The proof of
the Theorem takes Section 1. Section 2 is devoted to some remarks on the Theorem.

We use the standard notation from algebraic geometry. The tensor products of
line bundles are denoted additively. The pullback i*E of a vector bundle £ on X by
an embedding ¢ : Y — X is denoted by & . In particular, for a closed subvariety V'
of PV, (Op~(1))y is denoted by Oy (1). For a vector bundle € on a projective variety
X, the tautological line bundle on the projective space bundle Px (&) associated to &£
is denoted by H(E). A vector bundle £ on a projective variety X is said to be ample
if H(E) is ample. We denote by Kx the canonical bundle of a smooth variety X.

1. Proof of the Theorem. Before we proceed with the proof, we need the
following

LEMMA. Let & be an ample vector bundle of rank r on a smooth projective variety
X of dimension n > 2. Assume that r > n.
(i) If Kx + det & is not ample, then either Kx + det & = Opn(—1) or (Kx +
det &)™ = 0.
(ii) Suppose that Kx +det & is nef. If Kx +det & is not ample and K x +det & #
Ox, then there exists a vector bundle F of rank n on a smooth projective curve C' such
that X = Po(F), and Er = Opn-1(1)®" for any fiber F of the bundle projection.

Proof. It Kx + det& is not ample, then it follows from [F, Theorem 20.1 and
Theorem 20.8] that (X, ) is one of the following:

(1) (P, Opn ()2 +D);

(2) (P, Ope (1)%7);

(3) there exists a vector bundle F of rank n on a smooth projective curve C' such
that X = P (F), and Ep = Opn-1(1)®™ for any fiber F of the bundle projection;

(4) (P, Ope (2) & Ope (1) 20D,

(5) (P™,Tpn), where Tpn is the tangent bundle of P,

(6) (Q", Oge (1)%").
In cases (1), (4), (5) and (6) we obtain Kx + det& = Ox. In case (2) we get
Kx + det& = Opn(—1). Suppose that (X,€) is as in case (3). Then there exists
a vector bundle G of rank n on C such that £ = H(F) ® 7*G, where H(F) is the
tautological line bundle on the projective space bundle Po(F) associated to F and
7 : X — C is the bundle projection. We have Kx = —nH(F) + n* (K¢ + det F) and
det & = nH(F)+ n*(det G), so that Kx + det & = 7* (K¢ + det F + det G). Therefore
(Kx + det&)™ = 0, and (i) is proved. Moreover, (ii) also follows from the above
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argument. O

Let us prove the Theorem. The assertions (i), (ii-1) and (ii-2) follow from [BS,
Proposition 7.2.2], and (ii-3) follows from [BS, Theorem 7.2.4]. Moreover, the asser-
tions (iii-5), (iii-6) and (iii-7) follow from [BS, Theorem 7.3.4] except when n = 3,
7 = 3/2, W is a smooth projective curve, and (F,Lr) = (P?, Op2(2)) for a general
fiber F of ¢ (see [BS, Theorem 7.3.4]). Set H = Kx + 2L. Then, since 2 > 7, H is
ample, and Hr = Opz(1). Since ¢ is flat, we obtain H3 = H% = 1 for any fiber G of
¢, so that G is irreducible and reduced. By the upper semicontinuity theorem we get
0<A(G,Hg) < A(F,Hr) =2+ 1—h°(F,Hp) = 0. Hence (G, Hg) = (P2, 0pz(1)),
and we conclude that X is a P2-bundle over W. Since Lg = Op2(2), we are in (iii-8).
Hence it suffices to consider the case 7 = n — 1 under the assumption that n > 3.

Assume that 7 = n — 1 with n > 3. Then Kx + (n — 1)L is nef but not ample.
If Kx + (n — 1)L is big, then from the proof of [BS, Theorem 7.3.2] the nefvalue
morphism ¢ : X — W of (X, L) expresses X as the blow-up of a smooth projective
variety W at a nonempty finite set B of points, and there exists an ample line bundle
H on W such that L = ¢*H ® Ox(—¢~1(B)) and that Ky + (n — 1)H is ample. We
are in (iii-4). Hence we can assume that Kx + (n — 1)L is not big. Then dim W < n.
Let F' be a general fiber of ¢. Then, since Kx + (n — 1)L = ¢*A for some ample
line bundle A on W, we have Kr + (n — 1)Ly = Op, so that F is a Fano manifold
with dim F' > n — 2. This implies that dim W < 2. If dim W = 0, then ¢(X) is a
point, and Kx + (n — 1)L = Ox. We are in (iii-1). In what follows we suppose that
either dimW =1 or dimW = 2. If dim W = 1, then W is smooth, and (F,Lp) =
(Q"1, Ogn-1(1)) because Kp + (n —1)Lp = Op. On the other hand, if dim W = 2,
then (F,Lr) = (P""2,Opn-2(1)). In either event there exists a curve C' on X such
that (Kx + (n — 1)L)C = 0. This directly indicates that there exists an extremal
ray R of X such that (Kx + (n —1)L)R = 0. Let p : X — Y be the contraction
of R. If R is not nef, then by the proof of [I, Lemma, (b)] there exists an effective
divisor E on X such that (E,Lg,(Ox(E))g) = (P" !, Opn-1(1), Opn-1(—1)), and p
is nothing but the contraction of E. Thus there exists a line bundle M on Y such
that L = p*M — Ox(E), so that M is also ample by means of [F, Lemma 7.16]. Since
Kx = p*Ky + (n — 1)Ox (E), we have Kx + (n — 1)L = p*(Ky + (n — 1)M). We
note that Ky + (n — 1)M is nef but not big because so is Kx + (n — 1)L. By the
assumption that Kx + (n — 1)L # Ox, we obtain Ky + (n — 1)M # Oy. Similarly
there exists an extremal ray R of Y such that (Ky + (n — 1)M)R = 0. If R is not
nef, then the same argument as above applies to (Y, M), and there exists a chain
(X,L) = (Xo, Lo) 25 (X1, L1) 2 - 25 (Xy, Ly) = (Z, N) satistying the following
conditions:

(1) each X; is a smooth projective variety with dim X; = n;

(2) each L; is an ample line bundle on Xj;

(3) each p; is a birational contraction as above;

(4) Kx, + (n—1)L; is nef but not big, and Kx, + (n — 1)L; # Ox,;

(5) every extremal ray of the final variety Z is nef.

In a similar way there exists an extremal ray R of Z such that (Kz+ (n—1)N)R = 0.
Let p: Z — Y be the contraction of R. Then, since R is nef and Kz + (n — 1)N #
Oz, we have 0 < dimY < n. Moreover, if G denotes a general fiber of p, then
Kg+ (n —1)Ng = Og, so that dim G > n — 2, which implies that either dimY =1
or dimY = 2. By virtue of the proof of [I, Lemma, (c)] one of the following holds:
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(a) Y is a smooth projective curve, and any fiber G of p is a quadric hypersurface
in P* with Ng = O¢(1);

(b) Z is a P"~2-bundle over a smooth projective surface Y, and Ng = Opn-2(1)
for any fiber G = P"~2 of p.
Let E be the exceptional divisor on Xj_1 with respect to py, and set z = px(E). Then
in either event there exists a smooth rational curve [ through z such that NI = 1. Let
I be the strict transform of I by py. Then, since Ly_; = pf N — Ox,_,(E), we have

Lk_l'[: NI-0Ox,_, (E)Tz 0, which contradicts the ampleness of Ly_;. Consequently
k=0,1ie., (X,L) = (Z,N), and there exists a surjective morphism ¢ : ¥ — W with
connected fibers such that go p = ¢.

Assume first that (X, L) is as in case (a). Then, since dimY = 1, we have
dimW = 1, and we see that g is an isomorphism, i.e., ¢ = p and Y =2 W. We are in
(iii-2).

Finally assume that (X, L) is as in case (b). Then there exists an ample vector
bundle £ of rank n — 1 on Y such that (X,L) = (Py (&), H(E)), where H(E) is the
tautological line bundle on the projective space bundle Py (&) associated to €. Let us
recall that Kx + (n — 1)L = ¢* A for some ample line bundle A on W. On the other
hand, we can write Kx +(n—1)L = p*(Ky +det &), so that p*(Ky +det &) = p*g* A.
Thus Ky + det& = g*A. Now, since dimY = 2, we have either dimW = 2 or
dimW = 1. If dim W = 2, then g is birational, so that Ky + det& is nef and big.
Note that rank £ > dim Y because n > 3. Hence by (i) of the Lemma, Ky +det £ itself
is ample, so that g is finite. The Zariski main theorem tells us that g is an isomorphism,
that is, ¢ = p and (Y, Ky +det&) = (W, A). We are in (iii-3). Next, for the case
dimW =1, let F be a general fiber of ¢ again, and take a general fiber D of g. Then
F =Pp(Ep). Since F = Q" !, we obtain n = 3 and F = P! x P!. Hence D = P,
which directly indicates that g is a P!-fibration. Furthermore, Ky + det€ = g*A
is nef with (Ky + det&£)? = (9*A)? = 0. Moreover, it should be emphasized that
Ky + det £ # Oy because A is ample. Thus by (ii) of the Lemma, there exists a
vector bundle F of rank two on a smooth projective curve C such that Y = Pc(F),
and &5 = Op1(1)®? for any fiber f of the bundle projection 7 : Y — C. In particular,
Y is a geometrically ruled surface. Therefore g = 7 and W =2 C unless Y = P! x P!,
W =P!, C = P! and g is another ruling different from 7. We claim that the latter
does not occur. To see this, let D denote an arbitrary fiber of g. Then D = P!.
Since Ky + det€ = g¢g*A, we have (det&)D = (—Ky)D = 2, which implies that
Ep = Op1(1)®2. Combining this with the fact that £ = Op1(1)®? for any fiber f of 7
gives det £ = O0(2, 2), so that Ky +det £ = Oy. This is a contradiction. Consequently
n=3,g=mand W =2 C. What we want to emphasize is that every fiber F' of p is a
smooth quadric surface Py(£f) = Pp1(Op1(1)®2) = P! x P! in P? with Lp = Op(1).
We are still in (iii-2), and this completes the proof of the Theorem.

2. Remarks. (2.1) In [BS, Remark 7.3.5], when (X, L) is as in (iii-8), the con-
clusion that (F, Lr) = (P?, Op2(2)) for any fiber F of ¢ is given under the assumption
that Kx + 2L is generated by its global sections. However, in order to reach this
conclusion, as we have seen in the proof of the Theorem, it is enough to assume that
L is simply ample.

(2.2) When 7 > n — 2 and n > 3, if we assume that dim¢(X) > 1, then the
nefvalue morphism is almost equal to the contraction of an extremal ray. There are
two exceptions with the aid of the proof of the Theorem.
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COROLLARY 1. Let L be an ample line bundle on a smooth projective variety X
of dimension n > 3, let T be the nefvalue of (X, L), and let ¢ : X — W be the nefvalue
morphism of (X,L). Assume that 7 > n — 2 and that dimW > 1. If ¢ is not the
contraction of an extremal ray, then one of the following holds:

(1) 7 =n—1, and X has at least two effective divisors E such that (E,Lg,
(Ox(E)E) = ("1, Opn-1(1), Opn-1(~1));

(2) n =3, 7 =2, W is a smooth projective curve, and any fiber F' of ¢ is a
smooth quadric surface Q* in P* with Lp = Ogz(1).

Furthermore, we obtain the following

COROLLARY 2. Let L be an ample line bundle on a smooth projective variety
X of dimension n > 3, let T be the nefvalue of (X, L), and let ¢ : X — W be the
nefvalue morphism of (X,L). Assume that 7 = n — 1 and that dimW > 1. Let p
be the contraction of an extremal ray R with (Kx + (n — 1)L)R = 0. Assume that
(X,L) = (Py(&),H(E)) for some ample vector bundle £ of rank n — 1 on a smooth
projective surface Y under p. Then Kx + (n — 1)L is the pullback of an ample line
bundle on'Y unless n = 3, W is a smooth projective curve, there exists a vector bundle
F of rank two on W such that Y = Py (F), and Ef = Op1(1)®? for any fiber f of the
bundle projection.

(2.3) Let L be an ample line bundle on a smooth projective variety X of dimension
n > 1. Then the following follows from the Theorem:
(i) If Kx + nL is not nef, then (X, L) is as in (i) of the Theorem.
(ii) Assume that n > 2 and that Kx + nL is nef. If Kx + (n — 1)L is not nef,
then (X, L) is as in (ii-1), (ii-2) or (ii-3).
(iii) Assume that n > 3 and that Kx + (n — 1)L is nef. If Kx + (n —2)L is not
nef, then (X, L) satisfies one of the conditions (iii-1)—(iii-8).
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