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EQUIVARIANT ELLIPTIC GENERA AND LOCAL MCKAY
CORRESPONDENCES∗

ROBERT WAELDER†

Abstract. In this paper we prove an equivariant version of the McKay correspondence for the
elliptic genus on open varieties with a torus action. As a consequence, we will prove the equivariant
DMVV formula for the Hilbert scheme of points on C2.
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1. Introduction. Let X be a smooth variety, and G a finite group acting holo-
morphically on X . Suppose that the quotient X/G possesses a crepant resolution of
singularities V . The McKay correspondence refers to the identification of topological
invariants of V with orbifold analogues of these invariants associated to the action
of G on X . The classical example is the case in which G ⊂ SU(2) is a finite sub-
group acting on C2. Then the quotient C2/G possesses a unique crepant resolution
V , and the Euler characteristic of V coincides with the orbifold Euler characteristic
eorb(C

2, G) = 1
|G|

∑
gh=hg e((C

2)g,h). Over the years, the McKay correspondence has

exhibited a remarkable versatility towards generalization. In [5] Batyrev investigated

a more general class of resolutions X̃/G → X/G, and proved the McKay correspon-
dence for the E-function in this situation. More recently, Borisov and Libgober have
proven a similar result for the elliptic genus [7].

In this paper we will prove an equivariant analogue of the McKay Correspondence
for the elliptic genus. The advantage of working in the equivariant setting is that,
by localization, we can make sense of the elliptic genus even for open varieties. This
allows us to prove a host of new formulas. One consequence of the work in this paper
is a beautiful formula for the generating function of the equivariant elliptic genus of
the Hilbert scheme of points on C2 (with the standard torus action):

∑

n>0

pnEll((C2)[n]; y, q, t1, t2) =
∏

m≥0,n>0,ℓ,k

1

(1− pnqmyℓtk11 t
k2
2 )c(nm,ℓ,k)

.

The terms c(m, ℓ, k) are the coefficients in the expansion of Ell(C2; y, q, t1, t2) in
y, q, t1, and t2. The above formula is an equivariant generalization of the DMVV
formula:

∑

n>0

pnEll(S[n]; y, q) =
∏

m≥0,n>0,ℓ,k

1

(1− pnqmyℓ)c(nm,ℓ,k)
.

In the above formula, S is a compact algebraic surface, and Ell(S[n]; y, q) is the elliptic
genus of the Hilbert scheme of n points on S. The non-equivariant DMVV formula
was conjectured by string theorists Dijkgraaf, Moore, Verlinde and Verlinde [9], and
proven by Borisov and Libgober [7]. The equivariant version is a conjecture of Li,
Liu, and Zhou [15].
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1.1. Background on the Elliptic Genus. For X a smooth complex manifold,
the elliptic genus of X is defined as:

Ell(X) =

∫

X

∏ xjθ(
xj

2πi − z, τ)

θ(
xj

2πi , τ)
.(1)

The product is taken over the Chern roots of the holomorphic tangent bundle to X .
θ(·, τ) is the Jacobi theta function, and z represents a formal parameter. Setting
y = e2πiz and q = e2πiτ , the elliptic genus may also be interpreted as the index of the
following differential operator:

y−d/2∂ ⊗
∞⊗

n=1

Λ−yqn−1T ∗X ⊗ Λ−y−1qnTX ⊗ SqnT ∗X ⊗ SqnTX.(2)

The modular properties of the Jacobi theta function endow the elliptic genus with a
rich amount of structure. For example, if X is Calabi-Yau, then the elliptic genus is a
weak Jacobi form as a function of (z, τ) ∈ C×H. If X is Calabi-Yau and possesses a
nontrivial torus action, Liu has shown that the modular properties of the equivariant
index of 2 actually imply its rigidity [16]. In addition to these properties, the elliptic
genus encodes a large number of classical algebraic and topological invariants of the
space. For example, letting q → 0 in the expression for the elliptic genus produces
y−d/2 times the Hirzebruch χ−y genus, whereas letting y → 1 produces the Euler
characteristic of the space.

In [17], [6], Chin-Lung Wang, Borisov, and Libgober investigated the following
relative version of the elliptic genus for pairs (X,D), where D =

∑
i aiDi is a smooth

divisor with normal crossings and coefficients ai 6= 1:

Ell(X,D) =

∫

X

∏ xjθ(
xj

2πi − z)
θ′(0)
2πi

θ(
xj

2πi)θ(−z)

∏

i

θ( c1(Di)
2πi − (−ai + 1)z)θ(z)

θ( c1(Di)
2πi − z)θ((−ai + 1)z)

.

The modular properties of the Jacobi theta function imply that the relative elliptic
genus satisfies the following change of variables formula for blow-up morphisms: If
f : X̃ → X is the blow-up of X along a smooth base with normal crossings with
respect to the components of D, and D̃ is the divisor on X̃ satisfying: K eX + D̃ =

f∗(KX + D), then Ell(X̃, D̃) = Ell(X,D). For Z a Q-Gorenstein variety with log-
terminal singularities, and X → Z a resolution of singularities with exceptional locus
a normal crossing divisor D, Borisov and Libgober define the singular elliptic genus of
Z to be the relative elliptic genus of (X,D). The change of variable formula, together
with the Weak Factorization Theorem [1] implies that this definition is well-defined.
Moreover, when Z possesses a crepant resolution V , the singular elliptic genus of Z
is easily seen to coincide with the elliptic genus of V .

The singular elliptic genus (and its orbifold analogue) plays a crucial role in
Borisov and Libgober’s proof of the McKay correspondence for elliptic genera. Its
utility stems from the fact that it behaves well with respect to a large class of birational
modifications. The added flexibility obtained from studying the singular elliptic genus
allowed Borisov and Libgober to reduce their proof to calculations involving toroidal
embeddings. Their approach is similar in spirit to that of Batyrev in [5], who proved
the McKay correspondence for the E-function by using the change of variables formula
from motivic integration to reduce the case to calculations on toric varieties.

When X has a nontrivial torus action, we may define the equivariant elliptic
genus of X to be the equivariant index of the operator defined in 2. By the index
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theorem [4], this is the same as the integral in equation 1 obtained by replacing the
Chern roots of TX with their equivariant analogues. Similarly, we may define an
equivariant version of the relative elliptic genus by replacing appearances of c1(Di)
with their equivariant extensions.

The bulk of this paper is devoted to proving the change of variables formula for the
equivariant orbifold elliptic genus (this case subsumes the non-orbifold case). Once
we establish the change of variables formula in this situation, the remaining steps in
the proof of the equivariant McKay correspondence for the elliptic genus follow closely
the steps given in [7].

1.2. Outline of the Proof. In a recent preprint [18], I proved the equivariant
change of variable formula for blow-ups along complete intersections W = D1 ∩ ... ∩
Dk ⊂ X . The idea was to interpret the blow-down X̃ → X as a toroidal morphism.
The stratification defined by the divisors Di determined the toroidal structure of X ,
whereas the stratification defined by the proper transforms of these divisors, together
with the exceptional divisor, determined the toroidal structure of X̃. The comparison
of the relative elliptic genera of the base space and its blow-up was ultimately reduced
to a computation involving the combinatorics of the polyhedral complexes associated
to the two toroidal embeddings. This idea was inspired by Borisov and Libgober’s
use of polyhedral complexes in [7] to compute the push-forward of the orbifold elliptic
class under the global quotient map.

Later it became apparant that the proof given in [18] could be adapted to the
case in which X was a “normal cone space”, i.e., a fiber product of spaces P(F ⊕ 1),
where F → W was a holomorphic vectorbundle. The idea was that the Chern roots
of the tautological quotient bundle QF → X should play the role of the “divisors”
in a polyhedral complex associated to X . Similarly, if f : X̃ → X was the blow-up
of X along W with exceptional divisor E, then the Chern roots of f∗QF ⊗ O(−E),
and of O(E) should behave like the “divisors” of a polyhedral complex associated to

X̃. In this paper, we refer to such polyhedral complexes associated to the data of
Chern roots as “twisted polyhedral complexes.” The case of a general blow-up may
be reduced to cases of this nature by using an equivariant version of deformation to
the normal cone.

The breakdown of the sections in this paper are as follows: For generic special-
izations of the parameters (z, τ), the integrand of the equivariant elliptic genus is a
power series in the equivariant parameters with differential form coefficients. In sec-
tion 2 we discuss convergence issues related to power series of this type and put their
corresponding cohomology theory on solid ground. In section 3 we define our prin-
ciple objects of study; namely the equivariant orbifold elliptic class and its relative
version. In sections 4 and 5 we review some facts about the equivariant cohomology
of toric varieties and discuss how it relates to computing equivariant push-forwards of
toroidal morphisms. In section 6 we use these results to compute the pushforward of
the orbifold elliptic class under a toroidal morphism which is birational to a quotient
by a finite group. This result is the equivariant analogue of Lemma 5.4 in [7]. Sec-
tions 7 to 10 are devoted to the proof of the equivariant change of variable formula.
In section 7, we prove an equivariant analogue of deformation to the normal cone,
tailored specifically to handle cohomological data like the orbifold elliptic class. As
stated above, this will allow us to reduce the proof of the change of variable formula
to the case when X is a normal cone space. In section 8 we prove for completeness a
number of technical lemmas regarding spaces of this form. In section 9 we introduce
the twisted polyhedral complex for normal cone spaces. In 10 we apply the techniques
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from the preceding sections to prove the equivariant change of variables formula. Fi-
nally, in 11 we prove the equivariant McKay correspondence for elliptic genera, and
the equivariant DMVV formula.

Acknowledgements. I wish to thank my advisor Professor Kefeng Liu for intro-
ducing me to elliptic genera and for his constant support, as well as Professor Anatoly
Libgober for his feedback and help with technical aspects of his work.

2. Equivariant Cohomology and Power Series.

2.1. Preliminaries on Equivariant Cohomology. We begin by reviewing
some basic aspects of equivariant cohomology. For a thorough reference on the subject
see [3].

Let M be a smooth manifold and T a torus acting smoothly on M . Let e1, . . . , eℓ
form a basis for the Lie algebra of T which is dual to the linear forms u1, . . . , uℓ.
Every X ∈ t defines a vectorfield X on M by the formula X(p) = d

dt |t=0exp(tX) · p.
Define Ω∗

T (M) to be the ring of differential forms on M which are annihilated by

LX for every X ∈ t. If we let dt = d +
∑ℓ
α=1 uαieα

, then dt defines an operator
on Ω∗

T (M) ⊗ C[u1, . . . , uℓ] and satisfies d2
t = 0. The Cartan model for equivariant

cohomology is defined to be:

H∗
T (M)Cartan =

ker dt

imdt

.

Alternatively, we could define the equivariant cohomology of M via the following
approach known as the Borel model: Let ET = (S∞)ℓ. ET is a contractible space
on which T acts freely. The diagonal action of T on M × ET therefore gives rise to
a smooth (infinite-dimensional) quotient MT = (M × ET )/T . It is easy to see that
MT is a fiber bundle over BT = ET/T with fiber M . Define the equivariant coho-
mology group H∗

T (M) = H∗(MT ). As shown in [3], the Borel model for equivariant
cohomology is isomorphic to the Cartan model defined above. One advantage to the
Borel model is that it provides a convenient way to define equivariant characteristic
classes. Namely, if E is a T -vectorbundle over M of rank r, then ET is a rank r
vectorbundle over MT , and we may define the equivariant characteristic classes of E
to be the characteristic classes of ET which take values in H∗(MT ) ∼= H∗

T (M).
The Borel model point of view also provides a convenient way to extend the

concept of Chern roots to the equivariant category. We first recall the definition of
Chern roots. If E is a complex vectorbundle overM , the flag bundle π : Fl(E)→M is
the fiber bundle whose fiber over a point p is the space of flags Λ1 ⊂ Λ2... ⊂ Λr ∼= Ep
with dim Λi/Λi−1 = 1. The pullback bundle π∗E splits into a direct some of line
bundles Li, and we define the Chern roots xi of π∗E to be the first Chern classes
of these line bundles Li. The functorial nature of Chern classes implies that the
elementary symmetric functions in xi are simply the pullbacks via π∗ of the Chern
classes of E. Since π∗ is injective, this gives us a one to one correspondence between
formulas involving the Chern classes of E and formulas involving the Chern roots of
E which are symmetric with respect to permutations of the variables xi. Analogously,
if E is a T -vectorbundle, we may define π : Fl(ET ) → MT as before. The pullback
bundle π∗ET again splits into a sum of line bundles Li, and we define the equivariant
Chern roots to be the first Chern classes of these line bundles.

The translation of other concepts from cohomology to equivariant cohomology is
more or less routine. For example, in either the Cartan or Borel model, one easily
sees that a T -map f : M → N induces a pullback f∗ : H∗

T (N) → H∗
T (M) as in
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ordinary cohomology. If f : M → N is a proper map of T -spaces, we also have
an equivariant analogue of the cohomological push-forward f∗ : H∗

T (M) → H∗
T (N).

As in the non-equivariant setting, f∗ is functorial with respect to compositions of
T -maps, and satisfies the projection formula f∗(f

∗(ω) ∧ η) = ω ∧ f∗η. A new feature
in equivariant cohomology is that we have an explicit expression for the restriction of
f∗ω to a T -fixed component in N . This is given by the localization formula, which
we discuss below.

If p is a single point with trivial T -action, the equivariant map π : M → p induces
a map π∗ : H∗

T (p)→ H∗
T (M). Since H∗

T (p) = C[u1, . . . , uℓ], the map π∗ makesH∗
T (M)

into a C[u1, . . . , uℓ]-module. Define H∗
T (M)loc = H∗

T (X)⊗C[u1,...,uℓ] C(u1, . . . , uℓ). A
fundamental result of the subject is the localization theorem:

Theorem 1. Let {P} denote the set of T -fixed components of M . Then
H∗
T (M)loc ∼=

⊕
P H

∗(P )⊗ C(u1, . . . , uℓ).

If P is a fixed component of M , the normal bundle to P splits as a sum over
the characters of the T -action on the fibers: NP =

⊕
λ Vλ. Let niλ denote the formal

Chern roots of Vλ. If we identify the equivariant parameters u1, . . . , uℓ with linear
forms on the Lie algebra of T , then the equivariant Euler class e(P ) of NP is equal
to

∏
λ

∏
i(n

i
λ + λ). Since none of the characters λ are equal to zero, we see that

e(P ) is always invertible. In light of this fact, we can describe the above isomorphism
more explicitly. The map H∗

T (M)loc →
⊕

P H
∗(P ) ⊗ C(u1, . . . , uℓ) is given by ω 7→

⊕
P

i∗Pω
e(P ) , where iP : P →֒M is the inclusion map.

Now if f : M → N is a proper map of T -spaces, we can compute f∗ in H∗(N)loc
using the functorial localization formula [13] [14]:

Theorem 2. Let f : M → N be a proper map of T -spaces. Let P be a fixed
component of N and let {F} be the collection of fixed components in M which f maps
into P . Let ω ∈ H∗

T (M). Then:

∑

F

f∗
i∗Fω

e(F )
=
i∗P f∗ω

e(P )
.

Throughout this paper we make frequent use of the equivariant Thom class of
a vectorbundle. Recall that if E is a vectorbundle over M , the Thom class [Φ] ∈
H∗
cv(E) is a cohomology class with degree equal to the rank of E which has compact

support in the direction of the fibers of E and which integrates to one over each fiber.
(The notation H∗

cv(·) means compact support in the vertical direction.) If E is a T -
vectorbundle over a T -manifold M , by averaging over T , we can always assume that
a representative of [Φ] is T -invariant. We can then uniquely extend the Thom class
of E to an equivariant class in the following sense:

Proposition 1. Let E be a T -vectorbundle over a T -manifold M , and let Φ be a
T -invariant representative of the Thom class. Then we can find a lower degree form
η ∈ Ω∗

T (M) ⊗ C[u1, . . . , uℓ] with compact support in the fiber direction so that Φ + η
is dt-closed. We call Φ + η the equivariant extension of Φ. Any two such equivariant
extensions of Φ differ by a dt-exact form.

Proof. We assume for convenience that T = S1. The general argument is the same
but notationally more cumbersome. Thus dt = d + uiX , where X is the vectorfield
generated by the S1 action. Let ω1 = iXΦ. Then ω1 is T -invariant and dω1 =
diXΦ = 0 since Φ is closed and T -invariant. Since ω1 has smaller degree than Φ and
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compact support in the fiber direction, by the Thom isomorpism theorem, ω1 = dη1
for some form η1 with compact support in the fiber direction. By averaging over T ,
we may assume η1 is T -invariant. Note now that (d + uiX)(Φ − uη1) = −u2iXη1. If
we let ω2 = iXη1, then dω2 = −iXdη1 = −iX ◦ iXΦ = 0. Therefore, by the Thom
isomorphism theorem again, ω2 = dη2, where η2 is a T -invariant form with compact
support in the fiber direction. Now (d+ uiX)(Φ− uη1 + u2η2) = u3iXη3. In general,
then, if we define ωj = iXηj−1 and ηj to be a T -invariant form with compact support
in the fiber direction satisfying dηj = ωj , then Φ +

∑
j(−1)jujηj is d + uiX-closed,

and is therefore an equivariant extension of Φ.

Now suppose that η is any equivariant cohomology class with top degree ≤ rk(E)
which has has compact support in the fiber direction and integrates to zero over each
fiber. We will show that η is dt-exact. This clearly shows that any two equivariant
extensions of the Thom class differ by a dt-exact form. We may write the top degree

d part of η as η[d] =
∑
η
[d]
i1,...,iℓ

ui11 · · ·u
iℓ
ℓ , where η

[d]
i1,...,iℓ

are T -invariant with compact

support in the fiber direction. Since dη[d] = 0, we must have dη
[d]
i1,...,iℓ

= 0. By

the Thom isomorphism theorem, η
[d]
i1,...,iℓ

= dωi1,...,iℓ , where ωi1,...,iℓ is compactly
supported in the fiber direction. By averaging over T we may also assume that the
ω’s are T -invariant. Therefore, subtract off dt

∑
ωi1,...,iℓu

i1
1 · · ·u

iℓ
ℓ from η and proceed

by induction on the top degree of η.

Note that the proof of the above proposition implies the equivariant Thom iso-
morphism theorem:

Theorem 3. Let E be a T -vectorbundle over a compact T -manifold M , and
π : E → M the projection from E to M . Then H∗

T (M) is isomorphic to space of
equivariant cohomology classes in E with compact support. The isomorphism is given
by pulling back a class from M and multiplying by the equivariant Thom class.

Proof. Let ω ∈ H∗
T (M), and let Φ be a representative of the equivariant Thom

class of E. By the projection formula, which holds on the level of forms, π∗(π
∗ω∧Φ) =

ω, so the map π∗(·)∧ [Φ] is injective. Conversely, for α a representative of a compactly
supported equivariant cohomology class on E, let π∗α denote the integral of α over the
fibers of E. Then π∗α is an equivariantly closed form onM . Moreover, α−π∗(π∗α)∧Φ
clearly integrates to zero over every fiber of E. Thus the proof of the above proposition
implies α is cohomologous to π∗(π∗α) ∧ Φ.

2.2. Power Series in Equivariant Cohomology. For simplicity, we assume
thatM has a T = S1 action. LetX be the vectorfield onM induced by the action of T .
Let C(M) denote the ring of formal power series in u with coefficients in Ω∗(M)T ⊗C.
Then dX = d− uiX : C(M)→ C(M). We define H∗(C(M)) = ker dX/im dX .

Multiplication by u gives H∗(C(M)) the structure of a C[u]-module. Given any
C[u]-module A, we define Aloc = A ⊗ C(u). Here, we interpret rational polynomials
of the form 1

1+uf(u) as convergent power series by expanding around u = 0.

Let g be a T -invariant metric on M , and define θ = g(X, ·). Let F ⊂ M be
the T -fixed locus, and let ρ be a bump function identically equal to one outside a
tubular neighborhood of F , and equal to zero inside a smaller tubular neighborhood.
(Note that we allow F to have different components of varying dimensions). Then
ρ(dXθ)

−1 is a well-defined element of C(M)loc. Furthermore, it is easy to see that
for any closed form ω ∈ C(M)loc, ω − dX(ω · θ · ρ(dXθ)

−1) has compact support in
a tubular neighborhood of F . It follows that every closed form in C(M)loc may be
represented by a form with compact support in a tubular neighborhood of F . Let
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C(νF )c denote the ring of formal power series in u whose coefficients are T -invariant
forms with compact support in the normal bundle νF .

Let π∗ : C(νF )c,loc → C(F )loc be the map
∑
ωnu

n 7→
∑
π∗ωnu

n, where π∗ωn
denotes the integral of ωn over the fiber of νF . We first remark that π∗iXω = 0
for any differential form ω with compact support in νF . To see this, note that we
can always express ω locally in the form ω = f(x, t)π∗φdt1...dtk. Here x represents
the coordinates along F , t represents the coordinates along the fiber, and π∗φ is the
pullback of a form on F via the projection π : νF → F . Thus iXω = f(x, t)π∗φ ·
iXdt1...dtk which clearly integrates to zero along the fiber, since the degree of the
form along the fiber is necessarily smaller than the fiber dimension.

It follows that π∗dX = dπ∗, and therefore it induces a map in cohomology π∗ :
H∗(C(νF )c)loc → H∗(C(F ))loc.

Theorem 4. π∗ is injective.

Proof. Let ω =
∑
n ωnu

n ∈ C(νF )c,loc be closed. Suppose π∗ω = dη. By
subtracting off π∗dη ·Φ, where Φ is the equivariant Thom class of νF , we may reduce
to the case in which π∗ω = 0. For any differential form α, denote by α[i] the degree
i part. Then for some 0 ≤ k ≤ dimM , ω = ω[k] + ω[k − 1] + ... + ω[0], where
ω[i] =

∑
ωn[i]u

n. Since ω is dX -closed, dωn[k] = 0. Since π∗ω[k] =
∑
π∗ωn[k]u

n = 0,
by the Thom isomorphism theorem, we can find compactly supported forms yn such
that dyn = ωn[k]. By averaging over T , we may assume that these forms are T -
invariant. Then ω − dX

∑
ynu

n−1 has top degree < k and is annihilated by π∗. The
proof then follows by induction.

Since [ω] = 0 if and only if π∗[ω] = 0, we see that [ω] = [π∗π∗ω · Φ]. Hence
[ω]|F = [π∗ω · e(νF )], where e(νF ) is the equivariant Euler class. Since the Euler
class is invertible, the restriction map [ω] 7→ [ω]|F must be invertible. This proves the
localization theorem for H∗(C(M))loc:

Theorem 5. Let F ⊂ M denote the fixed locus of T . Then the restriction map
H∗(C(M))loc → H∗(C(F ))loc is an isomorphism.

We now introduce the ring of analytic forms: Let Can(M) ⊂ C(M) denote the

ring of forms
∑
ωnu

n with the property that the partial sums
∑N
n=0 ωns

n converge
in the C∞ sense to a form ω ∈ Ω∗(M)T for ||s|| sufficiently small (meaning that the
sums converge uniformly on compact sets, as well as all derivatives of these sums
with respect to coordinate differentiation). Let Ban(M) = dX(C(M))∩Can(M). We
define

H∗(Can(M)) =
kerdX : Can(M)→ Can(M)

Ban(M)
.

If F denotes the T -fixed locus of M , the above proof of the localization theorem
extends word for word to the case of analytic forms.

For s ∈ C∗, following Witten [19], let ds = d− siX : Ω∗(M)T → Ω∗(M)T . Define
H∗
s (M) = ker ds

im ds

. Again, the above proof of the localization theorem adapts easily to

the case of H∗
s (M). Define an equivalence relation ∼ on

∏
s∈C∗ H∗

s (M) as follows: For
ω, ω′ ∈

∏
s∈C∗ H∗

s (M), we say that ω ∼ ω′ if ωs = ω′
s for ||s|| sufficiently small. By

ωs, of course, we mean the s-component of ω. We denote the group
∏
s∈C∗ H∗

s (M)/ ∼
by W .

Proposition 2. There is a natural evaluation map ev : H∗(Can(M)) → W
given by [

∑
ωnu

n]→ [
∑
ωns

n].
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Proof. Let ω =
∑
ωnu

n ∈ Can(M) be a closed form, and let dX
∑
ηnu

n ∈
Can(M). We wish to show that for ||s|| sufficiently small, [

∑
ωns

n] = [
∑
ωns

n +
ds

∑
ηns

n] in H∗
s (M). First, for ||s|| sufficiently small, both sums

∑
ωns

n and∑
dsηns

n converge. Therefore, it suffices to prove that
∑
dsηns

n is exact for these
values of s. Let F ⊂ M be the T -fixed locus. Then

∑
dsηn|F s

n =
∑
dηn|F s

n. If we
let ∆ denote the Hodge Laplacian, then by Hodge theory, a form is exact if and only
if it is orthogonal to the kernel of ∆. Now every partial sum of

∑
dηn|F s

n is exact,
and hence orthogonal to the kernel of ∆. This orthogonality is clearly preserved when
we take the limit as n → ∞. Thus

∑
dηn|F s

n converges to an exact form. Hence
[
∑
dsηns

n]|F = 0, and therefore [
∑
dsηns

n] = 0 by localization.
Let H(x1, ..., xr) be function which is holomorphic in a neighborhood of (0, ..., 0).

Let H =
∑
i1,...,ir

ai1,...,irx
i1
1 · · ·x

ir
r be the corresponding power series expansion. Let

[ω1], ..., [ωr] be equivariant forms in H∗
T (M) such that u| deg0 ωi. Note that this

property is independent of the choice of representatives for [ωi]. Then H([ω1], ..., [ωr])
is a well-defined element of H∗(Can(M)). We can see this as follows:

Fix representatives ω1, ..., ωr ∈ Can(M). Write ωi = ω̃i + fiu, where fi ∈
C∞(M)⊗ C[u] and deg ω̃i > 0. Then

H(ω1, ..., ωr) =
∑

i1,...,ir

ai1,...,ir(ω̃1 + f1u)i1 · · · (ω̃r + fru)ir

=
∑

j1,...,jr

ω̃1
j1 · · · ω̃r

jr
∑

i1,...,ir

ai1,...,ir

(
i1
j1

)
· · ·

(
ir
jr

)
(f1u)i1−j1 · · · (fru)ir−jr

=
∑

j1,...,jr

∂(j1) · · · ∂(jr)H(f1u, ..., fru)ω̃1
j1 · · · ω̃r

jr .

Here ∂(k) = ∂k

k! . The sum over j1, ..., jr ≥ 0 is finite because the forms ω̃i are nilpotent.
It is therefore clear that the above expression is a well-defined dX -closed form in
Can(M). We next show that the corresponding class in H∗(Can(M)) is independent

of the choice of generators for [ωi]. Let H̃(s1, t1, ..., sr, tr) = H(s1 + t1, ..., sr + tr).

Then H̃ = H(s1, ..., sr) + t1H̃1 + ... + trH̃r. Thus, H(ω1 + dXη1, ..., ωr + dXηr) =

H̃(ω1, dXη1, ..., ωr, dXηr) = H(ω1, ..., ωr) + dX(η1H̃1 + ...+ ηrH̃r), so H([ω1], ..., [ωr])
is well-defined independent of our choice of generators. Before proceeding further, we
point out an important property possessed by the forms of this type.

Let Ĉ(M) ⊂ Can(M) denote the subring {closed invariant forms ⊗C{u}} where
C{u} denotes the ring of power series in u which converge in sufficiently small

neighborhoods of the origin. Let Ĥ(M) ⊂ H∗(Can(M))loc denote the subspace

of forms [ω] such that ω|F ∈ Ĉ(F )loc for some representative ω ∈ [ω]. Then if

[ω1], ..., [ωr] ∈ H
∗
T (M), and u| deg0 ωi, then H([ω1], ..., [ωr]) ∈ Ĥ(M). This is because

deg0 ωi|F ∈ C[u] and dω̃i|F = 0. Note also that functorial localization holds in this

situation, and implies that, for f : M → N , f∗Ĥ(M) ⊂ Ĥ(N).

Lemma 1. ev : Ĥ(M)→W (M) is injective.

Proof. Let [ω] ∈ Ĥ(M), so that ω|F = ω1f1 + ... + ωkfk, where ωi are closed
forms on F and fi are convergent Laurent series in u in some small disk about the
origin. If [ω] 6= 0, then by localization, [ω]|F 6= 0. Without loss of generality, we may
assume that ω1, ..., ωk are linearly independent as cohomology classes. We can always
choose an arbitrarily small s so that f1(s), ..., fk(s) are not all zero. We then have
that ev[ω]s|F = f1(s)[ω1] + ...+ fk(s)[ωk] 6= 0. Hence ev[ω] 6= 0 in W (M).
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All the above machinary was put together to make the following argument: Let
f : M → N , and let H = H([ω1], ..., [ωr]) for [ωi] ∈ H∗

T (M), u| deg0 ωi. Sup-
pose θn(s) is a sequence of ds-closed forms which converge in the C∞ sense to a
representative of (evH)s for ||s|| sufficiently small. If we factor f as an inclusion
followed by a projection, then f∗ makes sense on the form level and f∗θn(s) con-
verge to representatives of (f∗evH)s. Now suppose that [f∗θn(s)] = [bn(s)] and that
bn(s)→ b(s). Then f∗θn(s) = bn(s) + dsηn(s), and since f∗θn(s) and bn(s) converge,
we have that [b(s)] = [f∗evH ]s. Now if s 7→ [b(s)] corresponds to a form evG for some
G([α1], ..., [αk]), [αi] ∈ H

∗
T (N), then f∗evH = evf∗H = evG, and therefore f∗H = G.

Thus, we can compute push-forwards of summations by applying the push-forward
term-by-term, so long as the corresponding summation converges in the sense dis-
cussed in this section. This observation will be used implicitly throughout this paper;
for example, it will allow us in sections 5 and 9 to reduce computations involving
convergent power series to computations involving polynomials.

Remark 1. In what follows we will be interested in the case where T is a compact
torus of arbitrary dimension. It is easy to see how to generalize the above machinary
to this situation. The difficulty lies more in the notation than in any other aspect.

3. The Orbifold Elliptic Class. Let X be a smooth projective variety with a
holomorphic T ×G action. Let D =

∑
I αiDi be a smooth G-normal crossing divisor

with αi < 1. The G-normal condition means that if g ∈ stabG(x) and x ∈ Di, then
g · Di = Di. Let Xg,h

γ be a connected component of the fixed locus Xg,h for some
commuting pair g, h ∈ G. Then NXg,h

γ /X splits into character sub-bundles
⊕

λNλ,

where g (resp. h) acts on Nλ as multiplication by e2πiλ(g) (resp. e2πiλ(h)). Let
Ig,hγ ⊂ I index the set of divisors DX

i which contain Xg,h
γ . Since D is G-normal, g

(resp. h) acts on O(Di)|Xg,h
γ

as multiplication by e2πiλi(g) (resp. e2πiλi(h)) for every

i ∈ Ig,hγ . For i 6∈ Ig,hγ , we define λi(g) = λi(h) = 0.

Following [7], we define the orbifold elliptic class associated to the pair (Xg,h
γ , D)

as follows: Ellorb(X
g,h
γ , D) =

(iXg,h
γ

)∗

{ ∏

TXg,h
γ

xi

2πiθ(
xi

2πi − z)θ
′(0)

θ( xi

2πi)θ(−z)
×

∏

λ,Nλ

θ(
xλ,c

2πi + λ(g)− λ(h)τ − z) θ
′(0)
2πi

θ(
xλ,c

2πi + λ(g)− λ(h)τ)θ(−z)
e2πiλ(h)z

}
×

∏

I

θ( Di

2πi + λi(g)− λi(h)τ − (−αi + 1)z)θ(−z)

θ( Di

2πi + λi(g)− λi(h)τ − z)θ(−(−αi + 1)z)
e−2πiλi(h)αiz

Here xi denote the equivariant Chern roots of TXg,h
γ , xλ,c denote the equivariant

Chern roots of Nλ, and (abusing notation) Di denote the equivariant first Chern
classes of the corresponding divisors.

Finally we define the orbifold elliptic class of (X,D,G) as follows:

Ellorb(X,D,G) =
1

|G|

∑

gh=hg,γ

Ellorb(X
g,h
γ , D).

When G = 1, we will write Ell(X,D) instead of Ellorb(X,D,G) and refer to this
object as the equivariant elliptic class of the pair (X,D). We view all such classes as

an elements inside the ring Ĥ(X).
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Let {F} denote the collection of fixed components of X . For each F let e(F ) de-
note the equivariant Euler class of the normal bundle to F . We define the equivariant
orbifold elliptic index

Ellorb(X,D,G) ≡
(2πiθ(−z)

θ′(0)

)dimX ∑

F

∫

F

Ellorb(X,D,G)

e(F )
.

It is a convergent power series in the equivariant parameters which depends implicitly
upon the value of the complex parameter z and on the lattice parameter τ used in
the definition of the Jacobi theta function. We define the equivariant elliptic index
Ell(X,D) similarly.

4. Toric Varieties and Equivariant Cohomology. For a good reference on
toric varieties, see [11]. Let X be a smooth complete toric variety of dimension n. We
denote the fan of X by ΣX , the lattice of X by NX , and the big torus by TX . Let Y
be a smooth complete toric variety which satisfies the following properties:

(1): NX ⊂ NY is a finite index sublattice.
(2): ΣX is a refinement of ΣY obtained by adding finitely-many one dimensional

rays.
There is an obvious map of fans ν : ΣX → ΣY which induces a smooth map

µ : X → Y . We call a map induced by such a morphism of fans a toric morphism. It is
easy to verify that µ : TX → TY is a covering map with covering groupNY /NX . Thus,
we may regard Y as a TX -space. Our goal in this section is to obtain a convenient
description of the equivariant pushforward µ∗ : H∗

T (X) → H∗
T (Y ) in terms of the

combinatorics of ΣX and ΣY . Here T = TX .
We first note that fixed points F of X are in 1 − 1 correspondence with n-

dimensional cones CF ⊂ ΣX . Furthermore, the infinitesimal weights of the T -action
on NF correspond to linear forms in Hom(NX ,Z) which are dual to the generators of
CF in NX . With this identification in mind, for any ω ∈ H∗

T (X), the the collection of
polynomials {ω|F }F∈Fix(X) defines a piecewise polynomial function on the fan ΣX .

Define C[ΣX ] to be the ring of all piecewise polynomial functions on the fan of X . It
is well-known that the map H∗

T (X)→ C[ΣX ] described here is an isomorphism (see,
for example, [8]):

Theorem 6. H∗
T (X) ∼= C[ΣX ].

Via this identification, we define ν∗ : C[ΣX ]→ C[ΣY ] to be the map which makes
the following diagram commute:

C[ΣX ]
ν∗−−−−→ C[ΣY ]

∥∥∥
∥∥∥

H∗
T (X)

µ∗

−−−−→ H∗
T (Y )

Here we understand C[ΣY ] to be the ring of piecewise polynomial functions on ΣY
with respect to the lattice NX .

We now describe ν∗ more explicitly. First notice that for f ∈ C[ΣX ], ν∗f is
given by viewing f |F as the zero degree part of an equivariant cohomology class
ω ∈ H∗

T (X), pushing ω forward by µ∗, and then forming the piecewise polynomial
function defined by the zero degree part of µ∗ω. Thus, let C ⊂ ΣY be an n-dimensional
cone. Let ν−1C be the fan ΣC ⊂ ΣX which is the union of n-dimensional cones Ci.



EQUIVARIANT ELLIPTIC GENUS MCKAY CORRESPONDENCES 261

Let xCi

1 , . . . , xCi
n be the linear forms dual to Ci and xC1 , . . . , x

C
n the linear forms in

Hom(NY ,Z) ⊂ Hom(NX ,Z) dual to C. By functorial localization:

(ν∗f)C =
∑

Ci⊂ΣX

fCi

∏n
j=1 x

C
j∏n

j=1 x
Ci

j

.

Similarly, we define ν∗ : C[ΣY ] → C[ΣX ] to be the map which makes the following
diagram commute:

C[ΣY ]
ν∗

−−−−→ C[ΣX ]
∥∥∥

∥∥∥

H∗
T (Y )

µ∗

−−−−→ H∗
T (X)

Proposition 3. ν∗(f) = f ◦ ν

Proof. Let ω ∈ H∗
T (Y ) be the form such that ω|P = f |P for every fixed point P .

Let F ∈ µ−1(P ). Then

H∗
T (Y )

µ∗

−−−−→ H∗
T (X)

y
y

H∗
T (P )

µ∗

F−−−−→ H∗
T (F )

commutes. Hence (µ∗ω)|F = µ∗
F (ω|P ) = µ∗

F (fP ) = fP . Thus ν∗(f) is the piecewise
polynomial function which is equal to fCP

on every cone CF ∈ ν−1CP . This is
precisely the piecewise polynomial f ◦ ν.

The map ν∗ : C[ΣY ] → C[ΣX ] makes C[ΣX ] into a C[ΣY ]-module. As such, we
observe:

Proposition 4. ν∗ is a C[ΣY ]-module homomorphism.

Proof. In other words, we wish to prove the projection formula ν∗(fν
∗g) =

ν∗(f) · g. This follows from identifying ν∗ with µ∗, ν
∗ with µ∗ and invoking the

projection formula from equivariant cohomology.

5. Toroidal Embeddings and Toroidal Morphisms.

5.1. Definitions. Let X be a compact variety and DX =
∑

IX
DX
i a divisor on

X whose irreducible components are smooth normal crossing divisors. For I ⊂ IX , let
XI,j denote the jth connected component of ∩ID

X
i . Let Xo

I,j = XI,j − ∪IcDX
i . The

collection of subvarieties Xo
I,j form a stratification of X . Associated to these data is

a polyhedral complex with integral structure defined as follows:
Corresponding to XI,j, define NI,j = Zei1,j + . . . + Zeik,j to be the free group

on the elements ei1,j , . . . , eik,j . Here i1, . . . ik are the elements of I. Define CI,j to be
the cone in the first orthant of this lattice. Whenever I ′ ⊂ I and XI,j ⊂ XI′,j′ we
have natural inclusion maps NI′,j′ →֒ NI,j and CI′,j′ →֒ CI,j . Define ΣX to be the
polyhedral complex with integral structure obtained by gluing the cones CI,j together
according to these inclusion maps.

Let C[ΣX ] denote the ring of piecewise polynomial functions on ΣX . Fix C ⊂ ΣX .

Define fC to be the piecewise polynomial function which is equal to
∏dimC
j=1 xCj on
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every cone containing C, and equal to zero everywhere else. As in the toric geometry
case, there is a natural correspondence between piecewise linear functions on ΣX and
Cartier divisors whose irreducible components are components of DX . We denote the
piecewise linear function corresponding to D by fD.

5.2. Toroidal Morphisms. Our primary interest in this section is the study of
toroidal morphisms. This is a map µ : (X,DX ,ΣX) → (Y,DY ,ΣY ) which satisfies
the following:

(1): µ : X −DX → Y −DY is an unramified cover.
(2): µ maps the closure of a stratum in X to the closure of a stratum in Y .
(3): Let Uy be an analytic neighborhood of y ∈ Y such that the components of

DY passing through y correspond to coordinate hyperplanes. Then for x ∈ µ−1(y),
there exists an analytic neighborhood Ux of x such that the components of DX passing
through x correspond to coordinate hyperplanes of Ux. Moreover, the map Ux → Uy
is given by monomial functions in the coordinates.

Corresponding to µ, we can define a map ν : ΣX → ΣY as follows: Let CI,i ⊂ ΣX
and let e1, . . . , ek ∈ NI,i be the generators of CI,i which correspond to the divisors
DX

1 , . . . , D
X
k . We have that µ(XI,i) = YJ,j . Let v1, . . . , vℓ ∈ NJ,j be the generators of

CJ,j which correspond to the divisors DY
1 , . . . , D

Y
ℓ . For 1 ≤ s ≤ k, 1 ≤ t ≤ ℓ, define

ast to be the coefficient of DX
s of the divisor µ∗(DY

t ). Then we define ν(es) =
∑
astvt.

Note that if (X,ΣX) → (Y,ΣY ) is a smooth toric morphism of toric varieties, then
ν : ΣX → ΣY is the natural morphism of polyhedral complexes.

We have the following proposition relating ν to µ:

Proposition 5. If C = CJ,j ⊂ ΣY , then ν−1C is the union of fans Σα ⊂ ΣX
with the following properties:

(1): Σα is a refinement of C obtained by adding finitely-many 1-dim rays.
(2): The lattice Nα of Σα is a finite index sub-lattice of NC .
(3): The fans Σα are in 1 − 1 correspondence with connected components Uα of

µ−1(NY o
J,j

). The map Uα → NY o
J,j

is a fibration given by the smooth toric morphism

PΣα,Nα
→ PC,NC

along the fiber, and a dα = d(Σα)-cover of Y oJ,j along the base.

For a proof, see [7].

5.3. Pushforward formula for Polyhedral Complexes. Motivated by the
description of the push-forward ν∗ for toric morphisms, define ν∗ : C[ΣX ] → C[ΣY ]
as follows. Let C ⊂ ΣY be an n-dimensional cone with dual linear forms xC1 , . . . , x

C
n .

Then for f ∈ C[ΣX ], we define:

(ν∗f)C =
∑

α

dα
∑

Ci∈Σα

fCi
·

∏n
j=1 x

C
j∏n

j=1 x
Ci

j

.

The second sum is taken over the cones Ci ⊂ Σα with the same dimension as C.
Let V be the toric variety

∐
α dα · PΣα,Nα

with polyhedral fan ΣV . We have a
natural toric morphism V → Cn. We can compactify V and Cn to obtain a smooth
toric morphism V → Pn. If we view f as a piece-wise polynomial function on the
fan of V , then the above formula simply corresponds to (ν∗f)C where ν : ΣV → ΣPn .
This identification allows us to apply the tools of the previous section toward the
study of ν∗.

We first observe that (ν∗f)C is indeed a polynomial function. This follows from
the above identification of ν∗ with the equivariant pushforward of a toric morphism.
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Furthermore, if we define ν∗ : C[ΣY ]→ C[ΣX ] by the formula ν∗(f) = f ◦ ν then the
projection formula:

ν∗(fν
∗g)C = ν∗(f)C · gC

follows from the projection formula in equivariant cohomology.

Proposition 6. ν∗(f) is a piece-wise polynomial function.

Proof. We first show that ν∗(f
C) is piece-wise polynomial.

Fix f = fC . Suppose ν(C) ⊂ C0 for some C0 ⊂ ΣY of dimension k = dimC.

Then ν∗(f)C0 = d(ΣC0)
∏k
j=1 x

C0

j . Suppose C1 is a cone containing C0. We wish to
show (ν∗f)C1 is an extension of (ν∗f)C0 .

Consider the toric morphism σ : PΣC1 ,N(ΣC1 ) → CdimC1 induced by the map
ν : ΣC1 → C1. Let D1, . . . , Dk be the divisors in PΣC1 ,N(ΣC1) which correspond to
the generators of C. Then the piece-wise polynomial function f ∈ C[ΣC1 ] represents
the equivariant Thom class of D1 ∩ · · · ∩ Dk. Since σ(D1 ∩ · · · ∩ Dk) is the affine
subspace of CdimC1 corresponding to C0, we have that σ∗(f) is the degree of σ along
D1 ∩ · · · ∩Dk times the polynomial function which represents the equivariant Thom
class of this subspace. But this implies that:

ν∗(f)C1 = d(ΣC1)
[N(ΣC1) : N(C1)]

[N(ΣC0) : N(C0)]

k∏

j=1

xC0

j = d(ΣC0)
k∏

j=1

xC0

j .

We need to explain the last equality. If C0 corresponds to the strata Y oI,j and U →
NY o

I,j
is the fibration in Proposition 5 corresponding to the subdivision ΣC0 , then

d(ΣC0)[N(ΣC0) : N(C0)] and d(ΣC1)[N(ΣC1) : N(C1)] both give the number of points
in the pre-image of a generic point in NY o

I,j
.

Next suppose that C is mapped to a cone C0 of strictly larger dimension. Consider
the toric morphism PΣC0 ,N(ΣC0 ) → PC0,N(C0) induced by the map ν : ΣC0 → C0.
The polynomial function f ∈ C[ΣC0 ] represents the Thom class of an exceptional
toric subvariety. Thus ν∗(f) = 0, and it is easy to verify that ν∗(f) = 0 on every
cone containing C0. Thus, ν∗ maps the elements fC to piecewise polynomial functions.
Since these functions generate C[ΣX ] as a C[ΣY ]-module, the proposition follows from
the projection formula.

In what follows we assume that µ : X → Y is an equivariant map of projective T -
spaces. Furthermore, we assume that the irreducible components of DX and DY are
invariant under the T -action. Define a map ρX : C[ΣX ] → H∗

T (X) as follows: Fix a
cone C = CI,i which corresponds to a connected component of the intersection locus of
the divisors D1, . . . , Dk. Define ρX [fC · (fD1)a1 . . . (fDk)ak ] = ΦXI,i

∧Da1
1 ∧ . . .∧D

ak

k .
Here ΦXI,i

denotes the equivariant Thom class of XI,i ⊂ X and, by abuse of notation,
Dj denote the equivariant Thom classes of the divisors Dj . Note that the map ρX is
intended to be an equivariant cohomology analogue to the map ρ : C[ΣX ] → A∗(X)
in [7], where A∗(X) is the Chow ring of X . In that situation, Borisov and Libgober
defined ρ by sending fC ·(fD1)a1 . . . (fDk)ak to XI,i∩(D1)

a1 . . .∩(Dk)
ak . It is natural

to view the equivariant Thom classes of XI,i, etc, as the equivariant cohomology
analogues of these Chow classes.

Lemma 2. ρX is a ring homomorphism.

Proof. Fix cones C1 = CI1,i1 and C2 = CI2,i2 . It suffices to prove the theorem
for the polynomials fC1 and fC2. Let I = I1 ∪ I2. Let CI,i denote the cones which
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correspond to components of the intersection XI1,i1 ∩XI2,i2 . Clearly

fC1fC2 =
∑

I,i

fCI,i

∏

I1∩I2

fDj .

Thus ρX(fC1fC2) =
∑

I,iΦXI,i

∏
I1∩I2

Dj. However, by the equivariant version

of the excess intersection formula, this is precisely the formula for ρX(fC1)ρX(fC2).

Lemma 3. ρXν
∗ = µ∗ρY .

Proof. It suffices to check this for polynomials fCI,k . If D is a divisor on Y whose
irreducible components are components of DY , then ν∗fD is the piecewise linear
function corresponding to µ∗D. It follows that ρXν

∗fD = µ∗ρY f
D. Since all the

maps are ring homomorphisms, this implies that ρXν
∗
∏
j∈I f

Dj = µ∗ρY
∏
j∈I f

Dj .
Let µ∗Di =

∑
j aijEj as Cartier divisors. As in the lemma in the Appendix, choose

equivariant Thom forms ΦEj
and ΦDi

with support in small tubular neighborhoods
of their respective divisors so that:

µ∗ΦDi
=

∑

j

aijΦEj
+ dψi

as forms. Here ψi are equivariant forms with compact support in µ−1NDi
. Let {I, k}

index the connected components of ∩IDi. If we choose NDi
sufficiently small, then

∏

I

ΦDi
=

∑

I,k

(
∏

I

ΦDi
)I,k

where (
∏
I ΦDi

)I,k is the extension by zero of the form
∏
I ΦDi

|NI,k
.

Now
∏
I f

Di =
∑
fCI,k and clearly (

∏
I ΦDi

)I,k is a representative of ρY (fCI,k).
We have that

µ∗(
∏

I

ΦDi
)I,k =

{ ∏

I

(
∑

j

aijΦEj
+ dψi)

}
µ−1NI,k

where the subscript µ−1NI,k means the extension by zero of the form restricted to
this open set. Since the ψi forms have compact support in µ−1NDi

, this form is
cohomologous to

{∏

I

∑

j

aijΦEj

}
µ−1NI,k

.

But this is in turn a representative of ρXν
∗fCI,k .

Lemma 4. µ∗ρX = ρY ν∗.

Proof. Since ρXν
∗ = µ∗ρY and the polynomials fC generate C[ΣX ] as a C[ΣY ]-

module, by the projection formula it suffices to check µ∗ρXf
C = ρY ν∗f

C .
Case 1: CI,i is mapped by ν to a cone CJ,j of the same dimension.
From the proof of Proposition 4, ν∗f

CI,i = dfCJ,j where d is the degree of µ :
XI,i → YJ,j . Thus, ρY ν∗f

CI,i = dΦYJ,j
= µ∗ν∗f

CI,i .
Case 2: CI,i is mapped by ν into a cone of strictly larger dimension.
As shown in Proposition 4, ν∗f

CI,i = 0, so ρY ν∗f
CI,i = 0 = µ∗ΦXI,i

= µ∗ρXf
CI,i .
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Remark 2. It is clear using the formalism of section 2 that the above lemmas
relating µ to ν extend without difficulty to the ring C[[ΣX ]] of piecewise convergent

power series. In this situation, ρX is a map from C[[ΣX ]] into Ĥ(X).

6. Elliptic Genera and Toroidal Morphisms. Let (X̂,
∑
I

X̂
D̂j) and

(X,
∑

IX
Di) be smooth projective toroidal embeddings with T -actions which leave

D̂j and Di invariant. Let G be a finite group which acts toroidally on X̂ and com-

mutes with the action of G. Suppose that µ : X̂ → X is a T -equivariant toroidal
morphism which is birational to a global quotient by G. If αi are coefficients of the
irreducible components Di, define βj so that µ∗(KX +

∑
αiDi) = KX̂ +

∑
βjD̂j .

Then:

Theorem 7.

µ∗Ellorb(X̂,
∑

βjD̂j, G) = Ell(X,
∑

αiDi).

Proof. The proof of this theorem follows almost word for word the proof of
Theorem 5.1 in [7]. The only difference is that here we examine the equivariant push-
forward of equivariant cohomology classes, whereas [7] examine the push-forward of
(non-equivariant) classes in the Chow ring. We reproduce the proof here for com-
pleteness.

We refer frequently to the notation in the previous section: For commuting ele-
ments g, h ∈ G, let X̂g,h

γ denote the γ-th fixed component of (g, h). Since the action

of G on X̂ is toroidal, X̂g,h
γ may be identified with XIg,h,i for some indexing set

Ig,h ⊂ IX̂ .

Consider the following class in Ĥ(X̂):

E =
1

|G|

∑

gh=hg;X̂g,h
γ

ΦT
X̂g,h

γ
·

∏

I
X̂
−Ig,h

γ

D̂j

2πiθ(
D̂j

2πi − (−βj + 1)z)θ′(0)

θ(
D̂j

2πi )θ(−(−βj + 1)z)
·

∏

Ig,h
γ

θ(
D̂j

2πi + ǫj(g)− ǫj(h)τ − (−βj + 1)z) θ
′(0)
2πi

θ(
D̂j

2πi + ǫj(g)− ǫj(h)τ)θ(−(−βj + 1)z)
e2πi(−βj+1)ǫj(h)z.

Here ΦT
X̂g,h

γ

is the equivariant Thom class of the subvariety X̂g,h
γ , and ǫj(g), etc., are

defined as in the definition of the orbifold elliptic genus.
Our first goal is to prove

µ∗E =
∏

IX

Di

2πiθ(
Di

2πi − (−αi + 1)z)θ′(0)

θ( Di

2πi )θ(−(−αi + 1)z)
(3)

To prove the above equality, we express both sides as the image under ρX̂ and ρX
of piece-wise convergent power series, and apply the push-forward formula from the
previous section. To that end, let F be the piece-wise convergent power series defined
as follows: Let Cg,hγ be the cone which corresponds to Xg,h

γ . For each cone C = CJ,j
containing Cg,hγ , let F g,hγ |C =
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1

|G|

∏

J

xC
j

2πiθ(
xC

j

2πi + ǫj(g)− ǫj(h)τ − (−βj + 1)z)θ′(0)

θ(
xC

j

2πi + ǫj(g)− ǫj(h)τ)θ(−(−βj + 1)z)
e2πi(−βj+1)ǫj(h)z.

For cones C not containing Cg,hγ , we define F g,hγ |C = 0. In the above expression,

xCj are the piece-wise linear functions dual to the generators of C. If D̂j are the divisors
which correspond to the generators of C, then ǫj(g), etc., are the infinitesimal weights

attached to the divisors, and βj are the coefficients of D̂j . It is easy to see that F g,hγ

is a well-defined piece-wise convergent power series, and that ρX̂(F g,hγ ) is the Xg,h
γ -th

summand in the expression for E. We therefore define F =
∑

gh=hg,γ F
g,h
γ , so that

ρX̂(F ) = E.
Similarly, define H ∈ C[[ΣX ]] to be the piece-wise convergent power series:

H |C =

dimC∏

i=1

xC
i

2πiθ(
xC

i

2πi − (−αi + 1)z)θ′(0)

θ(
xC

i

2πi )θ(−(−αi + 1)z)
.

Clearly ρX(H) is equal to the right-hand side of 3. We are therefore reduced to
proving that ν∗F = H .

Let C ⊂ ΣX be a cone, and let Σα be the subdivisions of C lying in ΣX̂ which
get mapped to C under ν. Let Nα denote the lattices of Σα, and NC the lattice of
ΣC . Referring to the notation of section 5.3, the formula for ν∗ tells us that:

(ν∗F )C =
∑

α

dα
∑

Cj⊂Σα

F |Cj

∏dimC
i=1 xCi∏dimC
i=1 x

Cj

i

.

For each Cj ⊂ Σα with the same dimension as C, note that F g,hγ |Cj
6= 0 if and

only if Cg,hγ ⊂ Cj , i.e., if and only if g and h are elements of the group Gα = NC/Nα.
We may therefore write the push-forward of F as:

dimC∏

i=1

xCi
∑

α

dα
|G|

∑

g,h∈Gα

∑

Cj⊂Σα

θ(
x

Cj

i

2πi + ǫi(g)− ǫi(h)τ − (−βi + 1)z) θ
′(0)
2πi

θ(
x

Cj

i

2πi + ǫi(g)− ǫi(h)τ)θ(−(−βi + 1)z)

e2πi(−βi+1)z.

By lemma 8.1 in [7], this is equal to
∑

α
dα|Gα|

|G| H |C . But since
∑

α dα|Gα| de-

scribes the number of points in the pre-image of a generic point in a tubular neigh-
borhood of the closed stratum corresponding to C, the coefficient in front of H |C in
the above expression is 1. This completes the proof of 3. To complete the proof, we
apply the projection formula together with the following lemma relating the Chern
classes of X̂ to those of X :

Lemma 5.

c(T X̂)T
µ∗c(TX)T

=

∏
I

X̂
(1 + c1(D̂j)T )

∏
IX

(1 + c1(Di)T )
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in H∗
T (X̂)loc

For details, see [7]. The above lemma may be proved using an argument analogous
to the proof of lemma 5 in [18].

7. Deformation to the Normal Cone. If Q is a holomorphic function of one
variable in a neighborhood of the origin, then Q determines a map ϕQ : KT (·)→ Ĥ(·)
by the rule E 7→

∏
iQ(ei), where ei represent the equivariant Chern roots of E. If,

in addition, Q(0) = 1, then ϕQ is multiplicative in the sense that ϕQ(E1 ⊕ E2) =
ϕQ(E1)ϕQ(E2).

More generally, let H be a finite abelian group with characters {λ}. Let {fλ}
be a collection of a holomorphic functions of one variable in a neighborhood of the
origin for each character λ. Let E be a T ×H vectorbundle over a manifold X , and
suppose that the action of H on X is trivial. Then E decomposes into a direct sum
of character subbundles E =

⊕
λEλ. The collection {fλ} therefore defines a map

ψ : E =
⊕

λEλ 7→
∏
λ

∏
i fλ(eλ,i), where eλ,i denote the T -equivariant Chern roots

of the T -vectorbundle Eλ. Let us fix a multiplicative map ϕ = ϕQ and a (possibly
not multiplicative) map ψ = ψ{fλ}.

Let X be a compact T × H-variety and let Z be a smooth T × H-invariant
subvariety. Let V be a connected component of XH . In the proof of the lemma
below, the only difficult case to examine is when Z ∩ V ≡ W is a proper subset of
V . We therefore assume this throughout. Let π : X̃ → X be the blow-up of X along
Z and let Ṽ be the proper transform of V . Clearly NeV / eX has the same H-character

decomposition as NV/X . We may therefore make sense of ψ(NeV / eX). The goal of this

section is to prove the following crucial technical lemma relating ϕ(T Ṽ )ψ(NeV / eX) to

ϕ(TV )ψ(NV/X).

Lemma 6.

π∗ϕ(T Ṽ )ψ(NeV / eX)− ϕ(TV )ψ(NV/X) = (iW )∗Θ.

Here iW is the inclusion map and Θ ∈ Ĥ(W ) is a universal class which depends only
on the data of W , NW/V , i∗WNZ/X , ϕ, and ψ.

The argument given below is an adaptation of the argument in [17] which was
given for the non-equivariant case with ψ = 1.

Proof. Let Π : MX → X × P1 be the blow-up along Z × {∞}. We give MX

the obvious T × H action. Let MV be the proper transform of V × P1. Clearly
MV → V × P1 is the blow-up along W × {∞}. It is easy to see that NMV /MX

∈
KT (MV )⊗R(H) has the same H-character decomposition as NV/X .

Define N0 to be the sub-bundle of i∗WNZ/X on which H-acts trivially. Let N1 =
i∗WNZ/X/N0. Then i∗WTX decomposes as TW⊕NW/Z⊕N0⊕N1. Clearly TW⊕N0 =
i∗WTV , and therefore NV/W = N0 is a sub-bundle of i∗WNZ/X with quotient N1.

Let g : MX → P1 be the composition MX → X × P1 → P1. Then div(g) =

X − X̃ −P(NZ/X ⊕ 1). Furthermore, div(g|MV
) = V − Ṽ −P(NW/V ⊕ 1). Let iV , ieV ,

and iP(NW/V ⊕1) denote the respective inclusion maps of these divisors in MV .

Let p : P(NW/V ⊕ 1)→ W be the obvious fibration, and let S denote the tauto-
logical bundle over P(NW/V ⊕ 1).
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CLAIM.

i∗VNMV /MX
= NV/X(4)

i∗eVNMV /MX
= NeV / eX(5)

i∗P(NW/V ⊕1)NMV /MX
= p∗NW/Z ⊕ p

∗N1 ⊗ S
∗(6)

(1) is obvious. To prove (2), note first that TMX |eV decomposes as T Ṽ ⊕NeV / eX ⊕
N eX/MX

|eV and also as T Ṽ ⊕NeV /MV
⊕NMV /MX

|eV . Then simply notice that in both

decompositions, NeV / eX and i∗eVNMV /MX
are the nontrivial H-eigenspaces.

To prove (3), note that TMX |P(NW/V ⊕1) decomposes in the following two ways:

TMX |P(NW/V ⊕1) =

TP(NW/V ⊕ 1)⊕O(−1)P(NW/V ⊕1) ⊕ i
∗
P(NW/V ⊕1)NMV /MX

=

TP(NW/V ⊕ 1)⊕NP(NW/V ⊕1)/P(NZ/X⊕1) ⊕ i
∗
P(NW/V ⊕1)O(−1)P(NZ/X⊕1)

Observing i∗
P(NW/V ⊕1)O(−1)P(NZ/X⊕1) = O(−1)P(NW/V ⊕1) it follows that

i∗
P(NW/V ⊕1)NMV /MX

= NP(NW/V ⊕1)/P(NZ/X⊕1). It is easy to verify that this

bundle in turn is equal to p∗NW/Z ⊕ p
∗N1 ⊗ S

∗.

Since div(g|MV
) = V −Ṽ −P(NW/V ⊕1), as equivariant classes V = Ṽ +P(NW/V ⊕

1). Let u be the equivariant Thom class of Ṽ (that is, the Thom class of its normal
bundle), and let v be the equivariant Thom class of P(NW/V ⊕ 1). Then u+ v is the

equivariant Thom class of V . Since V is disjoint from Ṽ and P(NW/V ⊕ 1), we have
the relations u(u+v) = v(u+v) = 0. Note also that uv is the equivariant Thom class

of P(NW/V ), which is the exceptional divisor of Ṽ → V .
Let f be the holomorphic function in a neighborhood of the origin which satisfies

the relation Q(z) = z
f(z) . Then by the above claim:

ϕ(TMV )ψ(NMV /MX
)f(u+ v) = (iV )∗ϕ(TV )ψ(NV/X)

ϕ(TMV )ψ(NMV /MX
)f(u) = (ieV )∗ϕ(T Ṽ )ψ(NeV / eX)

ϕ(TMV )f(v) = (iP(NW/V ⊕1))∗ϕ(TP(NW/V ⊕ 1))ψ(NP(NW/V ⊕1)/P(NZ/X⊕1))

Note that since u and v are equivariant Thom classes, their degree zero part is an
element of C∞(MV ) ⊗ t∗ which vanishes at the origin of t. Hence f(u), etc., are

well-defined elements of Ĥ(MV ).
Since f(z) = z + . . ., we can define g = f−1 in a possibly smaller neighborhood

of the origin. Consider the two-variable holomorphic function h(z1, z2) = f(z1 + z2).
Clearly h(z1, z2) = h(g(f(z1)), g(f(z2))). Define F (y1, y2) = h(g(y1), g(y2)). Then
F is holomorphic in a neighborhood of the origin and F (f(z1), f(z2)) = f(z1 + z2).
From [12] we have the formula:

F (y1, y2)g
′(y1)g

′(y2) =
∑

(i,j) 6=(0,0)

ϕ(Hij)y
i
1y
j
2.

Here ϕ(Hij) is the non-equivariant genus induced by f of the degree (1, 1) hy-
persurface Hij ⊂ Pi × Pj. If we plug in f(u) and f(v) for y1 and y2, we get
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F (f(u), f(v))g′(f(u))g′(f(v)) = f(u+v)g′(f(u))g′(f(v)). By the relations u(u+v) =
v(u+v) = 0, this last term is cohomologous to f(u+v). It is instructive to go over this
last point in detail. Write f(x+y) =

∑
an(x+y)n and g′(f(x))g′(f(y)) =

∑
bijx

iyj .
Note that b00 = 1. Let hNIJ =

∑
n≤N an(x + y)n ·

∑
i≤I,j≤J bijx

iyj. Then
hNIJ → f(x + y)g′(f(x))g′(f(y)) in the C∞ topology. Abusing notation, let u and
v denote fixed representatives for their respective cohomology classes. We have that
hNIJ(u, v) =

∑
n≤N an(u + v)n + dηNIJ . Evaluating at a sufficiently small s gives:

hNIJ(u, v)(s) =
∑

n≤N an(u(s) + v(s))n + dηNIJ(s). Taking the limit in the in-
dices N, I, J , we get h(u, v)(s) = f(u(s) + v(s)) + dη(s). We therefore have that

ev(h) = ev(f(u+ v)), and therefore h = f(u+ v) in Ĥ(MV ).
At the same time, f(u+ v) =

∑
(i,j) 6=(0,0) ϕ(Hij)f(u)if(v)j . Thus

ϕ(TMV )ψ(NMV /MX
)f(u+ v) = ϕ(TMV )ψ(NMV /MX

)f(u)+

ϕ(TMV )ψ(NMV /MX
)f(v) + ϕ(TMV )ψ(NMV /MX

)
∑

i+j≥2

ϕ(Hij)f(u)if(v)j

From the relations u2 = −uv and v2 = −uv, we have that f(u)i+1 = f(u)f(−v)i.
Therefore,

∑

i+j≥2

ϕ(Hij)f(u)if(v)j =
∑

i+j≥2,i≥1

ϕ(Hij)f(u)f(−v)i−1f(v)j +
∑

j≥2

ϕ(H0j)f(v)j

We therefore have
∑

i+j≥2 ϕ(Hij)f(u)if(v)j = uv f(u)
u G(v)+vJ(v) for some universal

convergent power series G and J . Let ν = i∗
P(NW/V ⊕1)v. Clearly ν = c1(S). Let

w = ν|P(NW/V ). Finally, for ease of notation, write N = p∗NW/Z ⊕ p
∗N1 ⊗ S

∗.

ϕ(TMV )ψ(NMV /MX
)f(u+ v) =

ϕ(TMV )ψ(NMV /MX
)f(u) + ϕ(TMV )ψ(NMV /MX

)f(v)+

ϕ(TMV )ψ(NMV /MX
)uv

f(u)

u
G(v) + ϕ(TMV )ψ(NMV /MX

)vJ(v)

It follows that

(iV )∗ϕ(TV )ψ(NV/X) =

(ieV )∗ϕ(T Ṽ )ψ(NeV / eX) + (iP(NW/V ⊕1))∗ϕ(TP(NW/V ⊕ 1))ψ(N)+

(iP(NW/V ))∗ϕ(TP(NW/V )⊕ S|P(NW/V ))ψ(N |P(NW/V ))G(w)+

(iP(NW/V ⊕1))∗ϕ(TP(NW/V ⊕ 1)⊕ S)ψ(N)J(ν)

Now apply the push-forward Π∗ to the above equation. Note that Π ◦ iV is the
inclusion v 7→ (v, 0) in V × P1. Π ◦ ieV is the composition of the blow-down Ṽ → V
with the inclusion of V at infinity in V × P1. From the blow-up diagram:

P(NW/V ⊕ 1)
iP(NW/V ⊕1)

−−−−−−−−→ MV

Π̂

y
yΠ

W × {∞} −−−−→
iW

V × P1
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we have that Π◦ iP(NW/V ⊕1) = iW ◦ Π̂. Finally, Π◦ iP(NW/V ) is clearly the composition
of the blow-down map π̂ : P(NW/V )→W with the inclusion iW . Therefore, applying
the pushforward Π∗ gives the equation:

ϕ(TV )ψ(NV/X) =

π∗ϕ(T Ṽ )ψ(NeV / eX) + (iW )∗

{
Π̂∗ϕ(TP(NW/V ⊕ 1))ψ(N)+

π̂∗ϕ(TP(NW/V )⊕ S|P(NW/V ))ψ(N |P(NW/V ))G(w)+

Π̂∗ϕ(TP(NW/V ⊕ 1)⊕ S)ψ(N)J(ν)
}
.

Since the term in the curly braces depends only on the data of i∗WNZ/X , NW/V ,
and W , this proves the lemma.

Remark 3. Of course in the above proof, if Q(x) =
x

2πi
θ( x

2πi
−z) θ′(0)

2πi

θ( x
2πi

)θ(−z) and fλ =

e2πiλ(h)τzθ( x
2πi

+λ(g)−λ(h)τ−z) θ′(0)
2πi

θ( x
2πi

+λ(g)−λ(h)τ)θ(−z) , then ϕ(TV )ψ(NV/X) is the equivariant elliptic class

associated to the pair (g, h) and the (g, h)-fixed component V .

8. The Normal Cone Space. Let W ⊂ X be a connected T -invariant sub-
variety of a projective T -space X . Suppose the normal bundle NW/X splits into a
composition L1 ⊕ . . . ⊕ Lk of T -vectorbundles. Define p : X∗ → W to be the fiber
bundle with fiber p−1(w) = P(L1 ⊕ 1)w × . . . × P(Lk ⊕ 1)w. It is easy to see that
X∗ contains a copy of W with the same normal bundle NW/X . In our proof of the
blow-up formula, we will ultimately reduce all computations on X to computations on
the more manageable space X∗. We therefore devote this section to gathering some
important facts about the topology of X∗.

If we give the trivial vectorbundle 1 the trivial action, then the action of T on W
lifts naturally to X∗. Give Li a metric so that T acts on Li by isometries, and give
P(Li ⊕ 1) the induced metric.

Define vectorbundles Qi → X∗ as follows: For w ∈ W and (ℓ1, . . . , ℓk) lines in
(L1 ⊕ 1)w, . . . , (Lk ⊕ 1)w, define (Qi)(w,ℓ1,...,ℓk) = ℓ⊥i ⊂ (Li ⊕ 1)w. These bundles
inherit natural T -actions. Observe furthermore that i∗W (Qi) is naturally isomorphic
to Li.

Define Vi ⊂ X∗ to be the subvariety {(w, ℓ1, . . . , ℓk) : ℓi = [0 : 1]}. For i =
1, . . . , k, Vi are connected T -subvarieties, with connected intersection locus, and W =
V1 ∩ . . . ∩ Vk.

Finally, let f : X̃∗ → X∗ denote the blow-up of X∗ along Z = V1 ∩ . . . ∩ Vj with
exceptional divisor E. We have the following intersection-theoretic result:

Theorem 8. ctop(f
∗Q1 ⊕ . . .⊕ f

∗Qj ⊗O(−E))T = 0.

Proof. We will show that Hom(L, f∗Q1 ⊕ . . . ⊕ f
∗Qj) has an equivariant global

nowhere zero section, where L is a line bundle with the same equivariant first Chern
class as O(E).

We first give an explicit construction of the line bundle L. Let 0 ≤ t1, . . . , tj .

Define St1,...,tj ⊂ X̃∗ to be the subset {(w, [v1 : 1], . . . , [vj : 1], [v1 : . . . : vj ], ℓ) :

||vi|| = ti}. Here ℓ represents a point in P(Lj+1 ⊕ 1)w × . . . × P(Lk ⊕ 1)w. We will

refer to points in X̃∗ which are not contained in any St1,...,tj as points at infinity. Let
ρ : [0,∞)→ R be a bump function equal to zero in the region [0, 1/3) and equal to one
in the region [2/3,∞). For 0 ≤ ti ≤ 1 and v = (w, [v1 : 1], . . . , [vj : 1], [v1 : . . . : vj ], ℓ)
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a point in St1,...,tj , let Lv ⊂ (L1 ⊕ 1)w ⊕ . . . ⊕ (Lj ⊕ 1)w be the span of the vector
ṽ = ((1− ρ(t1))v1, ρ(t1), . . . , (1− ρ(tj))vj , ρ(tj)). Outside this set, we define Lv to be
the span of the vector 0 ⊕ 1 ⊕ . . . ⊕ 0 ⊕ 1. This clearly defines a smooth line bundle
on X̃∗ with the same equivariant first Chern class as O(E).

We now prove that Hom(L, f∗Q1⊕ . . .⊕ f
∗Qj) has a global equivariant nowhere

zero section. For vi ∈ Li, define:

hi(vi) =

{
(−vi, ||vi||

2) ||vi|| ≤ 1
(− vi

||vi||2
, 1) ||vi|| ≥ 1

For v = (w, [v1 : 1], . . . , [vj : 1], [v1 : . . . : vj ], ℓ) ∈ St1,...,tj , we define Lv →
(Q1⊕ . . .⊕Qj)f(v) by ṽ 7→ (h1(v1), . . . , hj(vj)). This section extends in a natural way
to the points at infinity, giving us a continuous nowhere zero equivariant section s0
of Hom(L, f∗Q1 ⊕ . . .⊕ f

∗Qj). The section is only continuous because the function:

h(x) =

{
x2 |x| ≤ 1
1
x2 |x| ≥ 1

is not smooth. However, we may remedy this by approximating our continuous section
s0 by a smooth section and then averaging over the group T . Since s0 was nowhere
zero and fixed by the T -averaging process, the new smooth section will remain nowhere
zero after averaging over T .

Remark 4. The intuition behind the preceding theorem is that if Z = D1∩ . . .∩
Dj is the complete intersection of a collection of normal crossing divisors, then the

proper transforms D̃i of Di are disjoint when we blow up along Z. We therefore have
that ctop(O(D̃1)⊕ . . .⊕O(D̃j))T = 0. While the above theorem is known, the proof
given here will be useful later.

One easily observes that i∗Vi
Qi = NVi/X∗ . We might expect, therefore, that

ctop(Qi)T was the equivariant Thom class of Vi. This is in fact the case, as the
following lemma proves:

Lemma 7. ctop(Qi)T = iVi∗1

Proof. By the naturality properties of the equivariant Chern classes, it is enough
to prove the above lemma for X∗ = P(L ⊕ 1), where L is a T -vectorbundle over W ,
and Q is the universal quotient bundle over P(L⊕ 1). Here, W itself plays the role of
Vi in the statement of the lemma. As above, we endow the trivial bundle 1 with the
trivial T -action.

Let us first prove that ctop(Qi) = iW ∗1 in the non-equivariant category. Let
p : P(L⊕1)→W denote the obvious projection map. Let r = rk(Q). From the exact
sequence:

0→ S → p∗(L ⊕ 1)→ Q→ 0

we have that cr(Q) =
( p∗c(L)

1−c1(S∗)

)
r
, where (·)r denotes the degree r part. Let pw :

P(L⊕ 1)w → w denote the restriction of p to the fiber over w. Then cr(Q)|P(L⊕1)w
=

c1(S
∗)r|P(L⊕1)w

, which clearly integrates to 1 over the fiber.
We next observe that Q has a global no-where zero section away from W . We

define this section as follows: s : (w, [v : z]) 7→ (w, [v : z], zv
||v||2 ,−1) We therefore have
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that cr(Q) is exact away from W . Hence, by subtracting off an exact form, we may
represent cr(Q) by a form which has compact support in a tubular neighborhood of
W , and which integrates to one along every fiber of the tubular neighborhood. It
follows that cr(Q) = iW ∗1 at least in the non-equivariant sense.

In general, cr(Q)T is at least an equivariant extension of the Thom class of W .
Moreover, cr(Q)T is equivariantly exact outside W . We prove this as follows: Ob-
serve first that the non-zero section we defined on the complement of W was in fact
equivariant. This section therefore induces a splitting Q = Q′⊕C outside of W . Since
we endowed 1 with the trivial T -action, one may easily verify that the C in the above
splitting inherits a trivial action as well. It follows that cr(Q)T is equivariantly exact
outside of W .

By subtracting off an exact form, we get that cr(Q)T may be represented by an
equivariant form which has compact support in a tubular neighborhood of W , and
which integrates to one along every fiber of the tubular neighborhood. It follows that
cr(Q)T is the equivariant Thom class of W .

We next prove a formula relating the equivariant Chern class of the blow-up of X∗

along Z to that of X∗. Note first that TX∗ splits holomorphically and equivariantly
into a direct sum of sub-bundles F ⊕M , with i∗ZF = TZ and i∗ZM = NZ/X∗ . We
may therefore apply the following lemma to compare the equivariant Chern classes of
X∗ and BlZX

∗.

Lemma 8. Let Y be a complex T -space, and Z ⊂ Y a T -invariant complex
submanifold. Suppose that TY splits holomorphically and equivariantly into a direct
sum of sub-bundles F ⊕M such that i∗ZF = TZ and i∗ZM = NZ/Y . Let f : Ỹ → Y
be the blow-up of Y along Z with exceptional divisor E. Then:

c(T Ỹ )T = c(f∗F )T c(f
∗M ⊗O(−E))T c(O(E))T(7)

in the ring H∗
T (Ỹ )loc.

Proof. By localization, it suffices to prove the equality at every fixed component
in Ỹ . Let P̃ ⊂ Ỹ be a fixed component which is the proper transform of a fixed
component P ⊂ Y . If P is disjoint from Z, then the equality of (4) at P̃ ∼= P

is trivial. Otherwise, P̃ is equal to the blow-up of P at P ∩ Z. Note that i∗PF
decomposes as F0⊕F1, where T acts trivially on F0 and nontrivially on F1. Similarly,
i∗PM = M0 ⊕M1. Clearly TP = F0 ⊕M0 and NP/Y = F1 ⊕M1.

Applying i∗eP to (4), we have:

i∗eP (LHS) = c(T P̃ )c(N eP/eY )T

i∗eP (RHS) = c(f∗F0)c(f
∗M0 ⊗O(−E))c(i∗ePO(E))

c(f∗F1)T c(f
∗M1 ⊗O(−E))T

Since P̃ is the blow-up of P along P ∩ Z and i∗P∩ZM0 = NP∩Z/P , the relation

c(T P̃ ) = c(f∗F0)c(f
∗M0 ⊗ O(−E))c(i∗ePO(E)) is well-known (see [10]). It suffices

therefore to prove that c(N eP/eY )T = i∗eP (c(f∗F1)T c(f
∗M1 ⊗ O(−E))T ). To this end

we prove the following claim:

CLAIM. N eP/eY ∼= i∗eP (f∗F1 ⊕ f
∗M1 ⊗O(−E)) as T -vectorbundles.

To prove this, consider f as a map f : P̃ → P . For simplicity of notation,
write E for E ∩ P̃ . View N eP/eY as a sheaf, i.e., N eP/eY (U) = Γ(U,N eP/eY ). The
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derivative Df : N eP/eY → f∗NP/Y = f∗F1 ⊕ f
∗M1 is a sheaf map, and maps onto

the subsheaf f∗F1 ⊕ f
∗M1(−E). Here f∗M1(−E) represents the subsheaf of f∗M1

corresponding to sections of f∗M1 which vanish along E. Let s0 denote the global
section of O(E) induced by the defining equations of E. Then ⊗s−1

0 : f∗M1(−E)→
f∗M1⊗O(−E) is a sheaf isomorphism. Define β = (id⊕⊗s−1

0 ) ◦Df . By computing
in local coordinates, one verifies easily that β : N eP/eY → f∗F1 ⊕ f∗M1 ⊗ O(−E)

is a sheaf isomorphism. Furthermore, for s a local section of N eP/eY , s(p) = 0 if

and only if (βs)(p) = 0. Therefore, beta induces an isomorphism of the corresponding
vectorbundles. Moreover, since β is clearly equivariant, the vectorbundle isomorphism
is equivariant.

This completes the proof if P ∩E < P . Next, suppose that P̃ ⊂ E. For this case,
it suffices to prove the following fact:

CLAIM. i∗E(T Ỹ ⊕ C) = i∗E(f∗F ⊕ f∗M ⊗O(−E)⊕O(E)).

We prove this as follows: Let π : P(NZ/Y ) → Z be the natural projection, and

let S denote the tautological bundle over P(NZ/Y ). Then i∗ET Ỹ = TP(NZ/Y )⊕ S.
Since i∗Ef

∗ = π∗i∗Z , we have that i∗Ef
∗F = π∗i∗ZF = π∗TZ and i∗Ef

∗M =
π∗NZ/Y . Thus,

i∗E(f∗F ⊕ f∗M ⊗O(−E)⊕O(E)) =π∗TZ ⊕ π∗NZ/Y ⊗ S
∗ ⊕ S.

From the exact sequence 0 → S → π∗NZ/Y → Q → 0, we have that π∗NZ/Y ⊗
S∗ = C⊕Q⊗S∗, where Q is the tautological quotient bundle. The claim then follows
from the observation that TP(NZ/Y ) = π∗TZ ⊕Q⊗ S∗. This completes the proof of
the lemma.

Remark 5. Note that if Ỹ is equivariantly formal, the above proof implies that
(4) holds in the unlocalized ring H∗

T (Ỹ ).

We may rewrite the left-hand side of (4) as c(f∗TY )T c(f
∗M)−1

T c(f∗M ⊗

O(−E))T c(O(E))T . Viewed as an element of Ĥ(Ỹ ), it is easy to verify that this
expression remains the same if we replace M by any bundle M ′ with i∗ZM

′ = NZ/Y .
We therefore obtain the following corollary pertaining to X∗:

Corollary 1. Let f : X̃∗ → X∗ be the blow-up of X∗ along Z = V1 ∩ . . . ∩ Vj

for j ≤ k with exceptional divisor E. Then the following formula holds in Ĥ(X̃∗):

c(T X̃∗)T =
c(f∗TX∗)T∏j
i=1 c(f

∗Qi)T

j∏

i=1

c(f∗Qi ⊗O(−E))T c(O(E))T

We end this section with a technical lemma which is the blow-up analogue of
lemma 7.

Lemma 9. For 1 ≤ i ≤ k, let Ṽi be the proper transform of Vi under the above
blow-up: f : X̃∗ → X∗. Then ctop(f

∗Qi ⊗O(−E))T is the equivariant Thom class of

Ṽi for 1 ≤ i ≤ j, and ctop(f
∗Qi)T is the equivariant Thom class of Ṽi for j+1 ≤ i ≤ k.

Moreover i∗eVi

c(f∗Qi ⊗ O(−E))T = c(N eVi/fX∗
)T for 1 ≤ i ≤ j and i∗eVi

c(f∗Qi)T =

c(N eVi/fX∗
)T for j + 1 ≤ i ≤ k.

Proof. Let 1 ≤ i ≤ j. Recall the equivariant continuous nowhere vanishing
section s0 of Hom(L, f∗Q1 ⊕ . . .⊕ f

∗Qk) constructed in the proof of theorem 8. Let
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πi denote the projection from f∗Q1⊕ . . .⊕ f
∗Qk onto the i-th factor. Then πi ◦ s0 is

an equivariant section of f∗Qi ⊗ L
∗. From the construction of s0, it is clear that s0

vanishes precisely along Ṽi. Hence, the equivariant top Chern class of f∗Qi ⊗ L
∗ is

the equivariant Thom class of Ṽi. Since L has the same equivariant first Chern class
as O(E), this proves ctop(f

∗Qi ⊗O(−E))T = i eVi∗
1.

To prove the second part of the lemma for 1 ≤ i ≤ j, apply i∗eVi

to both sides

of the equation in corollary 1. The LHS becomes c(T Ṽi)T c(N eVi/fX∗
)T while the RHS

becomes:

c(f∗NVi/X∗ ⊗O(−E ∩ Ṽi))T c(f
∗TVi)T

∏j
ℓ 6=i c(f

∗NVℓ/X∗)T
×

j∏

ℓ 6=i

c(f∗NVℓ/X∗ ⊗O(−E ∩ Ṽi))T c(O(E ∩ Ṽi))T .

Here we have used the fact that i∗Vℓ
Qℓ = NVℓ/X∗ . By corollary 1, the factor multiplying

i∗eVi

c(f∗Qi⊗O(−E))T = c(f∗NVi/X∗ ⊗O(−E ∩ Ṽi))T in the above expression is equal

to c(T Ṽi)T . We therefore have that i∗eVi

c(f∗Qi ⊗O(−E))T = c(N eVi/fX∗
)T .

Next, let j + 1 ≤ i ≤ k. From the proof of lemma 7 we know that Qi has an
equivariant nowhere zero section in the complement of Vi. Pulling back this section
by f gives an equivariant nowhere zero section in the complement of f−1Vi = Ṽi. It
follows that ctop(f

∗Qi)T must be localized in a neighborhood of Ṽi. By the equivariant
Thom isomorphism, ctop(f

∗Qi)T must be a complex number multiple of the equivari-

ant Thom class of Ṽi. But since f∗ctop(f
∗Qi)T is the Thom class of Vi, this complex

number multiple must be equal to one.

The proof of the second part of the lemma for j + 1 ≤ i ≤ k is analogous to the
proof given above for 1 ≤ i ≤ j.

9. Twisted Polyhedral Complex. Throughout, we assume the following:

(a) X is a smooth projective variety with a holomorphic T ×H action, where T
is a torus and H is a finite abelian group.

(b) Z ⊂ X is a T -invariant smooth subvariety.

(c) V ⊂ XH is a connected component.

(d) W = V ∩ Z is connected. (see remark at the end of this section)

As noted above, i∗WNZ/X splits as N0 ⊕N1, where N0 denotes the sub-bundle of
i∗WNZ/X on which H acts trivially. Furthermore, N1 decomposes as a sum of sub-
bundles ⊕Nλ corresponding to the characters of the H-action on N1. Finally, NW/Z
also splits into character sub-bundles ⊕Nε.

Let E1, . . . , Eℓ, D1, . . . , Dk be smooth normal crossing divisors on X intersecting
Z normally and non-trivially. We label these divisors so that i∗WLDi

→֒ N0 and
i∗WLEj

→֒ N1. Write i∗WLDi
= ∆i and i∗WLEj

= ξj . Write N0 = F0 ⊕
⊕

∆i and
N1 =

⊕
Fλ ⊕

⊕
ξj .

Define a new space X∗ as follows: p : X∗ → W is the fiber bundle with fiber
p−1(w) =

∏
P(Nε ⊕ 1)w × P(F0 ⊕ 1)w×

∏
P(∆i ⊕ 1)w ×

∏
P(Fλ ⊕ 1)w ×

∏
P(ξj ⊕ 1)w
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Clearly X∗ contains a copy of W with normal bundle NW/X . Moreover, as in the
previous section, each of the bundles Nε, F0, Fλ, ∆i, and ξj are the restrictions to W
of global equivariant bundles QNε

, QF0 , QFλ
, Q∆i

and Qξj
. Recall also that the top

Chern classes of these bundles are Poincaré dual to varieties VNε
, VF0 , VFλ

, V∆i
, and

Vξj
. The analogue of Z in X∗ is the intersection locus of the varieties VF0 , VFλ

, V∆i
,

and Vξj
. We will continue to call this intersection locus Z.

We associate a polyhedral complex with integral structure (Σ, NΣ) to X∗ as fol-
lows: Let sε = rk(Nε), r = rk(F0), and let rλ = rk(Fλ). Let wε,a, xb, yλ,c, di, and
ej be an integral basis for NΣ = Z

P
ε
sε+r+

P
λ
rλ+k+ℓ, for a = 1, . . . , sε, b = 1, . . . , r,

c = 1, . . . , rλ, i = 1, . . . , k, and j = 1, . . . , ℓ. Define Σ to be the cone in the first orthant
of the vectorspace NΣ⊗R. Let wε,a, xb, yλ,c, di, and ej be the linear forms on this vec-
torspace which are dual to above basis vectors. Then C[Σ] = C[wε,a, xb, yλ,c, di, ej ].
Let G =

∏
ε Ssε

× Sr ×
∏
λ Srλ

, where Sn denotes the symmetric group in n let-
ters. Then G acts on C[Σ] by permuting the linear forms wε,a, xb, yλ,c in the obvious
manner. Consider the following correspondence:

wε,a ←→ T -Chern roots of QNε

xb ←→ T -Chern roots of QF0

yλ,c ←→ T -Chern roots of QFλ

di ←→ c1(Q∆i
)T

ej ←→ c1(Qξj
)T

Such a correspondence defines a natural map ρ : C[Σ]G → H∗
T (X∗).

Let φ : X̃∗ → X∗ denote the blow-up of X∗ along Z with exceptional divisor E.
Define Σ̃ to be the polyhedral complex obtained from Σ by adding the ray through
the vector

∑
xb+

∑
yλ,c+

∑
di+

∑
ej. As before, let wε,a, xb, yλ,c, di, and ej denote

the linear forms on C[Σ̃] which are dual to vectors wε,a, xb, yλ,c, di, and ej . Let t be
the linear form dual to

∑
xb +

∑
yλ,c +

∑
di +

∑
ej. Then:

C[Σ̃] ∼= C[t, wε,a, xb, yλ,c, di, ej ]/
∏

b,c,λ,i,j

xbyλ,cdiej.

G acts on C[Σ̃] in the obvious manner. Consider the correspondence:

wε,a ←→ T -Chern roots of φ∗QNε

xb ←→ T -Chern roots of φ∗QF0 ⊗O(−E)

yλ,c ←→ T -Chern roots of φ∗QFλ
⊗O(−E)

di ←→ c1(φ
∗Q∆i

⊗O(−E))T

ej ←→ c1(φ
∗Qξj

⊗O(−E))T

By theorem 8, this correspondence induces a well-defined homomorphism ρ : C[Σ̃]G →
H∗
T (X∗).

It is easy to see that ν∗ : C[Σ]G → C[Σ̃]G and similarly ν∗ : C[Σ̃]G → C[Σ]G. We
have the following important lemmas:

Lemma 10.

ρν∗ =φ∗ρ(8)

φ∗ρ =ρν∗(9)
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Proof. For notational convenience, let w̄ε,a, x̄b, . . . denote the T -Chern roots
corresponding to wε,a, xb, . . .. With this notation, ρ(f)(wε,a, xb, . . .) is equal to
f(w̄ε,a, x̄b, . . .). We first prove 8: We have:

φ∗ρ(f) = f(φ∗w̄ε,a, φ
∗x̄b, . . .)

= f(w̄ε,a, x̄b + t̄, . . .) = f(ρ(wε,a), ρ(xb + t), . . .)

= f(ρν∗wε,a, ρν
∗xb, . . .) = ρν∗f

8 allows us to reduce the proof of 9 to the case where f = tn. Let N = codim Z.
For n < N − 1, ν∗t

n = 0 = φ∗ρ(t)
n, so the claim is true in this case. Otherwise,

for n = (ℓ − 1 + j), φ∗ρ(x
n
0 ) = (−1)j−1(iZ)∗sj(NZ/X∗)T = (−1)j−1(iZ)∗i

∗
Zsj(M)T =

(−1)j−1sj(M)T ctop(M)T . Here sj(M)T denotes the j-th equivariant Segre class of
the bundle M = QF0 ⊕

⊕
λQFλ

⊕
⊕
Q∆i

⊕
⊕

j Qξj
. The last equality follows from

lemma 7. Clearly this last expression is equal to ρ(P ) for some universal polynomial
P in the Chern roots of M . We are therefore reduced to proving that ν∗(f) = P . Let

s = rank(NW/Z) and let µ : C̃s+N → Cs+N denote the blow-up of Cs+N along Cs×0,

where we give both spaces the structure of toric varieties, with big torus L. C[Σ̃] and
C[Σ] both correspond to the rings of piece-wise polynomial functions on the fans of

C̃s+N and Cs+N , which are in turn isomorphic to the L-equivariant cohomology rings
of the above spaces. We may view ν∗ as the polyhedral version of the equivariant

pushforward µ∗ : H∗
L(C̃s+N )→ H∗

L(Cs+N ). Then ν∗f = P follows from the fact that
µ∗(c1(E)L)N−1+j = P , where here we evaluate P at the equivariant Chern classes of
the coordinate hyperplanes.

Remark 6. As in section 5.3, the above theorems hold for piece-wise convergent
power series.

10. Blow-up Formula for Orbifold Elliptic Genus. Let X be a smooth
projective variety with a holomorphic G× T action, D =

∑
I αiDi a G× T -invariant

G-normal crossing divisor with coefficients αi < 1, g, h ∈ G a pair of commuting
elements, and Xg,h

γ a component of the common fixed point locus of g and h. Recall

the definition given in section 3 for the orbifold elliptic class of the pair (Xg,h
γ , D).

The goal in this section is to prove the following theorem:

Theorem 9. Let f : X̃ → X be the blow-up along a smooth G × T -invariant
subvariety Z which has normal crossings with respect to the components of D. Fix
a commuting pair g, h ∈ G and a component Xg,h

γ of the fixed point locus Xg,h. Let

{X̃g,h
µ } denote the components of X̃g,h which get mapped to Xg,h

γ under f . Then:

f∗
∑

µ

Ellorb(X̃
g,h
µ , D̃) = Ellorb(X

g,h
γ , D)

Here D̃ is the divisor satisfying f∗(KX +D) = K eX + D̃.

Proof. By the projection formula, it suffices to assume that every component of D
intersects Z with multiplicity 1. Furthermore, by applying deformation to the normal
cone (lemma 6) we may assume that X is the normal cone space X∗ described in
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section 9. Using the notation from section 9, we have the following correspondences:

H ←→ (g, h)

Z ∩Xg,h
γ ←→W

{Dj}j∈Ig,h
γ
←→ {Vξj

}

{Di}i6∈Ig,h
γ
←→ {V∆i

}

Xg,h
γ ←→

⋂

ε

VNε
∩

⋂

λ

VFλ
∩

⋂

j

Vξj

Z ←→ VF0 ∩
⋂

λ

VFλ
∩

⋂

i

V∆i
∩

⋂

j

Vξj
.

Given these identifications, Ellorb(X
g,h
γ , D) =

∏

TX∗

xi

2πiθ(
xi

2πi − z)θ
′(0)

θ( xi

2πi )θ(−z)

∏

λ,QFλ

θ(
xλ,c

2πi )θ(
xλ,c

2πi + λ(g)− λ(h)τ − z)

θ(
xλ,c

2πi − z)θ(
xλ,c

2πi + λ(g)− λ(h)τ)
e2πiλ(h)z×

∏

ε,QNε

θ(
xε,a

2πi )θ(
xε,a

2πi + ε(g)− ε(h)τ − z)

θ(
xε,a

2πi − z)θ(
xε,a

2πi + ε(g)− ε(h)τ)
e2πiε(h)z×

∏

j

θ(
ξj

2πi)θ(
ξj

2πi + λj(g)− λj(h)τ − (−αj + 1)z)θ(−z)

θ(
ξj

2πi − z)θ(
ξj

2πi + λj(g)− λj(h)τ)θ(−(−αj + 1)z)
e−2πiαjλj(h)z×

∏

i

θ( ∆i

2πi − (−αi + 1)z)θ(−z)

θ( ∆i

2πi − z)θ(−(−αi + 1)z)
.

Here xλ,c, xε,a, ξj , and ∆i denote the equivariant Chern roots of the bundles,
QFλ

, QNε
, Qξj

, and Q∆i
, respectively. The above equality follows from lemma 7.

Let f : X̃∗ → X∗ be the blow-up along Z with exceptional divisor E. Before
proceeding further, it will be convenient to set up some new notation. Consider the
collection I = {Nε, F0, Fλ, ξj ,∆i, E}. Let Q̃Nε

= f∗QNε
. For A ∈ I, A 6= Nε, E, let

Q̃A = f∗QA ⊗O(−E). For ease of notation later on, we also define Q̃E = O(E). For

A ∈ I − {E}, we let ṼA denote the proper transform of VA, and we let ṼE simply
equal E.

For A ∈ I−{E} we define, for convenience of notation, λA ∈ R((g, h)) and αA ∈ Q

as follows: For A = Nε, Fλ, ξj , and ∆i, we let λA = ε, λ, λj , and λi, respectively.
Otherwise, we set λA = 0. Next, for A = ξj or ∆i, we let αA = αj or αi. Otherwise,
we set αA = 0.

Let X̃∗
g,h

µ be a connected component of X̃∗
g,h

which gets mapped to Xg,h
γ under

f . This space is the complete intersection of subvarieties ṼA for A in some indexing set
Iµ ⊂ I. For A ∈ Iµ, Q̃A|fX∗

g,h

µ

= NA,µ⊗ λ̃A,µ for some (g, h) character λ̃A,µ and some

(g, h)-trivial bundle NA,µ. More precisely, we may canonically define λ̃E,µ = λA′ , for

some unique character λA′ depending only on µ, and then set λ̃A,µ = λA − λ̃E,µ. We

extend the definition of λ̃A,µ by letting λ̃A,µ = 0 for A 6∈ Iµ.
Finally, we define indices βA as follows: For A = ξj ,∆i, or E, we let βA be the

coefficient of ṼA as a divisor in D̃. Otherwise, we let βA = 0.
Applying corollary 1, lemma 9, and the above definitions, we obtain the following

convenient expression for Ellorb(X̃∗
g,h

µ , D̃):
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f∗
{ ∏

TX∗

xi

2πiθ(
xi

2πi − z)θ
′(0)

θ( xi

2πi )θ(−z)

∏

m,QA,A∈I

θ( am

2πi )θ(−z)
am

2πiθ(
am

2πi − z)θ
′(0)

}
×

∏

ℓ, eQA,A∈I

ãℓ

2πiθ(
ãℓ

2πi + λ̃A,µ(g)− λ̃A,µ(h)τ − (−βA + 1)z)θ′(0)

θ( ãℓ

2πi + λ̃A,µ(g)− λ̃A,µ(h)τ)θ(−(−βA + 1)z)
e2πi(−βA+1)eλA,µz.

Notice by our definition of λ̃A,µ that
∑

(−βA + 1)λ̃A,µ(h) =
∑

(−αA + 1)λA(h).
By this observation and the projection formula, we are therefore reduced to proving
the following formula:

f∗
∑

µ

∏

ℓ, eQA,A∈I

ãℓ

2πiθ(
ãℓ

2πi + λ̃A,µ(g)− λ̃A,µ(h)τ − (−βA + 1)z)θ′(0)

θ( ãℓ

2πi + λ̃A,µ(g)− λ̃A,µ(h)τ)θ(−(−βA + 1)z)
=(10)

∏

m,QA,A∈I−E

am

2πiθ(
am

2πi + λA(g)− λA(h)τ − (−αA + 1)z)θ′(0)

θ( am

2πi + λA(g)− λA(h)τ)θ(−(−αA + 1)z)
.(11)

Naturally, ãℓ = ãℓ(A) denote the equivariant Chern roots of Q̃A and am = am(A)
denote the equivariant Chern roots of QA.

Referring to the notation from section 9 for A = Nε, F0, Fλ,∆k, ξj and i =
1, . . . , rank(A), let us define xA,i ∈ C[Σ] = wε,i, xi, yλ,i, dk, ej , respectively. For A ∈ I

and i = 1, . . . , rank(A) we define x̃A,i ∈ C[Σ̃] similarly. Define F ∈ C[|Σ|] to be the
power series:

F =
∏

i,A∈I−E

xA,i

2πi θ(
xA,i

2πi + λA(g)− λA(h)τ − (−αA + 1)z)θ′(0)

θ(
xA,i

2πi + λA(g)− λA(h)τ)θ(−(−αA + 1)z)
.

Define Fµ ∈ C[|Σ̃|] =

∏

i,A∈I

x̃A,i

2πi θ(
x̃A,i

2πi + λ̃A,µ(g)− λ̃A,µ(h)τ − (−βA + 1)z)θ′(0)

θ(
x̃A,i

2πi + λ̃A,µ(g)− λ̃A,µ(h)τ)θ(−(−βA + 1)z)
.

Clearly F is ρ applied to expression 10 and Fµ is ρ applied to the µ-th summand
in expression 11. By lemma 10, we are reduced to proving ν∗

∑
µ Fµ = F . To do this,

think of (Σ, NΣ) as the polyhedral complex associated to the toric variety CM where

M = dim Σ. Let C̃M be the toric blow-up of CM which corresponds to the polyhedral
subdivision Σ̃ → Σ described in section 9. We may view g and h as elements of
the big torus of CM , i.e., as elements of a finite index sup-lattice of NΣ. Under this
identification, xA,i(g) = λA(g).

The (g, h)-fixed components of C̃M are in one-one correspondence with the fixed

components X̃∗
g,h

µ and in one-one correspondence with subcones Cµ ⊂ Σ̃. These are
the cones of maximal dimension which correspond to affine open sets UCµ

of the form
Ca × (C∗)b, where the characters of the (g, h)-representation Ca are all non-trivial.
For C ⊃ Cµ, let I(C) index the collection of piece-wise linear functions x̃A,i which are
dual to C. Since g and h ∈ NΣ lie inside Cµ, it makes sense to evaluate x̃A,i|C at g and

h. One sees easily in fact that x̃A,i|C(g) = λ̃A,µ(g) and similarly for x̃A,i|C(h). When
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distinguishing between different cones, it will be convenient to denote the collection

{x̃A,i|C}I(C) by {x̃C,j}
|I(C)|
j=1 . With this notation, if x̃C,j = x̃A,i|C , we also define

βj = βA. We define xC,j and αj similarly when C ⊂ Σ.
From this it follows that for C ⊃ Cµ:

Fµ|C =

dimC∏

j=1

x̃C,j

2πi θ(
x̃C,j

2πi + x̃C,j(g)− x̃C,j(h)τ − (−βj + 1)z)θ′(0)

θ(
x̃C,j

2πi + x̃C,j(g)− x̃C,j(h)τ)θ(−(−βj + 1)z)
.

Otherwise, if Cµ is not contained in C, it is easy to see that Fµ|C = 0.
Now let Cγ ⊂ Σ be the cone which corresponds to (X∗)g,hγ . Fix a cone K ⊂ Σ

containing Cγ . Let Σ̃K denote the subdivision of K inside Σ̃. Each cone C ⊂ Σ̃K
with the same dimension as K contains a unique cone Cµ for some µ. Moreover, every

cone Cµ is contained in one such cone C ⊂ Σ̃K . We therefore have that

∑

µ

Fµ|C =
dimK∏

j=1

x̃C,j

2πi θ(
x̃C,j

2πi + x̃C,j(g)− x̃C,j(h)τ − (−βj + 1)z)θ′(0)

θ(
x̃C,j

2πi + x̃C,j(g)− x̃C,j(h)τ)θ(−(−βj + 1)z)
.

To complete the proof, it remains to show that (ν∗
∑
Fµ)|K = F |K . By the

push-forward formula for ν∗, this is equivalent to proving the identity:

∑

C⊂eΣK

dimK∏

j=1

θ(
x̃C,j

2πi + x̃C,j(g)− x̃C,j(h)τ − (−βj + 1)z)θ′(0)

θ(
x̃C,j

2πi + x̃C,j(g)− x̃C,j(h)τ)θ(−(−βj + 1)z)
=

dimK∏

j=1

θ(
xK,j

2πi + xK,j(g)− xK,j(h)τ − (−αj + 1)z)θ′(0)

θ(
xK,j

2πi + xK,j(g)− xK,j(h)τ)θ(−(−αj + 1)z)
.

Here the functions x̃C,j are regarded as linear combinations of the functions xK,j .
The above formula follows from theorem 7 of the preprint [18] or by lemma 8.1 of [7].
This completes the proof.

Remark 7. Note that setting T = 1 in the above series of arguments gives us
Borisov and Libgober’s push-forward formula for the orbifold elliptic genus in [7]. It
is interesting to compare their use of deformation to the normal cone to prove the
non-equivariant push-forward formula to the use given here. In [7], deformation to the
normal cone allows the authors to assume that normal bundle to the blow-up locus is
the restriction of a globally defined holomorphic vectorbundle Q. In this situation, one
has an explicit formula (see [11]) relating the Chern classes of TX, T X̃,Q, and O(E).
Using this formula, Borisov and Libgober are able to compare the pushforward of the
blown-up orbifold elliptic genus to the original orbifold elliptic genus and show that
they are the same by using a residue theorem argument. Here, our use of deformation
to the normal cone is a bit stronger in the sense that we work entirely on the normal
cone space X∗, making direct use of its topological data. On the normal cone space we
are able to explicitly compute the push-forward of the orbifold elliptic genus by using
an analogue of functorial localization, together with a useful theta-function identity.

Now, let Z be a projective Q-Gorenstein variety with log terminal singularities,
and a regular G × T action. Let f : X → Z and g : Y → Z be two equivariant
resolutions of singularities. We assume that the exceptional locus of both resolutions
is a G-normal divisor with simple normal crossings. Define DX so that KX +DX =
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f∗KZ ; define DY similarly. Then the equivariant orbifold elliptic genera of (X,DX)
and (Y,DY ) coincide. Indeed, by the equivariant version of the weak factorization
theorem [1], we may connect X to Y by a sequence of equivariant blow-ups and blow-
downs in such a way that the blow-ups at each intermediate pair (Xi, DXi

) occur
along a smooth base with normal crossings with respect to the components of DXi

.
Moreover, the procedure described in [7] theorem 3.7 to make the intermediate pairs
(Xi, DXi

) G-normal extends to the T -equivariant case. Hence, by the equivariant
change of variables formula, Ellorb(X,DX , G) = Ellorb(Y,DY , G).

We will, however, require a slightly stronger version of the above result for the
purposes of this paper:

Theorem 10. Let f : (X,DX)→ (Y,DY ) be a G×T -equivariant birational mor-
phism between smooth, equivariant, G-normal log terminal pairs (X,DX) and (Y,DY ).
Assume furthermore that f∗(KY + DY ) = KX + DX . Then f∗Ellorb(X,DX , G) =
Ellorb(Y,DY , G).

Proof. The weak factorization theorem allows us to factor f into a sequence of
equivariant blow-ups and blow-downs

X = X0 99K X1 99K · · · 99K Xk = Y

such that for some intermediate index i0 the maps Xi → X are morphisms for i ≤ i0
and the maps Xi → Y are morphisms for i ≥ i0. Moreover, by [7] theorem 3.7,
we may still guarantee that all the intermediate varieties are G-normal with respect
to the appropriate divisors. Note that since f is itself a smooth morphism, we may
conclude that the maps Xi → Y are smooth morphisms for all i.

We now apply induction on k. For k = 1, the theorem is obvious. Otherwise,
consider the intermediate variety X1. By assumption, X1 6= X,Y . Either X 99K X1

is a blow-up or blow-down. Suppose first that X ← X1 is a blow-down. Call this
morphism g. Define D1 so that KX1 +D1 = g∗(KX +DX). Note that if h : X1 → Y
is the morphism f ◦ g, then KX1 +D1 = h∗(KY +DY ). By the change of variables
formula, Ellorb(X,DX , G) = g∗Ellorb(X1, D1, G). Therefore f∗Ellorb(X,DX , G) =
h∗Ellorb(X1, D1, G). But this is equal to Ellorb(Y,DY , G) by the induction hypothesis.

The case in which X → X1 is a blow-down is proved similarly.

11. The Equivariant McKay Correspondence. Here we use the results from
the preceding sections to prove an equivariant analogue of the McKay Correspondence
for the elliptic genus. As a corollary, we will arrive at an equivariant version of the
DMVV formula.

LetX be a smooth projective variety with aG×T action, whereG is a finite group
and T is a compact torus. Let ψ : X → X/G be the quotient morphism. Assume
that X/G has an equivariant crepant resolution V and that ψ∗(KX/G) = KX . Let
F ⊂ X be a fixed component of the G× T -action, and let {P} ⊂ V denote the fixed
components in V which get mapped to ψ(F ). Then:

Theorem 11.

∫

F

Ellorb(X,G)

e(F )
=

∑

P

∫

P

Ell(V )

e(P )
.

Proof. Let Z → V be a sequence of equivariant blow-ups of V so that the
exceptional locus of the resolution π : Z → X/G is a divisor with simple normal
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crossings. Let DZ be the divisor on Z such that KZ + DZ = π∗KX/G. Define Ẑ0

to be the normalization of Z in the function field of X . By Abhyankar’s Lemma,
the induced map µ0 : Ẑ0 → Z is a toroidal morphism of toroidal embeddings. Let
Ẑ be a projective toroidal resolution of singularities of Ẑ0, and define DẐ so that

KẐ + DẐ = µ∗(KZ + DZ), where µ : Ẑ → Z is the obvious map. We may further

assume that Ẑ has a G action, and that the pair (Ẑ,DẐ) is G-normal. (see [2]). We
obtain the following commutative diagram:

Ẑ
µ

−−−−→ Z

φ

y
yπ

X
ψ

−−−−→ X/G

Here, the vertical arrows are resolutions of singularities, and the horizontal arrows
are birational to a quotient by G. It is clear that all the constructions involved
(normalization, blow-up along a T -invariant ideal sheaf) are T -equivariant, and that
consequently the above morphisms are T -equivariant. Since φ∗(KX) = KẐ + DẐ ,

we have that EllTorb(X,G) = φ∗Ellorb(Ẑ,DẐ , G). Let {L} ⊂ Ẑ denote the fixed

components of Ẑ which map to F . By functorial localization:

∫

F

Ellorb(X,G)

e(F )
=

∑

L

∫

L

Ellorb(Ẑ,DẐ , G)

e(L)
.

Now, by theorem 7, µ∗Ellorb(Ẑ,DẐ , G) = Ell(Z,DZ). Let {K} ⊂ Z denote the fixed
components which get mapped to ψ(F ) under the resolution Z → X/G. Clearly {L} =
φ−1F = φ−1ψ−1ψ(F ) = µ−1π−1ψ(F ) = µ−1{K}. Thus, by functorial localization
applied to µ∗, we have:

∑

L

∫

L

Ellorb(Ẑ,DẐ , G)

e(L)
=

∑

K

∫

K

Ell(Z,DZ)

e(K)
.

Finally, since {K} denotes the fixed components of Z which get mapped to {P},
functorial localization applied to Z → V completes the proof.

Remark 8. In case X/G possesses no crepant resolution, the above proof shows

that
∫
F

Ellorb(X,G)
e(F ) =

∑
P

∫
P

Ell(Z,DZ )
e(P ) , where in this formula {P} denotes the fixed

components of Z which get mapped to ψ(F ).

We now discuss some corollaries of the above result. We begin with a proof of

the equivariant DMVV conjecture. Let P
(n)
2 = (P2)

n/Sn denote the nth symmetric
product of the projective plane. The natural group action of T = S1 × S1 on P2

extends to (P2)
n in the obvious manner, and commutes with the action of Sn. The

action of T on P2 also extends to P
[n]
2 , the Hilbert scheme of n points on P2, and the

Hilbert-Chow morphism P
[n]
2 → P

(n)
2 is an equivariant crepant resolution.

Sitting inside P
(n)
2 is the open variety (C2)(n). It has a single T -fixed point p, which

is the image under the quotient morphism of the Sn×T fixed point (0, 0)×...×(0, 0) ∈
(C2)n. The pre-image of (C2)(n) under the Hilbert-Chow morphism is just (C2)[n].
Hence, the pre-image of p under the Hilbert-Chow morphism is simply the collection
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of T -fixed points of (C2)[n]. If (u1, u2) denote the equivariant parameters of the T -
action, let tj = e2πiuj . Then the above theorem implies that:

Ellorb((C
2)n, Sn, t1, t2) = Ell((C2)[n], t1, t2).

Note that the LHS involves equivariant data associated to the single fixed point p,
whereas the RHS involves a sum of equivariant data associated to partitions of n.

For z the complex parameter appearing in the definition of the elliptic class and τ
the lattice parameter used in the definition of the Jacobi theta function, let y = e2πiz

and q = e2πiτ . Viewing the equivariant elliptic indices as formal power series in
the variables q, y, t1, and t2, and applying theorem 3.1 of [15], we have the following
equivariant analogue of the DMVV formula:

Theorem 12. Expand

Ell(C2, t1, t2) = y−1
2∏

i=1

1− yt−1
i

1− t−1
i

∏∞
n=1(1− yt

−1
i qn)(1− y−1tiq

n)
∏∞
n=1(1− t

−1
i qn)(1 − tiqn)

as
∑

m≥0,ℓ,k c(m, ℓ, k)q
myℓtk11 t

k2
2 . Then

∑

n>0

pnEll((C2)[n], t1, t2) =
∏

m≥0,n>0,ℓ,k

1

(1 − pnqmyℓtk11 t
k2
2 )c(nm,ℓ,k)

.

We next discuss the equivariant elliptic genus analogue of the classical McKay
correspondence, which was originally proved in [18]. Let G ⊂ SU(2) be a finite
subgroup. G acts on C2 in the obvious fashion, and commutes with the diagonal
action of T = S1. Let V → C2/G be the crepant resolution of singularities. The
action of T lifts to V , and the fixed components of this action are compact.

Theorem 13. Ellorb(C
2, G, t) = Ell(V, t).

Proof. View C2 as an open subset of P2, with the action of G and T extending to
P2 in the obvious manner. The space P2/G still has only an isolated singularity at the
image of the origin [0 : 0 : 1]. Hence P2/G has an equivariant crepant resolution which
is a compactification of V . The above theorem then follows by letting F = (0, 0) in
theorem 11.

12. Appendix.

Lemma 11. Let f : X → Y be a T -map of smooth compact simply connected
complex manifolds. Let D ⊂ Y be a T -invariant divisor and let Ei be T -invariant
normal crossing divisors on X such that f∗D =

∑
aiEi as Cartier divisors. Then for

any ε-regular neighborhood Uε of D there exist generators ΘT
Ei

for cT1 (Ei) and ΘT
D for

cT1 (D) with the following properties:
(1) ΘT

D has compact support in Uε and ΘT
Ei

have compact support in f−1(Uε).

(2) f∗ΘT
D =

∑
aiΘ

T
Ei

+dT (η) on the level of forms, where η is a T -invariant form
with compact support in Uε.

(3) ΘT
D and ΘT

Ei
represent the extension by zero of the equivariant Thom classes

of the varieties D and Ei

The only real issue above is to ensure that η has compact support in the desired
neighborhood.
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Proof. We first solve this problem in the non-equivariant category. For V any
Cartier divisor, denote by LV the line bundle it induces. Let Uε be a T -invariant
tubular neighborhood of D of radius ε. Outside U ε

2
, the constant function 1 is a

section of LD. Define a metric hfar in this region by hfar = ||1||2 ≡ 1. Let hnear be a
metric inside Uε. Piece the two metrics into a global metric h on LD using a partition
of unity. The first chern class of LD is then represented by the form ΘD = i

2π∂∂ log h.
This form clearly has compact support in Uε.

Let Uεi
be tubular neighborhoods of Ei. Choose εi small enough so that each

of these neighborhoods is contained in f−1Uε. Define metrics hi on Ei in a manner
analogous to the above construction of h. Clearly the forms ΘEi

= i
2π∂∂ log hi have

compact support in Uεi
and represent the first chern classes of LEi

.
We have two natural choices for a metric on f∗LD, namely f∗h and ha1

1 · · ·h
ak

k .
Choose a smooth nonzero function ϕ so that f∗h = ϕha1

1 · · ·h
ak

k . Notice that ϕ ≡ 1
outside f−1Uε. We have:

∂∂ log f∗h = ∂∂ logϕ+
∑

i

ai∂∂ log hi.

But this implies that f∗ΘD =
∑
i aiΘEi

+ i
2π∂∂ logϕ. If we let dc = i

4π (∂ − ∂), we
may write this last equation as:

f∗ΘD =
∑

i

aiΘEi
− ddc logϕ.

The form η = −dc logϕ clearly has compact support in f−1Uε. It remains to
argue that ΘD and ΘEi

represent the Thom classes of D and Ei. It is a standard
fact that these classes are Poincaré duals to their respective divisors. If a divisor
is homologously non-trivial, then clearly its Thom classes coincides with its Poincaré
dual. If a divisor is homologously trivial, then it must follow that the extension by zero
of its Thom class is trivial. Either way this implies that the above classes represent
the extension by zero of the Thom classes of their respective divisors. This completes
the non-equivariant portion of the proof.

By averaging over the group T , we may assume that all the forms above are
T -invariant. For notational simplicity, let us assume that T = S1. Let V be the
vectorfield onX induced by the T -action. Let gi be the functions compactly supported
in f−1Uε which satisfy the moment map equation iVΘEi

= dgi. Similarly, let W be
the vectorfield on Y defined by the T -action and define g so that it satisfies iV ΘD = dg
and has support inside Uε. Note that since f is T -equivariant, iV f

∗ΘD = f∗iWΘD =
f∗dg. We then have d(g ◦ f) =

∑
i aidgi + iV dη =

∑
i aidgi − diV η. Hence g ◦ f =∑

i aigi − iV η. But this implies that:

f∗(ΘD + g) =
∑

i

ai(ΘEi
+ gi) + (d− iV )η.

But this is precisely the relation we wish to in the equivariant cohomology.

Lemma 12. (Excess Intersection Formula) Let X be a smooth compact va-
riety with irreducible normal crossing divisors D1, . . . , Dk. For I ⊂ {1, . . . , k} denote
by XI,j the jth connected component of ∩IDi and by ΦI,j its Thom class. Fix irre-
ducible subvarieties XI1,j1 and XI2,j2 . For I0 = I1 ∪ I2, let XI0,j be the irreducible
components of XI1,j1 ∩XI2,j2 . Then:
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ΦI1,j1 ∧ ΦI2,j2 =
∑

I0,j

ΦI0,j
∏

I1∩I2

Φi.

Proof. Let NI,j be tubular neighborhoods of XI,j which are disjoint for each
indexing set I and which satisfy NI,j ⊂ NI′,j′ for XI,j ⊂ XI′,j′ . If we choose Φi to
have compact support in a sufficiently small tubular neighborhood of Di, then

∏
I Φi

will have compact support in
∐
j NI,j . Moreover, the extension by zero of (

∏
I Φi)|NI,j

will represent the Thom class of XI,j . We may also ensure that ΦI1,j1 ∧ ΦI2,j2 has
compact support in

∐
j NI0,j . Thus:

ΦI1,j1 ∧ ΦI2,j2 =
∑

I0,j

( ∏

I1

Φi
∏

I2

Φi
)
|NI0,j

=
∑

I0,j

( ∏

I0

Φi
∏

I1∩I2

Φi
)
|NI0,j

=

∑

I0,j

( ∏

I0

Φi
)
|NI0,j

∏

I1∩I2

Φi.

This yields the desired formula.

Remark 9. Note that the above proof clearly extends to the equivariant category.
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