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0. Introduction. Suppose that M is a compact Riemannian manifold. The

Laplace operator ∆ is given in local coordinates by ∆f = g−1/2 ∂
∂xi

(
g1/2gij ∂f

∂xj

)
, where

gij denotes the metric tensor and g = det(gij). It follows from the compactness of M
and the theory of elliptic partial differential equations that ∆ has pure point spectrum.
This means that L2M admits an orthonormal basis consisting of eigenfunctions φi of
∆ with associated eigenvalues λi, that is ∆φi = −λiφi. There have been many works
concerning the eigenvalues and their relationship to the geometry of the manifold.
These studies pertain to upper and lower bounds for eigenvalues and asymptotics
of eigenvalues. The research concerning the eigenfunctions themselves is less highly
developed.

The present paper constitutes an exposition of some topics of interest in current
research about eigenfunctions. One source of inspiration is the mathematical physics
of quantum chaos, which is concerned with the quantization of classically ergodic
systems. The first two sections of the paper discuss concentration properties of eigen-
functions. Concentration is measured both through bounds of the supremum norm
and via weak limits of the associated densities |φi|2dvol, as i → ∞. Theorem 2.3
is a fundamental result concerning the weak limits of these densities on manifolds
with ergodic geodesic flow. This theorem of quantum ergodicity has been studied
extensively by several mathematicians. Our third section concerns the nodal sets of
eigenfunctions. The main focus is upon the conjecture of Yau concerning the Haus-
dorff measure of the nodal sets. We include some motivating ideas which may be
absent from the more technical presentations appearing in the published record.

This article was solicited by the editors for the memorial volume dedicated to
S. S. Chern. It may therefore be appropriate to mention that the author received his
doctorate in 1974 under the direction of Professor Chern. The thesis consisted of vari-
ous results about Chern Simons invariants. However, Professor Chern encouraged his
student to learn about other topics of mathematical research. These topics included
the study of eigenvalues and eigenfunctions of the Laplace operator for Riemannian
manifolds.

1. Bounds for the Supremum Norm of Eigenfunctions. Let M be a com-
pact Riemannian manifold and ∆ its Laplacian acting on functions. Suppose that
φ is an eigenfunction of −∆ with eigenvalue λ 6= 0, ∆φ = −λφ. If one scales the
metric by gij → λgij , an elliptic equation with bounded coefficients is obtained. Also,
a geodesic ball of radius cλ−1/2 scales to a ball of radius c. Elementary local elliptic
theory shows that the L∞ norm of φ is bounded by its L2 norm relative to the scaled
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metric. Rescaling back to the original problem yields the estimate

(1.1) ‖φ‖∞ ≤ c1 λn/4‖φ‖2
where n denotes the dimension of M . Elementary examples using exponential func-
tions show that this is the best estimate possible using local considerations only.

Remarkably, Hörmander [16] proved that for eigenfunctions on compact mani-
folds, one has

(1.2) ‖φ‖∞ ≤ c2 λ(n−1)/4 ‖φ‖2.

The constant c2 cannot be scale invariant. In Hörmander’s proof, one constructs
a parametrix for the fundamental solution of the wave equation. Consequently, c2

depends upon cn derivatives of the metric. The paper [16] represents the beginning
of the local theory of Fourier Integral Operators. One observes that (n − 1)/4 is
the optimal power of λ. In fact, rotationally symmetric spherical harmonics on Sn

illustrate the sharpness of (1.2).
Besides their intrinsic interest these estimates are closely related to the multiplic-

ity of eigenvalues. Suppose that Eλ denotes the eigenspace of −∆ and mλ = dim Eλ.
The following elementary consequence of (1.2) is well–known:

Lemma 1.1. mλ ≤ c3 λ(n−1)/2.

Proof. Consider the Bergman kernel K(x, y) for orthogonal projection onto the

eigenspace Eλ. If φi is any orthonormal basis for Eλ, then K(x, y) =
mλ∑
i=1

φi(x) φi(y).

Since mλ =
∫

M
K(x, x)dvolM (x), there exists at least one point x0 ∈ M , where mλ ≤

K(x0, x0)volM . We now choose a special orthonormal basis for Eλ. Let ro : Eλ → R
denote the evaluation map at x0, ro(f) = f(x0). If φi ∈ Ker(ro), for all i ≥ 2, then
K(x0, x0) = φ2

1(x0) ≤ c2
2 λ(n−1)/2, by (1.2).

In [13], the author investigated the geometric dependence of the constant c2.
Recall that the injectivity radius of M is the radius of the largest ball where exp :
TpM → M is guaranteed to be a diffeomorphism, for all p ∈ M . One needs a lower
bound for the injectivity radius and an upper bound on the absolute value of the
sectional curvature. The sectional curvature depends upon two derivatives of the
metric only while Hörmander’s proof of (1.2) requires cn derivatives of the metric.
The complete proof of the next result appears in reference [13]:

Theorem 1.2. Let M be a compact Riemannian manifold and ∆ its Laplacian
acting on functions. Suppose that the injectivity radius of M is bounded below by c4

and that the absolute value of the sectional curvature of M is bounded above by c5. If
∆φ = −λφ and λ 6= 0, then ‖φ‖∞ ≤ c2 λ(n−1)/4 ‖φ‖2. The constant c2 depends only
upon c4, c5, and the dimension n of M . Moreover, the multiplicity mλ ≤ c3 λ(n−1)/2,
where c3 depends only upon c2 and an upper bound for the volume of M .

Proof. (Sketch) One develops the method of Bessel potentials used by Sogge [21].
Sogge proved (1.2) and more refined Lp estimates. Although Sogge did not consider
the issue of geometric dependence, his method is more adaptable than the approach
of Hörmander.

The Bessel potential Bz(x) is the resolvent kernel for (∆+z)−1, where ∆ denotes
the Laplacian of Rn. The rotational symmetry of the Euclidean metric implies that
Bz(x) = Bz(r), where r = |x|. If r 6= 0, one clearly has B′′

z +(n−1)r−1B′
z + zBz = 0.
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Standard results from ordinary differential equations give asymptotics for Bz, both
for r ↓ 0 and r ↑ ∞.

The rotational symmetry of the Bessel potential allows one to transplant the
potential to a Riemannian manifold as a function of the geodesic distance, then
∆f(r) = f ′′(r) + θ−1 ∂θ

∂r f ′(r), where θ(r, w) denotes the volume element in geodesic
polar coordinates. For r ≤ min(c4, π/

√
c5), comparison theory [2] gives the bounds√

c3(n − 1) cot(
√

c3r) ≤ θ−1 ∂θ/∂r ≤ √
c3(n − 1)coth(

√
c3r). These bounds permit

one to estimate the difference between the transplant of the Bessel potential and the
resolvent kernel (∆ + z)−1 of M .

Since M is compact, ‖φ‖∞ is assumed at some point p ∈ M . Integration by parts
gives

|φ(p)| ≤
√

λ
∣∣
∫

M

ηφBz

∣∣∣∣+
∣∣
∫

M

φR(x,D)Bz

∣∣∣∣
where η is a cut–off function and R(x,D) is a first order operator supported in a
geodesic ball centered at p. One applies this formula with z = λ + i

√
λ. The proof

proceeds through a detailed analysis using the asymptotics of the Bessel potentials.

We now define exceptional sequences of eigenfunctions to be sequences φi such
that ‖φi‖∞ ≥ c λε

i‖φi‖2, for some ε > 0. The rotationally symmetric spherical har-
monics concentrate on the north and south poles of Sn, with the maximal value
ε = (n − 1)/4. However, it is also interesting to consider geometric reasons why in-
termediate values of 0 < ε < (n − 1)/4 may occur. The author’s interest in these
questions was first aroused by the following example [4]:

Example 1.3. (Bourgain) Let M = S1 × S1 be the flat torus. The flat metric
may be perturbed to yield a sequence φk of eigenfunctions satisfying the following
conditions:

a. λk = k2 + 0(k)
b. ‖φk‖∞ ≥ cλ

1/8
k ‖φk‖2

In [13], we placed the above example within the more general framework of man-
ifolds admitting isometric circle actions. Note that the perturbations constructed by
Bourgain exhibit rotational symmetry. Toth and Zelditch [22] study such concentra-
tion phenomena for manifolds which are quantum completely integrable. This entails
the existence of n−1 first order pseudodifferential operators which commute with the
Laplacian. Bourgain’s example thus fits well into two different but related general
schemes.

Suppose that M is any compact manifold admitting an isometric S1 action. If x
lies in the quotient space M/S1, let 2πf(x) be the length of the S1 orbit lying over
x. Define V (x) = f−2(x). If V (x) assumes a unique non–degenerate minimum at p ∈
M/S1, then in normal coordinates near p, we have V (x) = Vmin +

n−1∑
i=1

α2
i x

2
i +O(|x|3),

where α2
i are the eigenvalues of the Hessian of V/2 at p, and α2

i > 0 by the non–
degeneracy hypothesis. Note that a unique nondegenerate minimum may always be
achieved by perturbation of the metric. The complete proof of the next result may
be found in [13]:

Theorem 1.4. Let M be a compact Riemannian manifold with an isometric
circle action. Assume that the length of each S1 orbit achieves a unique nondegenerate
maximum. Then there exists a sequence of eigenfunctions φk, with eigenvalues λk,
satisfying:
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a. λk = k2Vmin + k(
n−1∑
i=1

αi) + o(k)

b. ‖φk‖∞ ≥ c λ
n−1

8
k ‖φk‖2

Proof. (Sketch) Break L2M = ⊕L2
kM into characters of the circle action. The

exceptional sequence is formed by choosing the ground states φk in each L2
kM . After

separation of variables, the problem is localized near the maximal orbit. The analysis
there is modeled upon the simple harmonic oscillator of quantum mechanics:

−Dxφk + k2(V (x)− Vmin)φk = (λk − k2Vmin)φk

V (x)− Vmin =
∑

α2
i x

2
i + O(|x|3)

Dx denotes a second order elliptic operator acting transversely to the circle orbits.
From a geometric viewpoint, the basic model is the concentration of eigenfunctions
on the equator of S2.

In light of the above results, it is natural to ask for which compact Riemannian
manifolds one can perturb the metric to yield a sequence of eigenfunctions satisfy-
ing ‖φi‖∞ ≥ cλε

i ‖φi‖2, for some ε > 0. Perhaps such perturbation is possible for
all manifolds of dimension at least two. In [16], Sarnak conjectured that compact
Riemann surfaces of constant negative curvature are exceptional. Note that the isom-
etry group is finite for such Riemann surfaces, so that Theorem 1.4 does not apply.
More generally, Sarnak conjectures the following: Let M be a compact Riemann sur-
face with a metric of negative curvature, then all eigenfunctions φ satisfy a bound
‖φ‖∞ ≤ cελ

ε ‖φ‖2, for all ε > 0. If true, Sarnak’s conjecture is very deep, because it
has intimate connections with the Lindelöf hypothesis in number theory.

Rudnick and Sarnak [18] constructed exceptional sequences of eigenfunction on
hyperbolic three manifolds. These sequences, satisfying ‖φj‖∞ ≥ c λ

1/4
j ‖φ‖2, com-

plement the general upper bound ‖φj‖∞ ≤ cλ
1/2
j ‖φ‖2 of Hörmander described below

(1.2). Let F (x), x = (x1, x2, x3, x4) be an integral quadratic form of signature (3,1).
Then V = {x|F (x) = −1} is a two sheeted hyperboloid giving a model for H3. Sup-
pose that Γ = O(F,Z) denotes the group of integral 4 × 4 matrices preserving F .
Assume F to be anisotropic over the rationals, that is F (x) 6= 0 for non–zero x ∈ R4.
The examples of Rudnick and Sarnak are given as compact quotients M = Γ \ H3.
The proof rests upon Siegel’s method of theta lifts from a Riemann surface. It would
be very interesting to place these results in a more general geometric framework.

2. Quantum Unique Ergodicity. Suppose that M is a compact Riemannian
manifold. The Laplacian ∆ of M has pure point spectrum. Let φk denote an or-
thonormal basis of L2M consisting of eigenfunctions with eigenvalues λk, that is
∆φk = −λkφk. The unit sphere bundle of the cotangent bundle is denoted by S1M .
Using the Friedrichs quantization, one associates to each function a ∈ C∞(S1M) the
pseudodifferential operator A = OpF (a) of order zero. This particular quantization
has the property that if a ≥ 0, then A ≥ 0 as on operator on L2M . If φk is on
eigenfunction of ∆, then we define a measure µk by µk(a) = 〈OpF (a)φk, φk〉.

The measures µk are related in purpose to the supremum bounds of our pre-
vious section. These are two different methods for characterizing the concentration
properties of eigenfunctions. For the manifolds of Theorem 1.4, which admit non–
degenerate circle actions, there are eigenfunctions for which the µk concentrate on
the unique maximal geodesic. The simplest example is provided by the equator of
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the standard sphere S2. On the other hand, sinusoidal wave functions on the circle
or flat torus exhibit no particular concentration.

Consider now the weak limits of the µk as k → ∞. One possible weak limit is
the normalized Liouville measure dw on S1M . Other limits may occur such as the
singular measure concentrated on unit tangents to the equator in the two sphere. In
general, one has

Lemma 2.1. Any weak limit of the µk is invariant under the geodesic flow on
S1M .

Proof. Let Gt : S1M → S1M denote the geodesic flow. If At =
exp(−it

√−∆)Aexp(it
√−∆), then Egorov’s theorem states that the difference

At − OpF (a ◦ Gt) is a pseudodifferential operator of order −1. Consequently,
limk→∞ 〈OpF (a◦Gt)φk, φk 〉 = limk→∞〈OpF (a)φk, φk 〉 and the result follows readily.

Moreover, the µk always converge on average to the Liouville measure. For each
λ > 0, let N(λ) denote the number of eigenvalues of ∆ that are less than λ. We have

Lemma 2.2. limλ→∞ 1
N(λ)

∑
λk≤λ

∫
adµk =

∫
adω.

Proof. As t ↓ 0, consider the heat equation asymptotics

∑

k

e−tλk〈Aφk, φk〉 = Tr(Aet∆) ∼ Tr(et∆)
∫

M

a dω.

Lemma 2.2 now follows from the Tauberian theorem of Karamata.

The preceding lemmas hold for any compact Riemannian manifold. No special
hypotheses are needed concerning the geodesic flow. However, if the geodesic flow
is ergodic there is a remarkable result. Theorem 2.3 below was first announced by
Shnirelman [20]. Zelditch [23] subsequently published a proof for compact Riemann
surfaces of constant negative curvature. A complete proof in the general case first
appeared in the paper by Colin de Verdière [8]. For information concerning subsequent
developments, the reader in referred to the survey article [24] and the references given
there.

Theorem 2.3. Let M be a compact Riemannian manifold. Assume that the
geodesic flow on S1M is ergodic. Suppose that φk is an orthonomal basis, for L2M ,
consisting of eigenfunctions on ∆. Then for a subsequence φki

, having density one,

lim
i→∞

〈Aφki
, φki

〉 =
∫

S1M

a dω.

Proof. Let aT (x) = 1
T

∫ T

0
(a ◦Gt)(x)dt. Since the geodesic flow is ergodic, we use

the ergodic theorem to conclude that limT→∞ aT = a ≡ ∫
S1M

a dω. If N(λ) denotes
the number of eigenvalues less than λ, then by Lemmas 2.1 and 2.2,

1
N(λ)

∑

λk≤λ

|µk(a)− a| ≤ 1
N(λ)

∑

λk≤λ

|µk(a)− µk(aT )|

+
1

N(λ)

∑

λk≤λ

|µk(aT )− µk(a)| ≤ ε + ε.
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For the additional details involving elementary number theory, the reader is referred
to [8].

The problem of quantum unique ergodicity is concerned with the sharpness of
Theorem 2.3. If the conclusion of the theorem holds for all subsequences of eigenfunc-
tions, then quantum unique ergodicity is said to hold. Otherwise there exist charac-
teristic sequences of eigenfunctions where the weak limit of the associated measures
µk is not the Liouville measure. The simplest candidate for such a limiting measure
arises from concentration along a simple closed geodesic. Separation of variables pro-
duces germs of eigenfunctions which concentrate along an isolated hyperbolic geodesic.
However, it is not known if a sequence of such germs can occur in a closed hyperbolic
manifold. There do exist surfaces of revolution containing hyperbolic geodesics and
exhibiting characteristic sequences of eigenfunctions. However, the rotational sym-
metry is incompatible with ergodic geodesic flow. So the problem of quantum unique
ergodicity is global in nature. It is conceivable that quantum unique ergodicity may
hold on all manifolds with ergodic geodesic flow. This would constitute a dramatic
improvement of Theorem 2.3.

In [14], the author approached the problem of quantum unique ergodicity by
broadening the perspective. The basic idea is to show that Theorem 2.3 and its
proof extend to a more general situation. For this generalized version of the theorem,
exceptional sequences do occur on manifolds with ergodic geodesic flow. We begin
with

Definition 2.4. An orthonormal basis φk of L2M consists of packets of eigen-
functions if there exists a sequence of spectral projectors Ek for ∆, supported on
intervals of length at most δ > 0, so that φk = Ekφk. Here δ > 0 is independent of k.

By modifying the proof of Theorem 2.3, due to Colin de Verdière, we deduce

Theorem 2.5. Let M be a compact Riemannian manifold. Assume that the
geodesic flow on S1M is ergodic. Suppose that φk is an orthonomal basis for L2M ,
consisting of packets of eigenfunctions. Then, for a subsequence φki , having density
one,

lim
i→∞

〈Aφki , φki〉 =
∫

S1M

a dω.

Theorem 2.5 is sharp. Namely, there exist surfaces supporting characteristic
sequences of eigenfunction packets whose weak limits are different from the Liouville
measure. The examples constructed in [14] are obtained by truncating manifolds of
negative sectional curvature and finite volume. One attaches these together using long
thin cylinders with curvature zero. A method of Burns and Gerber [7] is applied to
show that the geodesic flow is ergodic. Quasimodes are constructed which concentrate
microlocally on the transverse part of the cylinders. The eigenfunction packets are
constructed by projecting the quasimodes back onto an interval of length δ and using
the spectral theorem to show that the projection is non–trivial. Recall that a function
w is an ε-accurate quasimode if there exists a real number r, so that ‖(∆ + r)w‖2 ≤
ε‖w‖2.

Consider a cylinder [−L,L] × S1, where S1 has length 2πα. Choose a cut–off
function η ∈ C∞0 [−L,L] so that η(r) = 1 for r ∈ [−L+1, L−1]. the desired quasimodes
are simply given by wk(r, θ) = η(r) exp(ikθ/α) with rk = k2/α2. Given ε > 0, if L
is sufficiently large, then wk is ε-accurate. The quasimodes may be normalized by
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setting uk = wk/‖wk‖. To show the microlocal concentration, we define a zero’th
order pseudodifferential operator A = (−∆ + 1)−1η(r) ∂2

∂r2 . The average value of
the symbol of A is non–zero but (Auk, uk) → 0 as k → ∞. Finally, let Ek denote
the spectral projector onto the interval [rk − δ/2, rk + δ/2]. For small εδ−1, the
Ekuk/‖Ekuk‖2 are the desired eigenfunction packets.

Given δ > 0, we may construct manifolds with vol M = 1 and such that the
eigenvalues of the eigenfunction packets are concentrated on a interval of length δ.
For surfaces, Weyl’s formula gives N(λ) ∼ c(vol M)λ. So the average level spac-
ing of the eigenvalues is normalized to c−1. This suggests that the above examples
may yield characteristic sequences of individual eigenfunctions. Thomas Spencer and
Zelditch [25] have observed that it suffices to establish a uniform bound for the num-
ber of eigenfunctions appearing in each packet. This seems difficult since the best
general estimate for the multiplicity is cλn−1/2, due to Hörmander [16]. Perhaps the
estimate could be dramatically improved for manifolds with ergodic flow, or at least
in these specific examples. In another direction, Burq and Zworski [6] showed that
individual eigenfunctions cannot concentrate solely in the cylindrical part of the ex-
amples described above. Their results indicate that the above method of constructing
quasimodes is the best possible.

Sarnak [19] conjectures that quantum unique ergodicity holds on all manifolds
of negative sectional curvature. It is classical that negative sectional curvature im-
plies ergodic geodesic flow. Although the case of variable negative curvature seems
very open, there has been dramatic progress in the case of arithmetic manifolds hav-
ing constant negative curvature. One assumes that the orthonormal bases of L2M
are joint eigenfunctions of the Laplacian and of the Hecke operators. Rudnick and
Sarnak [18] showed that scarring cannot occur along individual closed geodesics. Sub-
sequently, Bourgain and Lindenstrauss [3 ] established positive entropy of arithmetic
quantum limits. Building upon these previous results Lindenstrauss [17] proved quan-
tum unique ergodicity in the case of surfaces.

3. Nodal Sets of Eigenfunctions. Suppose that M is a connected compact
Riemannian manifold with C∞ Riemannian metric. Let φ be a real eigenfunction
of the Laplacian ∆, associated to the metric, with eigenvalue λ, ∆φ = −λφ. If
the metric and manifold were real analytic, then analytic hypoellipticity would yield
unique continuation for the eigenfunctions of φ. Remarkably, the work of Aronzajn [1
] and Cordes [9], shows that even for C∞ metrics, the eigenfunction φ never vanishes
to infinite order.

The nodal set N is defined to be the set of points in M where φ vanishes. Its
singular part S is the subset where both φ and its gradient ∇φ vanish. If M is two
dimensional, the singular set consists of a finite number of points. Near each singular
point, the nodal set is modeled upon the nodal set of an elementary harmonic function
Re(zk). If n = dim M > 2 there is no simple structure theorem for N and S. However,
the unique continuation theorem gives some estimates for the Hausdorff measures H:

Lemma 3.1. For all ε > 0, (i) Hn−1+εN = 0 and (ii) Hn−2+εS = 0.

Proof. (i) Define Nk =
{
x|φ(x) = ∇φ(x) = ... = ∇k−1φ(x) = 0 and ∇kφ(x) 6= 0

}
,

where k ≥ 1. If x ∈ Nk, then there exists locally g = φiii2...ik−1 with g(x) = 0 and
∇g(x) 6= 0. One has a neighborhood Ux with Ux ∩Nk contained in the non–singular
zero set of g. Choose a countable subcover of M .

(ii) Define Sk =
{
x|φ(x) = ∇φ(x) = · · · = ∇k−1φ(x) = 0 and ∇kφ(x) 6= 0

}
,

where k ≥ 2. By rotation of normal coordinates centered at x ∈ Sk, we may as-
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sume there exists g1 = φiii2...ik−2j defined locally with (g1)j(x) 6= 0. Since φ is an
eigenfunction of ∆, there must then exist g2 = φiii2...ik−2` with (g2)`(x) 6= 0 and
` 6= j. It follows that Sk is locally contained in the intersection of two transverse
submanifolds.

The next result is a prerequisite for the formulation of Yau’s conjecture about the
nodal set:

Lemma 3.2. For each fixed λ, Hn−1N is finite.

Proof. By part (ii) of Lemma 3.1, it suffices to prove that Hn−1(N − S) is
finite. Since φ never vanishes to infinite order, the Malgrange preparation theorem
shows that N coincides locally with the zero set of a generalized polynomial P =

xp
n−

p−1∑
i=1

ri(x1, . . . , xn−1)xi
n, where ri are smooth functions vanishing at the origin. If

B is a hyperplane through the origin, then let A = {x ∈ N − S|πx : Tx(N − S) → B
satisfies |πx| > ε > 0}. Fix ε > 0 and choose a finite collection Bi, 1 ≤ i ≤ k, of

hyperplanes so that N − S ⊂
k⋃

i=1

Ai. Since the Malgrange preparation holds in a

generic coordinate system, we have Hn−1
loc (N − S) ≤ c k pε−1. Now choose a finite

subcover of the original compact manifold M .

Yau conjectures that for C∞ Riemannian manifolds c1

√
λ ≤ Hn−1N ≤ c2

√
λ,

where the constants c1 and c2 depend upon the Riemannian manifold M . This was
proved by the author and Charles Fefferman [12] in the real analytic case. Some of
the intermediate results proved there are also valid in the C∞ category.

A crucial ingredient in the proofs are refined Carleman inequalities. These in-
equalities are developed from Aronzajn’s work [1], but careful attention is paid to
dependence upon the parameter λ in the eigenvalue equation ∆φ = −λφ. In the
proposition below (r, t) are geodesic spherical coordinates about a point and r̄ is the
geodesic distance for a conformally changed metric.

Proposition 3.3. Suppose that u ∈ C∞0 (M) has support in δ/2 < r < h, where
h < h0 is suitably small. Assume β > a1

√
λ + a2 with sufficiently large constants a1

and a2. Then

∫∫
r̄2(2−β)|(∆ + λ)u|2r−1dr dt ≥

c1β
2

∫∫
r̄2−2βu2r−1dr dt + c2δβ

2

∫∫
r̄−1−2βu2r−1dr dt.

To illustrate the utility of the Carleman inequality, we use it to show that the set
where φ vanishes to infinite order is open. A connectedness argument then reveals
that this set is empty. Let η be a cut–off function satisfying η ≡ 1 in δ < r < h/2.
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Substitute u = ηφ into the Carleman inequality. Then
∫∫

{h/2<r<h}

r̄2(2−β)|(∆ + λ)u|2r−1dr dt +

∫∫

{δ/2<r<δ}

r̄2(2−β)|(∆ + λ)u|2r−1dr dt ≥ c1β
2

∫∫

{h/4<r<h/2}

r̄2−2βφ2r−1dr dt.

If φ vanishes to infinite order at the origin, we may let δ → 0, to yield
∫∫

{h/2<r<h}

r̄2(2−β)|(∆ + λ)u|2r−1dr dt ≥ c1β
2

∫∫

{h/4<r<h/2}

r̄2−2βφ2r−1dr dt.

Unless φ vanishes on a neighborhood of 0, we obtain a contradiction when β →∞.
A more careful argument along the same lines yields a local alternative. If an

eigenfunction vanishes to high order at a point, then either the eigenvalue λ is large
or the eigenfunction grows rapidly on concentric balls. The need for the second
condition is apparent from consideration of harmonic polynomials vanishing to high
order at the origin of Rn.

Lemma 3.4. Let β > a1

√
λ + a2 and β > a3

log
(

max
r≤h

|φ|/ max
h/10<r<h/5

|φ|
)

. Then

(i) max
r≤δ

|φ| ≥ (c3δ)d1β max
h/10≤r≤h/5

|φ|
(ii) If |φ| ≤ 1 in r ≤ h and max

r≤h/5
|φ| ≥ exp(−d2

√
λ− c4), then

max
r≤h/10

|φ| ≥ exp(−d3

√
λ− c5)

The example of harmonic polynomials again shows that local methods alone will
not establish the next theorem. However, the global argument needed is of an ele-
mentary nature. Spherical harmonics on Sn vanish to order c

√
λ. This illustrates the

sharpness of

Theorem 3.5. If M is compact and ∆φ = −λφ, then φ vanishes to at most
order c

√
λ.

Proof. (Sketch) We normalize ‖φ‖∞ = 1 and choose x0 with φ(x0) = 1. For any
x ∈ M , join x0 to x by a curve and subdivide to obtain points x0, x1, x2, ..., xl = x,
with xi+1 ∈ B(xi, h/10), a ball of radius h/10 centered at xi. Lemma 3.4, part(ii),
and induction imply that

max
B(xi,h/10)

|φ| ≥ exp(−di

√
λ− ei).

This argument uses a chain of overlapping balls. We now apply Lemma 3.4, part(i),
with β = dl

√
λ + el.
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The results cited above pertain primarily to the upper bound Hn−1N < c2

√
λ in

Yau’s conjecture. For the lower bound Hn−1N > c1

√
λ, a prerequisite is the existence

of sufficiently many nodal points. One may invoke

Lemma 3.6. If ∆φ = −λφ, then φ vanishes at some point of each ball having
radius at most cλ−1/2.

Proof. Suppose that ψ denotes the first Dirichlet eigenfunction of B(p, cλ−1/2). If
φ is positive on this ball, then the ratio g = ψ/φ assumes an interior maximum. At this
interior maximum point 0 = gi = φ−1(ψiφ−ψφi) and 0 ≥ ∆g = φ−2(∆ψφ−ψ∆φ) ≥
φ−2(−2−1λψφ+λψφ) > 0, for c sufficiently large. The result follows by contradiction
to the hypothesis that φ is positive.

If n = 2, it follows easily from the lemma that H1N > c2

√
λ. This result is due

to Brüning [5]. Recall that for surfaces S is a finite set and N − S is a smooth curve.
Near each point of S, the nodal set has the same structure as Re(zk) = 0, for some
k. Closed loops inside B(p, aλ−1/2) are foreclosed by the monotonicity of Dirichlet
eigenvalues, when a is sufficiently small. Such arguments fail when n > 2 and the
conjecture Hn−1N > c2

√
λ seems very difficult when M is only smooth.

Yau’s conjecture was proved for real analytic metrics in [10]:

Theorem 3.7. If M and its metric are real analytic, then c1

√
λ ≤ Hn−1N ≤

c2

√
λ.

Proof. (Sketch) The motivating idea is that the eigenfunction φ behaves in many
respects like a polynomial of order c3

√
λ. Using the proof of analytic hypoellipticity

one continues φ analytically from a coordinate chart |x| < 1 in Rn to a complex ball
|z| < 2 in Cn and establishes the estimate

max
|z|<1

|φ(z)| ≤ ec4
√

λ max
|x|<2

|φ(x)|.

Combining this with the method of Carleman inequalities gives

(3.8) max
|z|<1

|φ(z)| ≤ ec5
√

λ max
|x|<1/5

|φ(x)|.

In one complex variable, Jensen’s lemma bounds the number of zeroes in terms of the
growth. The upper bound Hn−1N ≤ c2

√
λ follows from the one variable result and

an integral geometry argument.
The lower bound Hn−1N ≥ c1

√
λ uses Lemma 3.6 and one obtains a family of

pairwise disjoint balls Bν = B(xν , d/
√

λ) covering a fixed portion of M . It is shown
that Hn−1(Bν∩N) ≥ d1λ

−(n−1)/2 for at least half of these balls. By the isoperimetric
inequality, one need only show that the measure B+

ν of the set where φ is positive
is commensurable to its complement B−

ν . This follows eventually from the growth
estimate (3.8) and the weak type (1,1) inequality for the Hilbert transform.

Zelditch [24] has suggested that an asymptotic formula H1N ∼ c
√

λ may be
obtained on real analytic manifolds with ergodic geodesic flow. Eigenfunctions of the
form sin(k1x1) sin(k2x2)... sin(knxn) on Tn = S1×S1× ...×S1 show that asymptotics
are precluded for general real analytic Riemannian manifolds.

For smooth Riemannian manifolds, Hardt and Simon [15] establish the upper
bound Hn−1N ≤ c3 exp(c4

√
λ log λ). This provides a quantitative estimate in terms

of λ, but this is far from the conjecture of Yau. If n = 2, then H1N ≤ c5λ
3/4,

according to [11]. An alternative proof of this result was subsequently given by Dong
[10].
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