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Abstract

The aim of this work is to present new approach to study weighted pseudo almost
periodic and automorphic functions using the measure theory. We present a new con-
cept of weighted ergodic functions which is more general than the classical one. Then
we establish many interesting results on the functional space of such functions. We
study the existence and uniqueness of (µ,ν)-pseudo almost periodic and automorphic
solutions of class r for some neutral partial functional differential equations in a Ba-
nach space when the delay is distributed using the spectral decomposition of the phase
space developed in Adimy and co-authors. Here we assume that the undelayed part is
not necessarily densely defined and satisfies the well-known Hille-Yosida condition,
the delayed part are assumed to be pseudo almost periodic with respect to the first
argument and Lipschitz continuous with respect to the second argument.
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1 Introduction

In this work, we present a new approach dealing with weighted pseudo almost periodic
functions and their applications in evolution equations and partial functional differential
equations. Here we use the measure theory to define an ergodic function and we investigate
many interesting properties of such functions. Weighted pseudo almost periodic functions
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started recently and becomes an interesting field in dynamical systems. The study of exis-
tence of almost periodic, asymptotically almost periodic, almost automorphic, asymptoti-
cally almost automorphic and pseudo almost periodic solutions is one of the most attractive
topics in the qualitative theory of differential equations due both to its mathematical interest
and applications in physics, mathematical biology, and control theory, among other areas.
Most of these problems need to be studied in abstract spaces and the operators are defined
over non-dense domains. In this context the literature is very scarce (see [1] ,[2], [4] and
the bibliography therein).

In this work, we study the existence and uniqueness of (µ,ν)-pseudo almost periodic
and automorphic solutions of class r for the following neutral partial functional differential
equation

u′(t) = Au(t)+L(ut)+ f (t) for t ∈ R, (1.1)

where A is a linear operator on a Banach space X satisfying the Hille-Yosida condition, that
is, there exist M0 ≥ 1 and ω ∈ R such that ]ω,+∞[⊂ ρ(A) and

|R(λ,A)n| ≤
M0

(λ−ω)n for n ∈ N and λ > ω,

where ρ(A) is the resolvent set of A and R(λ,A) = (λI−A)−1 for λ ∈ ρ(A). In sequel, without
lost of generality, we suppose that M0 = 1. C =C([−r,0]; X) denotes the space of continuous
functions from [−r,0] to X endowed with the uniform topology norm. For every t ≥ 0, ut

denotes the history function of C defined by

ut(θ) = u(t+ θ) for − r ≤ θ ≤ 0.

L is a bounded linear operator from C into X and f : R→ X is a continuous function.
Some recent contributions concerning pseudo almost periodic solutions for abstract differ-
ential equations similar to equation (1.1) have been made. For example in [2] the authors
have shown that if the inhomogeneous term f depends only on variable t and it is a pseudo
almost periodic function, then equation (1.1) has a unique pseudo almost periodic solution.
In [4] the authors have proven that if f :R×X0→ X is a suitable continuous function, where
X0 = D(A), the problem

x′(t) = Ax(t)+ f (t, x(t)), t ∈ R

has a unique pseudo almost periodic solution, while in [1] the authors have treated the
existence of almost periodic solutions for a class of partial neutral functional differential
equations defined by a linear operator of Hille-Yosida type with non-dense domain. In [3],
the authors studied the existence and uniqueness of pseudo almost periodic solutions for a
first-order abstract functional differential equation with a linear part dominated by a Hille-
Yosida type operator with a non-dense domain.
In [9], the authors introduce some new classes of functions called weighted pseudo-almost
periodic functions, which implement in a natural fashion the classical pseudo-almost pe-
riodic functions due to Zhang ([19, 20, 21]). Properties of these weighted pseudo-almost
periodic functions are discussed, including a composition result for weighted pseudo-almost
periodic functions. The results obtained are subsequently utilized to study the existence and
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uniqueness of a weighted pseudo-almost periodic solution to the heat equation with Dirich-
let conditions.
In [6], the authors present new approach to study weighted pseudo almost periodic functions
using the measure theory. They present a new concept of weighted ergodic functions which
is more general than the classical one. Then they establish many interesting results on the
functional space of such functions like completeness and composition theorems. The theory
of their work generalizes the classical results on weighted pseudo almost periodic functions.

The aim of this work is to prove the existence of (µ,ν)-pseudo almost periodic and auto-
morphic solutions of equation (1.1) when the delay is distributed on [−r,0]. Our approach
is based on the spectral decomposition of the phase space developed in [3] and a new ap-
proach developped in [6].
This work is organised as follow, in section 2 we recall some prelimary results on spectral
decomposition. In section 3, we recall some prelimary results on (µ,ν)-pseudo almost peri-
odic functions and neutral partial functional differential equations that will be used in this
work. In section 4, we give some properties of (µ,ν)-pseudo almost periodic functions of
class r. In section 5 and 7, we discuss the main result of this paper. Using the strict con-
traction principle we show the existence and uniqueness of (µ,ν)-pseudo almost periodic
solution of class r for equation (1.1). Sections 6 and 8 are devoted to some applications
arising in population dynamics.

2 Spectral decomposition

To equation (1.1), we associate the following initial value problem
d
dt

u(t) = Au(t)+L(ut)+ f (t) for t ≥ 0

u0 = ϕ ∈C =C([−r,0]; X),
(2.1)

where f : R+→ X is a continuous function.

Definition 2.1. We say that a continuous function u from [−r,+∞[ into X is an integral
solution of equation (2.1), if the following conditions hold:

i)
∫ t

0
u(s)ds ∈ D(A) for t ≥ 0,

ii) u(t) = ϕ(0)+A
∫ t

0
u(s)ds+

∫ t

0
(L(us)+ f (s))ds for t ≥ 0,

iii) u0 = ϕ.

If D(A) = X, the integral solutions coincide with the known mild solutions.
One can see that if u(t) is an integral solution of equation (2.1), then u(t) ∈ D(A) for all t ≥ 0,
in particular ϕ(0) ∈ D(A).
Let us introduce the part A0 of the operator A in D(A) which defined by{

D(A0) = {x ∈ D(A) : Ax ∈ D(A)}
A0x = Ax ;for x ∈ D(A0)
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We make the following assertion:
(H0) A satisfies the Hille-Yosida condition.

Lemma 2.2. [1] A0 generates a strongly continuous semigroup (T0(t))t≥0 on D(A).

Proposition 2.3. [2] Assume that (H0) holds, then for all ϕ ∈ C such that ϕ(0) ∈ D(A),
equation (2.1) has a unique integral solution u on [−r,+∞[. Moreover, u is given by

u(t) = T0(t)ϕ(0)+ lim
λ→+∞

∫ t

0
T0(t− s)Bλ(L(us)+ f (s))ds, for t ≥ 0,

where Bλ = λR(λ,A), for λ > ω.

The phase space C0 of equation (2.1) is defined by

C0 = {ϕ ∈C : ϕ(0) ∈ D(A)}.

For each t ≥ 0, we define the linear operatorU(t) on C0 by

U(t)ϕ = vt(.,ϕ)

where v(.,ϕ) is the solution of the following homogeneous equation
d
dt

v(t) = Av(t)+L(vt) for t ≥ 0

v0 = ϕ ∈C.

Proposition 2.4. [3] (U(t))t≥0 is a strongly continuous semigroup of linear operators on
C0. Moreover, (U(t))t≥0 satisfies, for t ≥ 0 and θ ∈ [−r,0], the following translation property

(U(t)ϕ)(θ) =
{

(U(t+ θ)ϕ)(0) for t+ θ ≥ 0
ϕ(t+ θ) for t+ θ ≤ 0.

Proposition 2.5. [3] LetAU defined on C0 by D(AU) =
{
ϕ ∈C1([−r,0]; X); ϕ(0) ∈ D(A), ϕ(0)′ ∈ D(A) and ϕ(0)′ = Aϕ(0)+L(ϕ)

}
AUϕ = ϕ

′ for ϕ ∈ D(AU).

ThenAU is the infinitesimal generator of the semigroup (U(t))t≥0 on C0.

Let 〈X0〉 be the space defined by

〈X0〉 = {X0c : c ∈ X}

where the function X0c is defined by

(X0c)(θ) =
{

0 if θ ∈ [−r,0[,
c if θ = 0.

The space C0 ⊕ 〈X0〉 equipped with the norm |φ+ X0c| = |φ|C + |c| for (φ,c) ∈ C0 × X is a
Banach space and consider the extensionAU defined on C0⊕〈X0〉 by D(ÃU) =

{
ϕ ∈C1([−r,0]; X) : ϕ(0) ∈ D(A) and ϕ(0)′ ∈ D(A)

}
ÃUϕ = ϕ

′+X0(Aϕ(0)+L(ϕ)−ϕ(0)′).
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Lemma 2.6. [3] Assume that (H0) holds. Then, ÃU satisfies the Hille-Yosida condition on
C0⊕〈X0〉 there exist M̃ ≥ 0, ω̃ ∈ R such that ]ω̃,+∞[⊂ ρ(ÃU) and

|(λI−ÃU)−n| ≤
M̃

(λ− ω̃)n for n ∈ N and λ > ω̃.

Moreover, the part of ÃU on D(ÃU) =C0 is exactly the operatorAU .

Now, we can state the variation of constants formula associated to equation (2.1).

Proposition 2.7. [3] Assume that (H0) holds. Then for all ϕ ∈C0, the solution u of equation
(2.1) is given by the following formula

ut =U(t)ϕ+ lim
λ→+∞

∫ t

0
U(t− s)B̃λ(X0 f (s))ds for t ≥ 0,

where B̃λ = λ(λI−ÃU)−1 for λ > ω̃.

Definition 2.8. We say a semigroup (U(t))t≥0 is hyperbolic if

σ(AU)∩ iR = Ø

For the sequel, we make the following assumption:
(H1) T0(t) is compact on D(A) for every t > 0.

Proposition 2.9. [3] Assume that (H0) and (H1). Then the semigroup (U(t))t≥0 is compact
for t > r.

From the compactness of the semigroup (U(t))t≥0, we get the following result on the
spectral decomposition of the phase space C0.

Proposition 2.10. [14] Assume that (H1) holds. If the semigroup (U(t))t≥0 is hyperbolic,
then the space C0 is decomposed as a direct sum

C0 = S ⊕U

of twoU(t) invariant closed subspaces S and U such that the restricted semigroup onU is
a group and there exist positive constants M and ω such that

|U(t)ϕ| ≤ Me−ωt|ϕ| for t ≥ 0 and ϕ ∈ S

|U(t)ϕ| ≤ Meωt|ϕ| for t ≤ 0 and ϕ ∈ U,

where S and U are called respectively the stable and unstable space, Πs and Πu denote
respectively the projection operator on S and U.
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3 (µ,ν)-Pseudo almost periodic functions

In this section, we recall some properties about µ-pseudo almost periodic functions. The
notion of µ-pseudo almost periodicity is a generalization of the pseudo almost periodicity
introduced by Zhang [19, 20, 21]; it is also a generalization of weighted pseudo almost
periodicity given by Diagana [9]. Let BC(R; X) be the space of all bounded and continuous
function from R to X equipped with the uniform topology norm.
We denote by B the Lebesgue σ-field of R and byM the set of all positive measures µ on
B satisfying µ(R) = +∞ and µ([a,b]) <∞, for all a,b ∈ R (a ≤ b).

Definition 3.1. A bounded continuous function φ : R→ X is called almost periodic if for
each ε > 0, there exists a relatively dense subset of R denote by K(ε,φ,X) such that |φ(t+
τ)−φ(t)| < ε for all (t, τ) ∈ R×K(ε,φ,X).

We denote by AP(R; X), the space of all such functions.

Definition 3.2. Let X1 and X2 be two Banach spaces. A bounded continuous function
φ : R×X1→ X2 is called almost periodic in t ∈ R uniformly in x ∈ X1 if for each ε > 0 and
all compact K ⊂ X1, there exists a relatively dense subset of R denote by K(ε,φ,K) such
that |φ(t+τ, x)−φ(t, x)| < ε for all t ∈ R, x ∈ K, τ ∈ K(ε,φ,K).

We denote by AP(R×X1; X2), the space of all such functions.
The next lemma is also a characterization of almost periodic functions.

Lemma 3.3. A function φ ∈ C(R,X) is almost periodic if and only if the space of functions
{φτ : τ ∈ R}, where (φτ)(t) = φ(t+τ), is relatively compact in BC(R; X).

In the sequel, we recall some preliminary results concerning the (µ,ν)-Pseudo almost
periodic functions.
E(R; X,µ,ν) stands for the space of functions

E(R; X,µ,ν) =
{
u ∈ BC(R; X) : lim

τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ
|u(t)|dµ(t) = 0

}
.

To study delayed differential equations for which the history belong to C([−r,0]; X), we
need to introduce the space

E(R; X,µ,ν,r) =
{
u ∈ BC(R; X) : lim

τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|u(θ)|
)
dµ(t) = 0

}
.

In addition to above-mentioned space, we consider the following spaces

E(R×X1,X2,µ,ν) =
{
u ∈ BC(R×X1; X2) : lim

τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ
|u(t, x)|X2dµ(t) = 0

}
,

E(R×X1; X2,µ,ν,r)=
{
u ∈ BC(R×X1; X2) : lim

τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|u(θ, x)|X2

)
dµ(t)= 0

}
,

where in both cases the limit (as τ→ +∞) is uniform in compact subset of X1.
In view of previous definitions, it is clear that the spaces E(R; X,µ,ν,r) and E(R×X1; X2,µ,ν,r)
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are continuously embedded in E(R; X,µ,ν) and E(R×X1,X2,µ,ν), respectively.
On the other hand, one can observe that a ρ-weighted pseudo almost periodic functions is
µ-pseudo almost periodic, where the measure µ is absolutely continuous with respect to the
Lebesgue measure and its Radon-Nikodym derivative is ρ:

dµ(t) = ρ(t)dt

and ν is the usual Lebesgue measure on R, i.e ν([−τ,τ] = 2τ for all τ ≥ 0.

Example 3.4. [6] Let ρ be a nonnegative B-measurable function. Denote by µ the positive
measure defined by

µ(A) =
∫

A
ρ(t)dt, for A ∈ B, (3.1)

where dt denotes the Lebesgue measure on R. The function ρ which occurs in equation
(3.1) is called the Radon-Nikodym derivative of µ with respect to the Lebesgue measure on
R.

From µ,ν ∈M, we formulate the following hypothese.

(H2) Let µ,ν ∈M be such that limsup
τ→+∞

µ([−τ,τ])
ν([−τ,τ])

= α <∞.

We have the following result.

Lemma 3.5. Asumme (H2) holds and let f ∈ BC(R; X). Then f ∈ E(R; X,µ,ν) if and only if
for any ε > 0,

lim
τ→+∞

µ(Mτ,ε( f ))
ν([−τ,τ]

= 0

where
Mτ,ε( f ) = {t ∈ [−τ,τ] : | f (t)| ≥ ε}.

Proof. Suppose that f ∈ E(R; X,µ,ν). Then

1
ν([−τ,τ])

∫ +τ
−τ
| f (t)|dµ(t) =

1
ν([−τ,τ])

∫
Mτ,ε( f )

| f (t)|dµ(t)+
1

ν([−τ,τ])

∫
[−τ,τ]\Mτ,ε( f )

| f (t)|dµ(t)

≥
1

ν([−τ,τ])

∫
Mτ,ε( f )

| f (t)|dµ(t)

≥
ε

ν([−τ,τ])
Mτ,ε( f ).

Consequently

lim
τ→+∞

µ(Mτ,ε( f ))
ν([−τ,τ]

= 0.

Suppose that f ∈ BC(R; X) such that for any ε > 0,

lim
τ→+∞

µ(Mτ,ε( f ))
ν([−τ,τ]

= 0
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We can assume | f (t)| ≤ N for all t ∈ R. Using (H2), we have

1
ν([−τ,τ])

∫ +τ
−τ
| f (t)|dµ(t) =

1
ν([−τ,τ])

∫
Mτ,ε( f )

| f (t)|dµ(t)+
1

ν([−τ,τ])

∫
[−τ,τ]\Mτ,ε( f )

| f (t)|dµ(t)

≤
N

ν([−τ,τ])

∫
Mτ,ε( f )

dµ(t)+
1

ν([−τ,τ])

∫
[−τ,τ]\Mτ,ε( f )

| f (t)|dµ(t)

≤
N

ν([−τ,τ])

∫
Mτ,ε( f )

dµ(t)+
ε

ν([−τ,τ])

∫
[−τ,τ]

dµ(t)

≤
N

ν([−τ,τ])
Mτ,ε( f )+

εµ([−τ,τ])
ν([−τ,τ])

.

Which implies that

lim
τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ
| f (t)|dµ(t) ≤ αε for any ε > 0.

Therefore f ∈ E(R; X,µ,ν).�

Definition 3.6. Let µ,ν ∈ M. A bounded continuous function φ : R→ X is called (µ,ν)-
pseudo almost periodic if φ = φ1+φ2, where φ1 ∈ AP(R,X) and φ2 ∈ E(R; X,µ,ν).

We denote by PAP(R; X,µ,ν) the space of all such functions.

Definition 3.7. Let µ,ν ∈M and X1 and X2 be two Banach spaces. A bounded continuous
function φ : R× X1 → X2 is called uniformly (µ,ν)-pseudo almost periodic if φ = φ1 +φ2,

where
φ1 ∈ AP(R×X1; X2) and φ2 ∈ E(R×X1,X2,µ,ν).

We denote by PAP(R×X1; X2,µ,ν), the space of all such functions.

Definition 3.8. µ,ν ∈M. A bounded continuous function φ : R→ X is called (µ,ν)-pseudo
almost periodic of class r if φ = φ1+φ2, where φ1 ∈ AP(R; X) and φ2 ∈ E(R; X,µ,ν,r).
We denote by PAP(R; X,µ,ν,r), the space of all such functions.

Definition 3.9. µ,ν ∈ M. Let X1 and X2 be two Banach spaces. A bounded continuous
function φ : R× X1 → X2 is called uniformly (µ,ν)-pseudo almost periodic of class r if
φ = φ1+φ2, where φ1 ∈ AP(R×X1; X2) and φ2 ∈ E(R×X1; X2,µ,ν,r).

We denote by PAP(R×X1; X2,µ,ν,r), the space of all such functions.

4 Properties of (µ,ν)-pseudo almost periodic functions of class r

Lemma 4.1. Assume that (H2) holds. The space E(R; X,µ,ν,r) endowed with the uniform
topology norm is a Banach space.

Proof. We can see that E(R; X,µ,ν,r) is a vector subspace of BC(R; X). To complete the
proof, it is enough to prove that E(R; X,µ,ν,r) is closed in BC(R; X). Let (zn)n be a sequence
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in E(R; X,µ,ν,r) such that limn→+∞ zn = z uniformly in R. From ν(R) = +∞, it follows
ν([−τ,τ]) > 0 for τ sufficiently large. Let n0 ∈ N such that for all n ≥ n0, ‖zn − z‖∞ < ε. Let
n ≥ n0, then we have

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|z(θ)|
)
dµ(t) ≤

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|zn(θ)− z(θ)|
)
dµ(t)

+
1

ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|zn(θ)|
)
dµ(t)

≤
1

ν([−τ,τ])

∫ +τ
−τ

(
sup
t∈R
|zn(t)− z(t)|

)
dµ(t)

+
1

ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|zn(θ)|
)
dµ(t)

≤ ‖zn− z‖∞×
µ([−τ,τ])
ν([−τ,τ])

+
1

ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|zn(θ)|
)
dµ(t).

We deduce that

limsup
τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|z(θ)|
)
dµ(t) ≤ αε for any ε > 0.�

From the definition of PAP(R; X,µ,ν,r), we deduce the following result.

Proposition 4.2. µ ∈ M. The space PAP(R; X,µ,ν,r) endowed with the uniform topology
norm is a Banach space.

Next result is a characterization of µ-ergodic functions of class r.

Theorem 4.3. Assume that (H2) holds and let µ,ν ∈M and I be a bounded interval (even-
tually I = Ø). Assume that f ∈ BC(R,X). Then the following assertions are equivalent:
i) f ∈ E(R,X,µ,ν,r).

ii) lim
τ→+∞

1
ν([−τ,τ] \ I)

∫
[−τ,τ]\I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) = 0.

iii) For any ε > 0, lim
τ→+∞

µ
({

t ∈ [−τ,τ] \ I : sup
θ∈[t−r,t]

| f (θ)| > ε
})

ν([−τ,τ] \ I)
= 0.

Proof. i)⇔ ii) Denote by A = ν(I), B =
∫

I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t). We have A and B ∈ R, since

the interval I is bounded and the function f is bounded and continuous. For τ > 0 such that
I ⊂ [−τ,τ] and ν([−τ,τ] \ I) > 0, we have

1
ν([−τ,τ] \ I)

∫
[−τ,τ]\I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) =

1
ν([−τ,τ])−A

[∫
[−τ,τ]

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t)−B

]
=

ν([−τ,τ])
ν([−τ,τ])−A

[ 1
ν([−r,r])

∫
[−τ,τ]

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t)−

B
ν([−τ,τ])

]
.
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From above equalities and the fact that ν(R) = +∞, we deduce that ii) is equivalent to

lim
τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) = 0,

that is i).
iii)⇒ ii) Denote by Aετ and Bετ the following sets

Aετ =
{
t ∈ [−τ,τ] \ I : sup

θ∈[t−r,t]
| f (θ)| > ε

}
and Bετ =

{
t ∈ [−τ,τ] \ I) : sup

θ∈[t−r,t]
| f (θ)| ≤ ε

}
.

Assume that iii) holds, that is

lim
τ→+∞

µ(Aετ)
ν([−τ,τ] \ I)

= 0. (4.1)

From the equality∫
[−τ,τ]\I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) =

∫
Aετ

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t)+

∫
Bετ

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t),

we deduce that for τ sufficiently large

1
ν([−τ,τ] \ I)

∫
[−τ,τ]\I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) ≤ ‖ f ‖∞

µ(Aετ)
ν([−τ,τ] \ I)

+ε
µ(Bετ)

ν([−τ,τ] \ I)
.

By using (H2), it follows that

lim
τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) ≤ αε, for any ε > 0,

consequently (ii) holds.
ii)⇒ iii) Assume that ii) holds. From the following inequality∫

[−τ,τ]\I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) ≥

∫
Aετ

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t)

1
ν([−τ,τ] \ I)

∫
[−τ,τ]\I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) ≥ ε

µ(Aετ)
ν([−τ,τ] \ I)

1
εν([−τ,τ] \ I)

∫
[−τ,τ]\I

(
sup
θ∈[t−r,t]

| f (θ)|
)
dµ(t) ≥

µ(Aετ)
ν([−τ,τ] \ I)

,

for τ sufficiently large, we obtain equation (4.1), that is iii).�
From µ ∈M, we formulate the following hypotheses.
(H3) For all a, b and c ∈ R, such that 0 ≤ a < b ≤ c, there exist δ0 and α0 > 0 such that

|δ| ≥ δ0⇒ µ(a+δ,b+δ) ≤ α0µ(δ,c+δ).

(H4) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+τ : a ∈ A} ≤ βµ(A) when A ∈ B satisfies A∩ I = Ø.

We have the following results due to [6]
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Lemma 4.4. [6] Hypothesis (H4) implies (H3).

Proposition 4.5. [5, 8] µ,ν ∈M satisfy (H3) and f ∈ PAP(R; X,µ,ν) be such that

f = g+h

where g ∈ AP(R,X) and h ∈ E(R,X,µ,ν). Then

{g(t), t ∈ R} ⊂ { f (t), t ∈ R} (the closure of the range of f).

Corollary 4.6. [8] Assume that (H3) holds. Then the decomposition of a (µ,ν)-pseudo
almost periodic function in the form f = g+φ where g ∈ AP(R; X) and φ ∈ E(R; X,µ,ν), is
unique.

The following corollary is a consequence of Theorem 4.3.

Proposition 4.7. Let µ,ν ∈ M. Assume (H3) holds. Then the decomposition of a (µ,ν)-
pseudo-almost periodic function φ = φ1 +φ2, where φ1 ∈ AP(R; X) and φ2 ∈ E(R; X,µ,ν,r),
is unique.

Proof. In fact, since as a consequence of Corollary 4.6, the decomposition of a (µ,ν)-
pseudo-almost periodic function φ = φ1+φ2, where φ1 ∈ AP(R; X) and φ2 ∈ E(R; X,µ,ν), is
unique. Since PAP(R; X,µ,ν,r) ⊂ PAP(R; X,µ,ν), we get the desired result.�

Definition 4.8. Let µ1,µ2 ∈M. We say that µ1 is equivalent to µ2, denoting this as µ1 ∼ µ2
if there exist constants α and β > 0 and a bounded interval I (eventually I = Ø) such that

αµ1(A) ≤ µ2(A) ≤ βµ1(A), when A ∈ B satisfies A∩ I = Ø.

From [6] ∼ is a binary equivalence relation onM. the equivalence class of a given measure
µ ∈M will then be denoted by

cl(µ) = {$ ∈M : µ ∼$}.

Theorem 4.9. Let µ1,µ2, ν1, ν2 ∈ M. If µ1 ∼ µ2 and ν1 ∼ ν2, then PAP(R; X,µ1, ν1,r) =
PAP(R; X,µ2, ν2,r).

Proof. Since µ1 ∼ µ2 and ν1 ∼ ν2 there exist some constants α1,α2,β1,β2 > 0 and a bounded
interval I (eventually I = Ø) such that α1µ1(A) ≤ µ2(A) ≤ β1µ1(A) and α2ν1(A) ≤ ν2(A) ≤
β2ν1(A) for each A ∈ B satisfies A∩ I = Ø i.e

1
β2ν1(A)

≤
1
ν2(A)

≤
1

α2ν1(A)
.
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Since µ1 ∼ µ2 and B is the Lebesgue σ-field, we obtain for τ sufficiently large, it follows
that

α1µ1
({

t ∈ [−τ,τ] \ I : sup
θ∈[t−r,t]

| f (θ)| > ε
})

β2ν1([−τ,τ] \ I)
≤

µ2
({

t ∈ [−τ,τ] \ I : sup
θ∈[t−r,t]

| f (θ)| > ε
})

ν2([−τ,τ] \ I)

≤

β1µ1
({

t ∈ [−τ,τ] \ I : sup
θ∈[t−r,t]

| f (θ)| > ε
})

α2ν1([−τ,τ] \ I)

By using Theorem 4.3 we deduce that E(R,X,µ1, ν1,r) = E(R,X,µ2, ν2,r). From the def-
inition of a (µ,ν)-pseudo almost periodic function, we deduce that PAP(R; X,µ1, ν1,r) =
PAP(R; X,µ2, ν2,r).�
Let µ,ν ∈M we denote by

cl(µ,ν) = {$1,$2 ∈M : µ ∼$2 and ν ∼$2}.

Proposition 4.10. [8] Let µ,ν ∈M satisfy (H4). Then PAP(R,X,µ,ν) is invariant by trans-
lation, that is f ∈ PAP(R,X,µ,ν) implies fα ∈ PAP(R,X,µ,ν) for all α ∈ R.

In what follows, we prove some preliminary results concerning the composition of
(µ,ν)-pseudo almost periodic functions of class r.

Theorem 4.11. Let µ,ν ∈M, φ ∈ PAP(R×X1; X2,µ,ν,r) and h ∈ PAP(R; X1,µ,ν,r). Assume
that there exists a function Lφ : R→ [0,+∞[ sastisfies

|φ(t, x1)−φ(t, x2)| ≤ lφ(t)|x1− x2| for t ∈ R and for x1, x2 ∈ X1. (4.2)

If

1
ν([−τ,τ])

∫ τ
−τ

(
sup
θ∈[t−r,t]

Lφ(θ)
)
dµ(t)<∞ and lim

τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

Lφ(θ)
)
ξ(t)dµ(t)= 0

(4.3)
for each ξ ∈ E(R,µ,ν) and for almost τ > 0, then the function t → φ(t,h(t)) belongs to
PAP(R; X2,µ,ν,r).

Proof. Assume that φ= φ1+φ2, h= h1+h2 where φ1 ∈ AP(R×X1; X2), φ2 ∈E(R×X1; X2,µ,ν,r)
and h1 ∈ AP(R; X1), h2 ∈ E(R; X1,µ,ν,r). Consider the following decomposition

φ(t,h(t)) = φ1(t,h1(t))+ [φ(t,h(t))−φ(t,h1(t))]+φ2(t,h1(t)).

From [7, 18], φ1(.,h1(.)) ∈ AP(R; X2). It remains to prove that both φ(.,h(.))−φ(.,h1(.)) and
φ2(.,h1(.)) belong to E(R; X2,µ,ν,r).
Using equation (4.2), it follows that

µ
({

t ∈ [−τ,τ] : sup
θ∈[t−r,t]

|φ(θ,h(θ))−φ(θ,h1(θ))| > ε
})

ν([−τ,τ])
≤

µ
({

t ∈ [−τ,τ] : sup
θ∈[t−r,t]

(Lφ(θ)|h2(θ)|) > ε
})

ν([−τ,τ])

≤

µ
({

t ∈ [−τ,τ] :
(

sup
θ∈[t−r,t]

Lφ(θ)
)(

sup
θ∈[t−r,t]

|h2(θ)|
)
> ε
})

ν([−τ,τ])
.
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Since h2 is (µ,ν)-ergodic of class r, Theorem 4.3 and equation (4.3) yield that for the above-
mentioned ε, we have

lim
τ→+∞

µ
({

t ∈ [−τ,τ] :
(

sup
θ∈[t−r,t]

Lφ(θ)
)(

sup
θ∈[t−r,t]

|h2(θ)|
)
> ε
})

ν([−τ,τ])
= 0,

and then we obtain

lim
τ→+∞

µ
({

t ∈ [−τ,τ] : sup
θ∈[t−r,t]

|φ(θ,h(θ))−φ(θ,h1(θ))| > ε
})

ν([−τ,τ])
= 0, (4.4)

By Theorem 4.3, equation (4.4) shows that t 7→ φ(t,h(t))−φ(t,h1(t)) is (µ,ν)-ergodic of class
r.
Now to complete the proof, it is enough to prove that t 7→ φ2(t,h(t)) is (µ,ν)-ergodic of class
r. Since φ2 is uniformly continuous on the compact set K = {h1(t) : t ∈ R} with respect to
the second variable x, we deduce that for given ε > 0, there exists δ > 0 such that, for all
t ∈ R, ξ1 and ξ2 ∈ K, one has

‖ξ1− ξ2‖ ≤ δ⇒ ‖φ2(t, ξ1(t))−φ2(t, ξ2(t))‖ ≤ ε.

Therefore, there exist n(ε) and {zi}
n(ε)
i=1 ⊂ K, such that

K ⊂
n(ε)⋃
i=1

Bδ(zi, δ)

and then

‖φ2(t,h1(t))‖ ≤ ε+
n(ε)∑

1

‖φ2(t,zi)‖

Since
∀i ∈ {1, ...,n(ε)}, lim

τ→+∞

1
ν([−τ,τ])

∫ τ
−τ

(
sup
θ∈[t−r,t]

|φ2(θ,zi)|
)
dµ(t) = 0,

we deduce that

∀ε > 0, limsup
τ→+∞

1
ν([−τ,τ])

∫ τ
−τ

(
sup
θ∈[t−r,t]

|φ2(θ,h1(t))|
)
dµ(t) ≤ ε,

that implies

lim
τ→+∞

1
ν([−τ,τ])

∫ τ
−τ

(
sup
θ∈[t−r,t]

|φ2(θ,h1(t))|
)
dµ(t) = 0.

Consequently t 7→ φ2(t,h(t)) is (µ,ν)-ergodic of class r.�
For µ ∈M and α ∈ R, we denote µα the positive measure on (R,B) defined by

µα(A) = µ([a+α : a ∈ A]) (4.5)

Lemma 4.12. [6] Let µ ∈M satisfy (H3). Then the measures µ and µα are equivalent for
all α ∈ R.
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Lemma 4.13. [6] (H3) implies

for all σ > 0 limsup
τ→+∞

µ([−τ−σ,τ+σ])
µ([−τ,τ])

< +∞.

We have the following result.

Theorem 4.14. Assume that (H3) holds. Let µ,ν ∈ M and φ ∈ PAP(R; X,µ,ν,r), then the
function t→ φt belongs to PAP(C([−r,0]; X),µ,ν,r).

Proof. Assume that φ = g+ h where g ∈ AP(R; X) and h ∈ E(R; X,µ,ν,r). Then we can see
that, φt = gt +ht and gt is almost periodic. Let us denote by

Mα(τ) =
1

να([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµα(t),

where µα and να are the positive measures defined by equation (4.5). By using Lemma
4.12, it follows that µα and µ are equivalent and να and ν are also equivalent. then by using
Theorem 4.9 we have E(R; X,µα, να,r) = E(R; X,µ,ν,r), therefore h ∈ E(R; X,µα, να,r), that
is

lim
τ→+∞

Mα(τ) = 0, for all α ∈ R.

On the other hand, for r > 0 we have

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

[
sup
ξ∈[−r,0]

|h(θ+ ξ)|
])

dµ(t) ≤
1

ν([−τ,τ])

∫ +τ
−τ

(
sup

θ∈[t−2r,t]
|h(θ)|

)
dµ(t)

≤
1

ν([−τ,τ])

∫ +τ
−τ

(
sup

θ∈[t−2r,t−r]
|h(θ)|+ sup

θ∈[t−r,t]
|h(θ)|

)
dµ(t)

≤
1

ν([−τ,τ])

∫ +τ−r

−τ−r

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµ(t+ r)+

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµ(t)

≤
1

ν([−τ,τ])

∫ +τ+r

−τ−r

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµ(t+ r)+

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµ(t)

≤
[ν([−τ− r, τ+ r])
ν([−τ,τ])

]
×

1
ν([−τ− r, τ+ r]

∫ +τ+r

−τ−r

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµ(t+ r)

+
1

ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµ(t).

Consequently

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

[
sup
ξ∈[−r,0]

|h(θ+ ξ)|
])

dµ(t) ≤
[ν([−τ− r, τ+ r])
ν([−τ,τ])

]
×Mr(τ+ r)

+
1

ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|h(θ)|
)
dµ(t),

which shows using Lemma 4.12 and Lemma 4.13 that φt belongs to PAP(C([−r,0]; X),µ,ν,r).
Thus, we obtain the desired result.�
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5 (µ,ν)-Pseudo almost periodic solutions of class r

In what follows, we will be looking at the existence of bounded integral solutions of class r
of equation (1.1).

Proposition 5.1. [15] Assume that (H0) and (H1) hold and the semigroup (U(t))t≥0 is
hyperbolic. If f ∈ BC(R; X), then there exists a unique bounded solution u of equation (1.1)
on R, given by

ut = lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0 f (s))ds+ lim
λ→+∞

∫ t

+∞

Uu(t− s)Πu(B̃λX0 f (s))ds for t ∈ R,

where Πs and Πu are the projections of C0 onto the stable and unstable subspaces, respec-
tively.

Proposition 5.2. [11] Let h ∈ AP(R; X) and Γ be the mapping defined for t ∈ R by

Γh(t) =
[

lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0h(s))ds+ lim
λ→+∞

∫ t

+∞

Uu(t− s)Πu(B̃λX0h(s))ds
]
(0).

Then Γh ∈ AP(R,X).

Theorem 5.3. Let µ,ν ∈M satisfy (H3) and g ∈ E(R; X,µ,ν,r). Then Γg ∈ E(R; X,µ,ν,r).

Proof. In fact, for τ > 0 we get

∫ τ
−τ

(
sup
θ∈[t−r,t]

|Γh(θ)|ds
)
dµ(t) ≤ MM̃

∫ τ
−τ

(
sup
θ∈[t−r,t]

∫ θ
−∞

e−ω(θ−s)|Πs| |g(s)|ds
)
dµ(t)

+MM̃
∫ τ
−τ

(
sup
θ∈[t−r,t]

∫ +∞
θ

eω(θ−s)|Πu| |g(s)|ds
)
dµ(t)

≤ MM̃|Πs|

∫ τ
−τ

(
sup
θ∈[t−r,t]

eωr
∫ θ
−∞

e−ω(t−s)|g(s)|ds
)
dµ(t)

+MM̃|Πu|

∫ τ
−τ

(
sup
θ∈[t−r,t]

∫ +∞
θ

eω(t−s)|g(s)|ds
)
dµ(t).

On the one hand using Fubini’s theorem, we have∫ τ
−τ

(
sup
θ∈[t−r,t]

eωr
∫ θ
−∞

e−ω(t−s)|g(s)|ds
)
dµ(t) ≤

∫ τ
−τ

(
sup
θ∈[t−r,t]

eωr
∫ t

−∞

e−ω(t−s)|g(s)|ds
)
dµ(t)

≤ eωr
∫ τ
−τ

∫ t

−∞

e−ω(t−s)|g(s)|dsdµ(t)

≤ eωr
∫ τ
−τ

∫ +∞
0

e−ωs|g(t− s)|dsdµ(t)

≤ eωr
∫ +∞

0
e−ωs
∫ τ
−τ
|g(t− s)|dµ(t)ds.
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By using Proposition 4.10, we deduce that

lim
τ→+∞

e−ωs

ν([−τ,τ])

∫ τ
−τ
|g(t− s)|dµ(t)→ 0 for all s ∈R+ and

e−ωs

ν([−τ,τ])

∫ τ
−τ
|g(t− s)|dµ(t)→ 0≤ e−ωs|g|∞.

Since g is a bounded function, then the function s 7→ e−ωs|g|∞ belongs to L1([0,+∞[), in
view of the Lebesgue dominated convergence theorem, it follows that

eωr lim
τ→+∞

∫ +∞
0

e−ωs 1
ν([−τ,τ])

∫ τ
−τ
|g(t− s)|dµ(t)ds = 0.

On the other hand by Fubini’s theorem, we also have∫ τ
−τ

(
sup
θ∈[t−r,t]

∫ +∞
θ

eω(t−s)|g(s)|ds
)
dµ(t) ≤

∫ τ
−τ

(
sup
θ∈[t−r,t]

∫ +∞
t−r

eω(t−s)|g(s)|ds
)
dµ(t)

≤

∫ τ
−τ

∫ +∞
t−r

eω(t−s)|g(s)|dsdµ(t)

≤

∫ τ
−τ

∫ r

−∞

eωs|g(t− s)|dsdµ(t)

≤

∫ r

−∞

eωs
∫ τ
−τ
|g(t− s)|dµ(t)ds.

Since the function s 7→ eωs|g|∞ belongs to L1(]−∞,r]), resoning like above, it follows that

lim
τ→+∞

∫ r

−∞

eωs 1
ν([−τ,τ])

∫ τ
−τ
|g(t− s)|dµ(t)ds = 0.

Consequently

lim
τ→+∞

1
ν([−τ,τ])

∫ τ
−τ

(
sup
θ∈[t−r,t]

|(Γg)(θ)|
)
dµ(t) = 0.

Thus, we obtain the desired result.�
For the existence of (µ,ν)-pseudo almost periodic solution of class r, we make the following
assumption.
(H5) f : R→ X is in cl(µ,ν)-pseudo almost periodic of class r.

Proposition 5.4. Assume (H0), (H1), (H3) and (H5) hold. Then equation (1.1) has a unique
cl(µ,ν)-pseudo almost periodic solution of class r.

Proof. Since f is a (µ,ν)-pseudo almost periodic function, f has a decomposition f = f1+ f2
where f1 ∈ AP(R; X) and f2 ∈ E(R; X,µ,ν,r). Using Proposition 5.1, Proposition 5.2 and
Theorem 5.3, we get the desired result. �
Our next objective is to show the existence of (µ,ν)-pseudo almost periodic solutions of
class r for the following problem

u′(t) = Au(t)+L(ut)+ f (t,ut) for t ∈ R (5.1)

where f : R×C→ X is continuous.
For the sequel, we make the following assumption.



I. Zabsonre and H. Touré

(H6) Let µ,ν ∈M and f : R×C([−r,0]; X))→ X cl(µ,ν)-pseudo almost periodic of class r
such that there exists a continuous function L f : R→ [0,+∞[ such that

| f (t,ϕ1)− f (t,ϕ2)| ≤ L f (t)|ϕ1−ϕ2| for all t ∈ R and ϕ1,ϕ2 ∈C([−r,0]; X)

and L f satisfies (4.3).

Theorem 5.5. Assume (H0), (H1), (H2), (H4) and (H6) hold. If

MM̃ sup
t∈R

(
|Πs|

∫ t

−∞

e−ω(t−s)L f (s)ds+ |Πu|

∫ +∞
t

eω(t−s)L f (s)ds
)
< 1.

Then equation (5.1) has a unique cl(µ,ν)-pseudo almost periodic solution of class r.

Proof. Let x be a function in PAP(R; X,µ,ν,r), from Theorem 4.14 the function t → xt

belongs to PAP(C([−r,0]; X),µ,r). Hence Theorem 4.11 implies that the function g(.) :=
f (., x.) is in PAP(R; X,µ,r). Consider the mapping

H : PAP(R; X,µ,ν,r)→ PAP(R; X,µ,ν,r)

defined for t ∈ R by

(H x)(t)=
[

lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0 f (s, xs))ds+ lim
λ→+∞

∫ t

+∞

Uu(t− s)Πu(B̃λX0 f (s, xs))ds
]
(0).

From Proposition 5.1, Proposition 5.2 and taking into account Theorem 5.3, it suffices
now to show that the operator H has a unique fixed point in PAP(R; X,µ,r). Let x1, x2 ∈

PAP(R; X,µ,ν,r). Then we have

| H x1(t)−H x2(t)| ≤
∣∣∣∣ lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0[ f ((s, x1s))− f ((s, x1s))]ds
∣∣∣∣

+
∣∣∣∣ lim
λ→+∞

∫ t

+∞

Us(t− s)Πu(B̃λX0[ f ((s, x2s))− f ((s, x2s))]ds
∣∣∣∣

≤ MM̃
(
|Πs|

∫ t

−∞

e−ω(t−s)L f (s)|x1s− x2s|ds+ |Πu|

∫ +∞
t

eω(t−s)L f (s)|x1s− x2s|ds
)

≤ MM̃ sup
t∈R

(
|Πs|

∫ t

−∞

e−ω(t−s)L f (s)ds+ |Πu|

∫ +∞
t

eω(t−s)L f (s)ds
)
|x1− x2|.

This means that H is a strict contraction. Thus by Banach’s fixed point theorem, H has a
unique fixed point u in PAP(R; X,µ,ν,r). We conclude that equation (5.1), has one and only
one cl(µ,ν)-pseudo almost periodic solution of class r.�

Proposition 5.6. Assume (H0), (H1), (H2) and, (H4) and f is lipschitz continuous with
respect the second argument. If

Lip( f ) <
ω

MM̃(|Πs|+ |Πu|)

then equation (5.1) has a unique cl(µ,ν)-pseudo almost periodic solution of class r, where
Lip( f ) is the lipschitz constant of f .
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Proof. Let us pose k = Lip( f ), we have

| H x1(t)−H x2(t)| ≤ MM̃
(
|Πs|

∫ t

−∞

e−ω(t−s)k|x1s− x2s|ds+ |Πu|

∫ +∞
t

eω(t−s)k|x1s− x2s|ds
)

≤
kMM̃(|Πs|+ |Πu|)

ω
|x1− x2|.

ConsequentlyH is a strict contraction if k <
ω

MM̃(|Πs|+ |Πu|)
.�

6 Application

For illustration, we propose to study the existence of solutions for the following model
∂

∂t
z(t, x) =

∂2

∂x2 z(t, x)+
∫ 0

−r
G(θ)z(t+ θ, x))dθ+ (sin t+ sin(

√
2t))+ arctan(t)

+

∫ 0

−r
h(θ,z(t+ θ, x))dθ for t ∈ R and x ∈ [0,π]

z(t,0) = z(t,π) = 0 for t ∈ R,

(6.1)

where G : [−r,0]→ R is a continuous function and h : [−r,0]×R→ R is continuous and
lipschitzian with respect to the second argument. To rewrite equation (6.1) in the abstract
form, we introduce the space X = C0([0,π];R) of continuous function from [0,π] to R+

equipped with the uniform norm topology. Let A : D(A)→ X be defined by{
D(A) = {y ∈ X∩C2([0,π],R) : y′′ ∈ X}
Ay = y′′.

Then A satisfied the Hille-Yosida condition in X. Moreover the part A0 of A in D(A) is
the generator of strongly continuous compact semigroup (T0(t))t≥0 on D(A). It follows that
(H0) and (H1) are satisfied.
We define f : R×C→ X and L : C→ X as follows

f (t,ϕ)(x) = sin t+ sin(
√

2t)+ arctan(t)+
∫ 0

−r
h(θ,ϕ(θ)(x))dθ for x ∈ [0,π] and t ∈ R,

L(ϕ)(x) =
∫ 0

−r
G(θ)ϕ(θ)(x))dθ for − r ≤ θ ≤ 0 and x ∈ [0,π].

Let us pose v(t) = z(t, x). Then equation (6.1) takes the following abstract form

v′(t) = Av(t)+L(vt)+ f (t,vt) for t ∈ R. (6.2)

Consider the measures µ and ν where its Radon-Nikodym derivative are respectively ρ1,ρ2 :
R→ R defined by

ρ1(t) =
{

1 for t > 0
et for t ≤ 0.



I. Zabsonre and H. Touré

and
ρ2(t) = |t| for t ∈ R

i.e dµ(t) = ρ1(t)dt and dν(t) = ρ2(t)dt where dt denotes the Lebesgue measure on R and

µ(A) =
∫

A
ρ1(t)dt for ν(A) =

∫
A
ρ2(t)dt for A ∈ B.

From [6] µ,ν ∈M, µ,ν satisfy Hypothesis (H4) and sin t+ sin(
√

2t)+
π

2
is almost periodic.

We have

limsup
τ→+∞

µ([−τ,τ])
ν([−τ,τ])

= limsup
τ→+∞

∫ 0

−τ
etdt+

∫ τ
0

dt

2
∫ τ

0
tdt

= limsup
τ→+∞

1− e−τ+τ
τ2

= 0 <∞,

which implies that (H2) is satisfied.
For all t ∈ R,

−π

2
≤ arctan t ≤

π

2
therefore, for all θ ∈ [t− r, t], arctan(t− r) ≤ arctanθ. It fol-

lows |arctanθ−
π

2
|=
π

2
−arctanθ≤ |arctan(t−r)−

π

2
|=
π

2
−arctan(t−r), hence sup

θ∈[t−r,t]
|arctanθ−

π

2
| ≤ |arctan(t− r)−

π

2
|. On the one hand, we have the following:

1
ν([−τ,τ])

∫ +τ
0
|arctan(t− r)−

π

2
|dt =

π

2ν([−τ,τ])
τ+

1
ν([−τ,τ])

∫ +τ−r

−r
arctan tdt

=

π
2τ+ ln(

√
1+ (τ− r)2)− ln(

√
1+ r2)− (τ− r)arctan(τ− r)+ r arctanr

τ2
→ 0 as τ→ +∞.

On the other hand we have

1
ν([−τ,τ])

∫ 0

−τ
|arctan(t− r)−

π

2
|etdt ≤

1
ν([−τ,τ])

∫ 0

−τ
πetdt→ 0 as τ→ +∞.

Consequently

lim
τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

sup
θ∈[t−r,t]

|arctanθ−
π

2
|dµ(t) = 0.

It follows that t 7→ arctan t −
π

2
is (µ,ν)-ergodic of class r, consequently, f is uniformly

(µ,ν)-pseudo almost periodic of class r. Moreover, L is a bounded linear operator from C
to X.
Let k be the lipschiz constant of h, then for every ϕ1,ϕ2 ∈C and t ≥ 0, we have

| f (t,ϕ1)− f (t,ϕ2)| = sup
0≤x≤π

| f (t,ϕ1)(x)− f (t,ϕ2)(x)|

≤ kr sup
−r<θ≤0
0≤x≤π

|ϕ1(θ)(x)−ϕ2(θ)(x)|.

Consequently, we conclude that f is Lipschitz continuous and cl(µ,ν)-pseudo almost peri-
odic of class r.
For the hyberbolicity, we suppose that

(H7)
∫ 0

−r
|G(θ)|dθ < 1.
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Lemma 6.1. [15] Assume that (H6) holds. Then the semigroup (U(t))t≥0 is hyperbolic.

Then by Corollary 5.6 we deduce the following result.

Theorem 6.2. Under the above assumptions, if Lip(h) is small enough, then equation (6.2)
has a unique cl(µ,ν)-pseudo almost periodic solution v of class r.

7 (µ,ν)-pseudo almost automorphic functions

In this section, we recall some properties about pseudo almost automorphic functions. Let
BC(R,X) be the space of all bounded and continuous function from R to X equipped with
the uniform topology norm.

Definition 7.1. A bounded continuous function φ : R→ X is called almost automorphic if
for each real sequence (sm), there exists a subsequence (sn) such that

g(t) = lim
n→+∞

φ(t+ sn)

is well defined for each t ∈ R and

lim
n→+∞

g(t− sn) = φ(t)

for each t ∈ R.

We denote by AA(R,X), the space of all such functions.

Proposition 7.2. [16] AA(R,X) equipped with the sup norm is a Banach space.

Definition 7.3. Let X1 and X2 be two Banach spaces. A bounded continuous function
φ :R×X1→ X2 is called almost automorphic in t ∈R uniformly for each x in X1 if for every
real sequence (sm), there exists a subsequence (sn) such that

g(t, x) = lim
n→+∞

φ(t+ sn, x) in X2

is well defined for each t ∈ R and each x ∈ X1 and

lim
n→+∞

g(t− sn, x) = φ(t, x) in X2

for each t ∈ R and for every x ∈ X1.

Denote by AA(R×X1; X2) the space of all such functions.

Definition 7.4. A bounded continuous function φ : R→ X is called compact almost auto-
morphic if for each real sequence (sm), there exists a subsequence (sn) such that

g(t) = lim
n→+∞

φ(t+ sn) and lim
n→+∞

g(t− sn) = φ(t)

uniformly on compact subsets of R.
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We denote by AAc(R; X), the space of all such functions.
It is well known that AAc(R; X) is closed subsets of (BC(R,X), | .|∞).
In view of the above, the proof of the next lemma is straightforward.

Lemma 7.5. AAc(R; X) equipped with the sup norm is a Banach space.

Definition 7.6. Let X1 and X2 be two Banach spaces. A continuous function φ :R×X1→ X2
is called compact almost automorphic in t ∈ R if every real sequence (sm), there exists a
subsequence (sn) such that

g(t, x) = lim
n→+∞

φ(t+ sn, x) and lim
n→+∞

g(t− sn, x) = φ(t, x) in X2

where the limits are uniform on compact subsets of R for each x ∈ X1.

Denote by AAc(R×X1; X2) the space of all such functions.

Definition 7.7. A bounded continuous function φ : R→ X is called (µ,ν)-pseudo almost
automorphic if φ = φ1+φ2 where φ1 ∈ AA(R; X) and φ2 ∈ E(R; X,µ,ν).

We denote by PAA(R; X), the space of all such functions.

Definition 7.8. Let X1 and X2 be two Banach spaces. A bounded continuous function
φ : R×X1→ X2 is called uniformly (µ,ν)-pseudo almost automorphic if φ = φ1+φ2, where
φ1 ∈ AA(R×X1; X2) and φ2 ∈ E(R×X1; X2,µ,ν).

We denote by PAA(R×X1; X2), the space of all such functions.
We now introduce some new spaces used in the sequel.

Definition 7.9. A bounded continuous function φ : R→ X is called (µ,ν)-pseudo compact
almost automorphic if φ = φ1+φ2 where φ1 ∈ AAc(R; X) and φ2 ∈ E(R; X,µ,ν).

We denote by PAAc(R; X), the space of all such functions.

Definition 7.10. Let X1 and X2 be two Banach spaces. A bounded continuous function
φ :R×X1→ X2 is called uniformly (µ,ν)-pseudo compact almost automorphic if φ= φ1+φ2,

where φ1 ∈ AAc(R×X1; X2) and φ2 ∈ E(R×X1; X2,µ,ν).

We denote by PAAc(R×X1; X2), the space of all such functions.

Definition 7.11. A bounded continuous function φ : R→ X is called (µ,ν)-pseudo almost
automorphic of class r (respectively (µ,ν)-pseudo compact almost automorphic of class r)
if φ = φ1+φ2 where φ1 ∈ AA(R; X) and φ2 ∈ E(R; X,µ,ν,r) (respectively if φ = φ1+φ2 where
φ1 ∈ AAc(R; X) and φ2 ∈ E(X,µ,ν,r)).

We denote by PAA(R; X,µ,ν,r) (respectively PAAc(R; X,µ,ν,r)) the space of all such
functions.

Definition 7.12. Let X1 and X2 be two Banach spaces. A bounded continuous function
φ :R×X1→ X2 is called uniformly (µ,ν)-pseudo almost automorphic of class r (respectively
uniformly pseudo compact almost automorphic of class r) if φ= φ1+φ2,where φ1 ∈ AA(R×
X1; X2) and φ2 ∈ E(R×X1; X2,µ,ν,r) (respectively if φ= φ1+φ2,where φ1 ∈ AAc(R×X1; X2)
and φ2 ∈ E(R×X1; X2, ,µ,ν,r)).
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We denote by PAA(R× X1; X2,µ,ν,r) (respectively PAAc(R× X1; X2,µ,ν,r)) the space
of all such functions.
From the definition of PAA(R; X,µ,ν,r), we easily deduce the following result.

Proposition 7.13. µ ∈M. The space PAA(R; X,µ,ν,r) endowed with the uniform topology
morm is a Banach space.

Proposition 7.14. [8] µ,ν ∈M and f ∈ PAA(R; X,µ,ν) be such that

f = g+h

where g ∈ AA(R,X) and h ∈ E(R,X,µ,ν). If PAA(R; X,µ,ν) is translation invariant, then

{g(t), t ∈ R} ⊂ { f (t), t ∈ R} (the closure of the range of f).

Corollary 7.15. [8] Let µ,ν ∈M. Assume that PAA(R,X,µ,ν) is translation invariant. Then
the decomposition of a (µ,ν)-pseudo almost automorphic function in the form f = g+ φ
where g ∈ AA(R; X) and φ ∈ E(R; X,µ,ν), is unique.

The following corollary is a consequence of Corollary 7.15.

Proposition 7.16. Let µ,ν ∈M. Assume that PAA(R,X,µ,ν) is translation invariant. Then
the decomposition of a (µ,ν)-pseudo-almost automorphic function φ = φ1 +φ2, where φ1 ∈

AA(R; X) and φ2 ∈ E(R; X,µ,ν,r), is unique.

Proof. In fact, since as a consequence of Corollary 7.15, the decomposition of a (µ,ν)-
pseudo-almost automorphic function φ= φ1+φ2,where φ1 ∈ AA(R; X) and φ2 ∈E(R; X,µ,ν),
is unique. Since PAA(R; X,µ,ν,r) ⊂ PAA(R; X,µ,ν), we get the desired result.�

Theorem 7.17. Let µ1,µ2, ν1, ν2 ∈ M. If µ1 ∼ µ2 and ν1 ∼ ν2, then PAA(R; X,µ1, ν1,r) =
PAA(R; X,µ2, ν2,r).

Proof. The proof is the same like Theorem 4.9.�

Proposition 7.18. [8] Let µ ∈M satisfy (H4). Then PAA(R,X,µ,ν) is invariant by transla-
tion, that is f ∈ PAP(R,X,µ,ν) implies fα ∈ PAA(R,X,µ,ν) for all α ∈ R.

Theorem 7.19. Assume that (H3) holds. Let µ ∈ M and u ∈ PAAc(R; X,µ,ν,r), then the
function t→ ut belongs to PAAc(C([−r,0]; X),µ,ν,r).

Proof. Assume that u = g+ϕ where g ∈ AA(R; X) and ϕ ∈ E(R; X,µ,ν,r). We can see that
ut = gt +ϕt. We want to show that gt ∈ AAc(C([−r,0]; X)) and ϕt ∈ E(C([−r,0]; X),µ,ν,r).
From [10] (Theorem 4.2), the function s→ gs belongs to AAc(C). Using Theorem 4.14, we
conclude that the function t→ ut belongs to PAAc(C([−r,0]; X),µ,ν,r).�
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Proposition 7.20. [10] Let h ∈ AAc(R,X) and Γ be the mapping defined for t ∈ R by

Γh(t) =
[

lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0h(s))ds+ lim
λ→+∞

∫ t

+∞

Uu(t− s)Πu(B̃λX0h(s))ds
]
(0).

Then Γh ∈ AAc(R,X).

(H8) f : R→ X is cl(µ,ν)-pseudo almost automorphic of class r.

Theorem 7.21. Assume (H0), (H1), (H2), (H4) and (H8) hold. Then equation (1.1) has a
unique cl(µ,ν)-pseudo almost automorphic solution of class r.

Proof. Since f is a (µ,ν)-pseudo compact almost automorphic function, f has a decom-
position f = f1 + f2 where f1 ∈ AAc(R; X) and f2 ∈ E(R; X,µ,ν,r). Using Proposition 5.1,
Proposition 5.2, Theorem 5.3 and Theorem 7.16, we get the desired result.�
Our next objective is to show the existence of (µ,ν)-pseudo almost automorphic solutions
of class r for the equation (5.1).
To prove our result, we need some preliminary results concerning the composition of (µ,ν)-
pseudo almost automorphic functions of class r.

Theorem 7.22. Let µ,ν ∈M, φ= φ1+φ2 ∈ PAA(R×X; X,µ,ν,r) with φ1 ∈ AA(R×X; X), φ2 ∈

E(R×X; X,µ,ν,r) and h ∈ PAA(R; X,µ,ν,r). Assume:
i) φ1(t, x) is uniformly continuous on any bounded subset uniformly for t ∈ R.
ii) there exist a nonnegative function Lφ ∈ LP(R), (1 ≤ p ≤∞) such that

|φ(t, x1)−φ(t, x2)| ≤ Lφ(t)|x1− x2|, for all t ∈ R and for all x1, x2 ∈ X. (7.1)

If

β = lim
τ→+∞

1
ν([−τ,τ])

∫ τ
−τ

(
sup
θ∈[t−r,t]

Lφ(θ)
)
dµ(t) <∞ (7.2)

then the function t→ φ(t,h(t)) belongs to PAA(R; X,µ,ν,r).

Proof. Assume that φ= φ1+φ2, h= h1+h2 where φ1 ∈ AA(R×X; X), φ2 ∈ E(R×X; X,µ,ν,r)
and h1 ∈ AA(R; X), h2 ∈ E(R; X,µ,ν,r). Consider the following decomposition

φ(t,h(t)) = φ1(t,h1(t))+ [φ(t,h(t))−φ(t,h1(t))]+φ2(t,h1(t)).

From [5], φ1(.,h1(.)) ∈ AA(R; X2). It remains to prove that both φ(.,h(.))− φ(.,h1(.)) and
φ2(.,h1(.)) belong to E(R; X,µ,ν,r). Clearly, φ(t,h(t))−φ(t,h1(t)) is bounded and continuous.
We can assume |φ(t,h(t))− φ(t,h1(t))| ≤ N, ∀t ∈ R. Since h(t), h1(t) are bounded, we can
choose a bounded subset B ⊂ R such that h(R),h1(R) ⊂ B. Under assumption (ii), for a
given ε > 0, |x1 − x2| ≤ ε, implies that |φ(t, x1)− φ(t, x2)| ≤ εLφ(t), for all t ∈ R. Since for
α ∈ E(R; X,µ,ν), Lemma 3.5 yields that

lim
τ→+∞

1
ν([−τ,τ]

µ(Mτ,ε(α)) = 0.
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So

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|φ(θ,h(θ))−φ(θ,h1(θ))|
)
dµ(t) =

1
ν([−τ,τ])

∫
Mτ,ε(α)

(
sup
θ∈[t−r,t]

|φ(θ,h(θ))

−φ(θ,h1(θ))|
)
dµ(t)+

1
ν([−τ,τ])

∫
[−τ,τ]\Mτ,ε(α)

(
sup
θ∈[t−r,t]

|φ(θ,h(θ))−φ(θ,h1(θ))|
)
dµ(t)

≤
N

ν([−τ,τ])

∫
Mτ,ε(α)

dµ(t)+
ε

ν([−τ,τ])

∫
[−τ,τ]\Mτ,ε(α)

(
sup
θ∈[t−r,t]

|Lφ(θ)|
)
dµ(t)

≤
N

ν([−τ,τ])

∫
Mτ,ε(α)

dµ(t)+
ε

ν([−τ,τ])

∫
[−τ,τ]

(
sup
θ∈[t−r,t]

|Lφ(θ)|
)
dµ(t)

≤
N

ν([−τ,τ])
Mτ,ε(α)+

ε

ν([−τ,τ])

∫
[−τ,τ]

(
sup
θ∈[t−r,t]

|Lφ(θ)|
)
dµ(t).

Which implies that

lim
τ→+∞

1
ν([−τ,τ])

∫ +τ
−τ

(
sup
θ∈[t−r,t]

|φ(θ,h(θ))−φ(θ,h1(θ))|
)
dµ(t) ≤ εβ for any ε > 0,

which shows that t 7→ φ(t,h(t))−φ(t,h1(t)) is (µ,ν)-ergodic of class r.
To prove that t 7→ φ2(t,h(t)) is (µ,ν)-ergodic of class r, we process like in the proof of The-
orem 4.11.�

In what follows, we suppose that:
(H9) The instable space U ≡ {0}.
(H10) f : R×C → X is uniformly cl(µ,ν)-pseudo compact almost automorphic such that
there exists a function L f ∈ Lp(R,R+), with 1 ≤ p < +∞, such that

| f (t,ϕ1)− f (t,ϕ2)| ≤ L f (t)|ϕ1−ϕ2|, for all t ∈ R, ϕ1,ϕ2 ∈C([−r,0]; X0))

where L f satisfies ii) of Theorem 7.22.

Theorem 7.23. Assume (H0), (H1), (H4), (H8) and (H9) hold. Then equation (5.1) has a
unique cl(µ,ν)-pseudo compact almost automorphic mild solution of class r.

Proof. Let x be a function in PAAc(R; X,µ,ν,r), from Theorem 7.19 the function t → xt

belongs to PAAc(C([−r,0]; X),µ,r). Hence Theorem 7.22 implies that the function g(.) :=
f (., x.) is in PAAc(R; X,µ,ν,r). Since the instable space U ≡ {0}, then Πu ≡ 0. Consider now
the mapping

H : PAAc(R; X,µ,ν,r)→ PAAc(R; X,µ,ν,r)

defined for t ∈ R by

(H x)(t) =
[

lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0 f (s, xs))ds
]
(0).

From, Proposition 5.1, Theorem 5.3, Theorem 7.20 and Theorem 7.22, we can infer thatH
maps PAAc(R; X,µ,ν,r) into PAAc(R; X,µ,ν,r). It suffices now to show that the operatorH
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has a unique fixed point in PAAc(R; X,µ,ν,r).
Case 1: L f ∈ L1(R), (p = 1).
Let x1, x2 ∈ PAAc(R; X,µ,ν,r). Then we have

| H x1(t)−H x2(t)| ≤
∣∣∣∣ lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0( f (s, x1s)− f (s, x2s)))ds
∣∣∣∣

≤ MM̃|Πs| |x1− x2|

∫ t

−∞

e−ω(t−s)L f (s)ds

≤ MM̃|Πs| |x1− x2|

∫ t

−∞

L f (s)ds.

It follows that

| H2x1(t)−H2x2(t)| ≤
∣∣∣∣ lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0( f (s,H x1t)− f (s,H x2t))ds
∣∣∣∣

≤ (MM̃|Πs|)2|x1− x2|

∫ t

−∞

L f (s)
∫ s

−∞

L f (δ)dδds

≤
(MM̃|Πs|)2

2

(∫ t

−∞

L f (s)ds
)2
|x1− x2|.

Induction on n in the same way, gives

| Hnx1−H
nx2| ≤

(MM̃|Πs|)n

n!

(∫ t

−∞

L f (s)ds
)n
|x1− x2|.

Therefore

| Hnx1−H
nx2| ≤

(MM̃|Πs| |L f |L1(R))n

n!
|x1− x2|.

Let n0 be such that
(MM̃|Πs| |L f |L1(R))n0

n0!
< 1. By Banach’s fixed point Theorem, H has a

unique fixed point and this fixed point satisfies the integral equation

ut = lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0 f (s,us))ds.

Case 2: L f ∈ Lp(R); (1 < p <∞).
First, put

µ(t) =
∫ t

−∞

(L f (s))pds.

Then we define an equivalent norm over PAA(R,X) as follows,

| f |c = sup
t∈R

e−cµ(t)| f (t)|,
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where c is a fixed positive number to be precised later. Using the Hölder inequality we have

| H x1(t)−H x2(t)| ≤
∣∣∣∣ lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0( f (s, x1s)− f (s, x2s)))ds
∣∣∣∣

≤ MM̃|Πs|

∫ t

−∞

e−ω(t−s)L f (s)|x1s− x2s|ds

≤ MM̃|Πs|

∫ t

−∞

e−ω(t−s)e−cµ(s)ecµ(s)L f (s)|x1s− x2s|ds

≤ MM̃|Πs|

∫ t

−∞

(
e−ω(t−s)ecµ(s)L f (s)

)
sup
s∈R

(
e−cµ(s)|x1(s)− x2(s)|

)
ds

≤ MM̃|Πs|

∫ t

−∞

(
e−ω(t−s)ecµ(s)L f (s)ds

)
|x1− x2|c

≤ MM̃|Πs|
(∫ t

−∞

epcµ(s)(L f (s))pds
) 1

p
(∫ t

−∞

e−ωq(t−s)ds
) 1

q
|x1− x2|c

≤ MM̃|Πs|
(∫ t

−∞

epcµ(s)µ′(s)ds
) 1

p
(∫ t

−∞

e−ωq(t−s)ds
) 1

q
|x1− x2|c

≤ MM̃|Πs|
( 1

(pc)
1
p

×
1

(ωq)
1
q

)
ecµ(t)|x1− x2|c.

Consequently

|H x1(t)−H x2(t)|c ≤
MM̃|Πs|

(pc)
1
p × (ωq)

1
q

|x1− x2|c.

Fix c > 0 so large, then the function c 7→
1

(pc)
1
p

converges to 0 when c converges to +∞. It

follows that for c > 0 so large enough we have
MM̃|Πs|

(pc)
1
p × (ωq)

1
q

< 1. ThusH is a contractive

mapping. Using the same argument as in Theorem 3.3 of [17], we conclude that there is
a cl(µ,ν)-unique pseudo almost automorphic integral solution to equation (5.1) which ends
the proof.�

Proposition 7.24. Assume (H0), (H1), (H2), (H4) hold and f is Lipschitz continuous with
respect the second argument. If

Lip( f ) <
ω

MM̃|Πs|
,

then equation (5.1) has a unique cl(µ,ν)-pseudo almost automorphic solution of class r,
where Lip( f ) is the Lipschitz constant of f .
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Proof. Let us pose k = Lip( f ), we have

| H x1(t)−H x2(t)| ≤
∣∣∣∣ lim
λ→+∞

∫ t

−∞

Us(t− s)Πs(B̃λX0( f (s, x1s)− f (s, x2s)))ds
∣∣∣∣

≤ |Πs|MM̃|x1− x2|k
(∫ t

−∞

e−ω(t−s)
)

≤
|Πs|MM̃|x1− x2|k

ω
.

ConsequentlyH is a strict contraction if k <
ω

MM̃|Πs|
.�

8 Application

For illustration, we propose to study the existence of solutions for the following model

∂

∂t
z(t, x) =

∂2

∂x2 z(t, x)+
∫ 0

−r
G(θ)z(t+ θ, x))dθ+ sin

( 1

2+ cos t+ cos
√

2t

)
+ arctan(t)

+

∫ 0

−r
h(θ,z(t+ θ, x))dθ for t ∈ R and x ∈ [0,π]

z(t,0) = z(t,π) = 0 for t ∈ R,
(8.1)

where G : [−r,0]→ R is a continuous function and h : [−r,0]×R→ R is continuous and
lipschitzian with respect to the second argument. To rewrite equation (8.1) in the abstract
form, we introduce the space X = C0([0,π];R) of continuous function from [0,π] to R+

equipped with the uniform norm topology. Let A : D(A)→ X be defined by{
D(A) = {y ∈ X∩C2([0,π],R) : y′′ ∈ X}
Ay = y′′.

Then A satisfied the Hille-Yosida condition in X. Moreover the part A0 of A in D(A) is
the generator of strongly continuous compact semigroup (T0(t))t≥0 on D(A). It follows that
(H0) and (H1) are satisfied.
We define f : R×C→ X and L : C→ X as follows

f (t,ϕ)(x) = sin
( 1

2+ cos t+ cos
√

2t

)
+ arctan(t)+

∫ 0

−r
h(θ,ϕ(θ)(x))dθ for x ∈ [0,π] and t ∈ R,

L(ϕ)(x) =
∫ 0

−r
G(θ)ϕ(θ)(x))dθ for − r ≤ θ ≤ 0 and x ∈ [0,π].

Let us pose v(t) = z(t, x). Then equation (8.1) takes the following abstract form

v′(t) = Av(t)+L(vt)+ f (t,vt) for t ∈ R. (8.2)

Consider the measure µ,ν be defined like in Section 6.

From [12], sin
( 1

2+ cos t+ cos
√

2t

)
−
π

2
is compact almost automorphic. In Section 6, we
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show that t 7→ arctan t−
π

2
is (µ,ν)-ergodic of class r, consequently, f is uniformly (µ,ν)-

pseudo almost automorphic of class r. Moreover, L is a bounded linear operator from C to
X.
Let k be the lipschiz constant of h, then for every ϕ1,ϕ2 ∈C and t ≥ 0, we have

| f (t,ϕ1)− f (t,ϕ2)| = sup
0≤x≤π

| f (t,ϕ1)(x)− f (t,ϕ2)(x)|

≤ kr sup
−r<θ≤0
0≤x≤π

|ϕ1(θ)(x)−ϕ2(θ)(x)|.

Consequently, we conclude that f is Lipschitz continuous and cl(µ,ν)-pseudo almost peri-
odic of class r.
(H7) implies (H9), then by Proposition 7.24 we deduce the following result.

Theorem 8.1. Under the above assumptions, if Lip(h) is small enough, then equation (8.2)
has a unique cl(µ,ν)-pseudo almost automorphic solution v of class r.

Acknowledgments: The author would like to thank the referees for their careful reading of
this article.
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