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Abstract. The cancellation of the singularities of the heat equation in a polygonal domain with
cracks is analyzed. Using a density result, a bi-orthogonality property of a family of finite eigen-
functions of the Laplacian and Holmgren’s theorem, we obtain a regular solution of the heat equation
by an internal control.
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1 Introduction

We consider a bounded polygonal domain Ω of R2 with cracks whose boundary Γ is a union of the
edges Γ j for 0 ≤ j ≤ n. We denote by S j the vertex between Γ j−1 and Γ j for 1 ≤ j ≤ n and S 0 the

∗bgilbert8@yahoo.fr
†sawasom@yahoo.fr
‡traore.oumar @univ-ouaga.bf
§elgouba@yahoo.fr



Cancellation of the Singularities of the Heat Equation 83

vertex between Γn and Γ0.
For T > 0, we set Q=Ω× (0,T ) and Σ = Γ× (0,T ). Let us consider the following linear heat equation

∂u
∂t
−∆u = f in Q,

u(0, x) = u0(x) in Ω,
u = 0 on Σ.

(1.1)

The existence of nonconvex angles of the boundary Γ of Ω produce singularities even if the right-
hand term and the data of the equation are smooth.
Consider the set W = D(−∆) = {u ∈ H1

0(Ω);−∆u ∈ L2(Ω)} endowed with the graph norm. We have
the following result:
for any f ∈ L2(Q) and u0 ∈H1

0(Ω), the problem (1.1) has a unique solution in L2(0,T ;W)∩H1(0,T ; L2(Ω)).
For more details, see [5].
If Γ is C2 then W = H2(Ω)∩H1

0(Ω). In our case, due to the presence of nonconvex angles, W is not
embedded in H2(Ω).More precisely, if N ∈ N∗ is the number of nonconvex angles of the boundary
of Ω, from [5], there exist N functions u1, ...,uN in H1

0(Ω)\H2(Ω) called singular solutions such that
W = H2(Ω)∩H1

0(Ω)⊕S pan{u1, ...,uN}.
The solution u of the problem (1.1) may be broken into the sum

u(x, t) = ur(x, t)+
N∑

i=1

ci(t)ui(x), (1.2)

where ur(x, t) ∈ L2(0,T ; H2(Ω)) and ci ∈ L2(0,T ), i = 1, ...,N; are the singularity coefficients.
So far, there is no way of killing singularities by acting on an arbitrary small part of the domain for
the heat equation. Here we propose a method to regularize the solution of problem (1.1).
The aim of this paper is to cancel or control the singularity coefficients in a space generated by
a family of finite eigenfunctions of L2(Ω). More precisely, we prove that there exist m regular
functions (gi)1≤i≤m with compact support in$ and m functions (θi)1≤i≤m such that for any f ∈ L2(Q)
and v0 ∈ H1

0(Ω)∩H2(Ω) the problem
∂v
∂t
−∆v = f −

m∑
i=1

θi(t)gi(x) in Q,

v(0, x) = v0(x) in Ω,
v = 0, on Σ.

(1.3)

has a unique solution in L2(0,T ; H2(Ω)).
Such a problem has already been studied in the literature but only in the stationary case, see [1, 9].
Similar problem was studied by the authors for the wave equation [2].
Our problem is quite different from the one studied in [4] where topological optimization method
is used to study a numerical aspect of the Dirichlet problem in a polygonal domain. In fact, in
[4], the model considered is stationary. Moreover the objective of their paper is not to cancel the
singularities but to make the solution of their model as close as possible to a desired state in the
space L2(Ω).
But it is important to underline that a change of the geometry and the topology of the domain could
imply variations of the coefficients of the singularities (see [4]). Therefore, one interesting question
is: how is it possible to both control the state of the system and minimise or cancel the singularities?
The method developed in [4] could give some answers.
This paper is organized as follows. Section 2 is devoted to the density theorem. In section 3 we study
the bi-orthogonality properties of the eigenfunctions . In section 4, we establish the cancellation
result.
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2 Density theorem

Let H be a Hilbert space equipped with an inner product (., .)H .

Theorem 2.1. (Density property). Let H be a Hilbert space, D a dense subspace of H and
E = {e0,e1, · · · ,em} a linearly independent subset of H. Then, there exists {d0,d1, · · · ,dm} in D such
that for any i, j ∈ {0,1, · · · ,m}, (ei,d j)H = δi j.

The proof of the Theorem 2.1 requires the following lemma :

Lemma 2.2. [3]
Let X be a vector space and ϕ0,ϕ1, ...,ϕm be linear forms on X not all null such that:

m⋂
i=1

kerϕi ⊂ kerϕ0; (2.1)

then, there exist real numbers λ1,λ2, ...,λm not all null such that ϕ0 =
m∑

i=1
λiϕi.

Proof of Theorem 2.1: The proof will be done in two steps.
Step 1. We will show that for any i ∈ {0,1, ...,m}, there exits d∗i ∈ D such that〈
ei,d∗i

〉
H
= 1.We proceed by contradiction. Suppose that there is i0 ∈ {0,1, ...,m}, such that〈

ei0 ,d
〉

H = 0, ∀ d ∈ D.

Since D is dense in H, there exists a sequence (dn
i )n∈N in D, such that lim

n→+∞
dn

i = ei0 .

So
〈
ei0 ,d

n
i

〉
H
= 0,∀n ∈ N and when n −→ +∞, we have

∥∥∥ei0

∥∥∥ = 0, which contradicts the fact that the
family {e0,e1, · · · ,em} is linearly independent. Therefore there exists dn0

i ∈ D such that〈
ei0 ,d

n0
i

〉
H
= α , 0. Setting d∗i =

dn0
i

α
one has

〈
ei0 ,d

∗
i

〉
H
= 1.

Step 2. We proceed by induction on m. For m = 0, there is d0 ∈ D such that 〈e0,d0〉 = 1, (see
step 1). Let us check that, there is a subset {d0,d1} of D such that

∀i, j ∈ {0,1},
〈
ei,d j

〉
H
= δi j.

Suppose that
∀ d ∈ D, 〈e1,d〉 = 0 =⇒ 〈e0,d〉 = 0.

Let x in H such that 〈e1, x〉 = 0. Since D is dense in H, there is a sequence (xn)n∈N in D such that
x = lim xn

n→+∞
. Choosing d∗1 ∈ D such that

〈
e1,d∗1

〉
= 1 and setting

dn = xn−〈xn,e1〉H d∗1,

one has dn ∈ D and 〈
e1,dn〉

H = 〈e1, xn〉H −〈xn,e1〉H

〈
e1,d∗1

〉
H

= 〈e1, xn〉H −〈xn,e1〉H = 0.

So that, for all n ∈ N, 〈e0,dn〉 = 0.
Since lim

n→+∞
dn = lim

n→+∞
(xn−〈xn,e1〉H d∗1) = x, we obtain

〈e0, x〉H = lim
n→+∞

〈
e0,dn〉

H = 0.
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From Lemma2.2, there is λ ∈ R such that e0 = λe1, which is impossible. Consequently, there is
d0 ∈ D, such that 〈e1,d0〉H = 0 and 〈e0,d0〉H = 1.
Suppose now that for d ∈ D, 〈e0,d〉H = 0 =⇒ 〈e1,d〉H = 0. Arguing in the same way, one gets that,
this is impossible. Then there exists d1 ∈D such that 〈e0,d1〉H = 0 and 〈e1,d1〉H = 1. So, we construct
inductively the set F = {d0,d1, ...,dm} in H such that E and F are bi-orthogonal.

3 Bi-orthogonality property of eigenfunctions

Consider the eigenvalue problem: {
−∆v = λv,
v ∈ H1

0(Ω).
(3.1)

It is well known that the eigenvalues problem (3.1) admits two kinds of eigenfunctions: the regular
eigenfunctions which are in H2(Ω)∩H1

0(Ω) and the singular eigenfunctions which are in H1
0(Ω) but

not in H2(Ω).
Moreover, one has L2(Ω) = V1⊕V2 where V1 is the space generated by the singular eigenfunctions
and V2 is the space generated by the other eigenfunctions. For more details see [8, 10].
Let (wi)i≥1 be a complete orthonormal family of singular eigenfunctions of −∆ and (αi)i≥1 the cor-
responding eigenvalues in increasing order. Let now (λi)i≥1 be the sequence of the unrepeated
eigenvalues in increasing order. We denote by (wik)1≤k≤r(i) the family of the eigenfunctions corre-
sponding to λi, i ≥ 1.
For m ∈ N∗, we set

Fm = Span{wik,1 ≤ k ≤ r(i),1 ≤ i ≤ m}

Remark 3.1. The set {wik,1 ≤ k ≤ r(i),1 ≤ i ≤ m} is linearly independent.

Proposition 3.2. Let Ω be a nonempty domain of Rn,$ a nonempty open subset of Ω. Assume that
{w1, ...,wm} is a set of some linearly independent singular eigenfunctions of −4 such that to each
eigenfunction wi corresponds one eigenvalue λi such that:

λ1 < λ2 < · · · < λm.

Then, there exist C∞ functions (gi)1≤i≤m with compact support in $ such that:

∀i, j ∈ {1, ...,m},
∫
Ω

wig jdx = δi j.

Proof. Let H = L2($). Let us prove that w1|$, ...,wm|$ are linearly independent. Assume that there

exist real numbers α1, ...,αm such that
m∑

i=1

αiwi = 0 in $.

Let W =
m∑

i=1

αiwi. We have −∆W =
m∑

i=1

αiλiwi = 0 on$. Applying p times the Laplacian operator, it

follows that (−∆)pW =
m∑

i=1

αiλ
p
i wi = 0 on $,∀p ∈ N∗. Since wm is not identically zero on $ , there

exists x0 ∈$ such that wm(x0) , 0. Hence from

m∑
i=1

αiλ
p
i wi = 0 on $,∀p ∈ N∗,
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we have

αmwm(x0)+
m−1∑
i=1

αi(
λi

λm
)pwi(x0) = 0.

For p→ +∞, one gets αm = 0. By iterating the same process, we obtain:

αi = 0, ∀i = 1, ...,m.

This proves that w1|$, ...,wm|$ are linearly independent.
SinceD($) is dense in H, then by Theorem 2.1, there exist g1, ...,gm ∈ D(Ω) with compact support

in $ such that ∀i, j ∈ {1, ...,m},
∫
Ω

wig jdx = δi j. �

Proposition 3.3. Let Ω be a nonempty domain of Rn,$ a nonempty open subset of Ω. Assume that
{(wik)1≤k≤r(i)} is the sequence of singular eigenfunctions of −4 corresponding to the eigenvalue λi.
Then, the family (wik|$)1≤k≤r(i) is linearly independent.

Proof. Assume that there exist real numbers β1, · · · ,βr(i) such that
r(i)∑
k=1

βkwik|$ = 0.

Setting W =
r(i)∑
k=1

βkwik|$. Then W is a solution of{
−∆W = λiW in Ω,
W = 0 in Γ.

As W = 0 on $, the unicity theorem of Holmgren revised by Hormander [6] implies that
r(i)∑
k=1

βkwik = 0 on Ω. Therefore βk = 0 ∀k = 1 · · ·r(i) and (wik|$)1≤k≤r(i) is linearly independent. �

Now, we consider the general case

Theorem 3.4. Let Ω be a nonempty domain of Rn, $ a nonempty open subset of Ω. Assume that
{w1, ...,wm} is a set of linearly independent singular eigenfunctions of −4.
Then, there exist C∞ functions (gi)1≤i≤m with compact support in $ such that:

∀i, j ∈ {1, ...,m},
∫
Ω

wig jdx = δi j.

Proof. Let H = L2($) and µ1, ...,µk with k ≤ m be the unrepeated eigenvalues in increasing order
of the the family (λi)i≥1. Let (uil)1≤i≤ml be the family of the eigenfunctions of the set of {w1, ...,wm}

corresponding to µl.
Let us prove now that (uil|$)1≤i≤ml

1≤l≤k

is a family of linearly independent functions.

Assume that there exist real numbers (αil)1≤i≤ml

1≤l≤k

such that:
k∑

l=1

ml∑
i=1

αiluil = 0 in $ and let

W =
k∑

l=1

ml∑
i=1

αiluil. We have −∆W =
k∑

l=1

ml∑
i=1

µlαiluil = 0 on $.

By reiterating the Laplacian p times, it follows that
k∑

l=1

ml∑
i=1

µ
p
l αiluil = 0 on $,∀p ∈ N∗ Thanks to
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proposition 3.3, the family (uik|$)1≤i≤mk is linearly independent and there exist x1, · · · , xmk ∈$ such
that the determinant:

∆k =

∣∣∣∣∣∣∣∣∣∣
u1k (x1) · · · umkk (x1)
...

. . .
...

u1k
(
xmk

)
· · · umkk

(
xmk

)
∣∣∣∣∣∣∣∣∣∣ , 0.

We have for j = 1, ...,mk,

mk∑
i=1

αikuik
(
x j

)
+

k−1∑
l=1

ml∑
i=1

αil

(
µl

µk

)p

uil
(
x j

)
= 0.

Letting p→ +∞, it follows that
mk∑
i=1

αikuik
(
x j

)
= 0 ∀ j.

As ∆k , 0, one deduces that αik = 0 for i = 1, ...mk.

Repeating this process, we get finally that

αil = 0, i = 1, ...ml; l = 1, ...,k.

This shows that (uil) 1≤l≤k

1≤i≤ml

is lineary independent.

SinceD($) is dense in H, then by Theorem 2.1, there exist g1, ...,gm ∈ D(Ω) with compact support

in $ such that ∀i, j ∈ {1, ...,m},
∫
Ω

wig jdx = δi j. �

Remark 3.5. The theorem 3.4 is valid even if Ω is a regular domain.

4 Cancellation of the singularities

Theorem 4.1. Assume that $ is a nonempty open subset of Ω. Let m ∈ N∗, f ∈ L2(Q), v0 ∈ H1
0(Ω)

and 0 < t0 < T. Then, there exist (gi)1≤i≤m, a family of C∞ functions with compact support in $,
and m functions (θi)1≤i≤m, such that, the solution v of the problem

∂v
∂t
−∆v = f +

m∑
i=1

θi(t)gi(x) in Q,

v(0, x) = v0(x) in Ω,
v = 0, on Σ.

(4.1)

belongs to L2(t0,T ; (H2(Ω)∩H1
0(Ω))∩F⊥m)), where F⊥m is the orthogonal of Fm.

Proof. For m ∈N∗ thanks to theorem 3.4, there exist m functions (gi)1≤i≤m, C∞ with compact support
in $ such that

∀i, j ∈ {1, ...,m},
∫
Ω

wig jdx = δi j.

Using the Fourier decomposition ( cf.[3]), we can write

v0(x) =
∞∑

k=1

βkwk(x)+
∞∑

i=1

γiϕi(x),

f (t, x) =
∞∑

k=1

fk(t)wk(x)+
∞∑

i=1

fi(t)ϕi(x),
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v(t, x) =
∞∑

k=1

vk(t)wk(x)+
∞∑

i=1

vi(t)ϕi(x).

Then, the first equation of (4.1) becomes:

+∞∑
k=1

(
v′k(t)+λkvk(t)

)
wk(x)+

+∞∑
i=1

(
v′i(t)+λkvi(t)

)
ϕi(x) =

+∞∑
k=1

fk(t)wk(x)+
+∞∑
i=1

f i(t)ϕi(x)

+

m∑
i=1

θi(t)gi(x)

Multiplying (4.1) by wk(x) and integrating on Ω, we obtain that, for k = 1, · · · ,m, the function vk is
solution of the system {

v′k(t)+λkvk(t) = fk(t)+ θk(t)
vk(0) = βk.

(4.2)

This gives that

vk(t) = βke−λkt +

∫ t

0
e−λk(t−s)( fk + θk)(s)ds

= e−λkt[βk +

∫ t

0
eλk(s)( fk + θk)(s)ds

]
.

Taking

θk(s) =


− fk(s)−

1
t0
βke−λk s if 0 ≤ s ≤ t0

− fk(s) if s > t0

,

one has for t > t0, vk(t) = e−λkt(βk −
βk

t0

∫ t0

0
ds) = 0.

Then vk(t) = 0 ∀ k ∈ {1, · · · ,m},∀ t > t0.

Hence, v(t, x) =
∞∑

k=m+1

vk(t)wk(x)+
∞∑

i=0

vi(t)ϕi(x) ∈ L2(t0,T ; (H2(Ω)∩H1
0(Ω))∩F⊥m)). �
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