Cancellation of the Singularities of the Heat Equation Restricted to a Finite Bandwich

GILBERT BAYILI*

Université de Ouagadougou, Unité de Recherche et de Formation en Sciences Exactes et Appliquées, Département de Mathématiques, 03 B.P.7021 Ouagadougou 03

Somdouda Sawadogo[†]

Université de Ouagadougou, Unité de Recherche et de Formation en Sciences Exactes et Appliquées, Département de Mathématiques, 03 B.P.7021 Ouagadougou 03

Oumar Traoré[‡]

Université Ouaga II, Département de Mathématiques de la décision, 12 BP 417 Ouagadougou 12 Burkina Faso

Elisée Gouba[§]

Université de Ouagadougou, Unité de Recherche et de Formation en Sciences Exactes et Appliquées, Département de Mathématiques, 03 B.P.7021 Ouagadougou 03

Abstract. The cancellation of the singularities of the heat equation in a polygonal domain with cracks is analyzed. Using a density result, a bi-orthogonality property of a family of finite eigenfunctions of the Laplacian and Holmgren's theorem, we obtain a regular solution of the heat equation by an internal control.

AMS Subject Classification: 35A20 35B65 35K05.

Keywords: Cracks, heat equation, singularities, cancellation.

1 Introduction

We consider a bounded polygonal domain Ω of \mathbb{R}^2 with cracks whose boundary Γ is a union of the edges Γ_j for $0 \le j \le n$. We denote by S_j the vertex between Γ_{j-1} and Γ_j for $1 \le j \le n$ and S_0 the

^{*}bgilbert8@yahoo.fr

[†]sawasom@yahoo.fr

[‡]traore.oumar @univ-ouaga.bf

[§]elgouba@yahoo.fr

vertex between Γ_n and Γ_0 .

For T > 0, we set $Q = \Omega \times (0, T)$ and $\Sigma = \Gamma \times (0, T)$. Let us consider the following linear heat equation

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u = f & \text{in } Q, \\ u(0, x) = u_0(x) & \text{in } \Omega, \\ u = 0 & \text{on } \Sigma. \end{cases}$$
(1.1)

The existence of nonconvex angles of the boundary Γ of Ω produce singularities even if the righthand term and the data of the equation are smooth.

Consider the set $W = D(-\Delta) = \{u \in H_0^1(\Omega); -\Delta u \in L^2(\Omega)\}$ endowed with the graph norm. We have the following result:

for any $f \in L^2(Q)$ and $u_0 \in H_0^1(\Omega)$, the problem (1.1) has a unique solution in $L^2(0, T; W) \cap H^1(0, T; L^2(\Omega))$. For more details, see [5].

If Γ is C^2 then $W = H^2(\Omega) \cap H_0^1(\Omega)$. In our case, due to the presence of nonconvex angles, W is not embedded in $H^2(\Omega)$. More precisely, if $N \in \mathbb{N}^*$ is the number of nonconvex angles of the boundary of Ω , from [5], there exist N functions $u_1, ..., u_N$ in $H_0^1(\Omega) \setminus H^2(\Omega)$ called singular solutions such that $W = H^2(\Omega) \cap H_0^1(\Omega) \oplus S pan\{u_1, ..., u_N\}$.

The solution u of the problem (1.1) may be broken into the sum

$$u(x,t) = u^{r}(x,t) + \sum_{i=1}^{N} c_{i}(t)u_{i}(x), \qquad (1.2)$$

where $u^r(x,t) \in L^2(0,T; H^2(\Omega))$ and $c_i \in L^2(0,T)$, i = 1, ..., N; are the singularity coefficients. So far, there is no way of killing singularities by acting on an arbitrary small part of the domain for the heat equation. Here we propose a method to regularize the solution of problem (1.1).

The aim of this paper is to cancel or control the singularity coefficients in a space generated by a family of finite eigenfunctions of $L^2(\Omega)$. More precisely, we prove that there exist *m* regular functions $(g_i)_{1 \le i \le m}$ with compact support in ϖ and *m* functions $(\theta_i)_{1 \le i \le m}$ such that for any $f \in L^2(Q)$ and $v_0 \in H^1_0(\Omega) \cap H^2(\Omega)$ the problem

$$\begin{cases} \frac{\partial v}{\partial t} - \Delta v = f - \sum_{i=1}^{m} \theta_i(t) g_i(x) & \text{in } Q, \\ v(0, x) = v_0(x) & \text{in } \Omega, \\ v = 0, & \text{on } \Sigma. \end{cases}$$
(1.3)

has a unique solution in $L^2(0,T; H^2(\Omega))$.

Such a problem has already been studied in the literature but only in the stationary case, see [1, 9]. Similar problem was studied by the authors for the wave equation [2].

Our problem is quite different from the one studied in [4] where topological optimization method is used to study a numerical aspect of the Dirichlet problem in a polygonal domain. In fact, in [4], the model considered is stationary. Moreover the objective of their paper is not to cancel the singularities but to make the solution of their model as close as possible to a desired state in the space $L^2(\Omega)$.

But it is important to underline that a change of the geometry and the topology of the domain could imply variations of the coefficients of the singularities (see [4]). Therefore, one interesting question is: how is it possible to both control the state of the system and minimise or cancel the singularities? The method developed in [4] could give some answers.

This paper is organized as follows. Section 2 is devoted to the density theorem. In section 3 we study the bi-orthogonality properties of the eigenfunctions . In section 4, we establish the cancellation result.

2 Density theorem

Let *H* be a Hilbert space equipped with an inner product $(.,.)_H$.

Theorem 2.1. (*Density property*). Let *H* be a Hilbert space, *D* a dense subspace of *H* and $E = \{e_0, e_1, \dots, e_m\}$ a linearly independent subset of *H*. Then, there exists $\{d_0, d_1, \dots, d_m\}$ in *D* such that for any $i, j \in \{0, 1, \dots, m\}$, $(e_i, d_j)_H = \delta_{ij}$.

The proof of the Theorem 2.1 requires the following lemma :

Lemma 2.2. [3]

Let X be a vector space and $\varphi_0, \varphi_1, ..., \varphi_m$ be linear forms on X not all null such that:

$$\bigcap_{i=1}^{m} \ker \varphi_i \subset \ker \varphi_0; \tag{2.1}$$

then, there exist real numbers $\lambda_1, \lambda_2, ..., \lambda_m$ not all null such that $\varphi_0 = \sum_{i=1}^m \lambda_i \varphi_i$.

Proof of Theorem 2.1: The proof will be done in two steps. **Step 1.** We will show that for any $i \in \{0, 1, ..., m\}$, there exits $d_i^* \in D$ such that $\langle e_i, d_i^* \rangle_H = 1$. We proceed by contradiction. Suppose that there is $i_0 \in \{0, 1, ..., m\}$, such that

$$\langle e_{i_0}, d \rangle_H = 0, \ \forall \ d \in D.$$

Since *D* is dense in *H*, there exists a sequence $(d_i^n)_{n \in \mathbb{N}}$ in *D*, such that $\lim_{n \to +\infty} d_i^n = e_{i_0}$.

So $\langle e_{i_0}, d_i^n \rangle_H = 0, \forall n \in \mathbb{N}$ and when $n \longrightarrow +\infty$, we have $||e_{i_0}|| = 0$, which contradicts the fact that the family $\{e_0, e_1, \dots, e_m\}$ is linearly independent. Therefore there exists $d_i^{n_0} \in D$ such that

 $\langle e_{i_0}, d_i^{n_0} \rangle_H = \alpha \neq 0$. Setting $d_i^* = \frac{d_i^{n_0}}{\alpha}$ one has $\langle e_{i_0}, d_i^* \rangle_H = 1$.

Step 2. We proceed by induction on *m*. For m = 0, there is $d_0 \in D$ such that $\langle e_0, d_0 \rangle = 1$, (see step 1). Let us check that, there is a subset $\{d_0, d_1\}$ of *D* such that

$$\forall i, j \in \{0, 1\}, \ \left\langle e_i, d_j \right\rangle_H = \delta_{ij}.$$

Suppose that

$$\forall d \in D, \langle e_1, d \rangle = 0 \Longrightarrow \langle e_0, d \rangle = 0.$$

Let x in H such that $\langle e_1, x \rangle = 0$. Since D is dense in H, there is a sequence $(x_n)_{n \in \mathbb{N}}$ in D such that $x = \lim_{n \to \infty} x_n$. Choosing $d_1^* \in D$ such that $\langle e_1, d_1^* \rangle = 1$ and setting

$$d^n = x_n - \langle x_n, e_1 \rangle_H d_1^*,$$

one has $d^n \in D$ and

$$\langle e_1, d^n \rangle_H = \langle e_1, x_n \rangle_H - \langle x_n, e_1 \rangle_H \langle e_1, d_1^* \rangle_H = \langle e_1, x_n \rangle_H - \langle x_n, e_1 \rangle_H = 0.$$

So that, for all $n \in \mathbb{N}$, $\langle e_0, d^n \rangle = 0$.

Since $\lim_{n \to +\infty} d^n = \lim_{n \to +\infty} (x_n - \langle x_n, e_1 \rangle_H d_1^*) = x$, we obtain

$$\langle e_0, x \rangle_H = \lim_{n \to +\infty} \langle e_0, d^n \rangle_H = 0.$$

From Lemma2.2, there is $\lambda \in \mathbb{R}$ such that $e_0 = \lambda e_1$, which is impossible. Consequently, there is $d_0 \in D$, such that $\langle e_1, d_0 \rangle_H = 0$ and $\langle e_0, d_0 \rangle_H = 1$.

Suppose now that for $d \in D$, $\langle e_0, d \rangle_H = 0 \implies \langle e_1, d \rangle_H = 0$. Arguing in the same way, one gets that, this is impossible. Then there exists $d_1 \in D$ such that $\langle e_0, d_1 \rangle_H = 0$ and $\langle e_1, d_1 \rangle_H = 1$. So, we construct inductively the set $F = \{d_0, d_1, ..., d_m\}$ in H such that E and F are bi-orthogonal.

3 Bi-orthogonality property of eigenfunctions

Consider the eigenvalue problem:

$$\begin{cases} -\Delta v = \lambda v, \\ v \in H_0^1(\Omega). \end{cases}$$
(3.1)

It is well known that the eigenvalues problem (3.1) admits two kinds of eigenfunctions: the regular eigenfunctions which are in $H^2(\Omega) \cap H^1_0(\Omega)$ and the singular eigenfunctions which are in $H^1_0(\Omega)$ but not in $H^2(\Omega)$.

Moreover, one has $L^2(\Omega) = V_1 \oplus V_2$ where V_1 is the space generated by the singular eigenfunctions and V_2 is the space generated by the other eigenfunctions. For more details see [8, 10].

Let $(w_i)_{i\geq 1}$ be a complete orthonormal family of singular eigenfunctions of $-\Delta$ and $(\alpha_i)_{i\geq 1}$ the corresponding eigenvalues in increasing order. Let now $(\lambda_i)_{i\geq 1}$ be the sequence of the unrepeated eigenvalues in increasing order. We denote by $(w_{ik})_{1\leq k\leq r(i)}$ the family of the eigenfunctions corresponding to $\lambda_i, i \geq 1$.

For $m \in \mathbb{N}^*$, we set

$$F_m = \operatorname{Span}\{w_{ik}, 1 \le k \le r(i), 1 \le i \le m\}$$

Remark 3.1. The set $\{w_{ik}, 1 \le k \le r(i), 1 \le i \le m\}$ is linearly independent.

Proposition 3.2. Let Ω be a nonempty domain of \mathbb{R}^n , ϖ a nonempty open subset of Ω . Assume that $\{w_1, ..., w_m\}$ is a set of some linearly independent singular eigenfunctions of $-\Delta$ such that to each eigenfunction w_i corresponds one eigenvalue λ_i such that:

$$\lambda_1 < \lambda_2 < \cdots < \lambda_m.$$

Then, there exist C^{∞} functions $(g_i)_{1 \le i \le m}$ with compact support in ϖ such that:

$$\forall i, j \in \{1, ..., m\}, \int_{\Omega} w_i g_j dx = \delta_{ij}.$$

Proof. Let $H = L^2(\varpi)$. Let us prove that $w_1|_{\varpi}, ..., w_m|_{\varpi}$ are linearly independent. Assume that there exist real numbers $\alpha_1, ..., \alpha_m$ such that $\sum_{i=1}^m \alpha_i w_i = 0$ in ϖ .

Let $W = \sum_{i=1}^{m} \alpha_i w_i$. We have $-\Delta W = \sum_{i=1}^{m} \alpha_i \lambda_i w_i = 0$ on ϖ . Applying *p* times the Laplacian operator, it

follows that $(-\Delta)^p W = \sum_{i=1}^m \alpha_i \lambda_i^p w_i = 0$ on $\varpi, \forall p \in \mathbb{N}^*$. Since w_m is not identically zero on ϖ , there exists $x_0 \in \varpi$ such that $w_m(x_0) \neq 0$. Hence from

$$\sum_{i=1}^{m} \alpha_i \lambda_i^p w_i = 0 \text{ on } \overline{\varpi}, \forall p \in \mathbb{N}^*,$$

we have

$$\alpha_m w_m(x_0) + \sum_{i=1}^{m-1} \alpha_i (\frac{\lambda_i}{\lambda_m})^p w_i(x_0) = 0.$$

For $p \to +\infty$, one gets $\alpha_m = 0$. By iterating the same process, we obtain:

$$\alpha_i = 0, \forall i = 1, ..., m.$$

This proves that $w_1|_{\varpi}, ..., w_m|_{\varpi}$ are linearly independent.

Since $\mathcal{D}(\varpi)$ is dense in *H*, then by Theorem 2.1, there exist $g_1, ..., g_m \in \mathcal{D}(\Omega)$ with compact support in ϖ such that $\forall i, j \in \{1, ..., m\}$, $\int_{\Omega} w_i g_j dx = \delta_{ij}$.

Proposition 3.3. Let Ω be a nonempty domain of \mathbb{R}^n , ϖ a nonempty open subset of Ω . Assume that $\{(w_{ik})_{1 \le k \le r(i)}\}$ is the sequence of singular eigenfunctions of $-\Delta$ corresponding to the eigenvalue λ_i . Then, the family $(w_{ik}|_{\varpi})_{1 \le k \le r(i)}$ is linearly independent.

Proof. Assume that there exist real numbers $\beta_1, \dots, \beta_{r(i)}$ such that $\sum_{k=1}^{r(i)} \beta_k w_{ik}|_{\varpi} = 0$.

Setting $W = \sum_{k=1}^{r(i)} \beta_k w_{ik}|_{\varpi}$. Then W is a solution of

$$\begin{pmatrix} -\Delta W = \lambda_i W & \text{in } \Omega, \\ W = 0 & \text{in } \Gamma. \end{cases}$$

As W = 0 on ϖ , the unicity theorem of Holmgren revised by Hormander [6] implies that $\sum_{k=1}^{r(i)} \beta_k w_{ik} = 0 \text{ on } \Omega.$ Therefore $\beta_k = 0 \quad \forall k = 1 \cdots r(i) \text{ and } (w_{ik}|_{\varpi})_{1 \le k \le r(i)}$ is linearly independent. \Box

Now, we consider the general case

Theorem 3.4. Let Ω be a nonempty domain of \mathbb{R}^n , ϖ a nonempty open subset of Ω . Assume that $\{w_1, ..., w_m\}$ is a set of linearly independent singular eigenfunctions of $-\Delta$. Then, there exist C^{∞} functions $(g_i)_{1 \le i \le m}$ with compact support in ϖ such that:

$$\forall i, j \in \{1, ..., m\}, \int_{\Omega} w_i g_j dx = \delta_{ij}.$$

Proof. Let $H = L^2(\varpi)$ and $\mu_1, ..., \mu_k$ with $k \le m$ be the unrepeated eigenvalues in increasing order of the the family $(\lambda_i)_{i\ge 1}$. Let $(u_{il})_{1\le i\le m_l}$ be the family of the eigenfunctions of the set of $\{w_1, ..., w_m\}$ corresponding to μ_l .

Let us prove now that $(u_{il}|_{\varpi})_{1 \le i \le m_l}$ is a family of linearly independent functions.

$$1 \le l \le k$$

Assume that there exist real numbers $(\alpha_{il})_{1 \le i \le m_l}$ such that: $\sum_{l=1}^{k} \sum_{i=1}^{m_l} \alpha_{il} u_{il} = 0$ in ϖ and let

$$W = \sum_{l=1}^{k} \sum_{i=1}^{m_l} \alpha_{il} u_{il}. \text{ We have } -\Delta W = \sum_{l=1}^{k} \sum_{i=1}^{m_l} \mu_l \alpha_{il} u_{il} = 0 \text{ on } \varpi.$$

By reiterating the Laplacian p times, it follows that $\sum_{l=1}^{k} \sum_{i=1}^{m_l} \mu_l^p \alpha_{il} u_{il} = 0$ on $\varpi, \forall p \in \mathbb{N}^*$ Thanks to

86

proposition 3.3, the family $(u_{ik}|_{\varpi})_{1 \le i \le m_k}$ is linearly independent and there exist $x_1, \dots, x_{m_k} \in \varpi$ such that the determinant:

$$\Delta_k = \begin{vmatrix} u_{1k}(x_1) & \cdots & u_{m_kk}(x_1) \\ \vdots & \ddots & \vdots \\ u_{1k}(x_{m_k}) & \cdots & u_{m_kk}(x_{m_k}) \end{vmatrix} \neq 0.$$

We have for $j = 1, ..., m_k$,

$$\sum_{i=1}^{m_k} \alpha_{ik} u_{ik}(x_j) + \sum_{l=1}^{k-1} \sum_{i=1}^{m_l} \alpha_{il} \left(\frac{\mu_l}{\mu_k}\right)^p u_{il}(x_j) = 0.$$

Letting $p \to +\infty$, it follows that $\sum_{i=1}^{m_k} \alpha_{ik} u_{ik}(x_j) = 0 \quad \forall j$. As $\Delta_k \neq 0$, one deduces that $\alpha_{ik} = 0$ for $i = 1, ..., m_k$.

Repeating this process, we get finally that

$$\alpha_{il} = 0, i = 1, \dots, m_l; l = 1, \dots, k.$$

This shows that $(u_{il})_{1 \le l \le k}$ is lineary independent.

Since $\mathcal{D}(\varpi)$ is dense in H, then by Theorem 2.1, there exist $g_1, ..., g_m \in \mathcal{D}(\Omega)$ with compact support in ϖ such that $\forall i, j \in \{1, ..., m\}, \int_{\Omega} w_i g_j dx = \delta_{ij}$.

Remark 3.5. The theorem 3.4 is valid even if Ω is a regular domain.

4 Cancellation of the singularities

Theorem 4.1. Assume that ϖ is a nonempty open subset of Ω . Let $m \in \mathbb{N}^*$, $f \in L^2(Q)$, $v_0 \in H_0^1(\Omega)$ and $0 < t_0 < T$. Then, there exist $(g_i)_{1 \le i \le m}$, a family of C^{∞} functions with compact support in ϖ , and m functions $(\theta_i)_{1 \le i \le m}$, such that, the solution v of the problem

$$\begin{cases} \frac{\partial v}{\partial t} - \Delta v = f + \sum_{i=1}^{m} \theta_i(t) g_i(x) & \text{in } Q, \\ v(0, x) = v_0(x) & \text{in } \Omega, \\ v = 0, & \text{on } \Sigma. \end{cases}$$
(4.1)

belongs to $L^2(t_0, T; (H^2(\Omega) \cap H^1_0(\Omega)) \cap F_m^{\perp}))$, where F_m^{\perp} is the orthogonal of F_m .

Proof. For $m \in \mathbb{N}^*$ thanks to theorem 3.4, there exist *m* functions $(g_i)_{1 \le i \le m}$, C^{∞} with compact support in ϖ such that

$$\forall i, j \in \{1, ..., m\}, \int_{\Omega} w_i g_j dx = \delta_{ij}.$$

Using the Fourier decomposition (cf.[3]), we can write

$$v_0(x) = \sum_{k=1}^{\infty} \beta_k w_k(x) + \sum_{i=1}^{\infty} \gamma_i \varphi_i(x),$$

$$f(t, x) = \sum_{k=1}^{\infty} f_k(t) w_k(x) + \sum_{i=1}^{\infty} \overline{f_i}(t) \varphi_i(x).$$

$$v(t,x) = \sum_{k=1}^{\infty} v_k(t) w_k(x) + \sum_{i=1}^{\infty} \overline{v_i}(t) \varphi_i(x).$$

Then, the first equation of (4.1) becomes:

$$\sum_{k=1}^{+\infty} \left(v'_k(t) + \lambda_k v_k(t) \right) w_k(x) + \sum_{i=1}^{+\infty} \left(\overline{v}'_i(t) + \lambda_k \overline{v}_i(t) \right) \varphi_i(x) = \sum_{k=1}^{+\infty} f_k(t) w_k(x) + \sum_{i=1}^{+\infty} \overline{f}_i(t) \varphi_i(x) + \sum_{i=1}^{m} \theta_i(t) g_i(x)$$

Multiplying (4.1) by $w_k(x)$ and integrating on Ω , we obtain that, for $k = 1, \dots, m$, the function v_k is solution of the system

$$\begin{cases} v'_k(t) + \lambda_k v_k(t) = f_k(t) + \theta_k(t) \\ v_k(0) = \beta_k. \end{cases}$$
(4.2)

This gives that

$$v_k(t) = \beta_k e^{-\lambda_k t} + \int_0^t e^{-\lambda_k (t-s)} (f_k + \theta_k)(s) ds$$
$$= e^{-\lambda_k t} [\beta_k + \int_0^t e^{\lambda_k (s)} (f_k + \theta_k)(s) ds].$$

Taking

$$\theta_{k}(s) = \begin{cases} -f_{k}(s) - \frac{1}{t_{0}}\beta_{k}e^{-\lambda_{k}s} \text{ if } 0 \le s \le t_{0} \\ -f_{k}(s) \text{ if } s > t_{0} \end{cases},$$

one has for $t > t_{0}, v_{k}(t) = e^{-\lambda_{k}t}(\beta_{k} - \frac{\beta_{k}}{t_{0}}\int_{0}^{t_{0}}ds) = 0.$
Then $v_{k}(t) = 0 \quad \forall \ k \in \{1, \cdots, m\}, \forall \ t > t_{0}.$
Hence, $v(t, x) = \sum_{k=m+1}^{\infty} v_{k}(t)w_{k}(x) + \sum_{i=0}^{\infty} \overline{v_{i}}(t)\varphi_{i}(x) \in L^{2}(t_{0}, T; (H^{2}(\Omega) \cap H^{1}_{0}(\Omega)) \cap F^{\perp}_{m})).$

References

- [1] G. Bayili, C. Seck , A. Sène and M.T. Niane, Control and Cancellation Singularities of Bilaplacian in a Cracked Domain, Journal of Mathematics Research; Vol. 4, No. 4;2012.
- [2] G. Bayili, S. Sawadogo and O. Traoré, Cancellation of the singularities of the wave equation. Submitted.
- [3] H. Brezis, Functional Analysis, Sobolev spaces and PDE, Universitext. Springer New York 2011.43.
- [4] K. Fall, A. Sy and D. Seck: Topological optimization for a controlled Dirichlet problem in polygonal domain, Journal of Numerical Mathematics and Stochastics, 2(1), p. 12 33, 2010.
- [5] P. Grisvard, Singularities in boundary value problems, RMA, Springer-Verlag, 1992.
- [6] L. Hormander, Linear partial differential operators, Springer-Verlag, 1976.

- [7] Mohand Moussaoui et Viet Hoang Tran, Sur le coefficient de singularités des solutions de l'équation des ondes Dirichlet dans un polygone plan, C R Acad Sci Paris, t. 316, Série I, p 257 – 260, 1993.
- [8] M. Moussaoui et B. Sadallah, Regularité des coefficients de propagation des singularités pour l'équation de la chaleur dans un polygone plan, C R Acad Sci Paris,293,Série I,1981.
- [9] M.T. Niane, G. Bayili, A. Sène, A. Sène, M. Sy, Is it possible to cancel singularities in a domain with corners and cracks?, C.R. Acad. Sci. Paris, Ser. I, 343, p.115 118, 2006.
- [10] A. Nikiforov et Ouvarov, Eléments de la théorie des fonctions spéciales, MIR éd, Moscou, 1974.