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Abstract

In this paper, we prove the following: assume that either (i) 7* is w-hyponormal
and S is w-hyponormal such that ker(7*) c ker(7T") and ker(S) C ker(S*) or (ii) T* is
p-hyponormal or log-hyponormal and S is w-hyponormal such that ker(S) c ker(S™)
or (iii) 7" is an injective w-hyponormal and S is a dominant holds. Then the pair (7,5 )
satisfy Fuglede-Putnam theorem. Also, other related results are given.
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1 Introduction

For complex infinite dimensional Hilbert spaces ¢ and %, £ (7€), £ (% ) and L (2, %)
denote the set of bounded linear operators on .7, the set of bounded linear operators on

% and the set of bounded linear operators from 5 to %, respectively. An operator

T € L(J7) is called positive (in symbol T > 0 ) if (Tx,x) > O for all x € 7. An opera-

tor T € £() is called normal if T*T = TT*. Following [24, 28], an operator T € £ ()

is called dominant if

R(T-A)cR(T-A)*  forall1eC.

This condition is equivalent to the existence of a positive constant M, for each 4 € C such
that
(T-A)(T - <MNT -1)"(T - 2).

If there exists a constant M such that M < M for all 1 € C, then T is called M-hyponormal,
and if M =1, T is hyponormal. Hence the following inclusion relations hold:

{Normal } c {Hyponormal } ¢ {M-hyponormal } ¢ {Dominant }.
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According to [1, 3, 11], an operator T € Z () is called p-hyponormal for p € (0,1]
if |T|?? > |T*[*”, when p =1, T is called hyponormal, when p = % , T is called semi-
hyponormal. An operator T € Z(5¢) is called log-hyponormal if 7 is invertible and
log(T*T) > 1og(TT*). And T € Z(H) is called paranormal if ||T2x“ > ||Tx||2 for every
unit vector x € J7.

In order to discuss the relations between paranormal and p-hyponormal and log-hyponormal
operators, Furuta el al. [12] introduced a class A defined by |T?| > |T)? and they showed
that class A is a subclass of paranormal and contains p-hyponormal and log-hyponormal
operators. Class A operators have been studied by many researchers, for example [12, 10].
Fujii et al. [10] introduced a new class A(t, s) of operators: For # > 0 and s > 0 an operator
T belongs to class A(s,?) if it satisfies an operator inequality

(lT*|t|T|2Y|T*|l‘)m > |T*|2t.

Recall from [2] that an operator T € .Z(5¢) is called w-hyponormal if IT|>T| > T,
where T = |T|% U |T|% is the Aluthge transformation. As a generalization of w-hyponormal
and class A(s, 1), Ito [15] introduced a class of operators called wA(s,t): Fort >0 and s >0
an operator 7" belongs to class wA(s, ?) if it satisfies an operator inequality

(|T*|Z|T|2S|T|t)m > |T*|2t.

and .
|T|2s > (|T|5|T*|2t|T|s)s+t )
In [14], they showed that class w-hyponormal coincides with class wA(%, %), class A coin-

cides with class wA(1,1) and class A(s, t) coincides with class wA(s, ) for each s > 0, and
t > 0. Inclusion relations among these classes are known as follows:

{hyponormal operators} C { p-hyponormal operators for 0 < p < 1}

class A(s, 1) operators for s,7 € [0,1] }

cf
cf
= {class wA(s, ) operators for s,7 € [0,1] }
c {class A operators}

<

paranormal operators} .

A pair (7,S) is said to have the Fuglede-Putnam property if 7*X = XS * whenever TX =
XS for every X € L (., 7). The Fuglede-Putnam theorem is well-known in the operator
theory. It asserts that for any normal operators 7" and S, the pair (7,S5) has the Fuglede-
Putnam property. There exist many generalization of this theorem which most of them go
into relaxing the normality of 7" and S, see [4, 5, 8,9, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30,
31] and references therein. The two next lemmas are concerned with the Fuglede-Putnam
theorem and we need them in the future.

Lemma 1.1. ([30]) Let T € Z(5¢) and S € £(%"). Then the following assertions are
equivalent.

(1) The pair (7,S) has the Fuglede-Putnam property.
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(ii) If TX = S X, then R(X) reduces T, ker(X)* reduces S, and T|W’ S lker(x)+ are uni-
tarily equivalent normal operators.

Lemma 1.2. ([16]) Let T € £(57) and S* € Z(%) be either log-hyponormal or p-
hyponormal operators. Then the pair (7,5) has the Fuglede-Putnam property.

2 Complementary Results
In this section, we present some results that will be needed in the section which follows.
Lemma 2.1. ( [13]) IfA,B € () satisfy A >0 and ||B|| < 1, then
(B*AB)* = B*A“B  forall a €(0,1].
Lemma 2.2. Let A, B and C be positive operators. Then
(B%AB%)Q > BandB > C — (C%Ac%)a >C, forall0<a<l.
Proof. There exists an operator X such that

1

—BX = X*B% and [|IX||< 1

=

C
by Douglas theorem [7]. Then with C = B> X we have

(C%ACz) ( BiA Bzx)
> X" ( 2AB ) X>X"BX=C
by Lemma 2.1. O

Theorem 2.3. Let 0 < s5,t < 1. Let T € L(I) be a class A(s,t) operator and # be its
invariant subspace. Then the restriction T| 4 of T to . is also class A(s,t) operator.

Proof. Let P be the projection onto .#, and T = T P. Then

IT\[** = (PIT*P)’ 2 PITI**P
by Lemma 2.1, so that |T['|T\[*|T;|" > |T;['|T|*|T;|". And also,

ITiP = (TPT*) < (IT*) =|T**

by Lowner-Heinz theorem [23]. Since T belongs to class A(s,?), we have

(T PP 2 7P
it follows from Lemma 2.2 that

(Tinr Pl 2 i
and so )

(1T Py 21Ty, @.1)

by Lowner-Heinz theorem. That is, the restriction T'| 4 of T to .# is class A(s,) operator.
O
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Since class A(s, ) operators coincides with class wA(s, ) for each s > 0 and 7 > 0, we
have the following corollary.

Corollary 2.4. Let 0 < s,t < 1. Let T € L () be a class wA(s,t) operator and . be its
invariant subspace. Then the restriction T| 4 of T to A is also class wA(s,t) operator.

Since class wA(%, %

the following corollary.

) operators coincides with class w-hyponormal operators, we have

Corollary 2.5. Let T € £ (). If T is w-hyponormal operator and .# be its invariant
subspace. Then the restriction T| 4 of T to M is also w-hyponormal operator.

Lemma 2.6. Let 0 < s,t < 1. Let T € L () belongs to class wA(s,t) and T = U|T| be
the polar decomposition of T. If # is an invariant subspace of T and T| 4 is an injective
normal operator, then the generalized Aluthge transformation has the form ﬁ,t =N®Ron
H = M ® M, where N is a normal operator on M.

Pr00]i First, we show ~that if T is a class wA(s, t), then the generalized Aluthge transforrga—
tion 7', has the form 75, = N@®R. Since T is a class wA(s, 1), it follows from [15] that T,

in{s,? —
mlnist }. By Lemma 5 and Lemma 11 of [31], T,

has the form ( 1(\)] ; ) on = .# &.#~+, where N is normal and R(S) C ker(N). Then

is a p-hyponormal operator, where p =

nm (VR0
Tl e e

~ =, NP +|S*> SR*
TS,ITS,I=(| |“+1S "] )

Put (fv,,fj’t)l’ = ( ;(* ; ) Then the p-hyponormality of fv,t implies that
= = NP0 X Y\_ 7 =
(Ts,tTSJ)p = ( 0 (lS |2 + |R|2)p “\y z = (Ts,th,t)p-

We have R(Y) c R(X?) by Lemma 9 of [31] and R(X?) c R(N|?) by Lemma 8 of [31].
A

Hence we have R(X)UR(Y)  R(X7) € R(NIP). Put (T, T )' 7 = ( e g ) Hence

e~ o~ = o~ — . (X Y\[A B
Ts,tT.v,t:(Ts,th,t)p(Ts,th,t)l ! :( Y Z )( B* C )

This implies that |V [>+SS*=XA+YB". Therefore,
RS S CRINP) + R(X) +R(Y) € R(NP) c R(N),

while, R(SS*) c R(S) c ker(N). This shows that R(SS*) = {0} and therefore S = 0. That
is, Ty, = N@R.
O
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Lemma 2.7. Let T € £(F) be w-hyponormal operator and T = U|T| be the polar decom-
position of T. If 4 is an invariant subspace of T and T| 4 is an injective normal operator,

then A reduces T.

Proof. Since T is w-hyponormal operator
T <ITI<IT.

Hence we have
INI®|R*| <|T| < IN|®IR],

by assumption. This implies that || is of the form |N|® L for some positive operator L.

Un U
LetU =
( Uy Un

A = M & H*. Then the definition T = |T|> U|T|> means that

N O\_(INZ 0 ) Un Up\(INZ 0
0 R/ \ 0 1Lz Uy Unxn 0o L'z )

) be the matrix representation of U with respect to the decomposition

Hence we have

N =IN2U N2, (2.2)
INI2 U, L2 =0, 2.3)
L2 Us|N|? =0. (2.4)

Since ker(U) = ker(T) = ker(|T|), we have

ker(N) c ker(U11), ker(N) C ker(Usp), (2.5
ker(L) Cc ker(Uy3), ker(N) C ker(U»y). (2.6)

Let N = V|N| be the polar decomposition of N. Then R(U;; — V) C ker(N). Hence for
arbitrary x € R(N), we have

||x||2 > ||Vx||2 +||Up — V||2, by Pythagoras’s theorem,
=|Ix>+ U1 = VI?,  since V is unitary on R(N).

Therefore, we obtain V = Uj;. Since
lIxl* = |UxI* +[|Uz1 xl* = [|x]* +|U21 1> for x € R(N),

we have U1 = 0. Also, we see that R(U;;) C ker(N) by (2.3) and (2.6). Hence,

_ (U U \[IN] O\ _ (N UpL
r=om=( o)1)= )

Since R(U1») c ker(N) = {0}, we have Uj; =0andso T =N& T on S = .# & .#*. That
is, . reduces T. O
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The following example shows that there exists a w-hyponormal operator T such that
T| 4 is quasinormal but M does not reduce 7.

Example 2.8. Let T be a bilateral shift on £3(Z) defined by Te, = ept1 and A = V,50Ce,,.
Then T is unitary and 7| 4 is isometry. However, .# does not reduce 7.

Lemma 2.9. Let0<s,t<1. Let T = ( 13 Z ) be a class A(s,t) operator on H = M &

M+, where M is a T-invariant subspace such that the restriction A = T| 4 is an injective
normal operator. Then M reduces T.

Proof. Since T belongs to class A(s,f) and 0 < 5, < 1, T belongs to class A. Let P be the
orthogonal projection onto .# . Then we have

A*A 0
0 O

) = PT*TP < PIT?|P (since T eclass A)

L ( (A24%)3 0

0 0 ) (by Lemma 2.1)

A*A . .
= ( 0 0 ) (since A is normal).
Let |72 = ( ;(* ; ) be the 2 x 2 matrix representation of |T?| on 7 = .# & .#*. Then we

have X = A*A by the equality above. Since |A%|> = T*>T?, we have

X2+YY* XY+YZ\ [ A7A? A*?AS
ZY*+Y'X Y'Y +Z? S*A*A> S*S +B?B* |
and hence X + YY* = A*?A? = (A*A)?> = X?. This implies that ¥ = 0. Thus we have

( A0

0 2 ): |T?> = T*T*TT

~ A*A*AA A*A*(AS +SB)
| (S*A*+B*S*)AA (AS +SB)*(AS +SB)+ B*B*BB

Since A is an injective normal operator, we have AS +S B = 0 and Z = |B?|. Now, since T is
a class A, we have

0<|T?-|TP

([ 0 —A*S
"\ -S*A -S5*S +(B*-|BP)

and hence A*S = 0. Thus the range of S is included in ker(A*) = ker(A) = {0}. Therefore,
S =0 and so .# reduces T. m]

An operator X € Z(% , ) is called quasiaffinity if X is both injective and has a dense
range. For T € £ (5¢) and S € L (%), if there exist quasiaffinities X € £ (¢, 7¢) and
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Ye LA, %)suchthat TX = XS and YT = SY, then we say that T and S are quasisimi-
lar.

The operator T € £ () is said to be pure if there exists no non-trivial reducing sub-
space .# of 7 such that the restriction of 7' to .# is normal and is completely hyponormal
if it is pure.

Recall that every operator T € £ () has a direct sum decomposition 7' = T & T»,
where T and T, are normal and pure parts, respectively. Of course in the sum decomposi-
tion, either T'; or T, may be absent.

The following lemma is due to Williams [33, Lemma 1.1].

Lemma 2.10. Let T € L(5¢) and S € L (K") be normal operators. It there exist injective
operators X € L(H ,5) and Y € L(, %) such that TX = XS and YT =SY, then T
and S are unitarily equivalent.

Corollary 2.11. Let T € L () be w-hyponormal operator. Then T = T & T, on the space
€ = 4 ® 5, where Ty is normal and T, is pure and w-hyponormal; i.e., Ty has no
invariant subspace A such that T;| 4 is normal.

The next lemma was proved for dominant operators in [28, Theorem 1], for p-hyponormal
operators in [17] and for log-hyponormal operators in [16, Lemma 3].

Lemma 2.12. Let T € £ () be w-hyponormal operator and let S € £( ) be a normal
operator. If there exists an operator X € L (X, 7) with dense range such that TX = XS,
then T is normal.

Proof. First, we decompose T into normal and pure parts by 7' = T & T with respect to a
decomposmon ,%” 4 GBJ“% Let T, = U,|T| be the polar ¢ decomposmon of T and T, =
|T2|2 U2|T2|2 Let Tz = V2|T2| be the polar decomposmon of T, and T2 = |T2|2 V2|T2|2 Since
T; is normal, we have T = T @Tz and T= T @Tz Let W= |T2| l |T2|é Since ker(|T3]) =
ker(T) = {0}, by Corollary 2.11, |T2|2 is a quasiaffinity. Hence T, is injective and W is
a quasiaffinity such that TW = WT,. Let Y = I, A ®W. Then T is hyponormal and Y is a
quasiaffinity such that TY = YT. Thus we have T(YX) = (¥YX)S and YX has dense range.
Hence T is normal, by [28, Theorem 1], and so T is normal by [6, Theorem 1]. O

3 The Fuglede-Putnam Theorem

In this section, we present some results concerning the Fuglede-Putnam theorem.

Theorem 3.1. Let T € £ () be w-hyponormal such that ker(T) Cker(T*) and L € £ ()
be a self-adjoint which satisfies TL = LT*. Then T*L = LT.

Proof. We first show that if TL = LT* =0, then T*L = LT = 0. Since ker(T') C ker(T™"),
ker(T) reduces T by [4], TL = 0 implies that R(L) C ker(T) C ker(T™) and by taking the
orthogonal complement, we obtain R(T") C ker(L). Hence we have T*L = LT = 0.

Next, we prove the case in which TL # 0. Since T is w-hyponormal, the Aluthge trans-
form T of T is semi-hyponormal. Moreover, it satisfies

IT| > |T| > |T"|. (3.1)
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Put W = |T|%L|T|%. Then W is self-adjoint and satisfies
TW=WT". (3.2)

By the argument in the proof of Theorem 2 of [31], we have that the restriction TIW of

T to its invariant subspace R (W) is normal and
T*W = WT. (3.3)

Hence R (W) reduces 7:, by Lemma 2.7, and so T is of the foom T = N®S on RW) &
ker(W), where N is normal. By Corollary 2.5 and Lemma 2.7, T = N @ B, for some w-

hyponormal operator B. Let W = W @0 and L = ( il iz ) on R(W)@ker(W). Then L, =
3 Ly

L3 =0 and L4 = 0 follows from the equality W = |T|%L|T|%. By assumption, NL; = L{N*,

we have N*L; = LN by Fuglede-Putnam theorem and so 7L = LT. O

Example 3.2. Let € = éBf;OCz and define an operator R on 57 by

R(@x 201 10x)) @x1® )= @A, ®Ax" ® Bxg®Bx | &,

1 ! (10
where A = 7 l)andB_(O 0
ker(R), E is not a sélf—adjoint and ker(R) # ker(R*), where E is the Riesz idempotent with
respect to 0, see [32, Example 13]. Let T = R and L = P be the orthogonal projection onto
ker(T). Then T is w-hyponormal operator and 7L =0 = LT*, but T*L # LT. Hence the

kernel condition ker(7T) C ker(T*) is necessary for Theorem 3.1.

D=9 —

). Then R is w-hyponormal. Moreover, R(E) =

Corollary 3.3. Let T € L () be w-hyponormal such that ker(T) C ker(T*). If X € L ()
and TX = XT*, then T*X = XT.

Proof. Let X = L+iK be the cartesian decomposition of X. Then we have TL = LT* and
TK = KT*, by the assumption. By Theorem 3.1, we have T*L = LT and T*K = KT. This
implies that 7% X = XT. O

If we use the 2 X 2 matrix trick, we easily deduce the following result.

Corollary 3.4. Let T* € £ () be w-hyponormal and S € £ (%) be w-hyponormal with
ker(T*) c ker(T) and ker(S) Cc ker(S*). If X € L(H, %) and XT = S X, then XT* =S*X.

Proof. Put A = ( o ) and B = ( 00 ) on 7 @®.% . Then A is a w-hyponormal

0o S X 0
operator on 7 @ . that satisfies BA* = AB and ker(A) C ker(A*). Hence we have BA =
A*B, by Corollary 3.3, and so XT* = S§*X. O

Example 3.5. Let S =T* = R as in Example 3.2 and X = P be the orthogonal projection
onto ker(S). Then S X =0 = XT, but S*X = XT*. Hence the kernel condition is necessary
for Corollary 3.4.
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Theorem 3.6. Let T € £(F) be such that T* is p-hyponormal or log-hyponormal. Let
S € L(X) be w-hyponormal with ker(S) C ker(S*). If XT = S X, for some X € L (I, %).
Then XT*=S*X.

Proof. Let T be a p-hyponormal operator for p > % and let U|T| be the polar decomposition
of T. Then the Aluthge transform T* of T* is hyponormal and satisfies

IT*| =T = |T|, (3.4)
X'T=SX', (3.5)

where X’ = XUITl%. Using the decompositions H =ker(X')t@ker(X)and ¥ = R(X")
R(X")*, we see that T, S and X’ are of the form

= (T1 O (S S2 , [ X1 0

=1 oo )os= (V8 ) x=(0 )
where 77 is hyponormal, S is w-hyponormal with ker(S 1) C ker(S7) and X is a one-one
operator with dense range. Since X 'T =S5X’, we have

Xi1T) =51X. (3.6)

Hence T and S| are normal by Theorem 3.6 of [4], so that T, = 0, by Lemma 12 of
[31] and S» =0 by Lemma 2.7. Then |T| = |T|® P, for some positive operator P, by
(3.4) and U=( l(])l gi )by Lemma 13 of [31]. LetX:( 21 ;(Z
representation of X with respect to the decomposition .7 = ker(X’)* @ker(X’) and % =
R(X")®R(X')*. Then X’ = XU|T|> implies that X; = X;1U;|T1|> and hence ker(T}) C
ker(X;) = {O}. This shows that T is one-one and hence it has dense range, so that U, =0
and T = T @ T4 for some hyponormal operator T, by [31, Lemma 13]. Since

) be a 2 X 2 matrix

(Xl 0

o ):X’ :XUITI% :( X X2 )( ULITy)2 0 )

X1 X 0 Us|Tal?
we deduce the following assertions.
X12U2|T4I% = 0; hence X{,T3 = 0 because T4 = Uj|T}4.
Xo1 UIITII% = 0; hence Xi, = 0 because U1|T1|% has dense range.

X Us|T4|? = 0; hence X»,T3 = 0.
The assumption X7 = S X tell us that,
X11T1 =81 Xn
X12T4=51X12 =0,
Xo0T4 =83X2 =0.

Since T and §; are normal, we have X7 = §]X1, by Fuglede-Putnam theorem. The p-
hyponormality of TI shows that ‘R(TZ) c R(T4). Also, we have ker(S3) c ker(S ;). Hence,




An Extension of Fuglede-Putnam Theorem for w-Hyponormal Operators 115

we also have X127, = §7X12 =0 and X2, = §5X52 = 0. This implies that X7™ = X1, T| &
0=STX11€BO=S*X.

Next, we prove the case where 7™ is p-hyponormal for 0 < p < % Let X’ be as above.
Then T* is (p+ %)—hyponormal and satisfies X’T = S X’. Use the same argument as above.
We obtain T = T1®T3 on 7 =ker(X')* dker(X’)and S =S| @S 3, where T} is an injective
normal operator and S ; is also normal. Hence we have T = T'| @ T4 for some p-hyponormal
T, by Lemma 13 of [31]. Again using the same argument as above, we obtain Xp; =
O,XIITI* = STX]],X]QTZ = S’;Xlz =0and XzzTZ = S;XQZ = 0. hence we have XT* = S*X.

Finally, we assume that 7* is log-hyponormal. Let T and X’ be as above. Then X'T =
SX’ and T* is semi-hyponormal and satisfies

IT| <|T| < T

By the same argument as above, we have T =T, ®&T; on 3 =ker(X')* @ker(X’) and
S=S1®S53 on . # =RX")®R(X’')', where Ty is an injective normal operator, S is
normal, 7’5 is invertible semi-hyponormal and S5 is w-hyponormal with ker(S 3) C ker(S5).
By Lemma 13 of [31], we have that T is of the form 7" = Ty ® T4, for some log-hyponormal
X X . .
T;. Let X = ( Xll X12 ) . Then X’ = XUITI% implies that Xj2 = 0,X2; =0 and X, =0.
21 X22
The assumption X7 = S X implies that X171 = §1X)1, hence X1, T| = 71X by Fuglede-
Putnam theorem. Thus we have XT* = X1, Ti‘ ®0= S’I‘Xn ®0 = S*X. Therefore, the proof
of the theorem is achieved. O

Example 3.7. Let R be an operator such that ker(R) does not reduce R and let P be the
orthogonal projection onto ker(R). Then P does not commute with 7'; otherwise R(R) =
ker(R) reduce T. Hence PR # 0 = RP. It is easy to see that RP = PR* = 0 but R*P # PR(+ 0)
because R(R*P) C R(R*) C ker(R*+) =1 — P. If we put T = R, then the assertion of Theorem
3.1 does not hold for such T. Also, if we put T = R*,S =1—P and X = P, then XT =
PR*=0=(-P)P=SX. However, XT* = PR+ 0= (I—-P)P =5"X. Hence the assertion of
Theorem 3.6 does not hold for such 7.

Theorem 3.8. Let T € £ () be such that T* is an injective w-hyponormal . Let S €
L(X) be dominant. If XT =S X, for some X € L(I, %"). Then XT* = S*X.

Proof. Assume that T* is an injective w-hyponormal and let U |T| be the polar decomposi-
tion of 7. Let T be the aluthge transform of 7" and X’ = XU |T| Then X’T = SX’ and T*
is semi-hyponormal and satisfies

IT| <|T| <|T".

By the same argument in the proof of Theorem 3.6, we conclude that T=T&T; on
H =ker(X')r dker(X’) and § =S ®S3, where T is an injective normal operator and S |
is also normal, 7’5 is invertible w-hyponormal and §3 is dominant. Hence by Lemma 2.7,
we have that T is of the form 7 = T & T4 for some w-hyponormal 7. Let

X X
X = .
( Xo1 X )
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Then X’ = XU|T|% implies that Xj» = 0,X3; = 0 and X5, = 0. The assumption X7 = SX
implies that X1, 71 = §1X11, hence X117 = $7X;1 by Fuglede-Putnam theorem. Thus we
have XT* = X177 ®0 = §1X11 ®0 = S§*X. Therefore, the proof of the theorem is achieved.

O

Example 3.9. Let T* = R as in Example 3.2. Let X = P be the orthogonal projection onto
ker(T*) and S =1—P. Then SX =0 = XT", but 0 = S*X # XT*. Hence the injectivity
condition is necessary for Theorem 3.8.

Example 3.10. Let {e,},~_., be a complete orthonormal system for .. We denote the
orthogonal projection onto Ce,, by P,. Let W be a weighted shift on .7 defined by

We, = { V2ew1s inz0;
€nils ifn<O.

Then W*W — WW* = Py. Define an operator T on a Hilbert space # = 7 & Ce( by

(W P
(V).

Then T is class A, see [31, Example 1]. It is easy to see that
ker(T) = C(—e_1®ep) and ker(T*) = {0}®Cey.

Hence T does not reduces T and therefore the assertions of Theorems 3.8, 3.6 and Corol-
lary 3.4 are not necessarily true for class A operators.
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