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Abstract

In this work we suggest a way to estimate some nonlinear terms appearing in the
study of semilinear viscoelastic problems. So far we know how to deal with these
terms only when the energy is decreasing. In this case we can estimate parts of these
nonlinearities by the initial energy. We solve this issue in the general case with the
help of a new differential inequality.
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1 Introduction

We shall consider the following problem
utt + |u|p u = ∆u−

t∫
0

h(t− s)∆u(s)ds, in Ω×R+

u = 0, on Γ×R+
u(x,0) = u0(x), ut(x,0) = u1(x), in Ω

(1.1)

whereΩ is a bounded domain in Rn with smooth boundary Γ = ∂Ω and p > 0. The functions
u0(x) and u1(x) are given initial data and the (nonnegative) relaxation function h(t) will be
specified later on. The equation in (1) describes the equation of motion of a viscoelastic
body with fading memory. In the last twenty five years or so, there has been an extensive
development of the theory of viscoelasticity. This is mainly due to the growing interest in
viscoelastic materials in industry. Indeed, viscoelastic material possess some very important
properties. In particular, they are used to control and suppress or at least reduce vibrations
in different structures.

Many papers appeared in the literature treating the well-posedness and asymptotic be-
havior of solutions. Researchers have focused in particular on enlarging the class of vis-
coelastic materials ensuring a certain decay and also on improving the decay rates (see
[1-12,14-18,20-35] to cite but a few).
∗E-mail address: tatarn@kfupm.edu.sa
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In this work we do not intend to do neither of these and rather focus on the main con-
tribution here which is concerned with the estimation of some nonlinear terms which arise
while studying the asymptotic behavior of solutions. As far as we know, these terms are
dealt with only in the dissipative case where we know from the beginning that the energy is
decreasing and therefore bounded by its initial value. This is not valid in the non-dissipative
case and we are lead to face a new differential inequality. We treat this problem with the
help of a new differential inequality (new in the field of viscoelasticity) which may be found
in [13].

The local existence can be proved using the Faedo Galerkin method (see for instance
[4,5,6-8,14]).

Theorem: Assume that (u0,u1) ∈ H1
0(Ω)× L2(Ω) and h(t) is a nonnegative summable

kernel. If 0< p< 2
n−2 when n≥ 3 and p> 0 when n= 1,2, then there exists a unique solution

u to problem (1.1) such that

u ∈C
(
[0,T ]; H1

0(Ω)∩Lp(Ω)
)
∩C1

(
[0,T ]; L2(Ω)

)
for T small enough.

The plan of the paper is as follows: In the next section we prepare some material needed
to prove our result. We introduce the different functionals we will use. The modified energy
functional is defined in this section too. Section 3 is devoted to the statement and proof of
our asymptotic behavior result. Section 4 contains some examples illustrating our results.

2 Preliminaries

We define the (classical) energy by

E(t) =
1
2

(
‖ut‖

2
2+ ‖∇u‖22

)
+

1
p+2

‖u‖p+2
p+2

where ‖.‖p denotes the norm in Lp(Ω) (the usual Lebesgue space). Then by the equation
(1.1)1 it is easy to see that

E′(t) =
∫
Ω

∇ut.

t∫
0

h(t− s)∇u(s)dsdx.

Note that

2
∫
Ω

∇ut.
t∫

0
h(t− s)∇u(s)dsdx =

∫
Ω

(h′�∇u)dx−h(t)‖∇u‖22

− d
dt

∫
Ω

(h�∇u)dx−
 t∫

0
h(s)ds

‖∇u‖22


where

(h�v) (t) :=

t∫
0

h(t− s) |v(t)− v(s)|2 ds.
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Therefore, if we modify E(t) to

E(t) :=
1
2

‖ut‖
2
2+

1−
t∫

0

h(s)ds

‖∇u‖22+
2

p+2
‖u‖p+2

p+2+

∫
Ω

(h�∇u)dx


we obtain

E′(t) =
1
2

∫
Ω

(
(h′�∇u)−h(t) |∇u|2

)
dx. (2.1)

We assume that the kernel is such that

1−

+∞∫
0

h(s)ds = 1− κ > 0.

Next, we define the standard functionals

Φ1(t) :=
∫
Ω

utudx

and

Φ2(t) := −
∫
Ω

ut

t∫
0

h(t− s) (u(t)−u(s))dsdx.

The next functionals have been introduced by the present author in [34]

Φ3(t) :=

t∫
0

Hγ(t− s)‖∇u(s)‖22 ds, Φ4(t) :=

t∫
0

Ψγ(t− s)‖∇u(s)‖22 ds

where

Hγ(t) := γ(t)−1

∞∫
t

h(s)γ(s)ds, Ψγ(t) := γ(t)−1

∞∫
t

ξ(s)γ(s)ds

and γ(t) and ξ(t) are two functions which will be precised later (see (H2), (H3) and Exam-
ples at the end of the paper). The modified energy we will work with is

L(t) := E(t)+
∑4

i=1
λiΦi(t) (2.2)

for some λi > 0, i = 1,2,3,4 to be determined.
The first result tells us that L(t) and E(t)+Φ3(t)+Φ4(t) are equivalent.
Proposition 1: There exist ρi > 0, i = 1,2 such that

ρ1[E(t)+Φ3(t)+Φ4(t)] ≤ L(t) ≤ ρ2[E(t)+Φ3(t)+Φ4(t)]

for all t ≥ 0 and small λi, i = 1,2.
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Proof. By the inequalities

Φ1(t) =
∫
Ω

utudx ≤
1
2
‖ut‖

2
2+

Cp

2
‖∇u‖22 ,

and

Φ2(t) ≤ 1
2 ‖ut‖

2
2+

1
2

∫
Ω

 t∫
0

h(t− s) (u(t)−u(s))ds
2

dx

≤ 1
2 ‖ut‖

2
2+

Cp
2

∫
Ω

 t∫
0

h(t− s) |∇u(t)−∇u(s)|ds
2

dx

≤ 1
2 ‖ut‖

2
2+

Cp
2

∫
Ω

 t∫
0

√
h(t− s)

√
h(t− s) |∇u(t)−∇u(s)|ds

2

dx

≤ 1
2 ‖ut‖

2
2+

Cp
2

∫
Ω

 t∫
0

h(s)ds
 t∫

0
h(t− s) |∇u(t)−∇u(s)|2 ds

dx

≤ 1
2 ‖ut‖

2
2+

Cpκ

2

∫
Ω

(h�∇u)dx

where Cp is the Poincaré constant, we have

L(t) ≤ 1
2 (1+λ1+λ2)‖ut‖

2
2+

1
2

1− t∫
0

h(s)ds+λ1Cp

‖∇u‖22

+ 1
p+2 ‖u‖

p+2
p+2+

1
2

(
1+λ2Cpκ

)∫
Ω

(h�∇u)dx+λ3Φ3(t)+λ4Φ4(t).

On the other hand

2L(t) ≥ (1−λ1−λ2)‖ut‖
2
2+

(
1−λ2Cpκ

)∫
Ω

(h�∇u)dx+ 2
p+2 ‖u‖

p+2
p+2

+[1− κ−λ1Cp]‖∇u‖22+2λ3Φ3(t)+2λ4Φ4(t).

Therefore, ρ1[E(t)+Φ3(t)+Φ4(t)] ≤ L(t) ≤ ρ2[E(t)+Φ3(t)+Φ4(t)] for some constant ρi > 0,

i = 1,2 and small λi, i = 1,2 such that λ1 <min
{
1, (1− κ)/Cp

}
and λ2 <min

{
1

Cpκ
,1−λ1

}
.

The following inequality will be used repeatedly in the sequel.
Lemma 1: We have

ab ≤ δa2+
b2

4δ
, a,b ∈ R, δ > 0.

The next result will be used later to estimate

∫
Ω

∇u.

t∫
0

h(t− s)∇u(s)dsdx.

Lemma 2: We have for continuous functions h and v on (0,∞)

v(t)
∫ t

0 h(t− s)v(s)ds = 1
2

(∫ t
0 h(s)ds

)
v2(t)+ 1

2

∫ t
0 h(t− s)v2(s)ds

−1
2 (h�v)(t), t ≥ 0.
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Proof. It suffices to develop the last term in the right hand side of the identity itself.
Indeed, we have

(h�v)(t) =
t∫

0
h(t− s) |v(t)− v(s)|2 ds

=
t∫

0
h(t− s)

[
v2(t)−2v(t)v(s)+ v2(s)

]
ds

=
(∫ t

0 h(s)ds
)
v2(t)−2v(t)

∫ t
0 h(t− s)v(s)ds+

∫ t
0 h(t− s)v2(s)ds.

The proof is complete.
The next lemma is well-known as the Sobolev-Poincaré inequality.
Lemma 3: Assume that 2 ≤ q < +∞ if n = 1,2 or 2 ≤ q < 2n

n−2 if n ≥ 3. The there exists
a positive constant Ce =Ce(Ω,q) such that

‖u‖q ≤Ce ‖∇u‖2

for u ∈ H1
0(Ω).

We end this section by the following lemma (see [13]) which is the key tool in the
present contribution.

Lemma 4: Let χ(t), α(t), β(t) ∈ C[t0,∞) and α(t) ≥ 0, for all t ≥ t0. Suppose that there
exists a positive function µ(t) ∈C1[t0,∞) such that

α(t)
µp(t)

+β(t) ≤
1
µ(t)

(
χ(t)−

µ′(t)
µ(t)

)
,

then a nonnegative solution to the following inequality

v′(t) ≤ −χ(t)v(t)+α(t)vp(t)+β(t), p > 1

such that µ(t0)v(t0) < 1, satisfies the estimate

v(t) <
1
µ(t)
, ∀t ≥ t0.

3 Asymptotic Behavior

In this section we state and prove our result. For every measurable set A ⊂ R+, we define
the probability measure ĥ by

ĥ(A) :=
1
κ

∫
A

h(s)ds. (3.1)

The non-decreasingness set and the non-decreasingness rate of h are defined by

Qh :=
{
s ∈ R+ : h′(s) ≥ 0

}
(3.2)

and
Rh := ĥ(Qh),

respectively.
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Our assumptions on the kernel h(t) are the following

(H1) h(t) ≥ 0 for all t ≥ 0 and 0 < κ =
+∞∫
0

h(s)ds < 1.

(H2) h is absolutely continuous and of bounded variation on (0,∞) and h′(t) ≤ ξ(t) for
some non-negative summable function ξ(t) (= max{0,h′(t)} where h′(t) exists) and almost
all t > 0.

(H3) There exists a non-decreasing function γ(t) > 0 such that γ′(t)/γ(t) = η(t) is a

non-increasing function and
+∞∫
0

h(s)γ(s)ds < +∞.

Note that the assumption (H3) is satisfied by a large class of functions like the poly-

nomials and exponential functions. Let t∗ > 0 be a number such that
t∗∫

0
h(s)ds = h∗ > 0

and

I(u0,u1) =
1+λ

2
‖u1‖

2
2+

1+λCp

2
‖∇u0‖

2
2+

1
p+2

‖u0‖
p+2
p+2

where λ= κ2/2CpBV[h,A], BV is the total variation andA is the set on which h′ is negative.
Theorem 1: Assume that the hypotheses (H1)-(H3) hold, 2 ≤ q < +∞ if n = 1,2 or

2 ≤ q < 2n
n−2 if n ≥ 3, Rh < 1/4 and

∫
Qh

ξ(s)ds is small enough. Then, E(t) ≤ C/µ(t), t ≥ 0 for

some positive constants C in case
(a) limt→∞ η(t) = η̄ , 0 and B ≤ µp(t)

[
A− µ

′(t)
µ(t)

]
, t ≥ 0 or

(b) limt→∞ η(t) = 0 and B ≤ µp(t)
[
Dη(t)− µ

′(t)
µ(t)

]
, t ≥ 0

for some positive constants A, B and D to be determined provided that I(u0,u1)µ(0) < 1.
Proof. A differentiation of Φ1(t) with respect to t along trajectories of (1.1) gives

Φ′1(t) := ‖ut‖
2
2−‖∇u‖22+

∫
Ω

∇u.

t∫
0

h(t− s)∇u(s)dsdx−‖u‖p+2
p+2 , t ≥ 0

and by Lemma 2 we obtain

Φ′1(t) ≤ ‖ut‖
2
2− (1− κ2 )‖∇u‖22+

1
2

t∫
0

h(t− s)‖∇u(s)‖22 ds

−1
2

∫
Ω

(h�∇u)dx−‖u‖p+2
p+2 , t ≥ 0.

(3.3)

For Φ2(t) we have

Φ′2(t) = −
∫
Ω

utt

t∫
0

h(t− s) (u(t)−u(s))dsdx

−
∫
Ω

ut

 t∫
0

h′(t− s) (u(t)−u(s))ds+ut

t∫
0

h(s)ds
dx
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or

Φ′2(t) = −
∫
Ω

1− t∫
0

h(s)ds
∆u− |u|p u+

t∫
0

h(t− s) (∆u(t)−∆u(s))ds


×

t∫
0

h(t− s) (u(t)−u(s))dsdx−
 t∫

0
h(s)ds

‖ut‖
2
2

−
∫
Ω

ut

t∫
0

h′(t− s) (u(t)−u(s))dsdx, t ≥ 0.

Therefore,

Φ′2(t) =
1− t∫

0
h(s)ds

∫
Ω

∇u.
t∫

0
h(t− s) (∇u(t)−∇u(s))dsdx

+
∫
Ω

∣∣∣∣∣∣∣ t∫
0

h(t− s) (∇u(t)−∇u(s))ds

∣∣∣∣∣∣∣
2

dx−
 t∫

0
h(s)ds

‖ut‖
2
2

−
∫
Ω

ut

t∫
0

h′(t− s) (u(t)−u(s))dsdx

+
∫
Ω

|u|p u
t∫

0
h(t− s) (u(t)−u(s))dsdx.

(3.4)

The last term in (3.4) used to be estimated using the bound E(0) of E(t). This holds in the
dissipative case. That is, when E′(t) ≤ 0, which is clearly not the case here. We have

∫
Ω

|u|p u
t∫

0
h(t− s) (u(t)−u(s))dsdx

≤ δ
∫
Ω

|u|2(p+1) dx+ Cp
4δ

 t∫
0

h(s)ds
∫
Ω

(h�∇u)dx

≤ δCe ‖∇u‖2(p+1)
2 +

Cp
4δ

 t∫
0

h(s)ds
∫
Ω

(h�∇u)dx

≤
2δCe
1−κ E

p+1(t)+ Cp
4δ

 t∫
0

h(s)ds
∫
Ω

(h�∇u)dx.

(3.5)

For all measurable setsA and Q such thatA =R+\Q, we may estimate the first term in the
right hand side of (3.4) as follows

∫
Ω

∇u.
t∫

0
h(t− s) (∇u(t)−∇u(s))dsdx

=
∫
Ω

∇u.
∫
At

h(t− s) (∇u(t)−∇u(s))dsdx

+
∫
Ω

∇u.
∫
Qt

h(t− s) (∇u(t)−∇u(s))dsdx

≤
∫
Ω

∇u.
∫
At

h(t− s) (∇u(t)−∇u(s))dsdx

+

∫
Qt

h(t− s)ds

‖∇u‖22−
∫
Ω

∇u.
∫
Qt

h(t− s)∇u(s)dsdx

(3.6)

where we have adopted the notation: Bt := B∩ [0, t]. Using Lemma 2, it is easy to see that
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for δ1 > 0 ∫
Ω

∇u.
∫
At

h(t− s) (∇u(t)−∇u(s))dsdx

≤ δ1 ‖∇u‖22+
κ

4δ1

∫
Ω

∫
At

h(t− s) |∇u(t)−∇u(s)|2 dsdx,
(3.7)

and ∫
Ω

∇u.
∫
Qt

h(t− s)∇u(s)dsdx

≤ 1
2

∫
Qt

h(t− s)ds

‖∇u‖22+
1
2

∫
Qt

h(t− s)‖∇u(s)‖22 ds.
(3.8)

These relations (3.7) and (3.8) together with (3.6) imply that

∫
Ω

∇u.
t∫

0
h(t− s) (∇u(t)−∇u(s))dsdx

≤

δ1+ 3
2

∫
Qt

h(t− s)ds

‖∇u‖22+
κ

4δ1

∫
Ω

∫
At

h(t− s) |∇u(t)−∇u(s)|2 dsdx

+1
2

∫
Qt

h(t− s)‖∇u(s)‖22 ds

(3.9)

where ĥ is defined in (3.1). For the second term in the right hand side of (3.4) we have

∫
Ω

∣∣∣∣∣∣∣ t∫
0

h(t− s) (∇u(t)−∇u(s))ds

∣∣∣∣∣∣∣
2

dx

≤ (1+ 1
δ2

)κ
∫
Ω

∫
At

h(t− s) |∇u(t)−∇u(s)|2 dsdx

+(1+δ2)

∫
Qt

h(t− s)ds

∫
Ω

∫
Qt

h(t− s) |∇u(t)−∇u(s)|2 dsdx, δ2 > 0.

(3.10)

Finally we may write

∫
Ω

ut

t∫
0

h′(t− s) (u(t)−u(s))dsdx

≤ δ3 ‖ut‖
2
2−

Cp
4δ3

BV[h,A]
∫
Ω

∫
At

h′(t− s) |∇u(t)−∇u(s)|2 dsdx

+
Cp
4δ3

∫
Qt

ξ(t− s)ds

∫
Ω

∫
Qt

ξ(t− s) |∇u(t)−∇u(s)|2 dsdx

≤ δ3 ‖ut‖
2
2−

Cp
4δ3

BV[h,A]
∫
Ω

∫
At

h′(t− s) |∇u(t)−∇u(s)|2 dsdx

+
Cp
4δ3

∫
Qt

ξ(t− s)ds

≤ 3
2

 ∫
Qnt

ξ(t− s)ds

‖∇u‖22+3
∫
Qnt

ξ(t− s)‖∇u(s)‖22 ds

 ,

(3.11)
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for δ3 > 0. Having in mind the relations (3.5), (3.9)-(3.11) we infer from (3.4) that

Φ′2(t) ≤

(1−h∗)

δ1+ 3
2

∫
Qt

h(t− s)ds

+ 3Cp
8δ3

∫
Qt

ξ(t− s)ds

2‖∇u‖22

+(δ3−h∗)‖ut‖
2
2+ κ

[
1+ 1−h∗

4δ1
+ 1
δ2

] ∫
Ω

∫
At

h(t− s) |∇u(t)−∇u(s)|2 dsdx

+1
2 (1−h∗)

∫
Qt

h(t− s)‖∇u(s)‖22 ds+ Cp
4δ

 t∫
0

h(s)ds
∫
Ω

(h�∇u)dx

+
2δCe
1−κ E

p+1(t)− Cp
4δ3

BV[h,A]
∫
Ω

∫
At

h′(t− s) |∇u(t)−∇u(s)|2 dsdx

+(1+δ2)

∫
Qt

h(t− s)ds

∫
Ω

∫
Qt

h(t− s) |∇u(t)−∇u(s)|2 dsdx

+
3Cp
4δ3

∫
Qt

ξ(t− s)ds

 ∫
Qt

ξ(t− s)‖∇u‖22 ds.

(3.12)

In virtue of the fact that γ′(t)/γ(t) = η(t) is a non-increasing function, we have

Φ′3(t) = Hγ(0)‖∇u‖22+
t∫

0
H′γ(t− s)‖∇u(s)‖22 ds

= Hγ(0)‖∇u‖22−
t∫

0

γ′(t−s)
γ(t−s) Hγ(t− s)‖∇u(s)‖22 ds−

t∫
0

h(t− s)‖∇u(s)‖22 ds

≤ Hγ(0)‖∇u‖22−η(t)Φ3(t)−
t∫

0
h(t− s)‖∇u(s)‖22 ds

(3.13)

and

Φ′4(t) = Ψγ(0)‖∇u‖22+
t∫

0
Ψ
′

γ(t− s)‖∇u(s)‖22 ds

= Ψγ(0)‖∇u‖22−
t∫

0

γ′(t−s)
γ(t−s) Ψγ(t− s)‖∇u(s)‖22 ds−

t∫
0
ξ(t− s)‖∇u(s)‖22 ds

≤ Ψγ(0)‖∇u‖22−η(t)Φ4(t)−
t∫

0
ξ(t− s)‖∇u(s)‖22 ds.
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Taking into account the relations (2.1), (3.3), (3.12), (3.13), we see that

L′(t) ≤ 1
2

∫
Ω

(h′�∇u)dx− Cp
4δ3
λ2BV[h,A]

∫
Ω

∫
At

h′(t− s) |∇u(t)−∇u(s)|2 dsdx

+

λ2 (1−h∗)

δ1+ 3
2

∫
Qt

h(t− s)ds

+ 3λ2Cp
8δ3

∫
Qt

ξ(t− s)ds

2

+λ3Hγ(0)

−λ1(1− κ2 )
}
‖∇u‖22+

(
λ1
2 −λ3

) t∫
0

h(t− s)‖∇u(s)‖22 ds

+

λ2Cp
4δ

 t∫
0

h(s)ds
− λ1

2

∫
Ω

(h�∇u)dx+ [λ1+ (δ3−h∗)λ2]‖ut‖
2
2

−λ3η(t)Φ3(t)+λ2κ
(
1+ 1−h∗

4δ1
+ 1
δ2

)∫
Ω

∫
At

h(t− s) |∇u(t)−∇u(s)|2 dsdx

+(1+δ2)λ2
∫
Qt

h(t− s)ds
∫
Ω

∫
Qt

h(t− s) |∇u(t)−∇u(s)|2 dsdx

+
λ2
2 (1−h∗)

∫
Qt

h(t− s)‖∇u(s)‖22 ds+ 3λ2Cp
4δ3

∫
Qt

ξ(t− s)ds


×

∫
Qt

ξ(t− s)‖∇u(s)‖22 ds+λ4Ψγ(0)‖∇u‖22−λ4η(t)Φ4(t)

−λ4

t∫
0
ξ(t− s)‖∇u(s)‖22 ds+ 2δCeλ2

1−κ E
p+1(t)−λ1 ‖u‖

p+2
p+2 .

(3.14)

Let us introduce the sets

An :=
{
s ∈ R+ : nh′(s)+h(s) ≤ 0

}
, n ∈ N,

Ãnt :=
{
s ∈ R+ : 0 ≤ s ≤ t, nh′(t− s)+h(t− s) ≤ 0

}
, n ∈ N,

Q̃ht :=
{
s ∈ R+ : 0 ≤ s ≤ t, 0 ≤ h′(t− s) ≤ ξ(t− s)

}
and observe that ⋃

n

An = R+\{Qh∪Nh}

where

Qh := {s ∈ R+ : 0 ≤ h′(s) ≤ ξ(s)}

andNh is the nullset where h′ is not defined. Furthermore, if we denote Qn :=R+\An, then
limn→∞ ĥ(Qn) = ĥ(Qh) because Qn+1 ⊂ Qn for all n and

⋂
n
Qn = Qh∪Nh. In (3.14), we take
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At := Ãnt and Qt := Q̃nt (the complement in [0, t]). It follows that

L′(t) ≤ 1
4

(
1− λ2Cp

δ3
BV[h,A]

)∫
Ω

∫
Ant

h′(t− s) |∇u(t)−∇u(s)|2 dsdx

+ [λ1+ (δ3−h∗)λ2]‖ut‖
2
2+

λ2 (1−h∗)

δ1+ 3
2

∫
Q̃nt

h(t− s)ds

+λ3Hγ(0)

+λ4Ψγ(0)+ 3λ2Cp
8δ3

 ∫
Q̃nt

ξ(t− s)ds


2

−λ1(1− κ2 )

‖∇u‖22+
(

(1−ε)λ2
2 −λ3

)
×

t∫
0

h(t− s)‖∇u(s)‖22 ds+
[
λ2κCp

4δ +λ2κ
(
1+ 1−h∗

4δ1
+ 1
δ2

)
− 1

4n

]
×
∫
Ω

∫
Ant

h(t− s) |∇u(t)−∇u(s)|2 dsdx−λ3η(t)Φ3(t)−λ4η(t)Φ4(t)

+

λ2κCp
4δ + (1+δ2)λ2

∫
Q̃nt

h(t− s)ds− λ1
2

∫
Ω

∫
Q̃nt

h(t− s) |∇u(t)−∇u(s)|2 dsdx

+
3λ2Cp

4δ3

 ∫
Q̃nt

ξ(t− s)ds

 ∫
Q̃nt

ξ(t− s)‖∇u(s)‖22 ds−λ4

t∫
0
ξ(t− s)‖∇u(s)‖22 ds

+
2δCeλ2

1−κ E
p+1(t)−λ1 ‖u‖

p+2
p+2 .

(3.15)

Let λ1 = (h∗−ε)λ2 for some ε > 0. If ĥ(Q) < 1/4, then 3(1−h∗)
2

∫
Q̃nt

h(t− s)ds < δh∗(2−κ)2 with

δ = 3(1−h∗)κ
4h∗(2−κ)

+ β where β is a small positive constant and n large enough. Further we may
select λ3 and Hγ(0) such that

(1−ε)λ2

2
Hγ(0) < λ3Hγ(0) < λ2

(1−δ)h∗(2− κ)
2

.

Note that this is possible if Hγ(0) is small enough and (t∗ is so large that) h∗ > 7κ/(8− κ)
eventhough

Hγ(0) = γ(0)−1
∫ ∞

0
h(s)γ(s)ds ≥

∫ ∞

0
h(s)ds = κ.

It is clear that

(1+δ2)λ2

∫
Q̃nt

h(t− s)ds−
λ1

2
≤ 0

for small ε, δ2, large n and if ĥ(Qh) < 1/4. Select λ2 ≤ δ3/CpBV[h,A] so that

λ2κ

(
1+

1−h∗
4δ1

+
1
δ2
+

Cp

4δ4

)
<

1
4n
. (3.16)

Furthermore, we select λ4 large enough so that

λ4 >
3λ2Cp

4δ3

∫
Qh

ξ(s)ds.
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Therefore, if δ3 = ε/2, ε,β,δi, i = 1,2,
∫
Qh

ξ(s)ds are sufficiently small and δ large enough,

then
L′(t) ≤ −C1E(t)−λ3η(t)Φ3(t)−λ4η(t)Φ4(t)+

2δCeλ2

1− κ
Ep+1(t)

for some C1 > 0.
If limt→∞ η(t) = η̄ , 0, then η(t) ≥ η̄ and there exist C2 > 0 such that

L′(t) ≤ −C2L(t)+
2δCeλ2

(1− κ)ρp+1
1

Lp+1(t)

(by Proposition 1). This relation is of the same form as the one in Lemma 4 with L(t), C2,
2δCeλ2

(1−κ)ρp+1
1

and 0 instead of v(t), χ(t), α(t) and β(t), respectively. Observe that we have here

p+ 1 instead of p. Note also that the condition of Lemma 4 is fulfilled if L(0) < I(u0,u1).
Therefore

E(t) ≤C/µ(t), t ≥ 0 (3.17)

for some positive constant C.
If limt→∞ η(t) = 0, there exist t̂ ≥ t∗ such that η(t) ≤C1, ∀t ≥ t̂.We deduce that

L′(t) ≤ −C3η(t)L(t)+
2δCeλ2

1− κ
Ep+1(t)

and thereafter as in the previous argument the relation (20) holds again with χ(t) = C3η(t),
α(t) = 2δCeλ2

(1−κ)ρp+1
1

and β(t) = 0.

Remark 1: The smallness of the integral of ξ over Q has been discussed in [34]. It is
difficult to be determined exactly. Some simpler situations where more reasonable kernels
may be considered are, for instance, the exponentially decaying kernels (satisfying h′(t) ≤
−Ch(t) on A) or h′(t) ≤ −ω(t)h(t), for all t ∈ A where ω(t) is a continuous function such
that inft≥0ω(t) = ω > 0. In these cases the bound 1/4n in (3.17) may be very large.

4 Examples

The class of functions γ(t) include polynomials and exponentials. Indeed, if we consider
γ(t)= (1+ t)α, α > 0 we are lead to η(t)= γ′(t)/γ(t)= α(1+ t)−1 and if we consider γ(t)= eαt,

α > 0 then we find η(t) = γ′(t)/γ(t) = α.
Example 1:
For part 1 in the theorem it is easy to check that µ(t) = µ0eσt with µp

0 ≥
α

C2−σ
, α =

2δCeλ2

(1−κ)ρp+1
1

, σ <C2 satisfies the hypotheses of Lemma 5. Therefore the decay rate in case γ(t)

is of an exponential type (for instance, see first paragraph above in this section) is also of
exponential type.

Example 2:
To illustrate the second part of our theorem we consider η(t) = γ0(1+ t)−1 (which results

in case γ(t) = γ0(1+ t)α, see first paragraph above in this section). The decay rate is also
polynomial, that is µ(t) = µ0(1+ t)σ with µp

0 ≥
α
γ0−σ
, γ0 < σ < 1/p.
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