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Abstract

In this work we deal with a backward doubly stochastic differential equation (BDSDE)
associated to a Poisson random measure. We establish existence and uniqueness of so-
lution in the case of non-Lipschitz coefficients. The novelty of our result lies in the
fact that we allow the time interval to be infinite.
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1 Introduction

It is well known that backward stochastic differential equations (BSDEs in short) provide
a stochastic representation of solutions of semilinear partial differential equations (PDEs).
As far as we know, in these works, Lipschitz or at least monotonicity condition is required
on the drift of the BSDEs and the horizon time is fixed. Recently several authors investigate
successfully in weakening these conditions (see among others [3], [10]). The assumption
usually satisfied by the drift is replaced by a rather smooth one which ensures existence
and uniqueness result. Inspired by the method developed by Wang and Huang [10], Sow
[8], extended their result to BSDE with jumps and proved a large deviation principle of
such family of equations. Recently, Fan and Jiang [2] under similar conditions required in
[10], prove existence and uniqueness of solution of a class of BSDEs with non-Lipschitz
coefficients. They allow the time interval of the equation to be infinite.

Backward doubly stochastic differential equations (BDSDE in short) appear as a natural
extension of backward stochastic differential equations (BSDE). Their link with stochastic
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partial differential equations (SPDEs) in the case of Lipchitzian drift was established by
Pardoux and Peng [6]. The key point of solvency of such equations is the martingale rep-
resentation theorem. Using the generalized martingale representation theorem associated
to Lévy process established by Nualart and Schoutens [5], several authors investigate in
extending this result to BDSDEs driven by Lévy processes. In this spirit Ren et al [7] estab-
lished an existence and uniqueness of solutions and provided a stochastic representation of
solutions of stochastic partial differential integral equations (SPDIEs) under Lipschitz con-
dition on the drift. It has been known that there is an intrinsic connection between infinite
time interval BDSDESs and stationary solutions of SPDEs (see for example [12]).

In this paper, inspired by the method introduced by Fan and Jiang [2], we solve an
infinite time interval BDSDEs driven by Lévy processes and non-Lipschitz coefficients. We
prove an existence and uniqueness result which extend the result of Nualart and Schoutens
[5] in the case of coefficients satisfying rather weaker conditions. The paper is organized as
follows. In section 2, we prove some useful results on BDSDEs driven by Poisson random
measure. In section 3, we establish our main result.

2 Backward doubly SDE and Poisson random measure

2.1 Definitions and notations

Let Q be a non-empty set, ¥ a o—algebra of sets of Q2 and P a probability measure defined
on 7. The triplet (2,7, P) defines a probability space, which is assumed to be complete.
For a fix real 0 < T < oo, we assume given three mutually independent processes :

e a {—dimensional Brownian motion (B;)o</<T,
e a d—dimensional Brownian motion (W;)o<;<7,

e a Poisson random measure y on EXR,.

The space E = R’ — {0} is equipped with its Borel field & with compensator v(dt,de) =
A(de)dt such that {([0,1] X A) = (u—v)[0,7] X A} is a martingale for any A € & satisfying
A(A) < co0. A is a o—finite measure on & and satisfies

f (1 AlefHA(de) < co.
E
We consider the family (7;)o<;<r given by
Fo=F VFEVFL, 0<t<T,

where for any process {1;}>0, Ts"t =o{n—ns S<r<t}v N, 7";7 = TOTZI. N denotes the
class of P—null sets of . Note that (F;)o<:<7 does not constitute a classical filtration.

Let g: Qx[0,T] x Rk x RF x RF — R and f: Qx[0,T] x RE x R®*4 x R — R be
jointly measurable. Given & a F7—measurable R valued random variable, we are inter-
ested in the backward doubly stochastic differential equation with Poisson random measure
(BDSDERP in short)

T T T T
Y,=§+f f(r,@,)dr+f g(r,@r)dB,—f ZrdW,—f fUr(e)ﬁ(dr,de), 0<r<T,
t t t t E
2.1
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where O, = (Y,,Z,,U,).
Our motivation in studying such equations comes from their strong link with SPDIEs. In-
deed if we consider the forward SDE with Poisson jumps given by

! ! !
X; = x+f b(r,X,)dr+f O'(r,X,)dWr+f fh(r_,Xr_,e)ﬁ(dr,de), 0<s<t<T,
K s K E

(2.2)
where b : [0,T]xR? 5> R?, o : [0,T]xRY - R h:[0,T]xRYx E — RY, one can
associated this equation to the following BDSDEP (where @i‘ =(X,,Y,Z,U,) and O :
RY - R¥)

T T T T
Y, = O(X7)+ f f(r.0f)dr+ f g(r©})dB, - f Z,.dW, — f f U, (e)a(dr,de) (2.3)
t t t t E
It is well known that the BDSDEP (2.3) is related to the system of parabolic SPDIEs

owui(t, x) = Lui(t, x) + fi(t, x,u(t, x),0u(t, x)o(t, x),u(t, x + h(t, x,-)) — u(t, x))
+g;(t, x,u(t, x),0u(t,x)o(t, x),u(t, x + h(t, x,-)) —u(t,x))dB;, i=1,...,k.
u(T, x) = O(x)

where
Lug(t,x) = %Tr (a(t, )02 (2, 3)) + (b(t, x), 0ui(1, x))
+ f [u;(t, x + h(t, x,e)) —u;(t,x) — (h(t, x,e), 0y, ui(t,x))] A(de),
E

a;jj(t,x) = (o(t, )0 (t,x)"),; ;.-

Using essentially It6 formula and assumptions on the coefficients, one can prove that
the solutions of the SPDIEs have the stochastic representation : u(t, x) = Ytt’x .

For Q e N*, | .| and (-) stand for the euclidian norm and the inner product in R2.
We consider the following sets (where E denotes the mathematical expectation with respect
to the probability measure P):

S [ZO,T] (R9) the space of F,—adapted cadlag processes

¥:[0.T1xQ — R, ¥, = E( sup |\pt|2) < oo,

0<t<T

° H[ZO’T](RQ) the space of F,—progressively measurable processes

T
¥:[0,T1xQ— RC, |97, = Ef I, |? dt < 0.
0

o L2 (1,R9) the space of mappings U : Q% [0, T]x E —s R which are P®E-measurable

[0,7]
T
Uiz, = f f Ui(e)* A(de)dt < oo,
0 E

S.t.
where £ ® & denotes the o—algebra of predictable sets of Qx[0,T].
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Notice that the space B2 = B, T](RQ) =57 T](RQ) X H[o T](RQ) X L[0 @ R2) is a Banach
space. For notational simplicity we note for a function ¥ : [0, 7] x R¥ x R4 x Rk — Rk,
Y(r,0) = ¢(r,0,0,0).

Definition 2.1. A triplet of processes (Y;,Z;, U;)o<i<r is called a solution to eq. (2.1), if
(Yy,Z:,Uy) € B2 and satisfies (2.1).

2.2 Preliminary results

In the following, we assume that f and g satisfy assumptions (H1) :

(H1.1) For any (y,z,u) € REXR X RK, £(.,y,z,u) is a progressively measurable process
such that E( fo |f(s,y,2,wlds)* < o and g(.,y,z,u) € Hpy ., (R).

(H1.2) There exists a constant 0 < @ < 1 and positive non random continuous functions
()}, {@(0)} and {o(r)} such that for 1> 0, (v,y’) € (R)?, (z,2/) € R*D)?, (u,u’) € (RF)?
lf(ty,zu) = f(@.Y, 2, u) < vOly =y |+ o)z = 7| + |u—u'])
8t y.z.u) = g(t,y .2 U <oy -y P +allz =/ +|u—u'[?)

(H1.3) fom v(s)ds < o, fom [%(5) +o(s)]ds < oo.

First let us recall the following Gronwall’s lemma which will be useful in the sequel.

Lemma 2.2. Assume given T >0, K >0 and ®,¥ : [0,T] - R* such that fOT Y(r)dr < oo.
If

!
VO<t<T, O(r) < K+f Y(r)®(r)dr < oo,
0
then we have

VO<t<T, @) < Kexp( f ‘I’(r)dr).
0

We have also the following version of It6’s formula. The proof is omitted since it is an
adaptation of [6, Lemma 1.3].

2
LemmaZS LetXeS[OT

Ly, T]CJ R¥) be such that

! ! ! !
X =Xo +f ﬁ,dr+f (,dB, +f . dW, +f f¢r(e)ﬁ(dr,de), 0<t<T.
0 0 0 0 JE

(RY), & € HYy 1\ (RY), ¢ € Hf (R™), 1€ Hi 1 (R) and ¢ €

[OT [0,7
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Then we have for any 0<t<T and BeR,

! ! !
i 1% = |Xol* +2 f (X, 0, ydr +2 f (X, 4, dB,)+2 f (X, 7, dW,)
0 0 0

! f !
w2 [ [ gemanden- [ igpare [ i
0 JE 0 0
A(e)*A(de)d AX;)>.
« [ woradears Y ax)

O<s<t

T T T
(i) EIX>+E f It 2dr +E f f o, (e)*A(de)dr < E|X7|>+2E f (X,,9,)dr
t E t

ZT
+2 [ 1gPar
tT T T
(i) EX)+E f B |X,Pdr+E f A Pdr+E f f A\p () Ade)dr
t t t E
T T
<E@T|Xr?) +2E f Fr(X,,9,)dr +E f Ar\e,Pr.

In what follows, we study our equation in the finite case under our standing conditions.

Proposition 2.4. Assume that T < co and (H1) is in force. Then BDSDEP (2.1) admits a
unique solution.

Proof. To prove existence of solution, let us consider the sequence of processes @} =
(Y:lsztnv U[n)VLZO giVen by

YtO =0;
T T T T (2.4)
yl=gy f f(r,@Mdr + f 2(r,0")dB, - f ZMaw, - f f U™ Y e)u(dr, de).
t t t t E

Since for a fix n € N, the coeflicients f and g of the BDSDEP (2.4) do not depend on the
solution (Y"1, zm+l U ,”“), it follows from [9, Proposition 2.1] that the sequence (0"),»¢ is
well defined.

We want to prove that (0"),s¢ is a Cauchy sequence in 8. For this end define

Yoy, 27 =z -7z and T =Ur-Ur, 0<i<T.
Fix B € R. Applying (iii) in Lemma 2.3, we obtain
—n+1 2 T —n+1 2 T —n+1 2 r —n+1 2
E(eﬂqy’; | )+Ef,8eﬁ’|yf | dr+Ef v dr+Ef feﬂrw, (o) A(de)dr
t t t E
Teﬁr Svan! n Teﬁr NV
<2E Y, Af"(r)dr+E |Ag" (r)|~dr, (2.5)
t 13

where for a function & € {f, g}, AW (r) = h(r,Y},Z!, U") = h(r, Yf_l,Z;’_l, Uf_l), 0<r<T.
Using standard estimates we have (where £ > 0 will be chosen later)

—n+ 2 —n+ —n = —n
A7 AL ()] < () + ;goz(r))uf’l R v R+e(ZeR +[TP,
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and
—n —n —n
IAg" (M) < oMY, 1 +a(Z,* + T, [*).

Hence putting pieces together, we deduce that the right hand side in (2.5) is less than
T —n+1 2 T "2 1.2 7712
yEf Y, | eﬂ’dr+Ef [, +(e+a)(Z, ] +|U,|»)]e dr.
t t

where y = mv + (2/(9)m2 ¢ =m, +m, and for a function 6 € {v,¢,0}, ms is s.t [6(r)| < m;.
Now, let £ = 5% and 8 =y +¢ (where ¢ = Ca), we deduce that

f[clYn 24z |+|U |]eﬂ’d <( )Ef [clY, |2+|z |2+|U|]eﬁ’dr

Since 15“ < 1, we deduce that (®}),>0 is a Cauchy sequence in B2. Hence O, = lim,,—, ;oo "

t b
satisfies (2.1) in [0, T'].

Let us prove uniqueness. Let (¥,Z,U) and (Y Z, U) be two solutions of eq. (2 1) and
define for 0<r < T, helf,g}, 6 e{Y,Z, U}, Ah(r) = W(r,Y,,Z,,U,) — h(r, Yr,Zr,U ), 0=
§-9.

It is readily seen that the triplet (Y, Z, U) solves the BDSDEP

T T T T
Y, = f Af(rydr+ f Ag(r)dB, — f Z.dW, — f f U (e)u(dr,de), 0 <t <T.
t t t t E

Applying (ii) in Lemma 2.3, we deduce that

T T T T
E[Y,|> +E f \Z.|>dr +E f f U (e)*A(de)dr < 2E f X, Af(P)Ydr+E f |Ag(r)2dr.
t t E t t
Using assumptions (H1), we have

IAg(PP? < oMY, +al|Z,* +U, P,

90()

2Y,, A1)y < V(DY |2+ |Y >+ —[|z > +[U, 1.

Hence we deduce that

— 5 l—a T 5 T _ )
E|Y| +T(E |Z,|7dr+E |U ()| /l(de)dr)
t 1 E

T
< f (v(r)+@(r>+ﬁw%r))EWdr

which implies in particular B|Y,]* < f W(HE|Y |2dr with ¥(r) = v(r) + o+ 2(r)
Applying Lemma 2.2, we deduce that Y = 0. As a consequence we derlve that Z=0
and U = 0. Uniqueness follows.

Before proving solvency in the infinite time horizon, we need some technical results. If
(Y1, Z!, U") and Vi, zi,Uj) € B2,i=1,2, we note for v e {Y,Z, Uy,u,z}, v= vl —v2. We have
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Lemma 2.5. Assume that (HI) is in force. For any T € [0,00], let Y; e LX(Q,F7.,P),
(YL, ZI, U and i ziUi) € Bi=1,2, satisfy the following equations

T T T
Y=Y+ f fls. Y2 u)ds + f 8(s.¥, 25, u)dB; - f ZydW;
t t t
T
—f st(e)ﬁ(ds,de), 0<t<T <00, i=1,2. (2.6)
t JE
Then there exists a constant K(a) > 0 such that for any T € [0,T],

—~ —~ —~ 2 —~ 2
||(Y]l[T,T]aZ]l[T,T]’ Ul < K@) [E|YT|2 +P@.T)|| 0L 2L [T,T],m[T,TJ)HBz] 2.7

where P(x,T) = ([ v(s)ds)* + [ [*(s) +0(s)lds, 0<7<T < +oo.

Proof. Let us consider the filtration (G;)i0 given by G, = FV VFLVFF, 0<1<T < oo
Without loss of generality, we assume that 7 = 0, T = oo, otherwise we can replace g by
8l 1)

Since (Y,Z,U) € B2, the process | f()tZdWs + fol fE U,(e)fi(ds,de));so is a martingale and
from (2.6) we have

?t — B9

YT +f ]l[t,T]]’C:dS"'f ]l[t,T]’gsst} , 0<r<T.
t t

where for h € {f, g}, hy = h(s,y!,z),ul) = h(s,y2,22,u?). 1t’s readily seen that

2

12 _ 00 - 00
HY ) = E[sup Eg, (YT + f ]l[t,T]fst + f ]l[t,T]/g\sst)
S >0 t t
— o 2 00 2
<2E [supEg’ (lYTl + f | fslds) +2E|sup EY" (’ f 2.dB; )} . (2.8)
>0 t >0 t

Furthermore by Doob and Burkhdlder-Davis-Gundy inequalities there exists ¢ > 0 s. t.

2E[supE9r(|?T|+ f |ﬁ|ds) SSE(|?T|+ f |ﬁ|ds)
t 0

>0

2 2

o 2
< 16E |?T|2+( f IstdS) l
0
and
(o) 2 (o)
ZE[SUPE@([ Esst) SzCEf @slzds-
>0 t 0

Plugging these inequalities in (2.8), we derive that

P < v

+2¢E f [g,1°ds. (2.9)
0
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On the other hand, from (2.6) it follows that

2 . X .

7] L2=E< fO Z.dW, + j; fE Us(e),u(ds,de)>oo

— o e 2 . 00 00 2

:E(IYr|+f |fv|ds+f jg?sst) —[E(|YT|+f |fv|d5+f Equs)] ‘
0 0 0 0

By standard estimates, the right hand side of the previous equality is less than

. 00 2 / 2
|YT|2+( f IfsldS) f Esst) .
0 0

Using assumption (H1.1), we have

+||o

2
H?

4E

+2E (sup

>0

2

00 2 00
E( fo IstdS) SE( fo <v<s)w+so<s>@|+|ﬁs|>>ds)

00 2 00 00
SZE(f v(s)ds. supB)\,I) +2E(f <p2(s)ds.f (&}|+Ws|)2ds),
0 0 0

>0

which implies

00 2 o ) -
s ] <[] + [ o jo=

Moreover by Doob inequality and standard estimates we have (where ¢’(«) is a positive
constant depending on @)

!
f 2,dB,
0

2
. (2.10)

2 00 ) 00
)3415 f G ds < 8B f o(Hf? +8E f oGP+ ) ds
0 0 0

<c@|GEDL [ ewasl @.11)

E (sup

>0

Consequently, from inequalities (2.9)—(2.11), there exists K(a) > 0 such that

(o) 2 (o)
||(Y,Z U||282 < 2015[|?T|2 + ( fo |fs|ds) ]+ 22+ C)E fo . ds
< K(a) [E|?T|2 +1%(0,0) ||(y‘,z’@||;2] . (2.12)

This completes the proof.
We have

Theorem 2.6. Assume that (HI) is in force and & € L*(Q,F7,P). Then the BDSDEP (2.1)
admits a unique solution (Y,Z,U) € B.

Proof. We prove the theorem in two steps.
00 2 00 o 1/2 ~1/2
Step 1. We assume that [( [ v(s)ds)? + [, (¢*(s) +o(s)ds| "~ < [K(@)]7/2.
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For any triplet @, = (Y, Z;, Up)o<i<T € B2, we have

00 00 2 00 00 2
Ble+ f f(5.0,)ds+ f 8(5.0.)dB,) sE(|§|+ f £(5.0,)lds +| f g(s,®s>st|)
0 0 0 0

00 2 t
s2E(|§|+ f If(s,®s)|dS) +2E(sup| g<s,®s)st|2).
0

>0 JO

By assumption (H1) and standard estimates, we deduce that

o 2 s 00 2
2E(|§| +f |f(s, @S)|ds) + 2E(sup| g(s, @s)st|2) < 8E|§|2 + SE(f |f(s,0)|ds)
0 0

>0 0

+8]E(foov(s)|Ys|ds) +8E(foogo(s)(|Zs|+|Us|)ds)
0 0

+8E f |g(s,0)|2ds+8E( f Q(s)IYslzds)
0 0

+8E f (|1 Z? +|UP)ds.
0

2 2

Using standard estimates once again, we have

E(foo V(S)IYsldS)
0

2

(oo} (o) 2 00
+E f Q(s)|Ys|2dsSE( f v(s).(supIY,I)ds) +E f o(s).(sup|Y,*)ds
0 0 0 >0

>0

00 2 (o)
(f v(s)ds) +f o(s)ds
0 0

<

2
Y12, < o,

and Holder inequality implies

E(j(; ()(Zs| + IUsI)dS)

2 00
+E f a(|Zs]> +|UP)ds <
0

+E( fo ©*(s)ds. fo <|zs|+|U‘g|)2ds)+a<||zn§,2+||U||§2>
<2 fo @ ()ds. (1213, +I1UN7) + adlZIl,, +IUI[7,) < eo.
Hence we deduce that
00 (o] 2
E(§+f f(s,@s)ds+f g(s,@s)st) < 00,
0 0

It follows that the process (M;)oize given by (M, =E9 (& + [~ f(s,0,)ds + [~ g(5,0,)dB )}i0
is a square integrable martingale. According to an extension martingale representation the-

orem, there exists (z,u) € H[20 Oo](ka‘l) X L[20 OO]CZJ, R¥) such that

! !
M, = M, +f zsdWy +f fus(e)ﬁ(ds,de) 0<t< oo, (2.13)
0 0 JE
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Let
y,=]Eg’(§+f f(s,@s)ds+f g(s,@s)st), 0<t< 0. (2.14)
t t

Obviously, (v,z,u) € B%. So equations (2.13) and (2.14) have constructed a mapping ¢ from
B? to B2, given by
¢:(YZ,U) = (y,z,u).

Then if ¢ is a contractive mapping with respect to the norm ||.||2, by the fixed point theorem,
there exists a unique triple (Y, Z, U) € B2 satisfying (2.13) and (2.14), that is,

M, = Mo+ [y ZdW, + [ [ U(e)iids, de)

Y, =B9 (¢+ [ f(s.0)ds+ [~ 8(s,0,)dB;), 0<t<oo.

which is equivalent to BDSDEP (2.1).
We now prove that ¢ is a contractive mapping. Suppose (Y?,Z!,U’) € B2, let (', 7', u’)
such that _ 4 . ‘
o(Y,ZUNY = (2, i=1,2.
By lemma 2.5 we have

|G| = 00", 2", U = 942, 22, U2 < (K(@))? 10,09)|| (V. Z,T)

22

Note that (0, c0) = [( [~ v()ds2+ [~(p*(s) +o(s)ds| " < (K(a))™/2 Thus ¢ is a con-
tractive mapping from 52 to B2

Step 2. Since fooo v(s)ds < oo and fooo [@%(s) + 0(s)]ds < oo, then there exists a sufficiently
large constant I" > O such that

1/2

(oo} 2 o0
[( f v(s)ds) + f [soz(s)w(s)]ds} < (K(a)™ '
r I

Let f(t, v,2,u) = Liroo)(D f(t,y,z,u) and g(t,y,z,u) = L .00)()g(t,y,2,u), then (H1) hold on ]7
E}Pd g whose Lipschitzian functions coefficients are V(1) = Liroov(?), @(f) = Lrc0j(t) (for
f) and o(¢) = 1r«j0(2) (for g). It is straightforward that

(oo} 2 00
{( f m)ds) - f [2°(s) +2(5))ds
T r

and by Step 1, there exists a unique triple of processes (Y,Z,U) € B2 such that

1/2
< (K(a))™'?

’Y\vt = ‘f,: + f ﬂS9YYa Zs» ﬁs)ds + f ?(S,Ys, Zs» ﬁs)st - f ZvdWs _f f ﬁs(e)ﬁ(dsa de)
t t t t E

For (?,,Z, ﬁ,) given as above, let us consider the following finite BDSDEP:

I I I I
Y, =&+ f f(5,00)ds + f g(s,0,)dB; — f ZdW, — f f Ug(eu(ds,de) 0<t<T,
_ It _ t t t E
Y, =0, Z,=0, U;=0, t>T
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where we define ’@S =Y, + ?S,Z +Z,UY + US). Thus by virtue of Proposition 2.4, the
above BDSDEP has a unique solution (7,,2,61) in [0,1'], and satisfies (7,,7,,51) =(0,0,0)
forevery t >T.
Putting Y = 7+?, Z= Z+Z U=U+ U, it is easy to check that (Y;,Z;, U;) is the unique
solution of the BDSDEP (2.1).

We are now in position to study our main subject.

3 Main Result

In the following we assume that f and g satisfy assumptions (H2) where 0 <7 < +o0 :
(H2.1) : For all (y,z,u) € R* xR XRY, (-, y,2,u) € Hjy 7 (R™) and f(-,y,zu) is pro-

gressively measurable process such that E( fooo lf(s,y,z, u)lds)? < co.
(H2.2) : There exists 0 < @ < 1 and positive non random continuous functions {v()}, {8(¢)}
such that for t > 0, (y,") € (RY)?, (z,7') € R*D)?, (u,u’) € (RF)?,

\f(t,y,z.w) = £y, 2 )P <vDp(t,ly =y P) +B0)(z =2 > +|u—u'|)
lg(t,y,2,u)— g(t,y', 2, u > < p(t,ly =y 1) +alz— 7> +|u—u'|*)
where p(-,-) : [0, T]xR* — R* satisfies

e For fixed 1 € [0, 0], p(t, ) is a continuous, concave and nondecreasing function s.t. p(¢,0) =
0.

e For any T'>0, the ordinary differential equation
Vv = -Tp(t,v), wWT)=0, (3.1)

has a unique solution v(#) =0, 0<t<T.
T
e There exists a(-),b(-) : [0,T] = R" s.t. p(t,v) < a(t) + b(t)v and f [a(t) + b(1)]dt < 0.
0

(H2.3): foo v(s)ds < oo and fmﬁ(s)ds < 00.
0 0

We have the following result

Proposition 3.1. Let 0 < T < +oo, f, g satisfy (H2) and (Y, Z;, U;)e[0,1] be a solution to the
BDSDEP (2.1) with parameters (&,T, f,g). Then there exists three positive constants C1,C;
and C3 only depending on « such that

T T
E(sup |YS|2)+E( f |Zs|2ds)+E( f f IUS(e)IZ/l(de)ds)
t<s<T t t E

T 2 T
<C [EI§I2+E(f |f(s,0)|ds) +]Ef |g(s,0)|2ds]

T
+C, f (s, E|Y[>ds
t

hold true for each t € [0, T] satisfying ftT(V(s) +8(s))ds < Cs.
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Proof. Using Lemma 2.3, we deduce from eq. (2.1)

Vi + f 1Z,Pdr + f f Une)PAde)dr+ > (AY))? =& +2 f (Y, f(r,©,))dr

t<s<T

+2f <Yr’g(ra®r)dBr>_2f Y, Z,dW,)
t t

T T
-2 f f (Y,-, Un(e)fi(de,dr) + f 18(r,©,)dr. (3.2)
t E t

Using the fact that Va+b < va+ Vb and 2ab < sa® + b*/s for £ > 0, we deduce from
assumption (H2)

XY, f(r,0,)) < 2|7, [ \/V(r)p(r, 1Y:12) + B(NAZ, P + U ) + 1 £(r,0)]

1
< ;[v(r)+ﬁ<r>]|Yr|2+sp(r,|Yr|2)+2|Yr||f<r,0>|
+&(Z,> +|U,P), (3.3)

where ¢ will be chosen later. Furthermore thanks to standard estimates, we have
2 ) 2-«a 2
lg(r,®,)I” < (2—a)|g(r,®,) - g(r,0)I" + mlg(n 0)l
2—a
< Q= @p(r Y1) + a2 = )(Z L + U + T2, O, (34
Putting pieces together, we deduce from eq. (3.2)

T T T
E f |Z,|>dr +E f f \U,(e)*A(de)dr < E|EP? + (e +2—a)]E f o(r Y |P)dr
t t E t

T
1 f )+ BT - sup [YuP)dr
e Jt t<u<T

T T
+(e+a2-a)E f |Z12dr + (e + (2 — @))E f \U,[>dr

+ —]Ef lg(r, O)IZdr+2]Ef |Y A f(r,0)|dr.

Choosing € = (@ - 1)2/2, we obtain

12 T
(e 21) [ f \Z,Pdr +E f f U ()P A(de)dr
t

T
<X,+2Ef |Y N f(r,0)ldr

+—]E f |g(r,0)%dr, (3.5)

where

T T
X, =BlEP+(@-1)2/2 | () +Br)]-E( sup |Y,))dr+[((@—2)*+1)/2]E f o(r, 1Y, Pdr.
t t<u<T t
(3.6)
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Moreover from eq.(3.2), we have

T
E( sup |Y,|2) < Elfl2 +2E sup (f Yy, f(r, ®r))dr)

t<r<T t<s<T

T
+2E sup f(Yr,ZrdWr)
S

T
f (Yy,8(r,0,)dB,)
N t<s<T

T
f f (Yr—, Un(e)u(de,dr))
s E

By Burkholder-Davis-Gundy inequality, there exists ¢ > 0 which may vary from line to line
such that

+2E sup

t<s<T

+2E sup

t<s<T

T
+E f |g(r,©,)*dr. (3.7)

T T
1
2E sup f (Y,,8(r,0,)dB,)| < <E| sup |V,[*|+cE f 8(r.®,)dr, (3.8)
t<s<T |Js 8 t<r<T t
T 1 T
2E sup f (Y, Z dW)| < <E| sup |Y,*|+cE f \Z,*dr. (3.9)
t<s<T s 8 t<r<T t

Similarly, for the discontinuous martingale, we have

T
2E sup f f (Y,_, U (e)ii(de,dr))
K E

t<s<T

1
< §E[ sup |le2]

t<r<T

T
+cEf fIU,(e)IZ/l(de)dr. (3.10)
t JE

Using equations (3.5) and (3.8)-(3.10), we deduce from (3.7)

5 T T
gE[SUP |Yr|2]sE|§|2+2E sup ( f <Yr,f<r,®r)>dr)+cE f lg(r,®,)Pdr
s t

t<r<T t<s<T
2c

T 2—a T )
+—|X;+2E Y || f(r,0)ldr+ —E lg(r,0)°dr|. (3.11)
(@—1)2 t l-a J;

Furthermore exploiting eq. (3.3), (3.4) and gathering (3.5) and (3.11) we obtain

T T
+E f 1Z,?dr + E f f U (e)*A(de)dr < K\(a)X;
t t E

2o ot
t<r<T
T T
+K2(0)Ef IYrIIf(r,O)IdHKz(a)Ef lg(r,0)%dr, (3.12)
t t

where Kj(a) and K>(a) are two positive constants (which may change from line to line)
depending only on a.
From the following inequality

T T 2
Kz(a/)Ef Y |If(r,0)|dr < %E[sup Y, +K2(a/)E(f |f(r,0)|dr) , (3.13)

t<r<T
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we deduce that

1 T T
—E(sup |Y,>)+E f \Z,|*dr +E f f U (e)*A(de)dr < Ki(a)X;
2 i<t ¢ ¢ JE

T 2 T
+K2(a/)(E f | f(r,O)la’r) + Ky (@)E f \g(r,0)]dr.

Let us define

Ci = 4K (@) +K C, = 4K PR Gt Dl
1 =4(Ki(a) + K@), Cr=4K(a) an = k@)

T
Then if t € [0,T], f v(s)+B(s))ds < Cz, we deduce that
1

T T
E( sup |Y,>)+E f \Z,*dr +E f f \U(e)* A(de)dr
1<r<T t t E
T 2 T
E|§|2+]E( f | f(r,O)Idr) +E f Ig(r,O)Izdrl

T
+COE f p(rIY,)dr
t

<C

The proof is completed by Fubini’s theorem and Jensen’s inequality in the last integral of
the right hand side.

Our strategy in the proof of existence of solutions of eq. (2.1) is to use the Picard
approximate sequence.

Let us consider now the sequence (Y}',Z}', U}'),>0 given by

Y,0 =0;

T T T
Y'=¢+ f fls YLz Uds + f (s, Yy, 2} UdB, - f ZidW (3.14)
, :

t t

T
_f fU;’(e)ﬁ(ds,de), n>1.
t E

By assumptions (H2), the generators f(s,Y: g_l,z, u) and g(s, Y?‘l,z, u) of the BDSDEP
(3.14) satisfy also (H1) with

v()=0, @)= yB(®), and o(r)=0.

Hence it follows from Theorem 2.6 that this sequence is well defined whether T < oo or
T = +oo0. Moreover since fOT(v(s) +B(s) + b(s))ds < oo, putting (where C, and C3 are taken
from Proposition 3.1)

Cs

1
) ), N=[T/6]+1,
2/1DlleeC2 21y + Blleo

0 = min(
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the uniform subdivision of [0,T] (Tj)o<j<y given by To =0, T;=T—-(N-j)5, j=
1,...,N, satisfies

i is<S wma [ bids< 3.15
f;,- v(s)+B(s))ds < > an ij (s) S_2C2' (3.15)

We intend to prove that (Y]',Z]',U}'),>0 is a Cauchy sequence. To this end we need two
lemmas.

Lemma 3.2. Assume that & € L*(Q,F7,P) and (H2) is in force. Let Ty_y <t < T satisfying
ftT(v(s) +B(s))ds < ngi Then there exists two positive constants C D and c®

(@ @) depending
only on a such that for any n, m > 1,

T
E( sup Y}~ Y} < C{}) f p(s. Bl -y ) ds,
t

t<r<T

Proof. Let us define
—n,m

Y " =yrmoyr 7 =zmm ozt and U =U™"-UT, 0<t<T.

By Lemma 2.3, we have forn,m>1and 0<r<T,

T T T
v P+ f Z, " Pds + f f U, " )P Ade)ds + . (AV,") =2 f " AL (s)yds
t t E t

t<s<T
T— m —n,m T —nm —n,m_
-2 f ¥,z awgy -2 f f Y, U, " fi(ds,de))
t t E
T T
+2 f " Ag" ™M (s)dBy) + f IAg™™(s)*ds, (3.16)
t t

where for h € {f, g}, A" (s) = h(s, YrHm=1 zmem gmemy — p(s, Y"1, 720U, 0<s<T.
Using standard estimates and assumption (H2.2), we have for € > 0,

_ 1 _ e _ _
2V AL < )+ BENY P+ ep(s. IV Y e(Z, P 4 TR
and
(nym) 2 2—«a —n—1,m 2 Mmoo  Fm )
A" ()P < T—p(s. [V )+ a@ =) (2, P+ TS

Plugging these two inequalities in (3.16), there exists a constant K(,) > 0 depending only on
@ (where we choose & = (o — 1)2/2) such that

(a/—1)2 Tzn,mz T —n,m 2 T N
5 Ef |Z, |dr+f ‘[E|US (e)|“A(de)ds SK(Q)Ef (v(s)+ﬁ(s))|YZ |“ds

T
+ Kio)E f p(s 7" P)ds. (3.17)
t
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Moreover using again eq. (3.16), we deduce that

t<s<T t<r<T

T
E(sup [V,"'*) < 2E sup ( f <?§”m,Af<""")<s)>ds)

+2E sup

t<r<T

T
+2E sup f f X" U (e)(ds, de))
t<r<T |Jr E

T
+E f |Ag ™™ ()| ds. (3.18)
t

T
f X"z aws)

+2E sup

t<r<T

T
f T, Ag™™ ()dB)

So using the same computations as in the proof of Proposition 3.1 and Burkholder-Davis-
Gundy inequality, we deduce that

1 . T . T o
SE(sup [V <K, | («(s)+B(s)dsE(sup [V, )+ K[, E f o(s, 7" Pyds,
t t

t<s<T t<r<T

(3.19)

where K(’a) > 0 depend only on @. Hence putting Cécll)) = 4K(’a) and ng)) = (4K’a))‘1, we get

the desired result thanks to Fubini’s theorem, Jensen’s inequality and assumptions on the
function p(t,.).

Lemma 3.3. Assume that & € LX(Q, F7.,P) and (H2) is in force. Then there exists a constant
M > 0 such that for eachn>1and Ty-1 <t <T,

E( sup |Yf|2) <M.
t<r<T

Proof. Applying Proposition 3.1, we deduce for any Ty_1 <t<T,

T T
f \Z; 2 ds f f IUZ’(e)lz/l(de)ds]
t t E

T 2 T
sCl(E|§|2+E( f If(s,O)Ids) +E f |g(s,0)|2ds)
t t

T
+C, f p(s, E[Y"P)ds.
1

E( sup |Y§|2)+E +E

t<s<T

Hence we deduce that

T
E(sup |Y;l|2)$,u,+C2 f p(s, E[Y"™ ' )ds, (3.20)
t

t<s<T

2
where g, = C (]E|§|2 + E( [ ifGs, O)Ids) +E[ |g(s,0)|2ds). Now let

T
M =240 +2C> f a(s)ds. (3.21)
0

It follows from assumptions (H2) and (3.15) that foreach Ty_; <t < T,

T T T
,Uo+C2f p(s,M)dss,uo+C2f a(s)ds+MC2f b(s)ds < M/2+MJ/2<M. (3.22)
t t t
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So using (3.20), we deduce that for each Ty <t < T,

E(sup [Y{[) <o < M,

t<s<T

T T
E(sup [Y21) < po+Ca f p(s.BIY! P)ds < po+C, f o(s,M)ds < M,
t t

t<s<T

T T
ECsup 1V3P) <o+ Co [ p( BV <0+ Ca [ plobids < .
t t

t<s<T

Thus the result follows by induction.
We claim :

Theorem 3.4. Let 0 < T < +co and assume that (H2) is in force. Then for each & €
L*(Q,F7,P) the BDSDEP (2.1) has a unique solution.

Proof. Using the constant M given by (3.21), we can consider the sequence (¥,)n>1
given by

T T
Wo(t)=C2f p(s,M)ds, #//n+1(l)=C2f p(s,yn(s)ds, n=0, Ty_y<t<T.

For each Ty_1 <t < T, it follows from (3.22) that yo(f) < M. This implies that the sequence
{,,(H)}n>1 satisfies
0 <n1(®) Syu(0) <+ <ho(t) < M.

Thus the limit () exists and applying Lebesgue’s convergence dominated theorem, we
deduce that ¥ (1) = C, ftTp(s,Lp(s))ds, Ty-1 <t<T,whether T <ooorT = +co. Then by
assumption (H2.2), one gets that y(r) =0, Ty_; <t<T.

Using the same computations as in [2, Theorem 1], we prove that the sequence (Y}'),>1
is a Cauchy sequence in § [ZTN%’T](R"), (Z)n>1 1s a Cauchy sequence in H[ZTAH’T] (R*) and
(Up)nz1 is a Cauchy sequence in Lg. (@, RY). Letting n — oo in eq. (3.14), we obtain

T T T T
Y,=f+f f(s,@s)ds+f g(s,@s)st—f stWs—f st(e),TI(ds,de), Ty_1<t<T.
t t E

t t

Hence O, = (Y;,Z;, U;) satisfies (2.1) on [Ty_1,T]. Moreover by virtue of (H2), we have
(Z;,Uy) € H[ZTNil’T](RkXd) X L%TN%T]QY, RK). As a consequence, we deduce by Doob’s in-

equality,
T 2 T ‘ 2
E( f f(s,@X)ds) +E f |g(s,®s)|2ds+E( sup f ZdW ]
t t Tn-1<t<T |ITy-y
. 2
+E| sup f st(e)ﬁ(de,ds) < 00,
Tn-1<t<T |ITn_1 VE

This implies essentially that E(supr,  <<r |Y,|?) < co. Thus the triplet (Y;,7;, U,) solves eq.
(2.1) on [Ty_1,T]. By iteration we prove existence of solution on [0, T].
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Let us prove uniqueness. Let (Y;,Z;,U,) and (E,Z,ﬁ,) two solutions of eq. (2.1).
Applying Lemma 2.3 and using the same computations as in the proof of Lemma 3.2, we
deduce that (where Dy = Dy— D, D e{Y,Z,U})

(a,_l)Z T -5 T _ ) T -5
E[f |Zs] ds+f fElUs(e)I /l(de)ds] SK((,)Ef v(s)+BsNIY|ds

2
T —
+KoE f o(s, Y sP)ds (3.23)
t

and

T
EY,|* <E(sup [Y,) <C,) f p(s.BIY,)ds, Ty <t<T.
t<r<T t

This implies from the comparison theorem of ordinary differential equation, ElY,P <
r(t) where r(f) is the maximum of solution of eq. (3.1) (with I' = CE;;). As a conse-
quence, we have Y, =0ie. Y, = 7,, Tn_1 <t <T.From (3.23), we deduce Z, = Z and
Ui=U;, Tn-1 <t<T.Using the same scheme, we prove uniqueness on [T}, T 1], j =
0,...,N —2. This completes the proof.
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