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Abstract

Using the discrete fractional sum operator, we establish some inequalities of Cheby-
shev type.
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1 Introduction
In 1882, Chebyshev proved the following result [3]:

Let f and g be two integrable functions in [0, 1]. If both functions are simulta-
neously increasing or decreasing for the same values of x in [0, 1], then

/Olf(x)g(X)de /Olf(x)dx/olg(x)dx_

If one function is increasing and the other decreasing for the same values of x
in [0,1], then

/Olf(x)g(X)de /Olf(x)dx/olg(x)dx_

Since then, continuous and discrete generalizations and extensions of such inequalities

have appeared in the literature (see [2, 8] and references therein). In 2009, Belarbi and
Dahmani [1] proved that

INo+1)

(Ifg)(t) =2 —— (")) (I") (1), 1>0, a>0, (1.1)
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where I is the Riemann-Liouville fractional integral operator of order o > 0 [6], and f and
g are two synchronous functions (cf. Definition 2.5 below). Moreover, much more recently,
a g-analogue of inequality (1.1) has appeared in the literature [7].

It is our aim with this paper to establish a discrete version of inequality (1.1) as well
as some other related results. We will do this by using the discrete fractional sum operator
defined by Miller and Ross [5] in 1989.

This paper is organized as follows: in Section 2 we provide the reader fundamental
concepts and results needed throughout the paper. In Section 3 we state and prove our main
achievements.

2 Preliminaries on Discrete Fractional Calculus

In this section we introduce the reader to basic concepts and results about discrete fractional
calculus.

The power function is defined by

0) = m, for x,x —y € R\(Z\Np).
Remark 2.1. Using the properties of the Gamma function, it is easily seen that for x >y > 0,
we get x) > 0.

Fora € R and 0 < o < 1, we define the set NS = {a+o,a+ o+ 1,a+0+2,...}. Also,
we use the notation 6(s) = s+ 1 for the shift operator and (Af)(r) = f(t+1) — f(¢) for the
forward difference operator.

For a function f : N? — R, the discrete fractional sum of order o > 0 is defined as

@A°F)(1) = (1), 1EN,

(A7)0 = o L0 Vf(6), 1€, a0

Remark 2.2. Note that the operator ,A~% with o0 > 0 maps functions defined on N to
functions defined on N%. Also observe that if o = 1, we get the summation operator

t—1
AT )() = ;ﬂs)-

The following result will be used in the sequel.

Lemma 2.3 (See [4, Corollary 10]). Ifa € R and yu+v € R\{...,—2,—1}, then

(sa™ (s —ats)®) () = oD

. (u+v) v
7r(p+v+1)(t a+u) , teN].

Remark 2.4. The function t — (t —a)® defined on N%, a € R and o > 0, is increasing.
Indeed, we have that A(t —a)® = ot —a)*V and (t —a)*~") > 0.

Definition 2.5. Two functions f and g are called synchronous, respectively asynchronous,
on NY if for all t,5 € N0, we have (f(1) — f(s))(g(t) — g(s)) > 0, respectively (f(t)—
f(5))(g(t) —g(s)) <0.
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3 Discrete Fractional Inequalities

We start by proving the main result of this paper.
Theorem 3.1. If o. > 0 and f, g are two synchronous functions on N°, then

I(a+1)

(A™f8) 1) = 0@

(A%F) (1) (A %¢) (1), €N (3.1)

Proof. Since the functions f and g are synchronous on N?, then for all T,s € N?, we have

(f(r) = f(s))(g(r) —g(s)) = 0,

FR)(1) + £(5)g(s) > F(Dg(s) + f(5)g(0). (32)
Now, multiplying both sides of (3.2) by %w, teNYandte {a,a+1,...,t—a}, we
get
_ (a—1) _ (a—1)
S st + R 0t
_ (a—1) _ (a—1)
> T — @t + st 3

Now, summing both sides of (3.3) for t € {a,a+1,...,f — o}, we obtain

(aA™*f2) (1) + f(5)8(s) (sAT1) (1) > g(s) (aA™F) (1) + £ (s) (A %) (1).  (3:4)

Multiplying both sides of (3.4) by (’_Glﬁ‘z()j)(uil) ,t€N%ands € {a,a+1,...,t —a}, we obtain
(t—o(s) "

(r—o(s) "
o ( (o)

. F)85) (A1) (1)

(i — o(s)) @V
(o)

and again, summing both sides of (3.5) for s € {a,a+1,...,1 — o}, we get

ATOf8) (1) +

_ (t—o(s)e

> R (A ()

f(s) (aA %) (1), (3.5)

(A1) (1) (A=) (1) + (uA~F2) (1) (u™1) ()
> (A~) (1) (aA™F) (1) (A1) (1) (uA~%) (1),

1.e.,

(A7) (1) (ad™%) (1) < (aA™1) (1) (aA™"f) (1)
(t —a)®

= F((X,—I—l) (aA_afg) (07

where we have used Lemma 2.3. This shows (3.1). ]
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Remark 3.2. The inequality sign in (3.1) is reversed if the functions are asynchronous on
NO.

Example 3.3. Let B > 0 and consider the functions fj defined by

@) =@+B)P, reN.

By Remark 2.4, it follows that f3 and fy are synchronous functions for 8,y > 0. Therefore,
by Lemma 2.3 and Theorem 3.1, the inequality

Ta+1) T(y+1)

(B+a)
t@  T(y+oa+1) (t+P)

(oAfafﬁfy) (t) >

oy T(B+1)
(e T(B+o+1)

holds for all r € N.

Theorem 3.4. If o, > 0 and f, g are two synchronous functions on NO, then

(t—a)@
INo+1)

(t — a)(B)

(aA*Bfg) (1) + TBL1) (aA%fg) (1)
> (,AF) (1) (aA_Bg> (t)+<aA_Bf) (1) (LA%) (1), tENZ (3.6)

Proof. Proceeding as in the proof of Theorem 3.1 and using inequality (3.4), we can write

—o(s))B-D _o(s))B-D
a9 0+ R 0809 () 0
—o(s))B-1 _o(s))B-D
> (t‘;((é;gw () Gr((é; F(s) (ad8) (1) BT
Now, summing both sides of (3.7) for s € {a,a+1,...,t — B}, we obtain the desired in-
equality (3.6). O

Remark 3.5. If we let oo = 3 in Theorem 3.4, we obtain Theorem 3.1.

We end this manuscript with a generalization of Theorem 3.1.

Theorem 3.6. Assume that f;, 1 <i<n, are n € N functions on N? satisfying

k—1
Hﬁ and fi are synchronous for all k € {2,...,n}, (3.8)
i=1
fi>0for3<i<n. 3.9

Suppose that a. > 0. Then, for all t € N%, we have

i=1

n n—1 pn
<aA°‘gﬁ> () = (M) [(A %) @) (3.10)
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Proof. In view of (3.8) and (3.9), we have

(A—anﬁ> (oc+1 <A_°‘Hfz> AL ()
- @ﬁl)) ( “Hﬁ) [T (&) )

i=n—1

T+ D\ o
z(a_)()> TT(A %) @),

i=1
where we repeatedly applied Theorem 3.1. O

Remark 3.7. If the functions f;, 1 <i < n, in Theorem 3.6 are either all nonnegative in-
creasing or nonnegative decreasing, then both (3.8) and (3.9) are satisfied.
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