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Abstract

In this work we study the following nonlinear elliptic boundary value problem,
b(u)− div a(x,∇u) = f in Ω, a(x,∇u).η = −|u|p(x)−2 u on ∂Ω, where Ω is a smooth
bounded open domain in RN , N ≥ 1 with smooth boundary ∂Ω. We prove the existence
and uniqueness of a weak solution for f ∈ L∞(Ω), the existence and uniqueness of an
entropy solution for L1-data f . The functional setting involves Lebesgue and Sobolev
spaces with variable exponent
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1 Introduction

This paper is motived by phenomena which are described by Robin type boundary problem
of the form 

b(u)−div a(x,∇u) = f in Ω

a(x,∇u).η =−|u|p(x)−2 u on ∂Ω,

(1.1)

where Ω is a smooth bounded open domain in RN , N ≥ 3 with smooth boundary ∂Ω and
η the outer unit normal vector on ∂Ω. When p(.) ≡ 2, we obtain an homogeneous Robin
condition. Therefore, (1.1) includes a Robin boundary problem.

The study of problems involving variable exponent has received considerable attention in
recent years (cf. [4,5,7-17,19-27, 29-34]) due to the fact that they can model various phe-
nomena which arise in the study of elastic mechanics (see [4]), electrorheological fluids
(see [11,22,29,30]) or image restauration (see [9]).

When the boundary value condition is a Neumann or Robin boundary condition in the
context of variable exponent, we must work in general with the space W 1,p(.)(Ω) instead of
the common space W 1,p(.)

0 (Ω). The main difficulty which appears in this case of existence
and also uniqueness of solutions is that the famous Poincar inequality does not apply (see
[8]). We must use the Poincar-Wirtinger inequality instead of the Poincar inequality but
due to the average number, it is not easy to use the Poincar-Wirtinger inequality to obtain
appropriate properties for problem involving more general operator and data considered in
this paper. We use in this paper a Poincar-Sobolev type inequality to get the main apriori
estimate for the proof of the existence and uniqueness of entropy solution (see the proof of
proposition 4.7 below). Recently, Ouaro (see [25]) studied the following problem

−div a(x,∇u)+ |u|p(x)−2 u = f in Ω,

a(x,∇u).η = ϕ on ∂Ω,

(1.2)

under the following assumptions:{
p(.) : Ω→ R is a measurable function such that
1 < p− ≤ p+ < +∞,

(1.3)

where p− := ess inf
x∈Ω

p(x) and p+ := esssup
x∈Ω

p(x).

For the vector fields a(., .), we assume that a(x,ξ) : Ω×RN → RN is Carathodory and is the
continuous derivative with respect to ξ of the mapping A : Ω×RN → R, A = A(x,ξ), i.e.
a(x,ξ) = ∇ξA(x,ξ) such that:

• The following equality holds

A(x,0) = 0, (1.4)

for almost every x ∈Ω.
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• There exists a positive constant C1 such that

|a(x,ξ)| ≤C1

(
j(x)+ |ξ|p(x)−1

)
(1.5)

for almost every x ∈Ω and for every ξ ∈ RN where j is a nonnegative function in Lp′(.)(Ω),
with 1/p(x)+1/p′(x) = 1.

• There exists a positive constant C2 such that for almost every x ∈ Ω and for every
ξ,η ∈ RN with ξ , η,

(a(x,ξ)−a(x,η)) .(ξ−η) > 0. (1.6)

• The following inequalities hold

|ξ|p(x) ≤ a(x,ξ).ξ≤ p(x)A(x,ξ) (1.7)

for almost every x ∈Ω and for every ξ ∈ RN .

Under assumptions (1.3)-(1.7), Ouaro (see [25]) proved the existence and uniqueness of
entropy solutions of problem (1.2) for L1−data f and ϕ. Assumption on the function A and
the use of the quantity |u|p(x)−2 u allowed Ouaro, in particular, to exploit a minimization
method for the proof of existence of a weak solution for (1.2) when the data f and ϕ are in
L∞(Ω) and L∞(∂Ω) respectively [25]. Note also that the uniqueness of weak and entropy
solutions of (1.2) in [25] is due to the fact that s 7→ |s|p(x)−2 s is increasing.

In this paper, we improve the result in [25] by making less regularity on the data a and
b. More precisely:{

p(.) : Ω→ R is a continuous function such that
1 < p− ≤ p+ < +∞,

(1.8)

and {
b : R→ R is continuous, surjective, nondecreasing function
such that b(0) = 0.

(1.9)

For the vector field a(., .), we assume that a(x,ξ) : Ω×RN →RN is Carathéodory such that:

• there exists a positive constant C2 with

|a(x,ξ)| ≤C2

(
j(x)+ |ξ|p(x)−1

)
(1.10)

for almost every x ∈Ω and for every ξ ∈ RN , where j is a nonnegative function in Lp′(.)(Ω),

with
1

p(x)
+

1
p′(x)

= 1.
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• there exists a positive constant C3 such that for every x ∈ Ω and for every ξ,η ∈ RN

with ξ , η, the following inequalities hold:

(a(x,ξ)−a(x,η)) .(ξ−η) > 0 (1.11)

and

a(x,ξ).ξ≥C3|ξ|p(x) (1.12)

for almost every x ∈Ω and for every ξ ∈ RN .

The remaining part of the paper is the following: in section 2, we introduce some nota-
tions/functional spaces. In section 3, we prove the existence and the uniqueness of weak
solution of (1.1) when the data f ∈ L∞(Ω). Using the results of section 3, we study in sec-
tion 4, the question of the existence and the uniqueness of entropy solution of (1.1) when
the data f ∈ L1(Ω).

2 Assumptions and preliminaries

As the exponent p(.) appearing in (1.10) and (1.12) depends on the variable x, we must
work with Lebesgue and Sobolev spaces with variable exponents.

We define the Lebesgue space with variable exponent Lp(.)(Ω) as the set of all measurable
functions u : Ω→ R for which the convex modular

ρp(.)(u) :=
Z

Ω

|u|p(x)dx

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression

|u|p(.) = inf{λ > 0 : ρp(.)(u/λ)≤ 1}

defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is
a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly

convex, hence reflexive, and its dual space is isomorphic to Lp′(.)(Ω), where
1

p(x)
+

1
p′(x)

=

1. Finally, we have the Hölder type inequality:∣∣∣∣Z
Ω

uvdx
∣∣∣∣≤ (

1
p−

+
1

(p′)−

)
|u|p(.) |v|p′(.) , (2.1)

for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).

Let
W 1,p(.)(Ω) = {u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)},

which is a Banach space equiped with the following norm

||u||1,p(.) = |u|p(.) + |(|∇u|)|p(.).
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The space (W 1,p(.)(Ω), ||.||1,p(.)) is a separable and reflexive Banach space.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played
by the modular ρp(.) of the space Lp(.)(Ω). We have the following result (see [16]):
Lemma 2.1 If un,u ∈ Lp(.)(Ω) and p+ < +∞, then the following properties hold:
(i) |u|p(.) > 1⇒ |u|p−p(.) ≤ ρp(.)(u)≤ |u|p+

p(.) ;
(ii) |u|p(.) < 1⇒ |u|p+

p(.) ≤ ρp(.)(u)≤ |u|p−p(.) ;
(iii) |u|p(.) < 1 (respectively = 1;> 1)⇔ ρp(.)(u) < 1 (respectively = 1;> 1);
(iv) |un|p(.) → 0 (respectively →+∞)⇔ ρp(.)(un)→ 0 (respectively →+∞);

(v) ρp(.)

(
u/ |u|p(.)

)
= 1.

For a measurable function u : Ω→ R, we introduce the following notation:

ρ1,p(.)(u) =
Z

Ω

|u|p(x) dx+
Z

Ω

|∇u|p(x) dx.

We have the following lemma (see [32,34]):

Lemma 2.2 If u ∈W 1,p(.)(Ω) then the following properties hold:
(i) ‖u‖1,p(.) < 1(respectively = 1;> 1)⇔ ρ1,p(.)(u) < 1(respectively = 1;> 1);
(ii) ‖u‖1,p(.) < 1⇔‖u‖p+

1,p(.) ≤ ρ1,p(.)(u)≤ ‖u‖p−
1,p(.);

(iii) ‖u‖1,p(.) > 1⇔‖u‖p−
1,p(.) ≤ ρ1,p(.)(u)≤ ‖u‖p+

1,p(.).

(iv) ‖un‖1,p(.) → 0 (respectively →+∞)⇔ ρ1,p(.)(un)→ 0 (respectively →+∞);

Put

p∂(x) := (p(x))∂ :=


(N−1)p(x)

N− p(x)
, if p(x) < N

∞, if p(x)≥ N;

then we have the following embedding result:

Proposition 2.3 Let p ∈C(Ω̄) and p− > 1. If q ∈C(∂Ω) satisfies the condition

1≤ q(x) < p∂(x), ∀ x ∈ ∂Ω,

then, there is a compact embedding W 1,p(x)(Ω) ↪→ Lq(x)(∂Ω). In particular, there is a com-
pact embedding W 1,p(x)(Ω) ↪→ Lp(x)(∂Ω).

Let us introduce the following notation: given two bounded measurable functions p(.),q(.) :
Ω→ R, we write

q(.)� p(.) if ess inf
x∈Ω

(p(x)−q(x)) > 0.

Remark 2.4. Observe that we use the same notation f for f and its trace when convenient.

3 Existence and uniqueness of weak solution

In this part, we study the existence and the uniqueness of a weak solution of (1.1) when the
data f ∈ L∞(Ω).
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Definition 3.1 A weak solution of (1.1) is a measurable function u such that

u ∈W 1,p(.)(Ω), b(u) ∈ L∞(Ω), |u|p(.)−2 u ∈ L∞(∂Ω)

andZ
Ω

a(x,∇u).∇ϕdx+
Z

Ω

b(u)ϕdx+
Z

∂Ω

|u|p(x)−2 uϕdσ =
Z

Ω

f ϕdx, ∀ ϕ ∈W 1,p(.)(Ω),(3.1)

where dσ is the surface measure on ∂Ω.

Notice that the integrals in (3.1) are well defined since for the third integral in the left-
hand side, we can use the fact that the trace of ϕ ∈W 1,p(.)(Ω) on ∂Ω is well defined in
Lp(∂Ω), for 1≤ p < +∞. The main result of this part is the following:

Theorem 3.2. Assume that (1.8)-(1.12) hold and f ∈ L∞(Ω). Then there exists a unique
weak solution of (1.1).
Proof.
Part 1: Existence
For k > 0, we consider the following approximated problem:{

Tk(b(uk))−div a(x,∇uk) = f in Ω

a(x,∇uk).η = Tk(−|uk|p(x)−2 uk) on ∂Ω,
(3.2)

where for any k > 0, the truncation function Tk is defined by Tk(s) := max{−k,min{k,s}}.
Note that as Tk(b(uk)) ∈ L∞(Ω) and Tk(|uk|p(x)−2 uk) ∈ L∞(∂Ω), thanks to [21, Theorem
3.1], there exists uk ∈W 1,p(.)(Ω) which is a weak solution of (3.2).
We recall that for any ε > 0,

Hε(s) = min
{

s+

ε
,1

}
,

sign+
0 (s) =

{
1 if s > 0
0 if s≤ 0

and if γ is a maximal monotone operator defined on R, we denote by γ0 the main section of
γ, i.e.

γ0(s) =


the element of minimal absolute value of γ(s) if γ(s) , /0,

+∞ if [s,+∞)∩D(γ) = /0,

−∞ if (−∞,s]∩D(γ) = /0.

We now show that |b(uk)| ≤ ‖ f‖L∞(Ω) a.e. in Ω and |uk| ≤ b−1
0

(
‖ f‖L∞(Ω)

)
a.e. in ∂Ω for

all k > 0.
We take ϕ = Hε(uk −M) as a test function in (3.1) for the weak solution uk and M > 0 a
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constant to be chosen later.
We have Z

Ω

a(x,∇uk).∇Hε(uk−M)dx+
Z

Ω

Tk(b(uk))Hε(uk−M)dx+Z
∂Ω

Tk(|uk|p(x)−2 uk)Hε(uk−M)dσ =
Z

Ω

f Hε(uk−M)dx. (3.3)

Let J :=
Z

Ω

a(x,∇uk).∇Hε(uk−M)dx.

We deduce that J =
1
ε

Z
{0<uk−M<ε}

a(x,∇uk).∇Hε(uk−M)dx ≥ 0 then, according to (3.3),

we obtain: Z
Ω

Tk(b(uk))Hε(uk−M)dx +
Z

∂Ω

Tk(|uk|p(x)−2 uk)Hε(uk−M)dσ

≤
Z

Ω

f Hε(uk−M)dx, (3.4)

which is equivalent to sayZ
Ω

(Tk(b(uk))−Tk(b(M)))Hε(uk−M)dx +
Z

∂Ω

Tk(|uk|p(x)−2 uk)Hε(uk−M)dσ

≤
Z

Ω

( f −Tk(b(M)))Hε(uk−M)dx.(3.5)

As the two terms in the left-hand side in (3.5) are nonnegative then we deduce thatZ
Ω

(Tk(b(uk))−Tk(b(M)))Hε(uk−M)dx≤
Z

Ω

( f −Tk(b(M)))Hε(uk−M)dx (3.6)

and Z
∂Ω

Tk(|uk|p(x)−2 uk)Hε(uk−M)dσ≤
Z

Ω

( f −Tk(b(M)))Hε(uk−M)dx. (3.7)

We now let ε goes to 0 in (3.6) and (3.7) to get:Z
Ω

(Tk(b(uk))−Tk(b(M)))+ dx≤
Z

Ω

( f −Tk(b(M)))sign+
0 (uk−M)dx (3.8)

and Z
∂Ω

Tk(|uk|p(x)−2 uk)sign+
0 (uk−M)dσ≤

Z
Ω

( f −Tk(b(M)))sign+
0 (uk−M)dx. (3.9)

Choosing now M = b−1
0

(
‖ f‖L∞(Ω)

)
in (3.8) and (3.9)(M is a constant since b is onto) to

obtain: Z
Ω

(Tk(b(uk))−Tk(‖ f‖L∞(Ω)))
+ dx

≤
Z

Ω

( f −Tk(‖ f‖L∞(Ω)))sign+
0 (uk−b−1

0

(
‖ f‖L∞(Ω)

)
)dx, (3.10)
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and Z
∂Ω

Tk(|uk|p(x)−2 uk)sign+
0 (uk−b−1

0

(
‖ f‖L∞(Ω)

)
)dσ

≤
Z

Ω

( f −Tk(‖ f‖L∞(Ω)))sign+
0 (uk−b−1

0

(
‖ f‖L∞(Ω)

)
)dx. (3.11)

Hence, for all k > ‖ f‖L∞(Ω), it follows that

Tk(b(uk))≤ ‖ f‖L∞(Ω) a.e. in Ω (3.12)

and
uk ≤ b−1

0

(
‖ f‖L∞(Ω)

)
a.e. in ∂Ω. (3.13)

It remains to prove that Tk(b(uk))≥−‖ f‖L∞(Ω) a.e in Ω and uk ≥−b−1
0

(
‖ f‖L∞(Ω)

)
a.e. in ∂Ω

for all k > ‖ f‖L∞(Ω).

Let us remark that as uk is a weak solution of (3.2), then (−uk) is a weak solution of
the following problem{

Tk(b̃(uk))−div ã(x,∇uk) = f̃ in Ω

ã(x,∇uk).η = Tk

(
−|uk|p(x)−2 uk

)
on ∂Ω,

(3.14)

where ã(x,ξ) =−a(x,−ξ), b̃(s) =−b(−s), f̃ =− f .
According to (3.12) and (3.13), we deduce that

Tk(−b(uk))≤ ‖ f‖L∞(Ω) a.e. in Ω, for all k > ‖ f‖L∞(Ω)

and
−uk ≤ b−1

0

(
‖ f‖L∞(Ω)

)
a.e. in ∂Ω.

Therefore, we get
Tk(b(uk))≥−(‖ f‖L∞(Ω)) ∀ k > ‖ f‖L∞(Ω) (3.15)

and
uk ≥−b−1

0

(
‖ f‖L∞(Ω)

)
a.e. in ∂Ω ∀ k > ‖ f‖L∞(Ω). (3.16)

It follows from (3.12), (3.13), (3.15) and (3.16) that for all k > ‖ f‖L∞(Ω),

|b(uk)| ≤ ‖ f‖L∞(Ω) a.e. in Ω (3.17)

and
|uk| ≤ b−1

0

(
‖ f‖L∞(Ω)

)
a.e. in ∂Ω. (3.18)

We now fix k = ‖ f‖L∞(Ω) +
(
b−1

0

(
‖ f‖L∞(Ω)

))p+−1
+2 in (3.2) to end the prove of the exis-

tence result.
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Part 2: Uniqueness. Let u1 and u2 be two weak solutions of (1.1).
Let us take ϕ = u1−u2 as test function in (3.1) for u1 and also for u2, to getZ

Ω

a(x,∇u1).∇(u1−u2)dx+
Z

Ω

b(u1)(u1−u2)dx +
Z

∂Ω

|u1|p(x)−2 u1(u1−u2)dσ

=
Z

Ω

f (u1−u2)dx,

andZ
Ω

a(x,∇u2).∇(u1−u2)dx+
Z

Ω

b(u2)(u1−u2)dx +
Z

∂Ω

|u2|p(x)−2 u2(u1−u2)dσ

=
Z

Ω

f (u1−u2)dx.

Substracting the two preceding relations, we obtainZ
Ω

(a(x,∇u1)−a(x,∇u2)).∇(u1−u2)dx+
Z

Ω

(b(u1)−b(u2))(u1−u2)dx

+
Z

∂Ω

(|u1|p(x)−2 u1−|u2|p(x)−2 u2)(u1−u2)dσ = 0. (3.19)

From (3.19) we deduce thatZ
Ω

(a(x,∇u1)−a(x,∇u2)).∇(u1−u2)dx = 0, (3.20)

Z
Ω

(b(u1)−b(u2))(u1−u2)dx = 0 (3.21)

and Z
∂Ω

(|u1|p(x)−2 u1−|u2|p(x)−2 u2)(u1−u2)dσ = 0. (3.22)

Since p− > 1, the following relation is true for any ξ,η ∈ R, ξ , η (cf. [15])(
|ξ|p(x)−2

ξ−|η|p(x)−2
η

)
(ξ−η) > 0. (3.23)

Thanks to (3.20), (3.22), (3.23) and assumption (1.11), we get that there exists a constant c
such that

u1−u2 = c a.e. in Ω and u1−u2 = 0 a.e. in ∂Ω. (3.24)

From (3.24), it follows that
u1 = u2 a.e. in Ω. �

4 Entropy solutions

In this section, we study the existence and uniqueness of entropy solution to problem (1.1)
when the right-hand side f ∈ L1(Ω). We first recall some notations.
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For any u ∈W 1,p(.)(Ω), we denote by τ(u) the trace of u on ∂Ω in the usual sense.
Set

T 1,p(.)(Ω) =
{

u : Ω−→ R, measurable such that Tk(u) ∈W 1,p(.)(Ω), for any k > 0
}

.

As W 1,p(.)(Ω)⊂W 1,p−(Ω) and since Ω is bounded, then by [6, Lemma 2.1] (see also [1]),
we have the following result:

Proposition 4.1. Let u ∈ T 1,p(.)(Ω). Then there exists a unique measurable function v :
Ω −→ RN such that ∇Tk(u) = vχ{|u|<k}, for all k > 0. The function v is denoted by ∇u.

Moreover, if u ∈W 1,p(.)(Ω), then v ∈
(
Lp(.)(Ω)

)N
and v = ∇u in the usual sense.

We define T 1,p(.)
tr (Ω) as the set of functions u ∈ T 1,p(.)(Ω) such that there exists a sequence

(un)n ⊂W 1,p(.)(Ω) satisfying the following conditions:
(C1) un → u a.e. in Ω.
(C2) ∇Tk(un)→ ∇Tk(u) in L1(Ω) for any k > 0.
(C3) There exists a measurable function v on ∂Ω, such that un → v a.e. in ∂Ω.

The function v is the trace of u in the generalized sense. In the sequel the trace of u ∈
T 1,p(.)

tr (Ω) on ∂Ω will be denoted by tr(u). If u ∈W 1,p(.)(Ω), tr(u) coincides with τ(u) in
the usual sense. Moreover, for u ∈ T 1,p(.)

tr (Ω) and for every k > 0, τ(Tk(u)) = Tk (tr(u))
and if ϕ ∈W 1,p(.)(Ω)∩L∞(Ω) then (u−ϕ) ∈ T 1,p(.)

tr (Ω) and tr(u−ϕ) = tr(u)− tr(ϕ) (see
[2,3]).

We can now introduce the notion of entropy solution of (1.1).

Definition 4.2. A measurable function u is an entropy solution to problem (1.1) if u ∈
T 1,p(.)

tr (Ω), b(u) ∈ L1(Ω), |u|p(x)−2 u ∈ L1(∂Ω) and for every k > 0,Z
Ω

a(x,∇u).∇Tk(u−ϕ)dx+
Z

Ω

b(u)Tk(u−ϕ)dx+
Z

∂Ω

|u|p(x)−2 uTk(u−ϕ)dσ≤
Z

Ω

f Tk(u−ϕ)dx

(4.1)
for all ϕ ∈W 1,p(.)(Ω)∩L∞(Ω).

Notice that the integrals in (4.1) are well defined. Indeed, since ϕ ∈W 1,p(.)(Ω)∩L∞(Ω),
then (u−ϕ)∈ T 1,p(.)

tr (Ω), hence Tk(u−ϕ)∈W 1,p(.)(Ω)∩L∞(Ω) and consequently the first,
the second and the fourth integral in (4.1) are well defined. Moreover, in the third integral,
we can use the fact that the trace of g ∈W 1,p(Ω) on ∂Ω is well defined in Lp(∂Ω).

Our main result in this section is the following:

Theorem 4.3. Assume (1.8)-(1.12) and f ∈ L1(Ω), then there exists a unique entropy solu-
tion u to problem (1.1).

In order to prove Theorem 4.3, we need the following propositions among which, some
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can be proved following [7,26,27] with necessary changes in detail. But those which are
new will be proved.

Proposition 4.4. Assume (1.8)-(1.12) and f ∈ L1(Ω). Let u be an entropy solution of
(1.1). If there exists a positive constant M such thatZ

{|u|>k}
kq(x)dx≤M (4.2)

then Z
{|∇u|α(.)>k}

kq(x)dx≤ ‖ f‖L1(Ω) +M, for all k > 0,

where α(.) = p(.)/(q(.)+1) and q(.) : Ω→ (0,+∞) is mesurable and such that q− > 0.

Proposition 4.5. Assume (1.8)-(1.12) and f ∈ L1(Ω). Let u be an entropy solution of
(1.1), then Z

Ω

|∇Tk(u)|p(x)dx≤ k‖ f‖L1(Ω) for all k > 0, (4.3)

‖b(u)‖L1(Ω) ≤ ‖ f‖L1(Ω) (4.4)

and ∥∥∥|u|p(x)−2 u
∥∥∥

L1(∂Ω)
=

∥∥∥|u|p(x)−1
∥∥∥

L1(∂Ω)
≤ ‖ f‖L1(Ω). (4.5)

Proof. We will only prove relation (4.5) since the proof of relations (4.3) and (4.4) can be
found in [7,26,27]. For this, we take ϕ = 0 in relation (4.1) to get for all k > 0Z

∂Ω

|u|p(x)−2 uTk(u)dσ≤ k‖ f‖L1(Ω). (4.6)

We deduce from (4.6) thatZ
∂Ω∩{|u|≥k}

|u|p(x)−2 uTk(u)dσ≤ k‖ f‖L1(Ω)

which is equivalent toZ
∂Ω∩{u≥k}

|u|p(x)−2 udσ−
Z

∂Ω∩{u≤−k}
|u|p(x)−2 udσ≤ ‖ f‖L1(Ω). (4.7)

It follows from (4.7) that Z
∂Ω∩{|u|≥k}

|u|p(x)−1dσ≤ ‖ f‖L1(Ω). (4.8)

Finally, we let k → 0 in (4.8) by using Fatou’s lemma to obtain relation (4.5). �

Proposition 4.6. Assume (1.8)-(1.12) and f ∈ L1(Ω). Let u be an entropy solution of
(1.1), then Z

Ω

|∇Tk(u)|p−dx≤ const(‖ f‖1 ,Ω)(k +1) for all k > 0 (4.9)
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and Z
∂Ω

|Tk(u)|p−dσ≤ const(‖ f‖1 ,Ω)(k +1) for all k > 0. (4.10)

Proof. We easily deduce (4.9) from (4.3). Now, let us prove (4.10). We take ϕ = 0 in
relation (4.1) to get Z

∂Ω

|u|p(x)−2 uTk(u)dσ≤ k‖ f‖1. (4.11)

The inequality (4.11) is equivalent toZ
∂Ω∩{|u|≤k}

|Tk(u)|p(x)dσ+
Z

∂Ω∩{|u|>k}
|u|p(x)−2 uTk(u)dσ≤ k‖ f‖1.

Therefore, Z
∂Ω∩{|u|≤k}

|Tk(u)|p(x)dσ≤ k‖ f‖1. (4.12)

Furthermore, for all k > 0 we use (4.12) to obtainZ
∂Ω∩{|u|≤k}

|Tk(u)|p−dσ =
Z

∂Ω∩{|u|≤k}
|u|p−dσ

=
Z

∂Ω∩{|u|≤k,|u|>1}
|u|p−dσ+

Z
∂Ω∩{|u|≤k,|u|≤1}

|u|p−dσ

≤
Z

∂Ω∩{|u|≤k,|u|>1}
|u|p(x)dσ+measN−1(∂Ω)

≤ k‖ f‖1 +measN−1(∂Ω)
≤ const(‖ f‖1,Ω)(k +1). (4.13)

Similarly, it follows that for all k > 0,Z
∂Ω∩{|u|>k}

|Tk(u)|p−dσ = k
Z

∂Ω∩{|u|>k}
|Tk(u)|p−−1dσ

≤ k
Z

∂Ω

|u|p−−1dσ

≤ k
Z

∂Ω∩{|u|>1}
|u|p(x)−1dσ+ k

Z
∂Ω∩{|u|≤1}

|u|p−−1dσ

≤ k
Z

∂Ω

|u|p(x)−1dσ+ k measN−1(∂Ω). (4.14)

Adding relations (4.13) and (4.14) and using (4.5), we get (4.10). �

Proposition 4.7. Assume (1.8)-(1.12) and f ∈ L1(Ω). Let u be an entropy solution of
(1.1). Then

meas{|u|> k} ≤
const

(
‖ f‖L1(Ω), p−,(p−)∗ ,Ω

)
kα

for all k ≥ 1, (4.15)

and

meas{|∇u|> k} ≤
const

(
‖ f‖L1(Ω), p−

)
kp−−1 for all k ≥ 1, (4.16)
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where (p−)∗ = 1
p−
− 1

N and α = (p−)∗
(

1− 1
p−

)
Proof. We only prove relation (4.15). The proof of (4.16) can be found in [7]. Using
Proposition 4.6 (relation (4.9)), we obtain for all k ≥ 1 thatZ

Ω

|∇Tk(u)|p−dx≤ K1k, (4.17)

where K1 is a positive real constant depending on ‖ f‖1 and meas(Ω).

We now use a Poincar-Sobolev type inequality (see [28, Lemma in p. 308]) to get (since
u ∈ T 1,p(.)

tr (Ω)) that there exists a positive real constant K2 depending on Ω such that(Z
Ω

|Tk(u)|(p−)∗ dx
) p−

(p−)∗
≤ K2

((Z
∂Ω

|Tk(u)|dσ

)p−
+

Z
Ω

|∇Tk(u)|p−dx
)

, (4.18)

where (p−)∗ is the Sobolev exponent with respect to p−. By Hlder inequality, we have the
following(Z

∂Ω

|Tk(u)|dσ

)p−
≤

(
‖Tk(u)‖Lp− (∂Ω)× (measN−1(∂Ω))

1
(p−)′

)p−
. (4.19)

We deduce from (4.19) by using Proposition 4.6 (relation (4.10)) that for all k ≥ 1(Z
∂Ω

|Tk(u)|dσ

)p−
≤ K3k (4.20)

where K3 is a positive real constant which depends on ‖ f‖1, p−, meas(Ω) and meas(∂Ω).
By (4.17), (4.18) and (4.20), we deduce that for all k ≥ 1,(Z

Ω

|Tk(u)|(p−)∗ dx
) p−

(p−)∗
≤ K4k, (4.21)

where K4 is a positive real constant depending only on ‖ f‖1, p−, (p−)∗, meas(Ω) and
meas(∂Ω).
It follows from (4.21) that Z

Ω

|Tk(u)|(p−)∗ dx≤ K5k
(p−)∗

p− , (4.22)

where K5 is a positive real constant depending only on ‖ f‖1, p−, (p−)∗, meas(Ω) and
meas(∂Ω).
Note that (4.22) implies thatZ

{|u|>k}
|Tk(u)|(p−)∗ dx≤ K5k

(p−)∗
p− . (4.23)

The inequality (4.23) is equivalent to the followingZ
{|u|>k}

k(p−)∗dx≤ K5k
(p−)∗

p− ,
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which in turn is also equivalent to

k(p−)∗meas({|u|> k})≤ K5k
(p−)∗

p− . (4.24)

We deduce from (4.24), the following relation

meas({|u|> k})≤ K5k(p−)∗
(

1
p−
−1

)
. (4.25)

From (4.25), we deduce (4.15). �

We are now ready to give the proof of Theorem 4.3.
Proof of Theorem 4.3.
∗ Uniqueness of entropy solution. Let h > 0 and u1,u2 be two entropy solutions of (1.1).
We write the entropy inequality (4.1) corresponding to the solution u1 with Th(u2) as a test
function and to the solution u2 with Th(u1) as a test function. Upon addition, we get

Z
{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1−Th(u2))dx+
Z
{|u2−Th(u1)|≤k}

a(x,∇u2).∇(u2−Th(u1))dx

+
Z

∂Ω

|u1|p(x)−2 u1Tk(u1−Th(u2))dσ+
Z

∂Ω

|u2|p(x)−2 u2Tk(u2−Th(u1))dσ

+
Z

Ω

b(u1)Tk(u1−Th(u2))dx+
Z

Ω

b(u2)Tk(u2−Th(u1))dx

≤
Z

Ω

f (x)
(

Tk(u1−Th(u2))+Tk(u2−Th(u1))
)

dx.

(4.26)
Now, define

E1 := {|u1−u2| ≤ k, |u2| ≤ h}, E2 := E1∩{|u1| ≤ h}, and E3 := E1∩{|u1|> h}.

We start with the first integral in (4.26). By (1.12), we have

Z
{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1−Th(u2))dx

=
Z
{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1−Th(u2))dx

+
Z
{|u1−Th(u2)|≤k}∩{|u2|>h}

a(x,∇u1).∇(u1−Th(u2))dx

=
Z
{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1−u2)dx+Z
{|u1−h×sign(u2)|≤k}∩{|u2|>h}

a(x,∇u1).∇u1dx

≥
Z
{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1−u2)dx =
Z

E1

a(x,∇u1).∇(u1−u2)dx

=
Z

E2

a(x,∇u1).∇(u1−u2)dx+
Z

E3

a(x,∇u1).∇(u1−u2)dx

=
Z

E2

a(x,∇u1).∇(u1−u2)dx+
Z

E3

a(x,∇u1).∇u1dx−
Z

E3

a(x,∇u1).∇u2dx

≥
Z

E2

a(x,∇u1).∇(u1−u2)dx−
Z

E3

a(x,∇u1).∇u2dx.

(4.27)
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Using (1.10) and (2.1), we estimate the last integral in (4.27) as follows:

∣∣∣∣ZE3

a(x,∇u1).∇u2dx
∣∣∣∣≤C1

Z
E3

(
j(x)+ |∇u1|p(x)−1

)
|∇u2|dx

≤C1

(
| j|p′(.) +

∣∣∣|∇u1|p(x)−1
∣∣∣

p′(.),{h<|u1|≤h+k}

)
|∇u2|p(.),{h−k<|u2|≤h},

(4.28)

where
∣∣∣|∇u1|p(x)−1

∣∣∣
p′(.),{h<|u1|≤h+k}

=
∥∥∥|∇u1|p(x)−1

∥∥∥
Lp′(.)({h<|u1|≤h+k})

.

Now, since u1 is an entropy solution to problem (1.1), by taking ϕ = Th(u1) in the entropy
inequality (4.1) we get (using (1.12)) thatZ

{h<|u1|≤h+k}
|∇u1|p(x)dx≤ k‖ f‖1.

So, by Lemma 2.1,
∣∣|∇u1|p(x)−1

∣∣
p′(.),{h<|u1|≤h+k} ≤ C < +∞, where C is a constant which

does not depend on h.
Therefore,

C1

(
| j|p′(.) +

∣∣∣|∇u1|p(x)−1
∣∣∣

p′(.),{h<|u1|≤h+k}

)
≤C1

(
| j|p′(.) +C

)
< +∞.

Since u2 is an entropy solution to problem (1.1), by taking ϕ = Th(u2) in the entropy in-
equality (4.1) we get (using (1.12)) thatZ

{h<|u2|≤h+k}
|∇u2|p(x)dx≤ k

Z
{|u2|>h}

| f |dx.

Using inequality (4.15) of Proposition 4.7, we have meas{|u2|> h} −→ 0 as h→+∞. As
f ∈ L1(Ω) we get

k
Z
{|u2|>h}

| f |dx−→ 0 as h→+∞ for any fixed number k > 0.

From the above convergence we deduce that

lim
h→+∞

Z
{h<|u2|≤h+k}

|∇u2|p(x)dx = 0, for any fixed number k > 0.

Hence,

lim
h→+∞

Z
{h−k<|u2|≤h}

|∇u2|p(x)dx = lim
l→+∞

Z
{l<|u2|≤l+k}

|∇u2|p(x)dx = 0,

for any fixed number k > 0 with l = h− k.
So by Lemma 2.1,

|∇u2|p(.),{h−k<|u2|≤h} −→ 0 as h→+∞, for any fixed number k > 0.
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Therefore, from (4.27) and (4.28), we obtain thatZ
{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1−Th(u2))dx≥ Ih +
Z

E2

a(x,∇u1).∇(u1−u2)dx, (4.29)

where Ih converges to zero as h→+∞.
We may adopt the same procedure to treat the second term in (4.26) to obtainZ

{|u2−Th(u1)|≤k}
a(x,∇u2).∇(u2−Th(u1))dx≥ Jh−

Z
E2

a(x,∇u2).∇(u1−u2)dx, (4.30)

where Jh converges to zero as h→+∞.

Now, set for all h,k > 0,

Kh =
Z

Ω

b(u1)Tk(u1−Th(u2))dx+
Z

Ω

b(u2)Tk(u2−Th(u1))dx

and

Ph =
Z

∂Ω

|u1|p(x)−2 u1Tk(u1−Th(u2))dσ+
Z

∂Ω

|u2|p(x)−2 u2Tk(u2−Th(u1))dσ.

We have

b(u1)Tk(u1−Th(u2))−→ b(u1)Tk(u1−u2) a.e. in Ω as h→+∞

and
|b(u1)Tk(u1−Th(u2))| ≤ k|b(u1)| ∈ L1(Ω).

Then by Lebesgue Theorem, we deduce that

lim
h→+∞

Z
Ω

b(u1)Tk(u1−Th(u2))dx =
Z

Ω

b(u1)Tk(u1−u2)dx. (4.31)

Similarly, we have

lim
h→+∞

Z
Ω

b(u2)Tk(u2−Th(u1))dx =
Z

Ω

b(u2)Tk(u2−u1)dx. (4.32)

Using (4.31) and (4.32), we get

lim
h→+∞

Kh =
Z

Ω

(b(u1)−b(u2))Tk(u1−u2)dx. (4.33)

By the same procedure as above, we use the Lebesgue theorem to obtain

lim
h→+∞

Ph =
Z

∂Ω

(
|u1|p(x)−2 u1−|u2|p(x)−2 u2

)
Tk(u1−u2)dσ. (4.34)

We next examine the right-hand side of (4.26).
For all k > 0,

f (x)
(

Tk(u1−Th(u2))+Tk(u2−Th(u1))
)
−→ f (x)

(
Tk(u1−u2)+Tk(u2−u1)

)
= 0
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a.e. in Ω as h→+∞ and∣∣∣ f (x)
(

Tk(u1−Th(u2))+Tk(u2−Th(u1))
)∣∣∣≤ 2k| f (x)| ∈ L1(Ω).

Lebesgue Theorem allows us to write

lim
h→+∞

Z
Ω

f (x)
(

Tk(u1−Th(u2))+Tk(u2−Th(u1))
)

dx = 0. (4.35)

Using (4.29), (4.30), (4.33), (4.34) and (4.35), we get from (4.26) the following inequality:
Z
{|u1−u2|≤k}

(
a(x,∇u1)−a(x,∇u2)

)
.
(

∇u1−∇u2

)
dx+Z

Ω

(b(u1)−b(u2))Tk(u1−u2)dx+
Z

∂Ω

(
|u1|p(x)−2 u1−|u2|p(x)−2 u2

)
Tk(u1−u2)dσ≤ 0.

(4.36)
It follows also from (4.36) thatZ

{|u1−u2|≤k}

(
a(x,∇u1)−a(x,∇u2)

)
.
(

∇u1−∇u2

)
dx = 0, (4.37)

Z
Ω

(b(u1)−b(u2))Tk(u1−u2)dx = 0 (4.38)

and Z
∂Ω

(
|u1|p(x)−2 u1−|u2|p(x)−2 u2

)
Tk(u1−u2)dσ = 0, (4.39)

for all k > 0.
From (4.37) and (1.11), it follows that

u1−u2 = c a.e. in Ω, where c is a real constant. (4.40)

By (4.39), we deduce that for all k ∈ N∗ there exists Ck ⊂ ∂Ω, meas(Ck) = 0 such that for
all x ∈ ∂Ω\Ck,(

|u1(x)|p(x)−2 u1(x)−|u2(x)|p(x)−2 u2(x)
)

Tk(u1(x)−u2(x)) = 0.

Therefore,(
|u1(x)|p(x)−2 u1(x)−|u2(x)|p(x)−2 u2(x)

)
(u1(x)−u2(x)) = 0, for all x ∈ ∂Ω\

[
k∈N∗

Ck.

(4.41)
Now, we use (3.23) and (4.41) to get

u1−u2 = 0 a.e. on ∂Ω. (4.42)

Finally, (4.40) and (4.42) give
u1 = u2 a.e. in Ω.

∗ Existence of entropy solution. Let fn = Tn( f ); then ( fn)n∈N is a sequence of bounded
functions which strongly converges to f in L1(Ω) and such that

‖ fn‖1 ≤ ‖ f‖1, for all n ∈ N. (4.43)
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We consider the problem
b(un)−div a(x,∇un) = fn in Ω,

a(x,∇un).η =−|un|p(x)−2 un on ∂Ω.

(4.44)

It follows from Theorem 3.2 that there exists a unique un ∈W 1,p(.)(Ω) with b(un) ∈ L∞(Ω)
and |un|p(x)−2 un ∈ L∞(∂Ω) so thatZ

Ω

a(x,∇un).∇ϕdx+
Z

Ω

b(un)ϕdx+
Z

∂Ω

|un|p(x)−2 unϕdσ =
Z

Ω

fnϕdx, (4.45)

for all ϕ ∈W 1,p(.)(Ω).

Our aim is to prove that these approximated solutions un tend to a measurable function
u (as n goes to +∞) which is an entropy solution to the limit problem (1.1). To start with,
we first prove the following lemma:

Lemma 4.8. For any k > 0, ‖Tk(un)‖1,p(.) ≤ 1+C where C = const(k, f , p−, p+,meas(Ω))
is a positive constant.

Proof. By taking ϕ = Tk(un) in (4.45), we getZ
Ω

a(x,∇un).∇Tk(un)+
Z

Ω

b(un)Tk(un)dx+
Z

∂Ω

|un|p(x)−2 unTk(un)dσ =
Z

Ω

fnTk(un)dx.

Since all the terms in the left-hand side of the equality above are nonnegative andZ
Ω

fnTk(un)dx≤ k‖ fn‖1 ≤ k‖ f‖1,

by using (1.12) we obtain Z
Ω

|∇Tk(un)|p(x)dx≤Ck‖ f‖1. (4.46)

We also have thatZ
Ω

|Tk(un)|p(x)dx =
Z
{|un|≤k}

|Tk(un)|p(x)dx+
Z
{|un|>k}

|Tk(un)|p(x)dx.

Furthermore, Z
{|un|>k}

|Tk(un)|p(x)dx =
Z
{|un|>k}

kp(x)dx

≤
{

kp+meas(Ω) if k ≥ 1,
meas(Ω) if k < 1

and Z
{|un|≤k}

|Tk(un)|p(x)dx ≤
Z
{|un|≤k}

kp(x)dx

≤
{

kp+meas(Ω) if k ≥ 1,
meas(Ω) if k < 1.
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This allows us to write Z
Ω

|Tk(un)|p(x)dx≤ 2(1+ kp+)meas(Ω). (4.47)

Hence, adding (4.46) and (4.47) yields

ρ1,p(.)(Tk(un))≤Ck‖ f‖1 +(1+ kp+)meas(Ω) = const(k, f , p+,meas(Ω)). (4.48)

For ‖Tk(un)‖1,p(.) ≥ 1, we have according to Lemma 2.2 that

‖Tk(un)‖p−
1,p(.) ≤ ρ1,p(.)(Tk(un))≤ const(k, f , p+,meas(Ω)),

which is equivalent to

‖Tk(un)‖1,p(.) ≤
(

const(k, f , p+,meas(Ω)))
) 1

p− = const(k, f , p+, p−,meas(Ω)).

The above inequality gives

‖Tk(un)‖1,p(.) ≤ 1+ const(k, f , p+, p−,meas(Ω)).

Then, the proof of Lemma 4.8 is complete.

From Lemma 4.8, we deduce that for any k > 0, the sequence (Tk(un))n∈N is uniformly
bounded in W 1,p(.)(Ω) and so in W 1,p−(Ω). Then, up to a subsequence we can assume that
for any k > 0, Tk(un) converges weakly to σk in W 1,p−(Ω), and so Tk(un) strongly converges
to σk in Lp−(Ω).

We next prove the following proposition:

Proposition 4.9. Assume that (1.8)-(1.12) hold and un ∈W 1,p(.)(Ω) is the weak solution
of problem (4.44), then the sequence (un)n∈N is Cauchy in measure. In particular, there
exists a measurable function u and a subsequence still denoted (un)n∈N such that un −→ u
in measure.
Proof. Let s > 0 and define

En := {|un|> k}, Em := {|um|> k} and En,m := {|Tk(un)−Tk(um)|> s}

where k > 0 is to be fixed. We note that

{|un−um|> s} ⊂ En∪Em∪En,m

and hence

meas{|un−um|> s} ≤meas(En)+meas(Em)+meas(En,m). (4.49)

Let ε > 0. Using Proposition 4.7 (relation (4.15)), we choose k = k(ε) such that

meas(En)≤ ε/3 and meas(Em)≤ ε/3. (4.50)
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Since Tk(un) strongly converges in Lp−(Ω), then it is a Cauchy sequence in Lp−(Ω).
Thus,

meas(En,m)≤ 1
sp−

Z
Ω

|Tk(un)−Tk(um)|p−dx≤ ε

3
, (4.51)

for all n,m≥ n0(s,ε).
Finally, from (4.49), (4.50) and (4.51), we obtain

meas{|un−um|> s} ≤ ε for all n,m≥ n0(s,ε). (4.52)

Relations (4.52) mean that the sequence (un)n∈N is a Cauchy sequence in measure and the
proof of Proposition 4.9 is complete.

Note that as un −→ u in measure, up to a subsequence, we can assume that un −→ u a.e. in
Ω.
In the sequel, we need the following two technical lemmas (see [18,31]).

Lemma 4.10. Let (vn)n∈N be a sequence of measurable functions in Ω. If vn converges
in measure to v and is uniformly bounded in Lp(.)(Ω) for some 1 � p(.) ∈ L∞(Ω), then vn

strongly converges to v in L1(Ω).

The second technical lemma is a well known result in measure theory (see [18]):

Lemma 4.11. Let (X ,M ,µ) be a measure space such that µ(X) < +∞. Consider a measur-
able function γ : X −→ [0,+∞] such that

µ({x ∈ X : γ(x) = 0}) = 0.

Then, for every ε > 0, there exists δ > 0 such that

µ(A) < ε for all A ∈M with
Z

A
γdµ < δ.

We now set to prove that the function u in the Proposition 4.9 is an entropy solution of (1.1).

Let ϕ ∈W 1,p(.)(Ω)∩L∞(Ω). For any k > 0, choose Tk(un−ϕ) as a test function in (4.45).
We get Z

Ω

a(x,∇un).∇Tk(un−ϕ)dx+
Z

Ω

b(un)Tk(un−ϕ)dx

+
Z

∂Ω

|un|p(x)−2 unTk(un−ϕ)dσ =
Z

Ω

fn(x)Tk(un−ϕ)dx. (4.53)

The following proposition is useful to pass to the limit in the first term of (4.53).

Proposition 4.12. Assume that (1.8)− (1.12) hold and un ∈W 1,p(.)(Ω) be the weak so-
lution of the problem (4.44), then
(i) ∇un converges in measure to the weak gradient of u;
(ii) for all k > 0, ∇Tk(un) converges to ∇Tk(u) in (L1(Ω))N;
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(iii) for all t > 0, a(x,∇Tt(un)) strongly converges to a(x,∇Tt(u)) in
(
L1(Ω)

)N and weakly

in
(

Lp′(.)(Ω)
)N

;
(iv) un converges to some function v a.e. on ∂Ω.

Proof.
(i) We claim that the sequence (∇un)n∈N is Cauchy in measure.
Let s > 0 and consider

An,m := {|∇un|> h}∪{|∇um|> h}, Bn,m := {|un−um|> k}

and
Cn,m := {|∇un| ≤ h, |∇um| ≤ h, |un−um| ≤ k, |∇un−∇um|> s},

where h and k will be chosen later.

Note that
{|∇un−∇um|> s} ⊂ An,m∪Bn,m∪Cn,m. (4.54)

Let ε > 0. By Proposition 4.7 (relation (4.16)), we may choose h = h(ε) large enough such
that

meas(An,m)≤ ε/3, (4.55)

for all n,m≥ 0.
On the other hand, by Proposition 4.9

meas(Bn,m)≤ ε/3, (4.56)

for all n,m≥ n0(k,ε).

Moreover, since a(x,ξ) is continuous with respect to ξ for a.e. x ∈Ω, by assumption (1.11)
there exists a real valued function γ : Ω−→ [0,+∞] such that meas({x∈Ω : γ(x) = 0}) = 0,
and

(a(x,ξ)−a(x,ξ′)).(ξ−ξ
′)≥ γ(x), (4.57)

for all ξ,ξ′ ∈ RN such that |ξ| ≤ h, |ξ′| ≤ h, |ξ−ξ′| ≥ s, for a.e x ∈Ω.

Let δ = δ(ε) be given by Lemma 4.11, replacing ε and A by ε/3 and Cn,m respectively.
As un is a weak solution of (4.44), using Tk(un−um) as a test function in (4.45), we getZ

Ω

a(x,∇un).∇Tk(un−um)dx+
Z

Ω

b(un)Tk(un−um)dx

+
Z

∂Ω

|un|p(x)−2 unTk(un−um)dσ =
Z

Ω

fnTk(un−um)dx≤ k‖ f‖1.

Similarly, we have for um thatZ
Ω

a(x,∇um).∇Tk(um−un)dx+
Z

Ω

b(um)Tk(um−un)dx

+
Z

∂Ω

|um|p(x)−2 umTk(um−un)dσ =
Z

Ω

fmTk(um−un)dx≤ k‖ f‖1.
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Adding the last two inequalities yieldsZ
{|un−um|≤k}

(a(x,∇un)−a(x,∇um)).(∇un−∇um)dx+
Z

Ω

(
b(un)−b(um)

)
Tk(un−um)dx

+
Z

∂Ω

(
|un|p(x)−2 un−|um|p(x)−2 um

)
Tk(un−um)dσ≤ 2k‖ f‖1.

Since the second and the third term of the above inequality are nonnegative, we obtain by
using (4.57) thatZ

Cn,m

γ(x)dx≤
Z

Cn,m

(a(x,∇un)−a(x,∇um)).(∇un−∇um)dx≤ 2k‖ f‖1 < δ,

where k = δ/4‖ f‖1.

From Lemma 4.11, it follows that

meas(Cn,m)≤ ε/3. (4.58)

Thus, using (4.54), (4.55), (4.56) and (4.58), we get

meas({|∇un−∇um|> s})≤ ε, for all n,m≥ n0(s,ε) (4.59)

and then the claim is proved.

Consequently, (∇un)n∈N converges in measure to some measurable function v.
In order to end the proof of (i), we need the following lemma:

Lemma 4.13
(a) For a.e. t ∈ R, ∇Tt(un) converges in measure to vχ{|u|<t};
(b) for a.e. t ∈ R, ∇Tt(u) = vχ{|u|<t};
(c) ∇Tt(u) = vχ{|u|<t} holds for all t ∈ R.

Proof.
• Proof of (a).
We know that ∇un → v in measure. Thus, χ{|u|<t}∇un → χ{|u|<t}v in measure.
Now, let us show that

(
χ{|un|<t}−χ{|u|<t}

)
∇un → 0 in measure. For that, it is sufficient to

show that
(
χ{|un|<t}−χ{|u|<t}

)
→ 0 in measure. Now, for all δ > 0,{∣∣χ{|un|<t}−χ{|u|<t}

∣∣ |∇un|> δ
}
⊂

{∣∣χ{|un|<t}−χ{|u|<t}
∣∣ , 0

}
⊂ {|u|= t}∪{un < t < u}∪{u < t < un}∪{un <−t < u}∪{u <−t < un} .

Thus,{
meas

{∣∣χ{|un|<t}−χ{|u|<t}
∣∣ |∇un|> δ

}
≤meas{|u|= t}+meas{un < t < u}+

meas{u < t < un}+meas{un <−t < u}+meas{u <−t < un} .
(4.60)
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Note that
meas{|u|= t} ≤meas{t−h < u < t +h}+meas{−t−h < u <−t +h}→ 0 as h→ 0
for a.e. t, since u is a fixed function. Next,

meas{un < t < u} ≤meas{t < u < t +h}+meas{|u−un|> h} , for all h > 0.

Due to Proposition 4.9, we have for all fixed h > 0, meas{|u−un|> h} → 0 as n → +∞.
Since meas{t < u < t +h}→ 0 as h→ 0, for all ε > 0, one can find N such that for all n >
N, meas{un < t < u}< ε/2+ε/2 = ε by choosing h and then N. Each of the other terms in
the right-hand side of (4.60) can be treated in the same way as for meas{un < t < u}. Thus,
meas

{∣∣χ{|un|<t}−χ{|u|<t}
∣∣ |∇un|> δ

}
→ 0 as n → +∞. Since ∇Tt(un) = ∇unχ{|un|<t}, the

claim (a) follows.

• Proof of (b).
Let ψt be the weak W 1,p(.)-limit of Tt(un), then it is also the strong L1-limit of Tt(un). But,
as Tt is a Lipschitz function, the convergence in measure of un to u implies the convergence
in measure of Tt(un) to Tt(u). Thus, by the uniqueness of the limit in measure, ψt is identi-
fied with Tt(u), we conclude that ∇Tt(un)→ ∇Tt(u) weakly in Lp(.)(Ω).

The previous convergence also ensures that ∇Tt(un) converges to ∇Tt(u) weakly in L1(Ω).
On the other hand, by (a), ∇Tt(un) converges to vχ{|u|<t} in measure. By Lemma 4.10, since
∇Tt(un) is uniformly bounded in Lp−(Ω), the convergence is actually strong in L1(Ω); thus
it is also weak in L1(Ω). By the uniqueness of a weak L1-limit, vχ{|u|<t} coincides with
∇Tt(u).

• Proof of (c)
Let 0 < t < s, and s be such that vχ{|u|<s} coincides with ∇Ts(u). Then

∇Tt(u) = ∇Tt(Ts(u)) = ∇Ts(u)χ{|Ts(u)|<t} = vχ{|u|<s}χ{|u|<t} = vχ{|u|<t}.

Now, we can end the proof of (i). Indeed, combining Lemma 4.13-(c) and Proposition 4.1,
(i) follows.

(ii) Let s > 0, k > 0 and consider

Fn,m = {|∇un−∇um|> s, |un| ≤ k, |um| ≤ k} , Gn,m = {|∇um|> s, |un|> k, |um| ≤ k} ,

Hn,m = {|∇un|> s, |um|> k, |un| ≤ k} and In,m = {0 > s, |um|> k, |un|> k} .

Note that
{|∇Tk(un)−∇Tk(um)|> s} ⊂ Fn,m∪Gn,m∪Hn,m∪ In,m. (4.61)

Let ε > 0. By Proposition 4.7, we may choose k(ε) such that

meas(Gn,m)≤ ε

4
, meas(Hn,m)≤ ε

4
and meas(In,m)≤ ε

4
. (4.62)

Therefore, using (4.59), (4.61) and (4.62) we get

meas({|∇Tk(un)−∇Tk(um)|> s})≤ ε, for all n,m≥ n1(s,ε). (4.63)
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Consequently, ∇Tk(un) converges in measure to ∇Tk(u).
Then, using lemmas 4.8 and 4.10, (ii) follows.

(iii) By lemmas 4.10 and 4.13, we have that for all t > 0, a(x,∇Tt(un)) strongly con-
verges to a(x,∇Tt(u)) in

(
L1(Ω)

)N (as n goes to +∞) and a(x,∇Tt(un)) weakly converges
to χt ∈ (Lp′(.)(Ω))N (as n goes to +∞) in (Lp′(.)(Ω))N . Since each of the convergences im-
plies the weak L1-convergence, χt can be identified with a(x,∇Tt(u)); thus, a(x,∇Tt(u)) ∈
(Lp′(.)(Ω))N . The proof of (iii) is then complete.

(iv) As un is a weak solution of (4.44), using Tk(un) as a test function in (4.45), we getZ
∂Ω

|Tk(un)|p(x) dx≤
Z

∂Ω

|un|p(x)−2 unTk(un)dx≤ k‖ f‖1 .

and Z
Ω

|∇Tk(un)|p(x) dx≤Ck‖ f‖1 .

We deduce from the inequalities above thatZ
∂Ω

|Tk(un)|p− dx≤C( f ,Ω)k. (4.64)

and Z
Ω

|∇Tk(un)|p− dx≤C(C3, f ,Ω)k, (4.65)

for k ≥ 1.
Note also that Z

Ω

|Tk(un)|p−dx≤ 2(1+ kp+)meas(Ω)+meas(Ω),

for k ≥ 1.
Furthermore, Tk(un) converges weakly to Tk(u) in W 1,p−(Ω) and since for every
1≤ p≤+∞,

τ : W 1,p(Ω)→ Lp(∂Ω),u 7→ τ(u) = u|∂Ω

is compact, we deduce that Tk(un) converges strongly to Tk(u) in Lp−(∂Ω) and so, up to a
subsequence, we can assume that Tk(un) converges to Tk(u) a.e. on ∂Ω. In other words,
there exists A⊂ ∂Ω such that Tk(un) converges to Tk(u) on ∂Ω\A with µ(A) = 0, where µ is
the area measure on ∂Ω.
Now, we use Hlder Inequality, (4.64) and (4.65) and the Poincar-Sobolev type inequality
as in (4.18) to get Z

Ω

|Tk(un)|dx≤ (meas(Ω))
1

((p−)∗)′ (Ck)
1

p− (4.66)

and Z
Ω

|∇Tk(un)|dx≤ (meas(Ω))
1

(p−)′ (Ck)
1

p− , (4.67)

for k ≥ 1.
By using Fatou’s Lemma in (4.66) and (4.67) we get as n goes to +∞ thatZ

Ω

|Tk(u)|dx≤ (meas(Ω))
1

((p−)∗)′ (Ck)
1

p− (4.68)
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and Z
Ω

|∇Tk(u)|dx≤ (meas(Ω))
1

(p−)′ (Ck)
1

p− , (4.69)

for k ≥ 1.
For every k ≥ 1, let Ak := {x ∈ ∂Ω : |Tk(u(x))|< k} and B = ∂Ω\

[
k≥1

Ak.

We have that

µ(B) =
1
k

Z
B
|Tk(u)|dx ≤ 1

k

Z
∂Ω

|Tk(u)|dx

≤ C1

k
‖Tk(u)‖W 1,1(Ω)

≤ C1

k
‖Tk(u)‖L1(Ω) +

C1

k
‖∇Tk(u)‖L1(Ω) .

According to (4.68) and (4.69), we deduce by letting k →+∞ that µ(B) = 0.
Let us define in ∂Ω the function v by

v(x) := Tk(u(x)) if x ∈ Ak.

We take x ∈ ∂Ω\(A∪B); then there exists k > 0 such that x ∈ Ak and we have

un(x)− v(x) = (un(x)−Tk(un(x)))+(Tk(un(x))−Tk(u(x))) .

Since x ∈ Ak, we have |Tk(u(x))| < k and so |Tk(un(x))| < k, from which we deduce that
|un(x)|< k.
Therefore,

un(x)− v(x) = (Tk(un(x))−Tk(u(x)))→ 0, as n→+∞.

This means that un converges to v a.e. on ∂Ω. The proof of the proposition 4.12 is then
complete.

To complete the proof of existence of entropy solution it remains to show that

|un|p(x)−2 un → |u|p(x)−2 u in L1(∂Ω). (4.70)

For this, let us see that
(
|un|p(x)−2 un

)
n∈N

is a Cauchy sequence in L1(∂Ω). Indeed: As un

is a weak solution of (4.44), using 1
k Tk(un−um) as a test function in (4.45), we getZ

Ω

1
k

a(x,∇un).∇Tk(un−um)dx+
Z

Ω

b(un)
1
k

Tk(un−um)dx

+
Z

∂Ω

|un|p(x)−2 un
1
k

Tk(un−um)dσ =
Z

Ω

fn
1
k

Tk(un−um)dx.

Similarly for um, with 1
k Tk(um−un) as test function, we haveZ

Ω

1
k

a(x,∇um).∇Tk(um−un)dx+
Z

Ω

b(um)
1
k

Tk(um−un)dx

+
Z

∂Ω

|um|p(x)−2 um
1
k

Tk(um−un)dσ =
Z

Ω

fm
1
k

Tk(um−un)dx.
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Adding the last two identities yieldsZ
{|un−um|≤k}

1
k
(a(x,∇un)−a(x,∇um)).(∇un−∇um)dx+Z

Ω

(
b(un)−b(um)

)1
k

Tk(un−um)dx

+
Z

∂Ω

(
|un|p(x)−2 un−|um|p(x)−2 um

) 1
k

Tk(un−um)dσ≤
Z

Ω

| fn− fm|dx. (4.71)

Letting k → 0 and as the first and the second term in the left-hand side of inequalitiy
(4.71) are nonnegative, we getZ

∂Ω

∣∣∣|un|p(x)−2 un−|um|p(x)−2 um

∣∣∣dσ≤
Z

Ω

| fn− fm|dx. (4.72)

Now, since ( fn)n∈N is convergent in L1(Ω), by (4.72)
(
|un|p(x)−2 un

)
n∈N is a Cauchy

sequence in L1(∂Ω). As L1(∂Ω) is a Banach space and s 7−→ |s|p(x)−2 s is continuous and
is a maximal monotone graph in R, then (see [3])

|un|p(x)−2 un → |u|p(x)−2 u in L1(∂Ω). (4.73)

We are now able to pass to the limit in the identity (4.53).

For the right-hand side and the third term in the left-hand side of (4.53), the convergence
is obvious since fn strongly converges to f in L1(Ω), |un|p(x)−2 un strongly converges to
|u|p(x)−2 u in L1(∂Ω), Tk(un−ϕ) converges weakly-∗ to Tk(u−ϕ) in L∞(Ω) and a.e in Ω,
and Tk(un−ϕ) converges weakly-∗ to Tk(u−ϕ) in L∞(∂Ω) and a.e in ∂Ω.
For the second term of (4.53), we haveZ

Ω

b(un)Tk(un−ϕ)dx =
Z

Ω

(b(un)−b(ϕ))Tk(un−ϕ)dx

+
Z

Ω

b(ϕ)Tk(un−ϕ)dx.

The quantity (b(un)−b(ϕ))Tk(un−ϕ) is nonnegative and since for all s ∈ R, s 7−→ b(s)
is continuous, we get

(b(un)−b(ϕ))Tk(un−ϕ)−→ (b(u)−b(ϕ))Tk(u−ϕ) a.e. in Ω.

Then, it follows by Fatou’s Lemma that

liminf
n→+∞

Z
Ω

(b(un)−b(ϕ))Tk(un−ϕ)dx≥
Z

Ω

(b(u)−b(ϕ))Tk(u−ϕ)dx. (4.74)

We have b(ϕ) ∈ L1(Ω).
Since Tk(un−ϕ) converges weakly-∗ to Tk(u−ϕ) in L∞(Ω) and b(ϕ) ∈ L1(Ω), it follows
that

lim
n→+∞

Z
Ω

b(ϕ)Tk(un−ϕ)dx =
Z

Ω

b(ϕ)Tk(u−ϕ)dx. (4.75)
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Next, we write the first term in (4.53) in the following formZ
{|un−ϕ|≤k}

a(x,∇un).∇undx−
Z
{|un−ϕ|≤k}

a(x,∇un).∇ϕdx. (4.76)

Set l = k +‖ϕ‖∞. The second integral in (4.76) is equal toZ
{|un−ϕ|≤k}

a(x,∇Tl(un)).∇ϕdx.

Since a(x,∇Tl(un)) is uniformly bounded in
(

Lp′(.)(Ω)
)N

(by (1.10) and (4.46)), by Propo-

sition 4.12−(iii), it converges weakly to a(x,∇Tl(u)) in
(

Lp′(.)(Ω)
)N

.

Therefore,

lim
n→+∞

Z
{|un−ϕ|≤k}

a(x,∇Tl(un)).∇ϕdx =
Z
{|u−ϕ|≤k}

a(x,∇Tl(u)).∇ϕdx. (4.77)

Moreover, a(x,∇un).∇un is nonnegative and converges a.e. in Ω to a(x,∇u).∇u.
Thanks to Fatou’s Lemma, we obtain

liminf
n→+∞

Z
{|un−ϕ|≤k}

a(x,∇un).∇undx≥
Z
{|u−ϕ|≤k}

a(x,∇u).∇udx. (4.78)

By (4.74), (4.75), (4.77) and (4.78), we getZ
Ω

a(x,∇u).∇Tk(u−ϕ)dx+
Z

Ω

b(u)Tk(u−ϕ)dx+
Z

∂Ω

|u|p(x)−2 uTk(u−ϕ)dσ≤
Z

Ω

f Tk(u−ϕ)dx.

We conclude that u is an entropy solution of (1.1). �
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