The Corona Problem in Carleman Algebras on Non-Stein Domains in \mathbb{C}^{n}

Patrick W. Darko*
23 Fairway Road \#2B
Newark, DE 19711

Abstract

New estimates are obtained for the $\bar{\partial}$-operator on non-Stein domains in \mathbb{C}^{n} and the results are applied to the Corona problem in Carleman algebras on those domains.

AMS Subject Classification: 32W05; 35N15.
Keywords: Corona problem, Carleman algebras, $\bar{\partial}$-operator.

1 Introduction

Let Ω be an open subset of a complex manifold X, and let p be a non-negative function on Ω. Denote by $A_{p}(\Omega)$ the (Carleman) algebra of all holomorphic functions f in Ω such that for some positive constants c_{1} and c_{2}

$$
\begin{equation*}
|f(z)| \leq c_{1} \exp \left(c_{2} p(z)\right), z \in \Omega \tag{1.1}
\end{equation*}
$$

In [3] where $X=\mathbb{C}^{n}$ and Ω is pseudoconvex, and in [2] where X is a complex manifold and Ω is a relatively compact Stein open subset, a condition is given on p such that a given finite set $f_{1}, \ldots, f_{N} \in A_{p}(\Omega)$ generates $A_{p}(\Omega)$ if and only if

$$
\begin{equation*}
\left|f_{1}(z)\right|+\left|f_{2}(z)\right|+\cdots+\left|f_{N}(z)\right| \geq c_{1} \exp \left(-c_{2} p(z)\right), z \in \Omega \tag{1.2}
\end{equation*}
$$

for some constants $c_{1}>0, c_{2}>0$.
Both in [2] and [3] Ω was Stein. As is always the case, it is natural to ask whether the condition of Steinness can be dropped. We show here that it can, if Ω is a domain in \mathbb{C}^{n} and we modify the condition in [2] and [3] to the following Condition(H):

- p is a non-negative upper semicontinuous function on Ω;
- all polynomials belong to $A_{p}(\Omega)$; and
- there exist positive constants K_{1}, \ldots, K_{4} such that $z \in \Omega$ and $|z-\xi| \leq$ $\exp \left(-K_{1} p(z)-K_{2}\right) \Rightarrow \xi \in \Omega$ and $p(\xi) \leq K_{3} p(z)+K_{4}$.

[^0]The only difference between the condition in [3] and the Condition (H) here is the replacement of "plurisubharmonic" with "upper semicontinuous". Note that if Ω is an arbitrary domain in \mathbb{C}^{n}, and $d(z)$ denotes the distance from $z \in \Omega$ to the complement of Ω in $\mathbb{C}^{n}, p(z)=\log 1 / d(z)$ satisfies Condition (H) on Ω.

If Ω is a domain in \mathbb{C}^{n} and p satisfies Condition (H) on Ω, then we have (as in [3]) the following two lemmas.
Lemma 1.1. If $f \in A_{p}(\Omega)$ it follows that $\frac{\partial f}{\partial z_{j}} \in A_{p}(\Omega), 1 \leq j \leq n$.
Lemma 1.2. If f is holomorphic in Ω, then $f \in A_{p}(\Omega)$ if and only if for some $K>0$

$$
\int_{\Omega}|f|^{2} \exp (-2 K p(z)) d \lambda<\infty,
$$

where $d \lambda$ denotes Lebesgue measure.
Our main Theorem is therefore the following
Theorem 1.3. Let Ω be a domain in \mathbb{C}^{n} and p a function on Ω satisfying Condition (H). Then a finite set of functions in $A_{p}(\Omega), f_{1}, \ldots, f_{N}$ generates $A_{p}(\Omega)$ if and only if (1.2) is valid.

To prove this theorem we follow the homological argument given in [3] almost word for word, using Lemmas 1.1 and 1.2 and \mathcal{L}^{p}-Carleman estimates for the $\bar{\partial}$-operator on Ω, which we establish in the next section.

$2 L^{p}$-Carleman Estimates for the $\bar{\partial}$-operator

For $1 \leq p \leq \infty$, let $\mathcal{L}_{(r, q)}^{p}(U)$ denote the space of forms of type (r, q) with coefficients in $\mathcal{L}^{p}(U)$,

$$
\begin{equation*}
f=\sum_{|I|=r}{ }^{\prime} \sum_{|J|=q}{ }^{\prime} f_{I, J} d z^{I} \wedge d \bar{z}^{J} \tag{2.1}
\end{equation*}
$$

where Σ^{\prime} means that the summation is performed only over strictly increasing multi-indices,

$$
I=\left(i_{1}, \ldots, i_{r}\right), J=\left(j_{1}, \ldots, j_{q}\right), d z^{I}=d z_{i_{1}} \wedge \cdots \wedge d z_{i_{r}}, d \bar{z}^{J}=d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}},
$$

and U is open in \mathbb{C}^{n}.
The norm of the (r, q)-form in (2.1) is defined by

$$
\|f\|_{L_{(r, q)}^{p}(U)}=\left\{\sum_{I}^{\prime} \sum_{J}^{\prime}\left\|f_{I, J}\right\|_{L^{p}(U)}^{p}\right\}^{1 / p}, \quad 1 \leq p<\infty .
$$

Let $B_{q}(\xi, z)$ be the Bochner-Martinelli-Koppelman kernel of degree $(0, q)$ in z and degree $(n, n-q-1)$ in ξ, so that, with $\beta=|\xi-z|^{2}$,

$$
\begin{equation*}
B_{q}(\xi, z)=\frac{(-1)^{q(q-1) / 2}}{(2 \pi i)^{n}}\binom{n-1}{q} \beta^{-n} \partial_{\xi} \beta \wedge\left(\bar{\partial}_{\xi} \partial_{\xi} \beta\right)^{n-q-1} \wedge\left(\bar{\partial}_{z} \partial_{\xi} \beta\right)^{q} \tag{2.2}
\end{equation*}
$$

for $0 \leq q \leq n$.
An upper semicontinuous function φ is said to be admissible in an open set U in \mathbb{C}^{n}, if for every coefficient $b_{q}(\xi, z)$ of $B_{q}(\xi, z), 0 \leq q \leq n$,

$$
\begin{equation*}
\int_{U}\left|b_{q}(\xi, z)\right| e^{-\varphi(z)} d \lambda(z) \leq C, \quad \int_{U}\left|b_{q}(\xi, z)\right| e^{-\varphi(\xi)} d \lambda(\xi) \leq C \tag{2.3}
\end{equation*}
$$

where $C>0$ is a constant and λ is Lebesgue measure.
For an upper semicontinuous φ, we define $\mathcal{L}^{p}(U, \varphi)$ where U is open in \mathbb{C}^{n} by

$$
\begin{equation*}
\mathcal{L}^{p}(U, \varphi):=\left\{g \text { is measurable on } U: \int_{U}|g|^{p} e^{-\varphi} d \lambda<\infty\right\}, \tag{2.4}
\end{equation*}
$$

$1 \leq p<\infty$, and

$$
\|g\|_{L^{p}(U, \varphi)}=\left\{\int_{U}|g|^{p} e^{-\varphi} d \lambda\right\}^{1 / p}
$$

$\mathcal{L}_{(r, q)}^{p}(U, \varphi)$ is the space of (r, q)-forms with coefficients in $\mathcal{L}^{p}(U, \varphi)$, and if f is as in (2.1),

$$
\|f\|_{\mathcal{L}_{(r, q)}^{p}(U, \varphi)}=\left\{\sum_{I}^{\prime} \sum_{J}^{\prime}\left\|f_{I, J}\right\|_{\mathcal{L}^{p}(U, \varphi)}^{p}\right\}^{1 / p}
$$

$1 \leq p<\infty$.
Our second main result is
Theorem 2.1. Let Ω be a domain in \mathbb{C}^{n} and let $f \in \mathcal{L}_{(0, q+1)}^{p}(\Omega, \varphi)$ be $\bar{\partial}$-closed, $1<p<\infty$ and φ an upper semicontinuous function admissible in Ω. Then there is $u \in \mathcal{L}_{(0, q)}^{p}(\Omega, \varphi)$ such that $\bar{\partial} u=f$ and

$$
\|u\|_{\mathcal{L}_{(0, q)}^{p}(\Omega, \varphi)} \leq \delta\|f\|_{\left.\mathcal{L}_{(0, q+1)}^{p}\right)}(\Omega, \varphi),
$$

where δ is independent of f.
To prove Theorem 2.1 we need a lemma about Sobolev Space estimates for the $\bar{\partial}-$ operator on bounded domains in \mathbb{C}^{n} with boundaries of Lebesgue measure zero. Accordingly, let $W^{1,1}(U)$ be the space of functions which together with their distributional derivatives of order one are in $L^{1}(U)$, with the usual norm, and $W_{(r, q)}^{1,1}(U)$ is the space of $(r, q)-$ forms with coefficients in $W^{1,1}(U)$. We then have

Lemma 2.2. Let Ω be a bounded domain in \mathbb{C}^{n} with boundary of Lebesgue measure zero. Let $f \in W_{(0, q+1)}^{1,1}(\Omega)$ be $\bar{\partial}$-closed. Then there is a $u \in W_{(0, q)}^{1,1}(\Omega)$ such that $\bar{\partial} u=f$.

To prove Lemma 2.2 we need the Bochner-Martinelli-Koppelman formula:
Theorem 2.3. Let Ω be any bounded domain in \mathbb{C}^{n} with C^{1} boundary. For $f \in C_{(0, q)}^{1}(\bar{\Omega})$, $0 \leq q \leq n$, we have

$$
\begin{equation*}
f(z)=\int_{\partial \Omega} B_{q}(\cdot, z) \wedge f+\int_{\Omega} B_{q}(\cdot, z) \wedge \bar{\partial}_{\xi} f+\bar{\partial}_{z} \int_{\Omega} B_{q-1}(\cdot, z) \wedge f, z \in \Omega \tag{2.5}
\end{equation*}
$$

where $B_{q}(\xi, z)$ is as in (2.2). (For the proof see [1] page 266).

Proof of Lemma 2.2. With Ω and f as in Lemma 2.2, if

$$
\begin{equation*}
u(z)=\int_{\Omega} B_{q}(\cdot, z) \wedge f, z \in \Omega \tag{2.6}
\end{equation*}
$$

then $\bar{\partial} u=f$:
Let $f=\sum_{J}^{\prime} f_{J} d \bar{z}^{J}$ be defined as zero outside Ω and regularize f coefficientwise: $f_{m}=$ $\sum_{J}\left(f_{J}\right)_{m} d \bar{z}^{J}$,

$$
\text { where } \begin{aligned}
\left(f_{J}\right)_{m}^{(z)} & =\int_{\mathbb{C}^{n}} f_{J}(z-\xi / m) \psi(\xi) d \lambda(\xi) \\
& =m^{2 n} \int_{\mathbb{C}^{n}} f_{J}(\xi) \psi(m(z-\xi)) d \lambda(\xi)
\end{aligned}
$$

and $\psi \in C_{0}^{\infty}\left(\mathbb{C}^{n}\right), \int \psi d \lambda=1, \psi \geq 0, \operatorname{supp} \psi=\left\{z \in \mathbb{C}^{n}:|z| \leq 1\right\}$, and λ is Lebesgue measure. Then $\left\|f_{m}\right\|_{L_{(0, q+1)}^{1}\left(\mathbb{C}^{n}\right)} \leq\|f\|_{\mathcal{L}_{(0, q+1)}^{p}\left(\mathbb{C}^{n}\right)}, f_{m} \rightarrow f$ in $\mathcal{L}_{(0, q+1)}^{1}(\Omega)$ as $m \rightarrow \infty$ and f_{m} is $\bar{\partial}$-closed in \mathbb{C}^{n}.

$$
\begin{equation*}
\text { Now let } u_{m}(z)=\int_{\mathbb{C}^{n}} B_{q}(\cdot, z) \wedge f_{m} \text {. } \tag{2.7}
\end{equation*}
$$

Then from Theorem 2.3, we have $\bar{\partial} u_{m}=f_{m}$, and since $f_{m} \rightarrow f$ in $\mathcal{L}_{(0, q+1)}^{1}(\Omega)$, we have $u_{m} \rightarrow u$ in $\mathcal{L}_{(0, q)}^{1}(\Omega)$, and $\bar{\partial} u=f$.
Proof of Theorem 2.1. We first assume that Ω is bounded. It is clear that there is a sequence $\Omega_{1} \subset \subset \Omega_{2} \subset \subset \cdots$ of bounded domains, each with boundary of Lebesgue measure zero, such that $\bigcup_{v=1}^{\infty} \Omega_{v}=\Omega$. We construct a sequence of $(0, q)$-forms $\left\{u_{v}\right\}_{v=1}^{\infty}$ with $u_{v} \in \mathcal{L}_{(0, q)}^{p}(\Omega, \varphi), \bar{\partial} u_{v}=f$ in Ω_{v} and

$$
\left\|u_{v}\right\|_{\mathcal{L}_{(0, q)}^{p}\left(\Omega_{v}, \varphi\right)} \leq K\|f\|_{\mathcal{L}_{(0, q+1)}^{p}(\Omega, \varphi)},
$$

where K is the same for all $v, 1<p<\infty$. Let us regularize f as above. For v fixed, if m is sufficiently large, $f_{m} \in W_{(0, q+1)}^{1,1}\left(\Omega_{v}\right)$ and $\bar{\partial} f_{m}=0$ in Ω_{v}. For such an m (sufficiently large) define

$$
g_{m}:=\left\{\begin{array}{l}
f_{m} \text { in } \Omega_{v} \\
0 \text { outside } \Omega_{v} .
\end{array}\right.
$$

Then from Lemma 2.2, if

$$
\begin{aligned}
u_{v, m} & =\int_{\Omega_{v}} B_{q}(\cdot, z) \wedge g_{m}, \\
\bar{\partial} u_{v, m} & =g_{m} \text { in } \Omega_{v}
\end{aligned}
$$

and since φ is admissible on Ω_{v}

$$
\left\|u_{v, m}\right\|_{\mathcal{L}_{(0, q)}^{p}\left(\Omega_{v, \varphi)}\right.} \leq K\|f\|_{L_{(0, q+1)}^{p}(\Omega, \varphi)} .
$$

Now it is clear that as $m \rightarrow \infty, g_{m} \rightarrow f$ in $\mathcal{L}_{(0, q+1)}^{1}\left(\Omega_{v}\right)$ and $u_{v, m} \rightarrow$ some u_{v} in $\mathcal{L}_{(0, q)}^{1}\left(\Omega_{v}\right)$, $\bar{\partial} u_{v}=f$ and

$$
\begin{equation*}
\left\|u_{v}\right\|_{\mathcal{L}_{(0, q)}^{p}\left(\Omega_{v, \varphi}\right)} \leq K\|f\|_{\mathcal{L}_{(0, q+1)}^{p}(\Omega, \varphi)} . \tag{2.8}
\end{equation*}
$$

Define u_{v} as zero outside Ω_{v}, then since $\mathcal{L}_{(0, q)}^{p}(\Omega, \varphi)$ is reflexive, for $1<p<\infty$, by the Banach-Alaoglu Theorem, there is u in $\mathcal{L}_{(0, q)}^{p}(\Omega, \varphi)$ with

$$
\begin{equation*}
\|u\|_{L_{(0, q)}^{p}(\Omega, \varphi)} \leq\|f\|_{L_{(0, q+1)}^{p}(\Omega, \varphi)}, \tag{2.9}
\end{equation*}
$$

$(1<p<\infty)$, and a subsequence $\left\{u_{\nu_{\lambda}}\right\}$ of $\left\{u_{v}\right\}$ such that $u_{\nu_{\lambda}} \rightarrow u$ weakly in $\mathcal{L}_{(0, q)}^{p}(\Omega, \varphi)$ as $\lambda \rightarrow \infty$. In particular, $u_{v_{\lambda}} \rightarrow u$ in the sense of distributions, as $\lambda \rightarrow \infty$. Therefore $\partial u=f$.

If Ω is not bounded, we can find a sequence of bounded domains $\Omega_{1} \subset \subset \Omega_{2} \subset \subset \cdots$ exhausting Ω and a sequences of $(0, q)$-forms $\left\{u_{v}\right\}_{v=1}^{\infty}$ as above, such that $\bar{\partial} u_{v}=f$ on Ω_{v} and

$$
\begin{equation*}
\left\|u_{v}\right\|_{\mathcal{L}_{(0, q)}^{p}\left(\Omega_{v}, \varphi\right)} \leq K\|f\|_{\mathcal{L}_{(0, q+1)}^{p}}(\Omega, \varphi) \tag{2.10}
\end{equation*}
$$

and K is the same for all v.
Treating the sequence in (2.10) as the sequence in (2.8) was treated, we get an $(0, q)-$ form $u \in \mathcal{L}_{(0, q)}^{p}(\Omega, \varphi)$ with $\bar{\partial} u=f$ and

$$
\|u\|_{\mathcal{L}_{(0, q)}^{p}(\Omega, \varphi)} \leq K\|f\|_{\mathcal{L}_{(0, q+1)}^{p}(\Omega, \varphi)} .
$$

3 Proof of Theorem 1.3

The format of the proof is the same as that in [2]: Because of (1.1) and (1.2), where $|f|^{2}=$ $\left|f_{1}\right|^{2}+\cdots+\left|f_{N}\right|^{2}$, for each $V_{j}=\frac{\bar{f}_{j}}{|f|^{2}}$ there is $K>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|V_{j}\right|^{2} \exp (-2 K p) d \lambda<\infty \tag{3.1}
\end{equation*}
$$

and it is clear that

$$
\begin{equation*}
\sum_{j=1}^{N} V_{j} f_{j}=1 . \tag{3.2}
\end{equation*}
$$

For non-negative integers s and r let L_{r}^{s} denote the set of all differential forms h of type $(0, r)$ with values in $\Lambda^{s} \mathbb{C}^{N}$, such that for some $K>0$

$$
\begin{equation*}
\int_{\Omega}|h|^{2} \exp (-2 K p) d \lambda<\infty . \tag{3.3}
\end{equation*}
$$

This means that for each multi-index $I=\left(i_{1}, \ldots, i_{s}\right)$ of length $|I|=s$ with indices between 1 and N inclusively, h has component h_{I} which is a differential form of type $(0, r)$ such that h_{I} is skew symmetric in I and

$$
\begin{equation*}
\int_{\Omega}\left|h_{I}\right|^{2} \exp (-2 K p) d \lambda<\infty . \tag{3.4}
\end{equation*}
$$

As in [3], $\bar{\partial}$ is an unbounded operator from L_{r}^{s} to L_{r+1}^{s} and the interior product P_{f} by $\left(f_{1}, \ldots, f_{N}\right)$ maps L_{r}^{s+1} into L_{r}^{s}.

$$
\begin{equation*}
\left(P_{I}(h)\right)_{I}=\sum_{j=1}^{N} h_{I_{j}} f_{j}, \quad|I|=s . \tag{3.5}
\end{equation*}
$$

If we define $P_{f} L_{r}^{0}=0$, then clearly $P_{f}^{2}=0$ and P_{f} commutes with $\bar{\partial}$, so we have a double complex. We now have (as in [3]) the following

Theorem 3.1. For every $g \in L_{r}^{s}$ with $\bar{\partial} g=P_{f} g=0$ one can find $h \in L_{r}^{s+1}$ so that $\bar{\partial} h=0$ and $P_{f} h=g$.

Now from (3.2) $P_{f} \bar{\partial} V=\bar{\partial} P_{f} V=\bar{\partial}(1)=0$, where $V=\left(V_{1}, \ldots, V_{N}\right)$, therefore by Theorem 3.1 there exist $w \in L_{1}^{2}$ with $P_{f} w=\bar{\partial} V$ and $\bar{\partial} w=0$. Let $k \in L_{0}^{2}$ solve $\bar{\partial} k=w$ and set

$$
\begin{equation*}
h=V-P_{f} k \in L_{0}^{1} . \tag{3.6}
\end{equation*}
$$

Then $\bar{\partial} h=\bar{\partial} V-P_{f} w=0$ and

$$
\begin{equation*}
P_{f}(h)=P_{f} V=1 \tag{3.7}
\end{equation*}
$$

i.e. there exist $h_{1}, \ldots, h_{N} \in A_{p}(\Omega)$ such that

$$
\begin{equation*}
\sum_{j=1}^{N} h_{j} f_{j}=1 \tag{3.8}
\end{equation*}
$$

References

[1] S.C. Chen and M.C. Shaw, Partial Differential Equations in Several Complex Variables. Studies in Advanced Mathematics, No. 19 AMS-International Press (2001).
[2] P.W. Darko, The Corona Problem in Carleman Algebras on Stein Manifolds. Result. Math. 48 (2005) 203-205.
[3] L. Hörmander, Generators for Some Rings of Analytic Functions. Bull. AMS 73 (1967), 943-949.

[^0]: *Email address: pdarko10@aol.com

