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Abstract

New estimates are obtained for the ∂–operator on non–Stein domains in Cn and the
results are applied to the Corona problem in Carleman algebras on those domains.
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1 Introduction

Let Ω be an open subset of a complex manifold X , and let p be a non–negative function on
Ω. Denote by Ap (Ω) the (Carleman) algebra of all holomorphic functions f in Ω such that
for some positive constants c1 and c2

| f (z)| ≤ c1 exp(c2 p(z)), z ∈ Ω. (1.1)

In [3] where X = Cn and Ω is pseudoconvex, and in [2] where X is a complex manifold
and Ω is a relatively compact Stein open subset, a condition is given on p such that a given
finite set f1, . . . , fN ∈ Ap (Ω) generates Ap (Ω) if and only if

| f1(z)|+ | f2(z)|+ · · ·+ | fN(z)| ≥ c1 exp(−c2 p(z)), z ∈ Ω (1.2)

for some constants c1 > 0,c2 > 0.
Both in [2] and [3] Ω was Stein. As is always the case, it is natural to ask whether the

condition of Steinness can be dropped. We show here that it can, if Ω is a domain in Cn and
we modify the condition in [2] and [3] to the following Condition(H):

• p is a non-negative upper semicontinuous function on Ω;

• all polynomials belong to Ap (Ω); and

• there exist positive constants K1, . . . ,K4 such that z ∈ Ω and |z−ξ| ≤
exp(−K1 p(z)−K2)⇒ ξ ∈ Ω and p(ξ)≤ K3 p(z)+K4.
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The only difference between the condition in [3] and the Condition(H) here is the re-
placement of “plurisubharmonic” with “upper semicontinuous”. Note that if Ω is an arbi-
trary domain in Cn, and d(z) denotes the distance from z ∈ Ω to the complement of Ω in
Cn, p(z) = log1/d(z) satisfies Condition (H) on Ω.

If Ω is a domain in Cn and p satisfies Condition (H) on Ω, then we have (as in [3]) the
following two lemmas.

Lemma 1.1. If f ∈ Ap (Ω) it follows that ∂ f
∂z j

∈ Ap (Ω), 1 ≤ j ≤ n.

Lemma 1.2. If f is holomorphic in Ω, then f ∈ Ap (Ω) if and only if for some K > 0Z
Ω

| f |2 exp(−2K p(z))dλ < ∞,

where dλ denotes Lebesgue measure.

Our main Theorem is therefore the following

Theorem 1.3. Let Ω be a domain in Cn and p a function on Ω satisfying Condition (H).
Then a finite set of functions in Ap (Ω), f1, . . . , fN generates Ap (Ω) if and only if (1.2) is
valid.

To prove this theorem we follow the homological argument given in [3] almost word
for word, using Lemmas 1.1 and 1.2 and L p–Carleman estimates for the ∂–operator on Ω,
which we establish in the next section.

2 L p–Carleman Estimates for the ∂–operator

For 1 ≤ p ≤ ∞, let L p
(r,q) (U) denote the space of forms of type (r,q) with coefficients in

L p (U),
f = ∑

|I|=r

′
∑
|J|=q

′ fI,J dzI ∧dzJ (2.1)

where ∑
′ means that the summation is performed only over strictly increasing multi–indices,

I = (i1, . . . , ir),J = ( j1, . . . , jq),dzI = dzi1 ∧·· ·∧dzir ,dzJ = dz j1 ∧·· ·∧dz jq ,

and U is open in Cn.
The norm of the (r,q)–form in (2.1) is defined by

‖ f‖L p
(r,q)(U) =

{
∑

I

′
∑
J

′ ‖ fI,J‖p
L p(U)

}1/p

, 1 ≤ p < ∞.

Let Bq(ξ,z) be the Bochner–Martinelli–Koppelman kernel of degree (0,q) in z and de-
gree (n,n−q−1) in ξ, so that, with β = |ξ− z|2,

Bq(ξ,z) =
(−1)q(q−1)/2

(2πi)n

(
n−1

q

)
β
−n

∂ξβ∧
(

∂ξ∂ξβ

)n−q−1
∧

(
∂z∂ξβ

)q
(2.2)
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for 0 ≤ q ≤ n.
An upper semicontinuous function ϕ is said to be admissible in an open set U in Cn, if

for every coefficient bq(ξ,z) of Bq(ξ,z), 0 ≤ q ≤ n,Z
U

∣∣bq(ξ,z)
∣∣e−ϕ(z) dλ(z)≤C,

Z
U

∣∣bq(ξ,z)
∣∣e−ϕ(ξ) dλ(ξ)≤C (2.3)

where C > 0 is a constant and λ is Lebesgue measure.
For an upper semicontinuous ϕ, we define L p (U,ϕ) where U is open in Cn by

L p (U,ϕ) :=
{

g is measurable on U :
Z

U
|g|p e−ϕ dλ < ∞

}
, (2.4)

1 ≤ p < ∞, and

‖g‖L p(U,ϕ) =
{Z

U
|g|p e−ϕ dλ

}1/p

.

L p
(r,q) (U,ϕ) is the space of (r,q)–forms with coefficients in L p (U,ϕ), and if f is as in (2.1),

‖ f‖L p
(r,q)(U,ϕ) =

{
∑

I

′
∑
J

′ ‖ fI,J‖p
L p(U,ϕ)

}1/p

1 ≤ p < ∞.
Our second main result is

Theorem 2.1. Let Ω be a domain in Cn and let f ∈ L p
(0,q+1) (Ω,ϕ) be ∂–closed, 1 < p < ∞

and ϕ an upper semicontinuous function admissible in Ω. Then there is u ∈ L p
(0,q) (Ω,ϕ)

such that ∂u = f and
‖u‖L p

(0,q)(Ω,ϕ) ≤ δ‖ f‖L p
(0,q+1)(Ω,ϕ) ,

where δ is independent of f .

To prove Theorem 2.1 we need a lemma about Sobolev Space estimates for the ∂–
operator on bounded domains in Cn with boundaries of Lebesgue measure zero. Accord-
ingly, let W 1,1 (U) be the space of functions which together with their distributional deriva-
tives of order one are in L1 (U), with the usual norm, and W 1,1

(r,q) (U) is the space of (r,q)–
forms with coefficients in W 1,1 (U). We then have

Lemma 2.2. Let Ω be a bounded domain in Cn with boundary of Lebesgue measure zero.
Let f ∈W 1,1

(0,q+1) (Ω) be ∂–closed. Then there is a u ∈W 1,1
(0,q) (Ω) such that ∂u = f .

To prove Lemma 2.2 we need the Bochner–Martinelli–Koppelman formula:

Theorem 2.3. Let Ω be any bounded domain in Cn with C1 boundary. For f ∈C1
(0,q)

(
Ω

)
,

0 ≤ q ≤ n, we have

f (z) =
Z

∂Ω

Bq(·,z)∧ f +
Z

Ω

Bq(·,z)∧∂ξ f +∂z

Z
Ω

Bq−1(·,z)∧ f , z ∈ Ω (2.5)

where Bq(ξ,z) is as in (2.2). (For the proof see [1] page 266).
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Proof of Lemma 2.2. With Ω and f as in Lemma 2.2, if

u(z) =
Z

Ω

Bq(·,z)∧ f , z ∈ Ω, (2.6)

then ∂u = f :
Let f = ∑

J

′ fJ dzJ be defined as zero outside Ω and regularize f coefficientwise: fm =

∑J ( fJ)m dzJ ,

where ( fJ)
(z)
m =

Z
Cn

fJ(z−ξ/m)ψ(ξ)dλ(ξ)

= m2n
Z
Cn

fJ(ξ)ψ(m(z−ξ))dλ(ξ)

and ψ ∈ C∞
0 (Cn) ,

R
ψdλ = 1,ψ ≥ 0,suppψ = {z ∈ Cn : |z| ≤ 1} , and λ is Lebesgue mea-

sure. Then ‖ fm‖L1
(0,q+1)(C

n) ≤ ‖ f‖L p
(0,q+1)(C

n) , fm → f in L1
(0,q+1) (Ω) as m → ∞ and fm is

∂–closed in Cn.
Now let um(z) =

Z
Cn

Bq(·,z)∧ fm. (2.7)

Then from Theorem 2.3, we have ∂um = fm, and since fm → f in L1
(0,q+1) (Ω), we have

um → u in L1
(0,q) (Ω), and ∂u = f . �

Proof of Theorem 2.1. We first assume that Ω is bounded. It is clear that there is a se-
quence Ω1 ⊂⊂ Ω2 ⊂⊂ ·· · of bounded domains, each with boundary of Lebesgue mea-
sure zero, such that

S
∞
v=1 Ωv = Ω. We construct a sequence of (0,q)–forms {uv}∞

v=1 with
uv ∈ L p

(0,q) (Ω,ϕ) ,∂uv = f in Ωv and

‖uv‖L p
(0,q)(Ωv,ϕ) ≤ K ‖ f‖L p

(0,q+1)(Ω,ϕ) ,

where K is the same for all v,1 < p < ∞. Let us regularize f as above. For v fixed, if m is
sufficiently large, fm ∈W 1,1

(0,q+1) (Ωv) and ∂ fm = 0 in Ωv. For such an m (sufficiently large)
define

gm :=

{
fm in Ωv

0 outside Ωv.

Then from Lemma 2.2, if

uv,m =
Z

Ωv

Bq(·,z)∧gm,

∂uv,m = gm in Ωv

and since ϕ is admissible on Ωv

‖uv,m‖L p
(0,q)(Ωv,ϕ) ≤ K ‖ f‖L p

(0,q+1)(Ω,ϕ) .

Now it is clear that as m→∞,gm → f in L1
(0,q+1) (Ωv) and uv,m → some uv in L1

(0,q) (Ωv),

∂uv = f and
‖uv‖L p

(0,q)(Ωv,ϕ) ≤ K ‖ f‖L p
(0,q+1)(Ω,ϕ) . (2.8)
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Define uv as zero outside Ωv, then since L p
(0,q) (Ω,ϕ) is reflexive, for 1 < p < ∞, by the

Banach–Alaoglu Theorem, there is u in L p
(0,q) (Ω,ϕ) with

‖u‖L p
(0,q)(Ω,ϕ) ≤ ‖ f‖L p

(0,q+1)(Ω,ϕ) , (2.9)

(1 < p < ∞), and a subsequence
{

uvλ

}
of {uv} such that uvλ

→ u weakly in L p
(0,q) (Ω,ϕ) as

λ → ∞. In particular, uvλ
→ u in the sense of distributions, as λ → ∞. Therefore ∂u = f .

If Ω is not bounded, we can find a sequence of bounded domains Ω1 ⊂⊂ Ω2 ⊂⊂ ·· ·
exhausting Ω and a sequences of (0,q)–forms {uv}∞

v=1 as above, such that ∂uv = f on Ωv

and
‖uv‖L p

(0,q)(Ωv,ϕ) ≤ K ‖ f‖L p
(0,q+1)(Ω,ϕ) (2.10)

and K is the same for all v.
Treating the sequence in (2.10) as the sequence in (2.8) was treated, we get an (0,q)–

form u ∈ L p
(0,q) (Ω,ϕ) with ∂u = f and

‖u‖L p
(0,q)(Ω,ϕ) ≤ K ‖ f‖L p

(0,q+1)(Ω,ϕ) .

�

3 Proof of Theorem 1.3

The format of the proof is the same as that in [2]: Because of (1.1) and (1.2), where | f |2 =

| f1|2 + · · ·+ | fN |2, for each Vj = f j

| f |2
there is K > 0 such thatZ

Ω

∣∣Vj
∣∣2 exp(−2K p)dλ < ∞ (3.1)

and it is clear that
N

∑
j=1

Vj f j = 1. (3.2)

For non–negative integers s and r let Ls
r denote the set of all differential forms h of type

(0,r) with values in ΛsCN , such that for some K > 0Z
Ω

|h|2 exp(−2K p)dλ < ∞. (3.3)

This means that for each multi–index I = (i1, . . . , is) of length |I| = s with indices be-
tween 1 and N inclusively, h has component hI which is a differential form of type (0,r)
such that hI is skew symmetric in I andZ

Ω

|hI|2 exp(−2K p)dλ < ∞. (3.4)

As in [3], ∂ is an unbounded operator from Ls
r to Ls

r+1 and the interior product Pf by
( f1, . . . , fN) maps Ls+1

r into Ls
r.

(PI(h))I =
N

∑
j=1

hI j f j, |I|= s. (3.5)
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If we define Pf L0
r = 0, then clearly P2

f = 0 and Pf commutes with ∂, so we have a double
complex. We now have (as in [3]) the following

Theorem 3.1. For every g ∈ Ls
r with ∂g = Pf g = 0 one can find h ∈ Ls+1

r so that ∂h = 0 and
Pf h = g.

Now from (3.2) Pf ∂V = ∂PfV = ∂(1) = 0, where V = (V1, . . . ,VN), therefore by The-
orem 3.1 there exist w ∈ L2

1 with Pf w = ∂V and ∂w = 0. Let k ∈ L2
0 solve ∂k = w and

set
h = V −Pf k ∈ L1

0. (3.6)

Then ∂h = ∂V −Pf w = 0 and

Pf (h) = PfV = 1 (3.7)

i.e. there exist h1, . . . ,hN ∈ Ap(Ω) such that

N

∑
j=1

h j f j = 1. (3.8)
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