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Abstract

This is a survey paper on optimization problems via the technique of first and sec-
ond order tangent cones to a nonempty subset of a Banach space X. Such a technique
is also used in the study of the flow invariance of a closed set with respect to a sec-
ond order differential equation (motion on a given orbit in a force field). Many of the
known results in these areas are included here.
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1 Introduction

The goal of this survey paper is twofold:
1) to present some of the main results obtained by the authors via Pavel and Ursescu tan-

gent cones, results that concern constrained optimization problems, flow-invariance prob-
lems and some of their applications,

2) to point out the unifying effect of the theory of tangent cones in the areas of differen-
tial equations and optimization.

We are dealing with the following scalar set constrained minimization problem

F(x) =Local Minimum F(z), z ∈ D, (P)

where X is a Banach space of norm ‖ · ‖, x ∈ D ⊆U, and F : U ⊆ X→R is a function of class
Cp on the open set U, p positive integer, or a locally Lipschitz function near x.
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Special interest is paid in the optimization problem with equality constraints obtained
for D = DG = {x ∈ X, G(x) = 0}, where G : X→ Rs is of class C2.

Also we are concerned with conditions for a closed subset D ⊂ U of a Banach space X
to be flow-invariant with respect to the second order autonomous differential equation

u′′(t) = F(u(t)), t ≥ 0,

where F : U → X is a locally Lipschitz mapping on an open subset U of X.
Throughout the paper, if a function F is p-times differentiable at x, then F

′

(x), F
′′

(x),
F
′′′

(x), F(p)(x), p ≥ 4 denote its first, second, third and p-th order derivatives at x and
F(p)(x)[y]p = F(p)(x)(y) · · · (y)︸   ︷︷   ︸

p times

.

The paper is organized as follows. In Section 2 that is based on [9], [11], [22], [27],
[29], we recall the definitions of the first and second order tangent cones and some of their
characterizations. In Section 3 we present the optimality conditions given by the authors
in [11], [12], [19], [31], [32] via the tangent cones and analyze illustrative examples. We
devote Section 4 to some of the main results in the literature concerning flow invariance
problems and their applications in Flight Mechanics ([29], [22]), results that are expressed
by means of the tangent cones as well.

2 First and Second Order Tangent Cones

The tangent cones are the main tools for formulating the results of this paper.

Definition 2.1. Let D be a nonempty subset of a Banach space X and let x ∈ D be a given
point.

i) (Ursescu, [34]) An element v ∈ X is called a tangent vector to D at x if

lim
t→0+

1
t

d(x+ tv; D) = 0. (2.1)

ii) (Pavel and Ursescu, [29]) An element w ∈ X is called a second order tangent vector
to D at x ∈ D, if there is v ∈ X, such that

lim
t→0+

1
t2 d(x+ tv+

t2

2
w; D) = 0, (2.2)

where d(x; D) = inf{‖x− y‖; y ∈ D}.

The sets of all first and second order tangent vectors to D at x ∈ D are denoted by TxD
and T 2

x D, respectively.
The cone TxD is also known as the cone of attainable directions [15] or the adjacent

cone [3].
For a given w ∈ T 2

x D, a vector v as in (1.3) is said to be an associate of w, or associated
with w, or a correspondent vector of w.

The definition of T 2
x D was suggested by a formula of Pavel from 1975 (see [27] with

f (x) in place of w).
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In the theory of motion on a given orbit on DG in a force field F on DG in Flight
Mechanics, the vectors v and w above are the initial velocity and the acceleration at x,
respectively.

It is obvious that if x is an interior point of D, then TxD = T 2
x D = X.

Proposition 2.2. i) (Lemma 3.1, [29]) The fact that v belongs to TxD is equivalent to the
existence of a function γ1 : (0,∞)→ X with γ1(t)→ 0 as t→ 0+, and

x+ t(v+γ1(t)) ∈ D, ∀ t > 0. (2.3)

ii) (Lemma 3.2, [29]) The fact that w belongs to T 2
x D with the corespondent vector

v ∈ X, as in (1.2) is equivalent to the existence of a function γ2 : (0,∞)→ X with γ2(t)→ 0
as t→ 0+, and

x+ tv+
t2

2
(w+γ2(t)) ∈ D, ∀ t > 0. (2.4)

It can easily be seen that 0 ∈ TxD (take γ1 ≡ 0), and 0 ∈ T 2
x D (take γ2 ≡ 0, v = 0).

Proposition 2.3. (Proposition 1.8 i), [22]) If w ∈ T 2
x D then its associated vector v belongs

to TxD.

Proposition 2.4. i) (Proposition 1.2, [22]) TxS is a closed cone in X.
ii) (Proposition 1.8 ii), [22]) T 2

x D is a cone in X.

There are known the following characterizations of the first and second order tangent
cones to the null-set of a mapping G, i.e., DG = {y ∈ X;G(y) = 0, G : X→ Rs}.

Theorem 2.5. (Corollary 3.1, [29]) Let G : X→ Rs be continuous in a neighborhood of x
and Fréchet differentiable at x. If G′(x) is onto, then

TxDG = KerG′(x). (2.5)

Here KerG′(x) denotes the null space of G′(x), i.e., KerG′(x) = {v ∈ X; G′(x)(v) = 0}.

Remark 2.6. If G′(x) is not onto, then in general the strict inclusion TxDG ⊂ KerG′(x) holds.

Theorem 2.7. (Corollary 3.2, [29]) Let X be a normed linear space, G : U → Rs twice
Fréchet differentiable at x, with G(x) = 0, G continuous near x, and G′(x) : X→ Rs onto.

Then w ∈ T 2
x DG with v ∈ TxDG if and only if

G′(x)(v) = 0, and G′′(x)(v)(v)+G′(x)(w) = 0. (2.6)

Definition 2.8. ([35] Let X and Y be two normed spaces. The mapping G : X→ Y is said
to be p-regular at the point x if, given any h ∈ KerG(p)(x) = {h ∈ X,G(p)(x0)[h]p = 0}, h , 0,
we have G(p)(x)[h]p−1X = Y , p ≥ 2.

In the above two theorems, Pavel and Ursescu characterized the second order tangent
vectors to DG at x ∈ DG when G : X→ Rs is twice Fréchet differentiable at x and G

′

(x) is
onto. In [9], Constantin described the second order tangent cone to DG at x ∈ DG when
G
′

(x) = 0 and G has some additional properties.
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Theorem 2.9. (Theorem 1.3, [9]) Assume that G : X→ Rs is three times Fréchet differen-
tiable at x ∈ DG, G

′

(x) = 0, and G is 2-regular at x and continuous near x.
Then w ∈ T 2

x DG with associated vector v ∈ TxDG, v , 0 if and only if

G
′′

(x)(v)(v) = 0, v , 0, and (2.7)

G
′′′

(x)(v)(v)(v)+3G
′′

(x)(v)(w) = 0. (2.8)

Remark 2.10. T 2
x D was extended to n-order T n

x D tangent cones, n > 2, by Pavel et al. [31].
Also T 2

x D was extended to Banach manifolds by Motreanu and Pavel [22].

3 Optimization via Tangent Cones

We are dealing with the following constrained minimization problem

F(x) =Local Minimum F(z), z ∈ D, (P)

where X is a Banach space of norm ‖ · ‖, x ∈ D ⊆U, and F : U ⊆ X→R is a function of class
Cp on the open set U, p positive integer, or a locally Lipschitz function near x.

This section provides some necessary conditions and some sufficient conditions for a
point x ∈ D to be a local minimum of F on D using the theory of tangent cones in Pavel and
Ursescu sense.

Recall that a point x ∈D is said to be a local minimum of a function F : U→R on D⊆ X,
X Banach space, if there exists δ > 0 such that F(z) ≥ F(x), for all z ∈ U ∩D satisfying
0 < ||z− x|| < δ. If the defining inequality is strict, then x is said to be a strict local minimum
of F on D.

3.1 Second Order Optimality Conditions via First and Second Order Tan-
gent Cones

In this subsection we present second order necessary and sufficient optimality conditions for
a point to be a local minimum for problem (P) with a smooth objective function. The nec-
essary conditions are formulated for an arbitrary constraint set and the sufficient conditions
are formulated for a constraint DG given by a functional G.

It is well-known the method Lagrange developed for approaching such functional con-
strained optimization problems.

Theorem 3.1. (Lagrange Multipliers Method) Let F : U ⊆ Rn → R and G = (G1, . . . ,Gs) :
U→Rs be of class C1 on the open set U ⊆Rn. If F has an extremum on DG = {z ∈U; G1(z)=
0,G2(z) = 0, . . . ,Gs(z) = 0}, at x ∈ DG, and G′1(x),G′2(x), . . . ,G′s(x) are linearly independent,
then there exists a unique vector λ = (λ1, λ2, . . . ,λs), called a Lagrange multiplier vector,
such that F′(x) = λG′(x) = λ1G′1(x)+λ2G′2(x)+ . . .+λsG′s(x).

Suppose in addition that F and G are on class C2 on U.
If x is a local minimum of F on DG, then [F′′(x)−λG′′(x)][y]2 ≥ 0, for all y such that

G′(x)(y) = 0.
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Theorem 3.2. (Proposition 3.2.1, [6]) Assume that F : U ⊆ Rn→ R, and G = (G1, . . . ,Gs) :
U → Rs are of class C2 on the open set U, and let x ∈ DG = {z ∈ U; G1(z) = 0,G2(z) =
0, . . . ,Gs(z) = 0} and λ ∈ Rs satisfy F′(x) = λG′(x). Then

If [F′′(x)−λG′′(x)][y]2 > 0, for all y , 0 such that G′(x)(y) = 0, then x̄ is a strict local
minimum of F on DG.

For a given w ∈ T 2
x D, we set

S w = {v ∈ TxD; lim
t ↓ 0

t−2dist(x+ tv+
1
2!

t2w; D) = 0}. (3.1)

In words, S w is the set of all ”associates” v of w.
Note that in general S w is strictly included in TxD. For example, if D is the unit sphere

of a real Hilbert space H of inner product < · > and norm ‖ · ‖, i.e., D = B1 = {x ∈ H;‖x‖ = 1},
then according to [22], [29]

TxB1 = {v ∈ H;< x,v >= 0}, (3.2)

T 2
x B1 = {w ∈ H; there is v ∈ H;< x,v >= 0,‖v‖2+ < x,w >= 0}, (3.3)

which implies that

S w = {v ∈ H;< x,v >= 0,‖v‖2+ < x,w >= 0} ⊂ TxB1. (3.4)

Theorem 3.3. (Necessary Conditions) (Theorem 2.1, [12]) Let D be a nonempty subset of
the Banach space X, and let x be a local minimum of F : X→ R on D.

If F is of class C2 on X, w ∈ T 2
x D, and F′(x)(v) = 0 for all v ∈ S w, then

F′′(x)(v)(v)+F′(x)(w) ≥ 0. (3.5)

Proof By definition, F is said to be twice Fréchet differentiable at x if

F(x+ z)−F(x) = F′(x)(z)+
1
2

F′′(x)(z)(z)+ ||z||2r(z) (3.6)

with some r(z)→ 0 as z→ 0.
Replacing z = tv+ 1

2 t2(w+ r(t)) into (3.6), we get

0 ≤ F(x+ tv+ 1
2 t2(w+ r(t)))−F(x)

= F′(x)(tv+
1
2

t2(w+ r(t))+
1
2

F′′(x)(tv+
1
2

t2(w+ r(t)))(tv+
1
2

t2(w+ r(t)))+ t2α(t),

with some α(t)→ 0, as t→ 0.
If F′(x)(v) = 0, dividing by t2 and then letting t→ 0, one obtains (3.5), which completes

the proof.

Clearly, the above theorem yields the following corollary.
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Corollary 3.4. Suppose that F : X → R is a functional of class C2 on a Banach space X
and x is a local minimum of F on D = DG, G : X→ Rs.

i) (Corollary 2.1, [12]) If F′(x)(v) = 0 for all v ∈ TxDG, then

F′′(x)(v)(v)+F′(x)(w) ≥ 0, (3.7)

for all v and w satisfying

G(x+ tv+
1
2!

t2(w+ r(t))) = 0, for some r(t)→ 0,as t→ 0. (3.8)

ii) (Theorem 3.1, [31]) Suppose in addition that G is of class C2 and the Fréchet deriva-
tive G′(x) of G at x is onto from X into Rs. Then necessarily

F′(x)(v) = 0, F′′(x)(v)(v)+F′(x)(w) ≥ 0, (3.9)

for all (v,w) satisfying

G′(x)(v) = 0, G′′(x)(v)(v)+G′(x)(w) = 0. (3.10)

Remark 3.5. The second order necessary optimality conditions of Corollary 3.4 ii) (Theo-
rem 3.1, [31]) have been extended to higher order necessary conditions for sufficiently often
Fréchet differentiable functions F and G by Constantin in Corollary 2.1, [9].

Theorem 3.6. (Sufficient Conditions) (Theorem 2.2, [12]) Suppose that G : X → Rs is of
class C2 on the finite dimensional normed space X, and the Fréchet derivative G′(x) of G
at x is onto from X into Rs. Let x ∈ D satisfy:

F′(x)(v) = 0, F′′(x)(v)(v)+F′(x)(w) > 0, (3.11)

for all (v,w) different from zero, such that

G′(x)(v) = 0, G′′(x)(v)(v)+G′(x)(w) = 0. (3.12)

Then x is a strict local minimum of F on DG.

Proof. It is easy to see that F′(x)(v) = 0, for all v in the null space of G′(x), i.e., for all
v with G′(x)(v) = 0, is equivalent to

F′(x)(w) =< λ,G′(x)(w) >, (3.13)

for all w ∈ X, where λ ∈ Rs and <,> is the inner product of Rs.
This implies (by the elimination of w), that conditions (3.11) and (3.12) are equivalent

to
F′′(x)(v)(v)−λG′′(x)(v)(v) > 0, (3.14)

for all v , 0 , with G′(x)(v) = 0, i.e., the Hessian F′′(x)−λG′′(x) is strictly positive definite
on the tangent cone of DG at x. Indeed, in view of the hypothesis that w→G′(x)(w) is onto,
for each v with G′(x)(v) = 0 there is w such that

G′(x)(w) = −G′′(x)(v)(v). (3.15)

By Theorem 3.2 (Proposition 3.2.1, [6]), relation (3.14) implies that x is a strict local mini-
mum of F on DG. The proof is complete.



140 E. Constantin and N.H. Pavel

Example 3.7. (Example 3, [13]) Consider the function F(x1, x2) = x6
2+ x3

1+2x2
1− x2

2+4x1+

4x2, subject to the constraint G(x1, x2) = x5
1+ x4

2+ x1+ x2 = 0, F,G : R2→ R.
It can be checked that (0,0) is a constrained critical point with the Lagrange multiplier

λ = 4.
The origin is a strict local minimum because the sufficient conditions of Theorem 3.2

are satisfied as [F′′(0,0)−4G′′(0,0)][y]2 = 4y2
1−2y2

2 = 2y2
2 > 0, for all y = (y1,y2) , 0 such

that G′(0,0)(y) = y1+ y2 = 0 as y , 0 implies y2 , 0. Here G′′(0,0) = 0.
We can draw the same conclusion by verifying the sufficient conditions given by (3.11)

and (3.12). Indeed, F
′

(x̄)(w)+F
′′

(x̄)[v]2 = 4v2
1−2v2

2+4(w1+w1) = 2v2
1 > 0, for all v , 0 as

v1+ v2 = 0 and w1+w2 = 0.
Here we used the fact that G′(0,0) = (1,1) is onto and thus the tangent cones can be

characterized by means of Theorem 2.5 (Corollary 3.1, [29]) and of Theorem 2.7 (Corollary
3.2, [29]):

T(0,0)DG = {v = (v1,v2) ∈ R2;v1+ v2 = 0},
T 2

(0,0)DG = {w = (w1,w2) ∈ R2;w1+w2 = 0}.

3.2 Second Order Necessary Conditions via First and Second Order Tangent
Cones

In this subsection we present some second order necessary optimality conditions for a point
to be a local minimum for problem (P) with a locally Lipschitz objective function. The main
result of the subsection is due to Constantin [11] and extends the second order necessary
conditions of Corollary 2.4 ii) (Theorem 3.1, [31]) given for smooth optimization problems
to nonsmooth problems.

We make use of the concepts of Clarke’s generalized derivative [8] and Páles and Zei-
dan’s second order directional derivative [24].

Definition 3.8. If F is a real-valued locally Lipschitz mapping on an open set U of a Banach
space X, and x ∈ U, then

i) ([8]) Clarke’s generalized derivative of F at x is defined by

F◦(x;v) = limsup
(z,t)→(x,0+)

F(z+ tv)−F(z)
t

, v ∈ X.

ii) ([24]) Páles and Zeidan’s second order directional derivative of F at x is defined by

F◦◦(x;v) = limsup
t→0+

2
F(x+ tv)−F(x)− tF◦(x;v)

t2 , v ∈ X.

If F is Fréchet differentiable at x and locally Lipschitz near x then F◦(x;v) = F′(x)(v).
Furthermore, if F is two times differentiable at x and locally Lipschitz near x, then
F◦◦(x;v) = F′′(x)(v)(v), for all v ∈ X.

First order necessary conditions for problem (P) with locally Lipschitz data can be found
in Ye [36].
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Theorem 3.9. (Lemma 3.1, [36]) Let F : X → R be a locally Lipschitz functional on an
open set U of a Banach space X. If x is a local minimum point of F on D ⊂ U, D , ∅, then

F3(x;v) ≥ 0, f or any v ∈ Γ∗(x,D).

Here Γ∗(x,D) is Bouligand tangent cone or contingent cone to D at x in the closure of
D ([7], [3]),

Γ∗(x,D) = {v ∈ X; liminf
t→0+

1
t

d(x+ tv; D) = 0}.

Also, according to [33], F3(x;v) is Michel-Penot directional derivative of F at x in the
direction v defined by

F3(x;v) = sup
w∈X

limsup
t→0+

F(x+ t(v+w))−F(x+ tw)
t

, v ∈ X.

It follows directly from the definitions that TxD ⊆ Γ∗(x,D) and F◦(x;v) ≥ F3(x;v) for
any v ∈ X.

In particular, this implies that F◦(x;v) ≥ 0, for all v ∈ TxD.

The main result of this subsection gives some second order necessary condition derived
by Constantin in [11] for a point x to be a local minimum for problem (P) with locally
Lipschitz data.

Theorem 3.10. (Theorem 3.1, [11]) Let F : X→ R be a locally Lipschitz functional on an
open set U of a Banach space X.

If x is a local minimum point of F on D ⊂ U, D , ∅, then

F◦(x;w)+F◦◦(x;v) ≥ 0, (3.16)

for any w ∈ T 2
x D with correspondent vector v ∈ TxD such that F◦(x;v) = 0.

Proof. By Proposition 2.2 ii) (Lemma 3.2, [29]), for w ∈ T 2
x D, there exists γ2(t)→ 0 as

t→ 0+,

x+ tv+
t2

2
(w+γ2(t)) ∈ D, t > 0.

We use the following identity

F(x+ tv+
t2

2
(w+γ2(t)))−F(x) = tF◦(x;v)+

t2

2
[

2
t2 (F(x+ tv+

t2

2
(w+γ2(t)))−F(x+ tv))]

+
t2

2
[

2
t2 (F(x+ tv)−F(x)− tF◦(x;v))].

If F◦(x;v) = 0, we divide both sides by t2/2, and after passing to upper limit as t →
0+, we obtain F◦(x;w)+F◦◦(x;v) ≥ 0, because the left-hand side of the above equality is
nonnegative for t close enough to 0.

We give next an example in which Ye’s first order necessary condition of extremum
holds at x = (0,0) but our second order necessary condition classifies (0,0) as being nonop-
timal. By providing additional information about the candidate (0,0) for a local minimum
point, Theorem 3.10 (Theorem 3.1, [11]) helped us make explicit a situation left unclear by
Ye’s result.



142 E. Constantin and N.H. Pavel

Example 3.11. (Example 4.1, [11]) Let us consider the function F(x1, x2) = |x1| − x2− x2
1+

x2
2, subject to G(x1, x2) = x3

1+ x1x2+ x2
2 = 0, F,G : R2→ R.

We notice that the point (x1, x2) = (0,0) verifies the constraint.
The objective function F is locally Lipschitz on R2 but it is not differentiable at (0,0).
The first order partial derivatives of G at (0,0) are identically zero.
Since G

′′

(0,0)(v) is onto for any v with G′′(0,0)(v)(v) = 0, v , 0, using the characteri-
zation of the second order tangent cones provided by Theorem 2.9 (Theorem 1.3, [9]), we
obtain that w ∈ T 2

(0,0)DG with associated vector v ∈ T(0,0)DG, v, 0 if and only if v1v2+v2
2 = 0,

(v1,v2), (0,0), and 2v3
1+v1w2+v2w1+2v2w2 = 0. If w ∈ T 2

(0,0)DG with correspondent vector
v = 0 then w1w2+w2

2 = 0.
Next we find the explicit form of F◦((0,0);v).
Using the inequality |x1+ tv1| − |x1| ≤ t|v1| we obtain

F◦((0,0);v) = limsup
(x,t)→((0,0),0+)

F(x+ tv)−F(x)
t

≤ |v1| − v2.

Considering the sequence (xn
1, x

n
2) = (0,0)→ (0,0), we get

F◦((0,0);v) ≥ limsup
t→0+

|tv1| − tv2− t2v2
1+ t2v2

2

t
= |v1| − v2.

Thus F◦((0,0);v) = |v1| − v2, ∀v ∈ R2.
In this example Ye’s first order necessary condition of Theorem 3.9 (Lemma 3.1, [36])

F�((0,0);v) ≥ 0, ∀v ∈ Γ∗((0,0); DG)

is verified at the point (0,0) as

F�((0,0);v) ≥ limsup
t→0

F(tv)−F(0)
t

= |v1| − v2 ≥ 0, ∀v ∈ Γ∗((0,0); DG),

because Γ∗((0,0); DG) ⊆
{
(v1,v2) ∈ R2, v1v2+ v2

2 = 0
}
, and for all v ∈ Γ∗((0,0); DG) we have

either v2 = 0 and F�((0,0);v) ≥ |v1| ≥ 0, or v1 + v2 = 0 and thus F�((0,0);v) ≥ |v1|+ v1 ≥ 0.
Hence (0,0) is a candidate for being optimal.

We apply next Theorem 3.10 (Theorem 3.1, [11]).
First we find

F◦◦((0,0);v) = limsup
t→0+

2
F(tv)−F(0,0)− tF◦((0,0);v)

t2

= limsup
t→0+

2
|tv1| − tv2− t2v2

1+ t2v2
2− t(|v1| − v2)

t2 = 2(−v2
1+ v2

2), ∀v ∈ R2.

For any w ∈ T 2
(0,0)DG with associated vector v ∈ T(0,0)DG, such that F◦((0,0);v) = 0, i.e.

v2 = |v1|, we will check the sign of the expression

F◦◦((0,0);v)+F◦((0,0);w) = −2v2
1+2v2

2+ |w1| −w2 = |w1| −w2.

We notice that in the case v1+ v2 = 0, v , 0 we get w2 = 2v2
1−w1, and

F◦◦((0,0);v)+F◦((0,0);w) = |w1|+w1−2v2
1,
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which is not necessarily nonnegative since v1 , 0. Therefore our second order necessary
condition is violated and we can conclude that (0,0) is not a local minimum point of F on
DG.

3.3 Higher Order Sufficient Optimality Conditions via First Order Tangent
Cones

In this subsection we present some higher order sufficient optimality conditions for a suffi-
ciently often Fréchet differentiable function F defined on a finite dimensional normed space
X and subject to a convex set constraint.

Theorem 3.12. (Theorem 3.1, [32]) Let D be a nonempty convex subset of a finite dimen-
sional normed space X, x ∈ D and F : D→ R of class C2 such that:
i) F′(x)(v) ≥ 0, for all v ∈ TxD,
ii) F′′(x)(v)(v) > 0, for all v ∈ TxD, with v , 0.

Then x is a strict local minimum of F on D.
Precisely, there are two positive numbers a and b such that:

F(z)−F(x) ≥ a‖z− x‖2, for all z ∈ D,‖z− x‖ < b.

Example 3.13. (Example 3.1, [32])
Let D be the triangle of vertices (0,0), (2,0), (2,1) in R2 and
F(x1, x2) = 1

3 x3
1+ x2

1+ x1− x2
2+ x2 with x = (x1, x2).

Clearly F′(x) = (x2
1 + 2x1 + 1,−2x2 + 1), F′(0,0) = (1,1) and the Hessian matrix is

F′′(0,0) =
[

2 0
0 −2

]
.

It is also easy to check that T(0,0)D = {v = (v1,v2),v1 ≥ 2v2 ≥ 0}, so v , 0 implies v1 , 0.
Therefore F′(0,0)(v) = v1+ v2 ≥ 0, for all v ∈ T(0,0)D.
We have F′′(0,0)(v)(v) = 2(v2

1− v2
2) > 0 for all v ∈ T(0,0)D, v , 0 .

According to Theorem 3.12, the point x = (0,0) is a strict local minimum of F on D.

The above theorem has been generalized as follows. Note that the case p = 4 has been
considered in Theorem 4.1, [32].

Theorem 3.14. (Theorem 4.2, [19]) Let D be a nonempty convex subset of a finite dimen-
sional normed space X, x ∈ D and F : D→ R of class Cp, p ≥ 2, such that:
i) F(i)(x)(v) ≥ 0, for all i = 1, . . . , p−1 and for all v ∈ TxD,
ii) F(p)(x)(v)p > 0, for all v ∈ TxD, v , 0.

Then x is a strict local minimum of F on D.
Precisely, there are two positive numbers a and b such that:

F(z)−F(x) ≥ a‖z− x‖p, for all z ∈ D,‖z− x‖ < b.

Proof. Suppose by contradiction that the conclusion of this theorem is not true, i.e., that
there is a sequence zi ∈ D with zi→ x such that

F(zi)−F(x) <
1
i
‖zp− x‖p, for all integers i ≥ 1. (3.17)

Set di = ‖zi− x‖ and zi− x = divi with vi =
zi− x
‖zi− x‖

.
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Since D is convex, zi− x = divi ∈ TxD, so vi ∈ TxD.
As ‖vi‖ = 1, we may assume that vi is convergent to an element v0, so v0 ∈ TxD as TxD

is closed. Clearly ‖v0‖ = 1. In view of the Taylor formula, (3.17) yields

1
i
‖zi− x‖p > F(zi)−F(x) =

p−1∑
k=1

dk
i F(k)(x)(vi)k +

1
p!

dp
i F(p)(x)(vi)p+dp

i ri,

with some ri→ 0, for i→∞.
Then

1
i
‖zi− x‖p >

1
p!

dp
i F(p)(x)(vi)p+dp

i ri,

with some ri→ 0, for i→∞.
Dividing by dp

i and then letting ri→ 0, we get 0 ≥ F(p)(x)(v0)(v0), which is in conflict
with the second hypothesis ii). This completes the proof.

In the proof of the above result we used the proposition below.

Proposition 3.15. (Proposition 1.1, [12]) If D is convex, then for any x ∈ D,

{v = z− x,z ∈ D} ⊆ TxD.

Example 3.16. (Example 4.1, [32]) Let D be the triangle of vertices (0,0), (2,0), (2,1) in
R2 and F(x1, x2) = x4

1+ x1− x4
2+ x2 with x = (x1, x2).

We have for x = (0,0) that F′(0,0) = (1,1), T(0,0)D = {v = (v1,v2),v1 ≥ 2v2 ≥ 0}, so v , 0
implies v1 , 0, F′(0,0)(v) = v1 + v2 ≥ 0 for all v ∈ T(0,0)D, F′′(0,0) = F′′′(0,0) = 0, and
F(4)(0,0)(v)4 = 4!(v4

1− v4
2) > 0 for all v ∈ T(0,0)D, v , 0.

According to Theorem 3.14, the point (0,0) is a strict local minimum of F on D.

4 Flow Invariance via Tangent Cones

In this paper we provide conditions for a closed subset D ⊂ U of a Banach space X to be
flow-invariant with respect to the second order autonomous differential equation

u′′(t) = F(u(t)), t ≥ 0, (4.1)

where F : U→ X is a locally Lipschitz mapping on an open subset U of a Banach space X.
The invariant sets for the first order differential equations were studied by Brézis [4],

Crandall [14], Martin [20], Pavel and Iacob [26] and many other authors.
In [29], Pavel and Ursescu treated the problem of flow-invariance of a set with respect

to the above second order differential equation using the theory of tangent cones.

Theorem 4.1. (Definition 1.1, [22]) The nonempty set D ⊂ U is said to be (right-hand)
flow-invariant with respect to the second order differential equation (4.1) if the solution
u : [0,T )→ X to the Cauchy problem (4.1) determined by the initial conditions

u(0) = x,u′(0) = v, (4.2)

with x ∈ D, v ∈ TxD, F(x) ∈ T 2
x D having correspondent vector v, satisfies

u(t) ∈ D,∀ t ∈ [0,T ). (4.3)
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The constraints imposed to (x,v) are necessary conditions to have the invariance prop-
erty (4.3).

In [29], Pavel and Ursescu introduced the following set

MD = {(x,v) ∈ D×X : v1 ∈ TxD, F(x) ∈ T 2
x D whose associated vector is v}. (4.4)

The choice in (4.2) for the initial conditions was expresses in [22] by means of (4.4) as
follows

(u(0),u′(0)) = (x,v) ∈ MD.

This was justified by the following result of Pavel and Ursescu [29].

Proposition 4.2. (Theorem 2.2 i), [29]) If u : [0,T )→ X is a solution of (4.1) which satisfies
the invariance property (4.3), then one has

(u(t),u′(t)) ∈ MD,∀ t ∈ [0,T ). (4.5)

Pavel and Ursescu ([29], [22]) reduced the problem of invariant sets for (4.1) to a similar
problem for a first order differential equation, fact that allowed them to utilize a theorem
proved by Nagumo [23] and, independently, by Brézis (Theorem 1, [4]), in order to obtain
the following characterization of flow-invariant sets D ⊂U with respect to the second order
differential equation (4.1).

Theorem 4.3. (Theorem 2.4, [29]) Assume that MD is a nonempty closed subset of U ×X,
for a closed subset D of U. Then D ⊂U is a flow-invariant set with respect with the second
order differential equation (4.1) if and only if (v,F(x)) ∈ X2 is a tangent vector to MD for
all (x,v) ∈ MD, i.e.,

lim
t↓0

t−1d((x,v)+ t(v,F(x)); MD) = 0.

Pavel and Ursescu gave a description of the sets DG = {x ∈ U; G(x) = 0} that are flow-
invariant with respect to the second order differential equation u′′(t) = F(u(t)), t ≥ 0.

Theorem 4.4. (Theorem 2.6, [29]) Assume that G : U → Rs, s ≥ 1, is two times Fréchet
differentiable and its first Fréchet derivative G′(x) : X→ Rs is onto for each x ∈ DG. Then
MDG is given by

MDG = {(x,v) ∈ U ×X : G(x) = 0,G′(x)(v) = 0,G′′(x)(v)(v)+G′(x)(F(x)) = 0}. (4.6)

Suppose further that G is three times Fréchet differentiable on U, the function h : U →
Rs given by

h(x) =G′(x)(F(x)),∀ x ∈ U,

is Fréchet differentiable, MDG is nonempty and the mapping
(G′(x)(·),G′′(x)(v)(·)) : X→ Rs×Rs is onto for every (x,v) ∈ MDG .

Then DG is flow-invariant with respect to the differential equation u′′(t) = F(u(t)), t ≥ 0
if and only if

G′′′(x)(v)(v)(v)+2G′′(x)(v)(F(x))+h′(x)(v) = 0, ∀ (x,v) ∈ MDG . (4.7)
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Proof. Formula (4.6) follows directly from Pavel and Ursescu’s description of the sec-
ond order tangent cone, Theorem 2.7 (Corollary 3.2, [29]).

To prove the second part, we notice that, due to (4.6), the set MDG can be rewritten as

MDG = g−1(0),

where g : U ×X→ R3s is defined by

g(x,v) = (G(x),G′(x)(v),G′′(x)(v)(v)+G′(x)(F(x)),

for all (x,v) ∈ U ×X.
It can be easily seen that under the hypothesis of the theorem, g is Fréchet differentiable

and its Fréchet derivative is determined by the relation

g′(x,v)(u,y) = (G′(x)(u),G′′(x)(u)(v)+G′(x)(y),

G′′′(x)(u)(v)(v)+2G′′(x)(v)(y)+h′(x)(u)), ∀ (x,v) ∈ U ×X, ∀ (u,y) ∈ X×X.

We now show that g′(x,v) : X×X→ R3s is onto for each (x,v) ∈ MDG , i.e., the equation
g′(x,v)(u,y) = (z1,z2,z3) has a solution (u,y) ∈ X×X for any (z1,z2,z3) ∈ R3s. Since G′(x) is
onto, there is u ∈ X such that G′(x)(u) = z1. Then the element y ∈ X can be obtained using
the fact that the mapping (G′(x)(·),G′′(x)(v)(·)) : X→ Rs×Rs is onto.

Thus, T(x,v)MDG = g′(x,v)−1(0).
Finally, Theorem 4.3 (Theorem 1.10, [22]) completes the proof.

Note that if G : U → Rs is continuous, then DG = {x ∈ U; G(x) = 0} is closed in U.

Remark 4.5. The above result has been generalized by Constantin (Theorems 3 and 4, [10])
for the n-th order autonomous differential equation u(n)(t) = F(u(t)), t ≥ 0, n ≥ 3.

Remark 4.6. (Remark 5.1, [29]) Recall that a function F : U→ X can be regarded as a field
of force on U, in the sense that to each vector position x ∈ U is associated the vector force
F(x) ∈ X.

The notion

DG is a f low− invariant set f or the equation u′′(t) = F(u(t)), t ≥ 0 (4.8)

can be restated in terms of Flight Mechanics as follows

A mass particle projected f rom a point x ∈ DG with velocity v ∈ X such that (x,v) ∈ MDG

((given by (4.6)), describes (under the action of the f orce f ield F) an orbit which lies in DG.

(4.9)
Under the hypothesis of Theorem 4.4 upon G, (4.9) happens if and only if (4.7) holds.
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