S-Asymptotically ω -Periodic Functions and Applications to Evolution Equations

JOEL BLOT*

Centre PMF, Laboratoire SAMM EA 4543, Université Paris 1 - Panthéon-Sorbonne, 90 Rue de Tolbiac, 75634 Paris CEDEX 13, France

Philippe Cieutat[†]

Laboratoire de Mathématiques de Versailles, UMR-CNRS 8100, Université Versailles-Saint-Quentin-en-Yvelines, 45 avenue des États-Unis, 78035 Versailles CEDEX, France

GASTON M. N'GUÉRÉKATA[‡] Department of Mathematics, Morgan State University, 1700 East Cold Spring Lane Baltimore, MD 21251, USA

Abstract

In this paper, we first study further properties of S-asymptotically ω -periodic functions taking values in Banach spaces including a theorem of composition. Then we apply the results obtained to study the existence and uniqueness of S-asymptotically ω -periodic mild solutions to a nonautonomous semilinear differential equation.

AMS Subject Classification: 26A33, 34A12, 34K05, 49J20, 49K20.

Keywords: S-asymptotically ω -periodic functions, periodic evolutionary process.

1 introduction

The aim of this paper is two-fold. First to investigate in Section 3, further properties of S-asymptotically ω -periodic functions taking values in an infinite dimensional Banach space X, that is functions $f : \mathbb{R}^+ \to X$ which are bounded, continuous and such that

$$\lim_{t\to\infty}(f(t+\omega)-f(t))=0, \ \omega>0.$$

^{*}E-mail address: blot@univ-paris1.fr

[†]E-mail address: philippe.cieutat@uvsq.fr

[‡]E-mail address: N'Guerekata@morgan.edu

Then we apply the results obtained to study S-asymptotically ω -periodic mild solutions to the semilinear differential equation (Section 4)

$$\begin{cases} x'(t) = A(t)x(t) + F(t, x(t)) \text{ for } t \ge 0, \\ x(0) = x_0, \end{cases}$$
(1.1)

where $x_0 \in X$, and A(t) generates an exponentially stable ω -periodic evolutionary family in *X*.

The results obtained here complement and generalize some results in the papers [1, 2, 3, 4, 5, 6, 8, 9, 10].

2 Preliminaries and Notation

Let X be a Banach space. $BC(\mathbb{R}^+, X)$ denotes the space of the continuous bounded functions from \mathbb{R}^+ into X; endowed with the norm $||f||_{\infty} := \sup_{t\geq 0} ||f(t)||$, it is a Banach space. $C_0(\mathbb{R}^+, X)$ denotes the space of the continuous functions from \mathbb{R} into X such that $\lim_{t\to\infty} f(t) = 0$; it is a Banach subspace of $BC(\mathbb{R}^+, X)$. When we fix a positive number ω , $P_{\omega}(X)$ denotes the space of the continuous ω -periodic functions from \mathbb{R}^+ into X; it is a Banach subspace of $BC(\mathbb{R}^+, X)$.

When X and Y are two Banach spaces, $\mathcal{L}(X, Y)$ denotes the space of the continuous linear mappings from X into Y. When X = Y, $I \in \mathcal{L}(X)$ denotes the identity mapping.

Definition 2.1. Let $f : \mathbb{R} \to X$ be a continuous function. We say that f is almost periodic if

$$\forall \varepsilon > 0, \exists \ell > 0, \forall \alpha \in \mathbb{R}, \exists \tau \in [\alpha, \alpha + \ell], \qquad \sup_{t \in \mathbb{R}} \|f(t + \tau) - (t)\| \le \varepsilon.$$

We denote by AP(X) the set of all almost periodic functions from \mathbb{R} to *X*.

Definition 2.2. Let $f : \mathbb{R} \to X$ be a continuous function. We say that f is almost automorphic if for every sequence of real numbers $(s_n)_n$, there exists a subsequence $(t_n)_n$ such that for all $t \in \mathbb{R}$

$$\lim_{m \to \infty} \lim_{n \to \infty} f(t + t_n - t_m) = f(t).$$

We denote by AA(X) the set of all almost automorphic functions from \mathbb{R} to *X*. Recall that $AP(X) \subset AA(X)$.

Definition 2.3. Let $f \in BC(\mathbb{R}^+, X)$. We say that f is asymptotically almost periodic if f = g + h where $g \in AP(X)$ and $h \in C_0(\mathbb{R}^+, X)$.

Definition 2.4. Let $f \in BC(\mathbb{R}^+, X)$. We say that f is asymptotically almost automorphic if f = g + h where $g \in AA(X)$ and $h \in C_0(\mathbb{R}^+, X)$.

It is obvious that an asymptotically almost periodic function is asymptotically almost automorphic.

3 S-Asymptotically ω -Periodic Functions

Definition 3.1. A function $f \in BC(\mathbb{R}^+, X)$ is called S-asymptotically ω -periodic if there exists $\omega > 0$ such that $\lim_{t\to\infty} (f(t+\omega) - f(t)) = 0$. In this case we say that ω is an asymptotic period of f and that f is S-asymptotically ω -periodic.

We will denote by $SAP_{\omega}(X)$, the set of all S-asymptotically ω -periodic functions from \mathbb{R}^+ to *X*.

Remark 3.2. If ω is an asymptotic period of f, then $n\omega$ is also an asymptotic period of f for every n = 1, 2, ...

Proof. The proof is easy by using the principle of mathematical induction.

The following result is due to Henriquez-Pierri-Táboas; Proposition 3.5 in [3].

Theorem 3.3. Endowed with the norm $\|\cdot\|_{\infty}$, $SAP_{\omega}(X)$ is a Banach space.

Remark 3.4. We give a very short proof of this result. We consider the translation operator $\tau_{\omega} : BC(\mathbb{R}^+, X) \to BC(\mathbb{R}^+, X)$ defined by $\tau_{\omega}f := [t \mapsto f(t+\omega)]$. τ_{ω} is clearly linear and it is continuous since $[\omega, \infty) \subset \mathbb{R}^+$. We note that $SAP_{\omega}(X) = (\tau_{\omega} - I)^{-1}(C_0(\mathbb{R}^+, X))$. And then, since $(\tau_{\omega} - I)$ is linear continuous and since $C_0(\mathbb{R}^+, X)$ is a closed vector subspace of $BC(\mathbb{R}^+, X)$, $SAP_{\omega}(X)$ is a closed vector subspace of the Banach space $BC(\mathbb{R}^+, X)$.

Now we recall another notion which is related to the S-asymptotically ω -periodicity.

Definition 3.5. Let $f \in BC(\mathbb{R}^+, X)$ and $\omega > 0$. We say that f is asymptotically ω -periodic if f = g + h where $f \in P_{\omega}(X)$ and $h \in C_0(\mathbb{R}^+, X)$.

Denote by $AP_{\omega}(X)$ the set of all ω -periodic functions. Then we have

$$AP_{\omega}(X) \subset SAP_{\omega}(X).$$

The inclusion is strict. Indeed consider the function $f : \mathbb{R}^+ \to c_0$ where $c_0 = \{x = (x_n)_{n \in \mathbb{N}} : \lim_{n \to \infty} x_n = 0\}$ equipped with the norm $||x|| = \sup_{n \in \mathbb{N}} |x(n)|$, and $f(t) = (2nt/(t^2 + n^2)_{n \in \mathbb{N}})$. Then $f \in SAP_{\omega}(X)$ but $f \notin AP_{\omega}(X)$ (cf. [3] Example 3.1).

The following extends ([3], Proposition 3.4) to the asymptotically almost automorphic case.

Proposition 3.6. Let f be a S-asymptotically ω -periodic function. If f is asymptotically almost automorphic, then f is asymptotically ω -periodic. In particular case if f asymptotically almost periodic, then f is asymptotically ω -periodic.

Proof. Let *f* be a S-asymptotically ω -periodic and an asymptotically almost automorphic function. We can decompose *f* as $f = g + \phi$ where *g* is almost automorphic and $\phi \in C_0(\mathbb{R}^+, X)$. It suffices to prove that $g \in P_{\omega}(X)$. From $C_0(\mathbb{R}^+, X) \subset SAP_{\omega}(X)$, it follows that $g = f - \phi \in SAP_{\omega}(X)$, thus

$$\lim_{t \to \infty} g(t+\omega) - g(t) = 0.$$
(3.1)

Consider the sequence $(k)_k$. Since g is almost automorphic, we can extract a subsequence $(k_n)_n$ such that for all $t \in \mathbb{R}$

$$\lim_{m \to \infty} \lim_{n \to \infty} g(t + \omega + k_n - k_m) - g(t + k_n - k_m) = g(t + \omega) - g(t).$$
(3.2)

From (3.1) and $\lim_{n \to \infty} k_n - k_m = \infty$, it follows

$$\lim_{n \to \infty} g(t + \omega + k_n - k_m) - g(t + k_n - k_m) = 0, \forall t \in \mathbb{R}^+,$$

and from (3.2), we obtain $g(t+\omega) - g(t) = 0$ for all $t \in \mathbb{R}^+$. This implies that $g(t+\omega) - g(t) = 0$ for all $t \in \mathbb{R}$ (cf. [7] Theorem 2.1.8), thus $g \in P_{\omega}(X)$. This ends the proof.

Theorem 3.7. Let $\phi : X \to Y$ be a function which is uniformly continuous on the bounded subsets of X and such that ϕ maps bounded subsets of X into bounded subsets of Y. Then for all $f \in SAP_{\omega}(X)$, the composition $\phi \circ f := [t \to \phi(f(t))] \in SAP_{\omega}(X)$.

Proof. Since the range of *f* is bounded, it follows that $\phi(f(\cdot))$ is bounded. Let $\epsilon > 0$ be given. Then there exists $\delta > 0$ such that $||\phi(x) - \phi(y)|| < \epsilon$ for all $x, y \in f(\mathbb{R}^+)$ with $||x - y|| < \delta$. Now we can find we can find $T = T(\delta) > 0$ such that $||f(t+\omega) - f(t)|| < \delta$ for all t > T. Thus $||\phi(f(t+\omega)) - \phi(f(t))|| < \epsilon$ if t > T, which completes the proof.

An example of such a function which satisfies the assumptions of Theorem 3.7 is a bilinear continuous function $B: X := U \times V \to Y$, where U and V are Banach spaces. From the inequality $||B(u,v)|| \le c||u||||v||$, where $c \in (0, \infty)$, it is easy to see that B maps bounded subsets into bounded subsets. If M is a bounded subset of $U \times V$, there exists $c_1 \in (0, \infty)$ such that $||u|| \le c_1$ and $||v|| \le c_1$ for all $(u, v) \in M$. Then when $(u, v), (u_1, v_1) \in M$, we obtain $||B(u,v) - B(u_1,v_1)|| \le c.c_1.(||u-u_1|| + ||v-v_1||) + c.||u-u_1||.||v-v_1||$, and so B is Lipschitzian on M and therefore it is uniformly continuous on M. Note that it is well-known that B is not uniformly continuous on $U \times V$. And so we obtain the following corollary.

Corollary 3.8. Let X, Y and Z be three Banach spaces, and let $B : X \times Y \to Z$ be a bilinear continuous mapping. Then, when $f \in SAP_{\omega}(X)$ and $g \in SAP_{\omega}(Y)$, we have $B \circ (f,g) := [t \mapsto B(f(t), g(t))] \in SAP_{\omega}(Z)$.

Proof. Note that the function $(f,g) := [t \mapsto (f(t),g(t))] \in SAP_{\omega}(X \times Y)$ since, by using the topology-product we have $\lim_{t\to\infty} (f(t+\omega),g(t+\omega)) - (f(t),g(t)) = (\lim_{t\to\infty} (f(t+\omega) - f(t)), \lim_{t\to\infty} (g(t+\omega) - g(t)) = (0,0)$. And so we conclude by using Theorem 3.7 and the previous comments.

For instance, if X^* is the topological dual space of a Banach space X, and if $\langle \cdot, \cdot \rangle$ denotes the duality bracket between X and X^* , when $f \in SAP_{\omega}(X)$ and when $f_* \in SAP_{\omega}(X^*)$, the function $\langle f_*, f \rangle := [t \mapsto \langle f_*(t), f(t) \rangle]$ belongs to $SAP_{\omega}(\mathbb{R})$. And in the special case $X = \mathbb{R}$ we obtain the following result.

Remark 3.9. $SAP_{\omega}(\mathbb{R})$ is a Banach algebra.

Since a linear continuous mapping $A \in \mathcal{L}(X, Y)$ is Lipschitzian, it satisfies the assumptions of Theorem 3.7, and consequently we obtain the following corollary.

Corollary 3.10. Let X and Y be two Banach spaces, and let $A \in \mathcal{L}(X, Y)$. Then when $f \in SAP_{\omega}(X)$, we have $Af := [t \to Af(t)] \in SAP_{\omega}(Y)$.

Remark 3.11. For a fixed $\omega > 0$, the bounded linear operator $\tau_{\omega} - I$, where *I* is the identity operator is not bijective since $Ker(\tau_{\omega} - I) = P_{\omega}(X)$ which is nonzero, however for $0 < \epsilon < 1$ the operator $(1 - \epsilon)\tau_{\omega} - I$ is bijective, since $(1 - \epsilon)\tau_{\omega}$ is a bounded linear operator with $||(1 - \epsilon)\tau_{\omega}|| < 1$. For this reason, if we consider

$$E_{\omega}^{\epsilon} := \{ f \in BC(\mathbb{R}^+; X) : \lim_{t \to \infty} ((1 - \epsilon)f(t + \omega) - f(t)) = 0 \},\$$

then we have

$$\bigcap_{\epsilon > 0} E_{\omega}^{\epsilon} \subset SAP_{\omega}(X)$$

Proof. Let $\epsilon > 0$ be given and take $f \in E_{\omega}^{\epsilon}$. Then

$$\begin{split} \|f(t+\omega) - f(t)\| &\leq \|(1-\epsilon)f(t+\omega) - f(t)\| + \epsilon \|f(t+\omega)\| \\ &\leq \|(1-\epsilon)f(t+\omega) - f(t)\| + \epsilon \|f\|_{\infty}. \end{split}$$

Thus

$$\forall \epsilon > 0, \qquad \limsup_{t \to \infty} \|f(t + \omega) - f(t)\| \le \epsilon \|f\|_{\infty},$$

therefore

$$\lim_{t \to \infty} \|f(t+\omega) - f(t)\| = 0.$$

This completes the proof.

For the sequel we consider asymptotically ω -periodic functions with parameters.

Definition 3.12. [3] A continuous function $f : [0, \infty) \times X \to X$ is said to be uniformly S-asymptotically ω -periodic on bounded sets if for every bounded set $K \subset X$, the set $\{f(t, x) : t \ge 0, x \in K\}$ is bounded and $\lim_{t\to\infty} (f(t, x) - f(t + \omega, x)) = 0$ uniformly on $x \in K$.

Definition 3.13. [3] A continuous function $f : [0, \infty) \times X \to X$ is said to be asymptotically uniformly continuous on bounded sets if for every $\epsilon > 0$ and every bounded set $K \subset X$, there exist $L_{\epsilon,K} \ge 0$ and $\delta_{\epsilon,K} > 0$ such that $||f(t,x) - f(t,y)|| < \epsilon$ for all $t \ge L_{\epsilon,K}$ and all $x, y \in K$ with $||x-y|| < \delta_{\epsilon,K}$.

Theorem 3.14. [3] Let $f : [0, \infty) \times X \to X$ be a function which is uniformly S-asymptotically ω -periodic on bounded sets and asymptotically uniformly continuous on bounded sets. Let $u : [0, \infty)$ be an S-asymptotically ω -periodic function. Then the Nemytskii function $\phi(\cdot) := f(\cdot, u(\cdot))$ is S-asymptotically ω -periodic.

4 Applications to Abstract Differential Equations

Now we consider the linear problem:

$$\begin{cases} x'(t) = A(t)x(t) + f(t) \text{ for } t \ge 0, \\ x(0) = x_0, \end{cases}$$
(4.1)

where $x_0 \in X$, $f \in BC(\mathbb{R}^+, X)$ and A(t) generates a ω -periodic ($\omega > 0$) exponentially stable evolutionary process $(U(t, s))_{t \ge s}$ in X, that is, a two-parameter family of bounded linear operators that satisfies the following conditions:

- 1. U(t,t) = I for all $t \in \mathbb{R}$,
- 2. U(t,s)U(s,r) = U(t,r) for all $t \ge s \ge r$,
- 3. The map $(t, s) \mapsto U(t, s)x$ is continuous for every fixed $x \in X$,
- 4. $U(t + \omega, s + \omega) = U(t, s)$ for all $t \ge s$ (ω -periodicity),
- 5. There exist K > 0 and a > 0 such that $||U(t, s)|| \le Ke^{-a(t-s)}$ for $t \ge s$.

Definition 4.1. A continuous function $x : \mathbb{R}^+ \to X$ is called mild solution of (4.1) if

$$x(t) = U(t,0)x_0 + \int_0^t U(t,s)f(s)\,ds, \quad \text{for } t \ge 0.$$
(4.2)

Lemma 4.2. Let $f \in SAP_{\omega}(X)$ and $(U(t, s))_{t \ge s}$ an ω -periodic exponentially stable evolutionary process. Then the function

$$u(t) := \int_0^t U(t,s)f(s)ds$$

is also in $SAP_{\omega}(X)$.

Proof. For $t \ge 0$, one has

$$u(t+\omega) - u(t) = \int_0^{t+\omega} U(t+\omega,s)f(s)\,ds - \int_0^t U(t,s)f(s)\,ds$$
$$= \int_0^\omega U(t+\omega,s)f(s)\,ds + \int_\omega^{t+\omega} U(t+\omega,s)f(s)\,ds - \int_0^t U(t,s)f(s)\,ds$$
$$= I_1(t) + I_2(t)$$

where

$$I_1(t) = \int_0^\omega U(t+\omega,s)f(s)\,ds$$

and

$$I_2(t) = \int_{\omega}^{t+\omega} U(t+\omega,s)f(s)\,ds - \int_0^t U(t,s)f(s)\,ds.$$

Remark that

$$I_1(t) = U(t+\omega,\omega) \int_0^\omega U(\omega,s)f(s)\,ds = U(t+\omega,\omega)u(\omega)$$

and by using the fact $(U(t, s))_{t \ge s}$ is exponentially stable, we obtain

$$||I_1(t)|| \le Ke^{-at} ||u(\omega)||,$$

which shows that $\lim_{t\to\infty} I_1(t) = 0$. Now since $f \in SAP_{\omega}(X)$, we can find *T* sufficiently large such that

$$||f(t+\omega) - f(t)|| < \epsilon, \quad \text{ for } t > T.$$

Let's write

$$I_2(t) = \int_0^t \left(U(t+\omega, s+\omega)f(s+\omega) - U(t,s)f(s) \right) ds$$

and since the evolution family is ω -periodic, we obtain

$$I_2(t) = \int_0^t U(t,s) \left(f(s+\omega) - f(s) \right) ds.$$

Thus we get

$$\begin{split} \|I_{2}(t)\| &\leq \int_{0}^{T} \|U(t,s)\| \|f(s+\omega) - f(s)\| \, ds + \int_{T}^{t} \|U(t,s)\| \|f(s+\omega) - f(s)\| \, ds \\ &\leq 2 \|f\|_{\infty} \int_{0}^{T} \|U(t,s)\| \, ds + \epsilon \int_{T}^{t} \|U(t,s)\| \, ds \\ &\leq 2K \|f\|_{\infty} \int_{0}^{T} e^{-a(t-s)} \, ds + \epsilon K \int_{T}^{t} e^{-a(t-s)} \, ds \\ &\leq \frac{2K \|f\|_{\infty}}{a} (e^{-a(t-T)} - e^{-at}) + \frac{\epsilon K}{a}. \end{split}$$

Thus $\lim_{t\to\infty} I_2(t) = 0$, this proves that $u \in SAP_{\omega}$.

Theorem 4.3. Let $f \in SAP_{\omega}(X)$ and $(U(t, s))_{t \geq s}$ an ω -periodic exponentially stable evolutionary process, then every mild solution of Eq.(4.1) is in $SAP_{\omega}(X)$.

Proof. Since A(t) generates a ω -periodic exponentially stable evolutionary process, then Eq.(4.1) has a mild solution x defined by (4.2). It remains to prove that it is in $SAP_{\omega}(X)$. This is immediate by using Lemma 4.2 and the fact that the two-parameter family is exponentially stable, thus $\lim_{t\to\infty} ||U(t,0)x_0|| = 0$, since $C_0(\mathbb{R}^+, X) \subset SAP_{\omega}(X)$, we deduce that $\lim \|U(t+\omega,0)x_0 - U(t,0)x_0\| = 0.$

Example 4.4. Consider the equation

$$x'(t) = a(t)x(t) + f(t), \ t \ge 0$$
(4.3)

where $f \in SAP_{\omega}(\mathbb{R})$ and $a \in P_{\omega}(\mathbb{R})$. We also assume that $\int_{0}^{\omega} a(t) dt < 0$. Then $U(t, s) := \exp(\int_{s}^{t} a(\sigma) d\sigma)$ is an ω -periodic exponentially stable evolutionary process, therefore the solution with initial data $x(0) = x_0$:

$$x(t) = \exp(\int_0^t a(\sigma) d\sigma) x_0 + \int_0^t \left(\exp(\int_s^t a(\sigma)) d\sigma\right) f(s) ds$$

is also in $SAP_{\omega}(\mathbb{R})$.

Now we consider semilinear problem

$$\begin{cases} x'(t) = A(t)x(t) + F(t, x(t)) \text{ for } t \ge 0, \\ x(0) = x_0, \end{cases}$$
(4.4)

where $x_0 \in X$.

We make the following assumptions.

H₁ A(t) generates a ω -periodic ($\omega > 0$) exponentially stable evolutionary process in X.

 $H_2 F$ is uniformly S-asymptotically ω -periodic on bounded sets.

H₃ F satisfies a Lipschitz condition in second variable uniformly with respect to the first variable, i.e. there exists L > 0 such that

$$||F(t,x) - F(t,y)|| \le L||x - y||, x, y \in X, t \ge 0.$$

Theorem 4.5. Under $\mathbf{H_1} - \mathbf{H_3}$, Eq.(4.4) possesses a unique mild solution in $SAP_{\omega}(X)$ if $L < \frac{a}{\kappa}$.

Proof. Consider the mapping Γ defined on $SAP_{\omega}(X)$ by

$$\Gamma u(t) := U(t,0)x_0 + \int_0^t U(t,s)F(s,u(s))ds$$

 Γ is well-defined by the above results. Now let $u, v \in SAP_{\omega}(X)$. Then we have

$$\|\Gamma u(t) - \Gamma v(t)\| = \int_0^t \|U(t,s)\|_{\mathcal{L}(X,X)} \|F(s,u(s)) - F(s,v(s))\| ds$$
$$\leq L \|u - v\|_{\infty} \int_0^t K e^{-a(t-s)} ds,$$

thus

$$\|\Gamma u - \Gamma v\|_{\infty} \le \frac{LK}{a} \|u - v\|_{\infty} \text{ with } \frac{LK}{a} < 1.$$

The results follows in virtue of the contraction mapping principle.

Remark 4.6. Theorem 4.5 contains the case of semilinear equations where the linear part is the infinitesimal generator of a semigroup which is exponentially stable. Consider the following equation:

$$\begin{cases} x'(t) = Ax(t) + F(t, x(t)) \text{ for } t \ge 0, \\ x(0) = x_0, \end{cases}$$
(4.5)

where $x_0 \in X$ and $A : D(A) \to X$ is the infinitesimal generator of a semigroup $(S(t))_{t\geq 0}$. If the semigroup is exponentially stable: $||S(t)|| \le Ke^{-at}$ for all $t \ge 0$ and F satisfies Under **H**₂ and **H**₃, Eq.(4.5) possesses a unique mild solution in $SAP_{\omega}(X)$ if $L < \frac{a}{K}$.

This last result is a corollary of Theorem 4.5 by setting U(t, s) = T(t - s) for $t \ge s$.

Acknowledgment. This work was done while the third author was visiting the Université Paris 1 Panthéon-Sorbonne in November 2010. He would like to thank Professor Joël Blot for the invitation.

References

- H. Gao, K. Wang, F. Wei, X. Ding, Massera-type theorem and asymptotically periodic logistic equations, Nonlinear Analysis, R.W.A., 7 (2006), 1268-1283.
- [2] R. C. Grimmer, Asymptotically almost periodic solutions of differential equations, SIAM J. Appl. Math. 17 (1969), 109-115.
- [3] H. R. Henríquez, M. Pierri, P. Táboas, On S-asymptotically ω-periodic functions on Banach spaces and applications, J. Math. Anal. Appl. 343 (2008), 1119-1130.
- [4] H. R. Henríquez, M. Pierri, P. Táboas, Existence of S-asymptotically ω-periodic solutions for abstract neutral equations, Bull. Austr. Math. Soc. 78 (2008), 365-382.
- [5] Z. C. Liang, Asymptotically periodic solutions of a class of second order nonlinear differential equations, Proc. Amer. Math. Soc., 99 (4), (1987), 693-699.
- [6] C. Lizama, G. M. N'Guérékata, Bounded mild solutions for semilinear integro differential equations in Banach spaces, Integral Equations and Operator Theory, 68 (2010), 207-227.
- [7] G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic, New York, London, Moscow, 2001.
- [8] S. Nicola, M. Pierri, A note on S-asymptotically periodic functions, Nonlinear Analysis, R.W.A., 10 (2009), 2937-2938.
- [9] W. R. Utz, P. Waltman, Asymptotic almost periodicity of solutions of a system of differential equations, Proc. Amer. Math. Soc., 18 (1967), 597-601.
- [10] J. S. Wong, T. A. Burton, Some properties of solutions of u''(t) + a(t)f(u)g(u') = 0, II, Monatsh. Math. **69** (1965), 368-374.