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Abstract

This paper is concerned with positive almost automorphic solutions to a class of
nonlinear infinite delay integral equation. By using a fixed point theorem in partially
ordered Banach spaces, we establish an existence theorem about positive almost auto-
morphic solutions to the addressed integral equation. Our theorem extend some earlier
results to a more general class of integral equations.

AMS Subject Classification: 45G10, 34K14.

Keywords: almost automorphic; integral equation; positive solution.

1 Introduction

The aim of this paper is to study the existence of positive almost automorphic solutions to
the following nonlinear infinite delay integral equation

x(t) =
∫ t

−∞

a(t, t− s) f (s, x(s))ds+h(t, x(t)), t ∈ R, (1.1)

where a, f ,h satisfy some conditions recalled in Section 3.
In [12], A. M. Fink and J. A. Gatica initiated the study on the existence of positive

almost periodic solution to a kind of model for the spread of some infectious disease, i.e.,
the following delay integral equation.

x(t) =
∫ t

t−τ
f (s, x(s))ds. (1.2)

Since then, the existence of positive almost periodic type solutions and positive almost
automorphic type solutions to equation (1.2) and its variants is extensively studied. Many
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authors including E. Ait Dads, P. Cieutat, H. S. Ding, K. Ezzinbi, M. A. Hachimi, J. Liang,
L. Lhachimi, G. M. N’Guérékata, R. Torrejón, T. J. Xiao et al. have made contributions
on this topic. We refer to reader to [1–4, 6–8, 10, 11, 15] and references therein for some
recent developments.

Stimulated by the above works, in this paper, we will make further study on this topic,
and extend the results in [3, 6–8] to a more general class of integral equation (1.1).

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers, by R the set of real
numbers, by R+ the set of nonnegative real numbers, and by Ω a subset of R. First, let’s
recall some definitions, notations and basic results for almost automorphic functions.

Definition 2.1. Let X be a Banach space. A continuous function f : R→ X is called almost
automorphic if for every real sequence (sm), there exists a subsequence (sn) such that

g(t) = lim
n→∞

f (t+ sn)

is well defined for each t ∈ R and

lim
n→∞

g(t− sn) = f (t)

for each t ∈ R. Denote by AA(X) the set of all such functions.

Remark 2.2. For more details about almost automorphic functions, we refer the reader to
N’Guérékata’s book [14]. In addition, it is worth to note that the notion of pseudo almost
automorphic functions, which is an important and interesting generalization of almost au-
tomorphic functions, was introduced recently in [13, 16].

Definition 2.3. A continuous function f : R×Ω → R is called almost automorphic in t
uniformly for x in compact subsets of Ω if for every compact subset K of Ω and every real
sequence (sm), there exists a subsequence (sn) such that

g(t, x) = lim
n→∞

f (t+ sn, x)

is well defined for each t ∈ R, x ∈ K and

lim
n→∞

g(t− sn, x) = f (t, x)

for each t ∈ R, x ∈ K. Denote by AA(R×Ω,R) the set of all such functions.

Lemma 2.4. Assume that f , g ∈ AA(R). Then the following hold true:

(a) The range R f = { f (t) : t ∈ R} is precompact in R, and so f is bounded.

(b) f +g, f ·g ∈ AA(R).
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(c) Equipped with the sup norm
‖ f ‖ = sup

t∈R
| f (t)|,

AA(R) turns out to be a Banach space.

Proof. see [14, §2.1]. �

Lemma 2.5. [5, Lemma 2.2] Assume that x ∈ AA(R), K = {x(t), t ∈ R}, f ∈ AA(R×K,R),
and { f (t, ·)}t∈R are equi-continuous at every x ∈ K. Then f (·, x(·)) ∈ AA(R).

Lemma 2.6. [3, Lemma 4.4] Let f ∈ AA(R) and a : R×R+ → R+ be a function such that
t 7→ a(t, ·) is in AA(L1(R+)). Then F ∈ AA(R), where

F(t) =
∫ t

−∞

a(t, t− s) f (s)ds, t ∈ R.

Next, let us recall a fixed point theorem in partially ordered Banach spaces. Let X be
a real Banach space. A closed convex set P in X is called a convex cone if the following
conditions are satisfied:

(i) if x ∈ P, then λx ∈ P for any λ ≥ 0;

(ii) if x ∈ P and −x ∈ P, then x = 0.

A cone P induces a partial ordering ≤ in X by

x ≤ y if and only if y− x ∈ P.

For any given u,v ∈ P,
[u,v] := {x ∈ X|u ≤ x ≤ v}.

A cone P is called normal if there exists a constant k > 0 such that

0 ≤ x ≤ y implies that ‖x‖ ≤ k‖y‖,

where ‖ · ‖ is the norm on X. We denote by Po the interior of P. A cone P is called a solid
cone if Po , ∅.

The following theorem will be used in Section 3:

Theorem 2.7. [9, Theorem 2.1] Let P be a normal and solid cone in a real Banach space
X. Suppose that the operator A : Po×Po×Po→ Po satisfies

(S1) for each x,y,z ∈ Po, A(·,y,z) is increasing, A(x, ·,z) is decreasing, and A(x,y, ·) is
decreasing;

(S2) there exists a function φ : (0,1)×Po×Po→ (0,+∞) such that for each x,y,z ∈ Po and
t ∈ (0,1), φ(t, x,y) > t and

A(tx, t−1y,z) ≥ φ(t, x,y)A(x,y,z);
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(S3) there exist x0,y0 ∈ Po such that x0 ≤ y0, x0 ≤ A(x0,y0, x0), A(y0, x0,y0) ≤ y0 and

inf
x,y∈[x0,y0]

φ(t, x,y) > t, ∀t ∈ (0,1);

(S4) there exists a constant L > 0 such that for all x,y,z1,z2 ∈ Po with z1 ≥ z2,

A(x,y,z1)−A(x,y,z2) ≥ −L · (z1− z2).

Then A has a unique fixed point x∗ in [x0,y0], i.e., A(x∗, x∗, x∗) = x∗.

3 Main results

For convenience, we first list some assumptions:

(H1) The function f in (1.1) admits the following decomposition:

f (t, x) =
n∑

i=1

fi(t, x)gi(t, x), t ∈ R, x ∈ R+ (3.1)

for some n ∈ N.

(H2) fi,gi,h ∈ AA(R×R+,R) (i = 1,2, ...,n) are all nonnegative functions satisfying that for
each t ∈ R and i ∈ {1,2, . . . ,n}, fi(t, ·) is increasing in R+, gi(t, ·) is decreasing in R+,
and h(t, ·) is decreasing in R+. In addition, there exists a constant L > 0 such that

h(t,z1)−h(t,z2) ≥ −L(z1− z2), ∀t ∈ R, ∀z1 ≥ z2 ≥ 0. (3.2)

(H3) There exist ϕi,ψi : (0,1)× (0,+∞)→ (0,1] such that ϕi(λ, x) > λ, ψi(λ,y) > λ and

fi(t,λx) ≥ ϕi(λ, x) fi(t, x), gi(t,λ−1y) ≥ ψi(λ,y)gi(t,y),

for all x,y > 0, λ ∈ (0,1), t ∈R and i ∈ {1,2, . . . ,n}; moreover, for all a,b ∈ (0,+∞) with
a ≤ b,

inf
x,y∈[a,b]

ϕi(λ, x)ψi(λ,y) > λ, λ ∈ (0,1), i = 1,2, . . . ,n.

(H4) a : R×R+→ R+ is a function satisfying that t 7→ a(t, ·) is in AA(L1(R+)).

(H5) There exist constants d ≥ c > 0 such that

inf
t∈R

∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s,c)gi(s,d)ds ≥ c.

and

sup
t∈R

∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s,d)gi(s,c)ds+h(t,d)

 ≤ d.

Now, let us establish our existence result.
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Theorem 3.1. Assume that (H1)-(H5) hold. Then equation (1.1) has a unique almost au-
tomnrophic solution with positive infimum.

Proof. Let
P = {x ∈ AA(R) : x(t) ≥ 0,∀t ∈ R}.

It is not difficult to verify that P is a normal and solid cone in AA(R) and

Po = {x ∈ AA(R) : ∃ε > 0 such that x(t) ≥ ε, ∀t ∈ R}.

We define a nonlinear operator A on Po×Po×Po by

A(x,y,z)(t) =
∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s, x(s))gi(s,y(s))ds+h(t,z(t)), t ∈ R.

We first show that A is an operator from Po×Po×Po to Po. Let x,y,z ∈ Po. Then x,y,z ∈
AA(R). By a similar proof to [3, Lemma 3.3], one can prove that for each i ∈ {1,2, ...,n} and
each [a,b] ⊂ (0,+∞), there exists L ≥ 0 such that

| fi(t,u)− fi(t,v)| ≤ L|u− v|, ∀t ∈ R, ∀u,v ∈ [a,b].

Thus, { fi(t, ·)}t∈R are equi-continuous at each x > 0. Then, by Lemma 2.5, we know that

fi(·, x(·)) ∈ AA(R), i = 1,2, ...,n.

By using a similar idea to the above proof, we can also get

gi(·,y(·)) ∈ AA(R), i = 1,2, ...,n.

In addition, by (H2), we can deduce that

|h(t,z1)−h(t,z2)| ≤ L|z1− z2|, ∀t ∈ R, ∀z1,z2 ≥ 0.

Then, also by Lemma 2.5, we get h(·,z(·)) ∈ AA(R). Now, combing (H4), Lemma 2.6 and (b)
of Lemma 2.4, we conclude that A(x,y,z) ∈ AA(R). On the other hand, there exist ε,M > 0
such that x(t) ≥ ε and y(t) ≤ M for all t ∈ R. Let

ε′ =min
{ c

2
, ε

}
, M′ =max {d+1,M} .

Then, x(t) ≥ ε′, y(t) ≤ M′ for all t ∈ R. Moreover, ε′ < c and M′ > d. Now, by (H2), (H3)
and (H5), we have

A(x,y,z)(t) =
∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s, x(s))gi(s,y(s))ds+h(t,z(t))

≥

∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s, ε′)gi(s,M′)ds

=

∫ t

−∞

a(t, t− s)
n∑

i=1

fi

(
s,
ε′

c
· c

)
gi

(
s,

M′

d
·d

)
ds
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≥

∫ t

−∞

a(t, t− s)
n∑

i=1

ϕi

(
ε′

c
,c

)
fi(s,c)ψi

(
d

M′
,d

)
gi(s,d)ds

≥
dε′

cM′

∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s,c)gi(s,d)ds

≥
dε′

cM′
· c =

dε′

M′
> 0, ∀t ∈ R.

Next, let us verify that the assumptions (S1)-(S4) of Theorem 2.7 hold. It is not difficult
to see from (H2) that (S1) and (S4) hold.

Let x,y ∈ Po and λ ∈ (0,1). Let

a(x,y) =min{inf
t∈R

x(t), inf
t∈R

y(t)}, b(x,y) =max{sup
t∈R

x(t),sup
t∈R

y(t)}.

Then 0 < a(x,y) ≤ b(x,y) < +∞ and x(t),y(t) ∈ [a(x,y),b(x,y)] for all t ∈ R. Define

φi(λ, x,y) = inf
u,v∈[a(x,y),b(x,y)]

ϕi(λ,u)ψi(λ,v), i = 1,2, . . . ,n

and
φ(λ, x,y) = min

i=1,2,...,n
φi(λ, x,y).

By (H3), it is easy to see that φi(λ, x,y) > λ, i = 1,2, . . . ,n, for each x,y ∈ Po and λ ∈ (0,1),
which gives that φ(λ, x,y) > λ for each x,y ∈ Po and λ ∈ (0,1). Now, We deduce by (H3) that

A(λx,λ−1y,z)(t)−h(t,z(t)) =
∫ t

−∞

a(t, t− s)
n∑

i=1

fi[s,λx(s)]gi[s,λ−1y(s)]ds

≥

∫ t

−∞

a(t, t− s)
n∑

i=1

φi(λ, x,y) fi[s, x(s)]gi[s,y(s)]ds

≥ φ(λ, x,y)
∫ t

−∞

a(t, t− s)
n∑

i=1

fi[s, x(s)]gi[s,y(s)]ds

= φ(λ, x,y)[A(x,y,z)(t)−h(t,z(t))]

≥ φ(λ, x,y)A(x,y,z)(t)−h(t,z(t)),

for all x,y,z ∈ Po, λ ∈ (0,1) and t ∈ R, which yields that

A(λx,λ−1y,z) ≥ φ(λ, x,y)A(x,y,z), ∀x,y,z ∈ Po, ∀λ ∈ (0,1),

i.e., (S2) holds.
It remains to show that (S3) holds. It follows from (H5) that

A(c,d,c) ≥ c, A(d,c,d) ≤ d.

In addition, we have

inf
x,y∈[c,d]

φ(λ, x,y) = min
i=1,...,n

inf
x,y∈[c,d]

φi(λ, x,y)
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= min
i=1,...,n

φi(λ,c,d)

= φ(λ,c,d) > λ,

for all λ ∈ (0,1).
Now Theorem 2.7 yields that A has a unique fixed point x∗ in [c,d], which is just an

almost automorphic solution with a positive infimum to Eq. (1.1).
Next, let us show that x∗ is the unique almost automorphic solution with a positive

infimum to Eq. (1.1), i.e., x∗ is the unique fixed point of A in Po. Let y∗ ∈ Po be a fixed
point of A. Then, there exists α ∈ (0,1) such that αc ≤ x∗,y∗ ≤ α−1d. Denote c′ = αc and
d′ = α−1d. It is not difficult to see that

A(c′,d′,c′) ≥ c′, A(d′,c′,d′) ≤ d′, inf
x,y∈[c′,d′]

φ(λ, x,y) > λ, ∀λ ∈ (0,1).

Then, by the above proof, one can conclude that A has a unique fixed point in [c′,d′], which
means that x∗ = y∗. This completes the proof. �

Next, we present two examples to illustrate our main results.

Example 3.2. Let n = 1,

f1(t, x) =
1+ |cos 1

2+sin t+sinπt |

2

√
x2+ x,

and

g1(t, x) ≡ 1, h(t, x) =
sin2 t
1+ x

, a(t, s) ≡
1

2(1+ s2)
.

By some direct calculations, one can verify that (H1)-(H4) hold. (H5) follows from

inf
t∈R

∫ t

−∞

a(t, t− s)
n∑

i=1

fi

(
s,

1
15

)
gi(s,100)ds ≥

π
√

1
225 +

1
15

8
≥

1
15

and

sup
t∈R

∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s,100)gi

(
s,

1
15

)
ds+h(t,100)

 ≤ π4 √10100+
1

101
≤ 100.

Thus, Theorem 3.1 yields that the following equation

x(t) =
∫ t

−∞

1+ |cos 1
2+sin s+sinπs |

4[1+ (t− s)2]

√
x2(s)+ x(s)ds+

sin2 t
1+ x(t)

has a unique almost automorphic solution with positive infimum.

Example 3.3. Consider the following equation:

x(t) =
∫ t

t−1−|sin t|

b(s)
√

ln(x(s)+1)
√

x(s)+1
ds+ (1+ sin2 t)e−x2(t), t ∈ R, (3.3)
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where b(s) = 2+ sin 1
2+cos s+cosπs , s ∈ R.

Let n = 1,

f1(t, x) = b(t)
√

ln(x+1), g1(t, x) =
1
√

x+1
, h(t, x) = (1+ sin2 t)e−x2

,

and

a(t, s) =


1 , s ∈ [0, τ(t)], t ∈ R,

0 , s > τ(t), t ∈ R,
where τ(t) = 1+ |sin t|.

Then, it is not difficult to verify that (H1)-(H4) are satisfied. Let d = 99. Then, there exists
a sufficiently small c > 0 such that

inf
t∈R

∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s,c)gi(s,d)ds ≥
√

ln(1+ c)
10

≥ c;

on the other hand, for all c > 0,

sup
t∈R

∫ t

−∞

a(t, t− s)
n∑

i=1

fi(s,d)gi(s,c)ds+h(t,d)

 ≤ 6
√

ln100
√

1+ c
+2e−992

≤ 99 = d.

Thus, (H5) holds. By using Theorem 3.1, equation (3.3) has a unique almost automorphic
solution with positive infimum.
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