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Abstract

In this paper, we study the Gevrey smoothing property for the non-negative so-
lution of the linearized spatially homogeneous Boltzmann equation. Using pseudo-
differential calculus and some techniques of mathematical analysis, we show that in
the non-cutoff and non-Maxwellian case with the inverse power law potential, if the
solution is Lipschitz continuous on the velocity variable, then it has the local Gevrey
regularity.
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1 Introduction

In this paper, we consider the following Cauchy problem for the spatially homogeneous
linear Boltzmann equation:

{%ng:Q(ll’g)+Q(g’#)’t>O (1.1)

8lt=0 = 80
W2
where u(v) = (27‘()_%6_% is the normalized Maxwellian distribution, and the function g

depending only on the two variables 7 > O(time) and v € R3(velocity). The Boltzmann
quadratic collision operator Q(g, f) is of the following form:

0w/ = [ | [ BO=v.oe0f () g0,
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where o € S?(unit sphere of R?), v and v are the post- and pre-collision velocities respec-
tively:
V+ v, N |v—v*|0_ = VY Iv—v*lo_
2 2 T 2 2 ’
the Boltzmann collision kernel B(z,0") depends only on |z| and the scalar product < |—§|,0' >,
The early works for the Boltzmann equation are usually based on the Grad’s cutoff as-
sumption. However, the proof in [8] shows that the solution of (1.1) can not be smoother
than the initial datum under this assumption. On the other hand, recently there are more and
more research results without this assumption (see Refs. [2-7, 9, 10]). In [2], Alexandre et
al. gave some estimates of the smooth property of the solutions to inhomogeneous Boltz-
mann equations. The authors in [3, 6, 9, 10] studied the Soblev regularity of the solutions.
Although in the Maxwellian case, the Gevrey regularity of the solution of (1.1) has been
proved in [10]. The methods in [10] seems can not be used in the non-Maxwellian case
directly.
In this paper, we discuss the same issue with the non-Maxwellian case. Assume

Vv =

B(lv—v.|,cos0) = O(|lv —v.|)b(cost) = (1 +|v— v*lz)%b(cos 9), v (0,1]. (1.2)

Note that in the form of ®(|v —v.|), the kinetic factor has been added a constant 1. As in [9],
the corresponding potential is called the modified hard potential.
We consider the following angular non-cutoff case with the inverse power law potential

v, 1
b(cos6) ~ K& when 6 — 0, cosf =< ~ v|,0’>,9€[0,g],a€(0,§), (1.3)
V="V

where K is a positive constant. The corresponding inverse power law potential U(p) = p!=*
for some x > 2 and p being the distance between two particles.
Before state the main result, we recall the following definitions:

Definition 1.1 ([6, 10, 12]). For s > 1, u € G*(R?) which is the Gevrey class function space
with index s, if there exists C > 0 such that for any k € N,

1D ullp> < C Gk,
. . ]
or equivalently, there exists € > 0 such that e*<\P>"y e L*(R3) where

A =<IDI>= (1+|D,P)7, IDull, = " IDPull,
1BI=k

Definition 1.2 ([10]). For a nonnegative initial datum go(v) € Lé(R3)), g(t,v) is called a
weak solution of the Cauchy problem (1.1) if it satisfies:

g(t,v) € CR™; D' (R¥)) N LA ([0, Tol; Ly(R?)) N L™([0, Tol; L' (R)); (0, v) = go;

t
f g(t,v)e(t,v)dv — f 2(0,v)(0,v)dv — f dr f g(t,v)oro(t,v)dv
R3

fdrf L(g)(t,v)e(T,v)dv,

for any test function ¢(t,v) € L°([0, To]; W>*(R?)).
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In the following discussion, we will use the notation of the weighted function space:
LY(R?) = {g;ligllr < +eo}, HY(R?) = {g:]Igll zr < +o0)

with the corresponding norm

|MgﬂMW<M#Mmm@=fW<mb&wwwMWMnmR
r Rn

Now we state the main result in this paper.

Theorem 1.1. Assume g is a weak nonnegative solution of the Cauchy problem (1.1) with
the corresponding collision cross section satisfies (1.2) and (1.3). If g(t,-) is a Lipschitz
continuous function, then for any 0 <t < Ty and Y(v) € Cy R, yg(t,) € GV¥R?).

2 The prior estimates

In this section, we first introduce the pseudo differential operator and then give some esti-
mates on its commutation with some functions of the relative velocity.
For any t € [0,7Ty] and 6 € [0, 1], d > 0, we denote

GM@8=%@®<M>”=6 <lg>™,

4 e—t<|§|>“

and
G(1,€) = Goa(t,€) = ¥ < jg| >~

The above pseudo differential operators have appeared and have been used in the proof of
the Gevrey regularity in [10]. It is easy to see that for any fixed positive smooth function
¥ (v) which has a compact support, if we can prove ¥g(t,-) € G'/%(R?), then the result of
Theorem 1.1 can be obtained. So we can restrict ¢(v) > 0 in the following process.

We state the following theorem:

Theorem 2.1. Suppose I(7) = (Q(g,/l),lﬁG%(T, D)< |D|>78 Vg)2,7€(0,To]. Then for any
fixed s > 0, there exists a constant C = C(s) > 0 independent of 6 € (0,1] satisfying

1(7) < Clig(z, )l 1 g (T, )l 1=

In order to prove Theorem 2.1, we need to prove these following lemmas by Cauchy
integral theorem:

Lemma 2.1. Let O((|v—v.|) = O(|v—v.|) < |v—v.| >. Assume the Fourier transform

F(@1(Jv = v Du(v:))(E) = fi(v,O)E).

Then )
ﬁma=aﬂ%fe”3Uﬂwmf4#+wwaﬂTmm

R3
and

AOI<C- < v >"H < >7*
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Proof. First we consider the case of n = 1.

yrl (etie)?

2
=(27r)_%e_§2f[1+(v—v*)2]ze z dv,
Rl

2

_3 & _2 L2 L
=Q2nr) 2e 2 e I[1+(v—z+i6)°1 7 dz,
c

where z = v, +i¢, C denotes the curve: v, +i£,—o0 < v, < co. By Cauchy integral theorem
([11]), we obtain

-2 2L _ 22
e I[l+(v—z+i&)] T dz= e 2 [1+(w—v,+i&)°] 7 dv..
c R!
Now we turn to consider the case of n = 3. Assume

V= (V],VZ,V3),V* = (V*I,V*Z,V*B)’g = (§1a§2’§3)~

Using the above result, we have

3 sl

F (@1 (v —vihuv))(E) = fR 3(1 =) T @ry R e gy,

2
_3 pas ST
=(2n) zfz( 1[1"‘("1—V*1)2+(V2—V*2)2+(V3—V*3)2] T e TSy )
R R
"32“’53 :
xe " 2 —l(V*2§2+v*3§3)dV*2dV*3

L)
Vel ":l

=(27T)_§f (f [1+(V1_V*l+i§1)2+(v2_v*2)2+(V3_V*3)2]%e_7_7dv*1)
r2 JR!

ViatVi3

xXe " 2 —i(V*2§2+V*3§3)dV*2dV*3

3ok e i 3 g
=Q2m2e" T [yem 2 [1+ X (vj—vij+ié)*] T dv.
=

= Q) foo T+ =P -+ 200 v) €1 v,

Therefore, we conclude the result of Lemma 2.1. O
Lemma 2.2. Let £l £k
v E+lElo . E-lélo
f - 2 ’é: - 2 .

Assume the Fourier transform
F (v —v DY (v Iu(v))(E) = f(v,HAE).
Then
f,8)=@m fR e — e [ = -+ 2i00 - )£,

and
lf(r,E < C- < v >T< ] >7,

0
lF (v, = f(, &) < C- < v >Y< €] > sin 5,0 = arccos < é,a‘ >.

€1



104 S.Y. Lin

Proof. The above equality is obtained by the similar method as in Lemma 2.1. The first
inequality is also easy to check. In fact, by the compact support function ¢ and the above
equality, there exists a positive constant C satisfying

Y(v.—i) =0

when |v, —i¢| = \/vZ +&2 > C. Thus we conclude that f is also a compact support function
on the variable &, that is,

J,8) = f(v,H)XEE)
where the set E = {£;|¢] < C}. Therefore,

01 = B F @ v D v O E(E)
~@" [ D= S X @

<p©"! fR Oy = v D . X (€)

<C < >Y Xg(¢)
<C-< | >7< [>T

The first inequality is obtained.
To prove the second inequality, by direct calculation, we have

O, (f (v, OAE)) = L0, f (v, &) = &if (v.6)]
= 0g,(F (O(Iv — v DY (v )u(v:))(£))

[vs]

= f (1 +v =221 2p(v)e™ 24 (—iv,)dv,.
R3

Using Cauchy integral theorem again, we obtain

e

f (L+ v =v.P)22m) 2p)e 2 4 (—iv,)dv, =
R3

v« l2

@n) 2 fR Y —iE)e” 1 = v = 7+ 2000 - v.) £ (€= ivai)dv,.
Therefore,
e f (1,8 = 2n) fR Y- e 1+ = v, = I + 200 = v,) - £1F
(& —v)dve +EF(V,E)
=0 f 3 YO [y = v =P +2i(v = v,) - €]
. (—iv*,~)dv>,<].R

IR

Using the mean value theorem of differentials, we have

f0.ED) = FOOISC-IVefr,ml- €7 ~ €|

<C < >7< Il >7 et - ¢

.6
<C" < >7< g > sin =,
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here 6 = arccos < %, o >. This completes the proof of Lemma 2.2. O
Now we turn to prove Theorem 2.1, decomposing /(1) = I(t) + I(7), where

1= [ [ Bl = e 0" w016 W M.

and
L(1) = (Q(g, 1), G3(7,D) < ID| >~ 8 yg) 2.

Proof of Theorem 2.1. First, we estimate /1(7). Assume

1 —cos6
bi(cosf) = b(cosb) gos s
by (1.3), we have
f bi(cosO)do < +coo.
S2

Using the result of Lemma 2.1 and the means of Bobylev’s formula (see Refs. [1, 10]),

we have

@< [ [ Bl vl =G (r Wb .

<cC f G2, (r Mo | f f (v —vbr (5 v v)
R3 R6 J§2 |§|

N G dvy,

=C f G24(r.EgT. o) | f f F@1 (v = v )EI (= - )
R3 R3 J§?2 |'f|

- gWe™¢ dodvldé

=CL3 G§,4(T’§)|J§(T’§)|'|L3 V[S; fl(V,f+)ﬁ(§+)blg(v)e_iv'fido-deé:

< Cligtroly [ GRuroimamol <>« Fde

< Clie@ Ml fR <1657 R elll<[é > 7 T g

<C( fR I<1g>" Wg(T.E)PdE) ( fR I<lg > ATk 12 gy’
JECRI M
< Clistroly [ (< 1> arolrd)

< Cllg(@ ) 1y g (@ -
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Secondly, we estimate I>(7). Also using Bobylev identity, we have

hr) = f G2, (r. 60RO f f OV —v.Db(E - (v (v (V)
R3 RS Js? €]
X (¢ 1€ HVE) eV dodvdv,]dé
) fR G, (T.Eg(r.é) fR fs [F (v = v D)W () Ebgv)e ™
= F(O(|v = vi DU (v.))(E)bg(v)ldodvdé

= fR \ G4mOV, 8) fR . fs 2[f(v,f*)— FO,ONEDbgW)e™E dodvdé

+fR3 Goa(rE8(T.8) fR 3 fs FOOIAE) ~E)bge™ dordvdi

¥ fR REHCEITCE) fR 3 fg FO.HRObgW)e™ — ldodvdg

= 121 +122 +123.

Because (see Ref. [10])

0 2 )
AED =) < PENET sin’ 3, ™ = O <pE) e

and
e — % = 1= 25in 25 (sin 28 4 icos L)
2 2
<CplE
< Cv||é| sin Q
2

Thus, by the result of Lemma 2.2 and the condition (1.3), for any i € {1,2,3}, we have

11l < C-llg(, )l fR Gime) <> ¢ T Ipg(r.olde

Gk

< C . ||g(T, )”Lé L’j [32T0<|.f|>a < |§| >S—5 e_T][< |é:| >—S |@(T,§)|]d§

< €O lgtrolyt [ (<> gl el
< C(5)- e, Mg e M-

Combining with the estimate of /1(7), we obtain the result of Theorem 2.1.
Suppose
Q; = supp(¥), Qo ={veQ; : g(r,v) =0}

Then, Q, C Q.
Clearly there are two cases:
1. Q, = Q. In this case, Yg(v) =0 for any v € R3:
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2. £ Q.
In case 2, assume Q = Q;/Q;. Then it is easy to see

Y(Q)>0and g(Q) > 0.
Because g satisfying the Lipschitz continuity, then for any € > 0, there exists Q. C €, satis-
fying

inf y(v) =rg >0, inf gv)=r; >0 and f |G2(T, Dyygl|dv < e. 2.1
veQ, veQe Q/Q.

Lemma 2.3. For any € > 0,

A= fR | L+ =P = 1)) = §0WG g

<OM)||Gsaipgll2, + € Cye.

Proof. Since case 1 is evident, we only consider case 2. Using the Lipschitz continuity
of the weak solution g,

f I+ |V*|1+7)/J(V*)dv* < o0,
R3

dv _ 4 <C.
av’ (cosg)2

(2.1), and the fact that

20
supp(¥) =y, ¥ =0, f bsinz sinfdo < +oo,
0

we have

A <C- f f v =v."bu(v.)ly — v'|¢G§4¢//g(v')d0'dv*dv
R6 JS2 ’

WV = v, sin g )
_c. f b~V |2 G2 g derdv.dy
RS Js2 (cos 3)Y cos 5

—cf M(bsing)( WG hg(V Ydordv.d
=€ Je s e S MV PG pg(v Vudy
, .0 ,
<C- fR 6 fg 2(1+|v|1+7)(1+|v*|“7)(bsm5)M(v*)t/fG§,41,//g(v Ydodv.dv
SC'f t//G§4wg(v')dv'
R3 |
- ([ wG gt [ uGRugm)
Q. Q/Q,
E 2 ’ 2
< t//gG6’4a,bg(v)dv+C . G5’41//g(v)dv
r Jo. Q/Qc
C !
S—f ¢8G§,4$g(v)dV+C f IG2yg(v)ldv
r1 Ja, /0.

C
< —f ng§4wg(v)dv+ e-C’
rr Jr3 ’

= O()|Gsay8ll2, + € Cye.
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This completes the proof of Lemma 2.3. O

Lemma 2.4. For any € > 0,
A= fR 6 fs DU DR ~YONIG g0 dordv.dy < ODIGo gl +e- .

Proof. As in the proof of Lemma 2.3, by (2.1), we have

[ #0)G wstrv= [ 5063 sy

f )G gy + f )G gy
Q. Q/Q
1

<— f wg()G3 Wg(v)dy + f g()G3 ,g(v)dv
o Jo. Q/Q
1

< — f l//g(v)G§,4wg(v)dv+C . f G§’4t//g(v)dv
ro Jr3 Q

€

1

<= f ¢g(V)G§,4l//g(v)dv+ C-e
ro Jr3

= O(D)lIGsaygll}, +C-€.

Because of the Lipschitz continuity of g, there exists two positive constants Cp, C5, satisfy-
ing
gv) < Civ|+C,, forve R3.

So we have
Ay = fR . fS i bu(v gV ) =y (WIG3 gV )dordv.dv
<C- f f bu(v. )W)y V'G5 ,¥g(vV )dodv.dy
f f bu(v.)(C1 v+ Co)lv = V'|G3 ,g(V dordv,dv

< C.f f bu(v.)(Cy |v—v'|+C2+C1|v'|)|v—v'IGgA;bg(v’)dO'dv*dv
n? .
) sin 5 2 ’
<C- f f bu(v,)(C1V’ —v*l 9 +Co+ C1IV DIV =il 9G64‘/’g(" Ydodv.dv.
coss
2

By using the condition that ¢ has a compact support and | dv | < C, we have

3 6
A2£C~f ,u(v*)(1+|v*|)2dv*'f bsin—sin9d0~f G§4wg(v)dv
R3 0 2 R3 ’

SC‘f G§4Wg(v)dv.
RS
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Thus

A <C- f G2 ,wg(v)dv
Q
SC-{f G§’4wg(v)dv+f G§’4zﬁg(v)dv}
Q. Q/Q,

< % fQ 6 gG; yg()dv+C- fg o G yg(v)ldv
< SOMIGsavglh +C -+ C-e
= 0(D)lIGsayglly, +€-Cy..
This concludes the proof of Lemma 2.4. O

Lemma 2.5. For any 6 € [0,2],v € (0, 1], there exists a independent constant C satisfying

1 |v—v*|2 y 2.2
| F L1+ )2 1=+ =) - 1] < C( 5
cos? § cos? § cos¥*3 5

— D1+ [y =v.?)7.

Proof.

v=v.? v
)’

J=| [(1+ —11-[A+ =2 =1]]

30
COS 3

0 Y Y
20 N YN _
< lcos3+7§[(cos > =) =1 +y—v|)2]+](1 o5 Q)l

2
+(
C

2.2
e U RR

1 1
D

<(

1 Y
+|(1- + D1 +v—v*)?
I( COS3%))I |(cos3+7§ (A + v =v.]%)2]

20 l+y 8
COS 7 COS 7

<C( — D1+ =7,

y+3 0
Cos 3

This completes the proof of Lemma 2.5. O

3 Proof of Theorem 1.1

In this section, we will prove the main result of this paper by using the estimates which
have been proved in the previous section. Suppose

B(v=v.l.0) = (v =v.)b = [(1 +[v=v.[))? —1]b+b = By + By.

corresponding,

0=01+0
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(011 ). UG 0g)y2 = f f [0+ = v, = WG 0g0) UG g()
-bu(vy)g()dodvdv.,

=f [(1+Iv v.)? - 11[g(v) - g/ NYG3 NZS)

-bu(v.)dodvdy. + f f [80 WG wg(v) — gWWG5 4g()]
A +|v- v*l )2 —11bu(v.)dodvdv.,
=A;+(1).

By Lemma 2.3,
A1 OM)|Gsaypgll2, + € Coe.

Using cancellation lemma (see Ref. [1]), Lemma 2.5 and the fact that » has compact support
set, we have

%r 1 * Y
(I)Z'Sl'ff{ (- V')z—l] [(1+1v=v./%)? = 1]}b(cos )
R6JO COS 2 CO
sinfu(v.) gV Gy 4;.//g(v)d9dvdv*

< 0(1)[ <|v—vg >7 u(v*)g(v)wG§4wg(v)dvdv*
R6 ’

-fz( ! —1)b(cos8)sin6dO
cos¥*3 4
<o) f (1+ W) WGE Yrg(v)dy

<0O(1) f gWGS pg(v)dv

= 0(IGsavgls.
Therefore
(Q1(1.8)YG2 092 < OM)IIGoawgll + € Coe. 3.1)
On the other hand, by direct calculation,
(021, 8). Y G340 12 = (Qa(u,8), G 4¥8) 12 + Ad.
Using the result in [10]:
CulllGsawglls, — (Qa(u.¥r8). G5 08)12] > 1A Gsausgll?.

Combining with Lemma 2.4, there exists three positive constants C;,i = {1,2, 3} independent
of J satisfying

(21, 8). ¥ G W12 < CillGoavglly, — C2lIA*Goaysgll7, + Cs. 3.2)
Because Gs(t,¢) > %, we have

lwgll?, s < CllGsapgll2,.
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By (3.1), (3.2) and Theorem 2.1, using Holder inequality, we obtain
(L, ¥ Gy 408)12 < CllIGsagllz, = CHIAGoapgllz, + Ci + Clllglly, (3.3)

where
C:>0,i=1,234.

Finally, we give the proof of Theorem 1.1:
Proof of Theorem 1.1. Choosing ng 48 to be the test function in Definition 1.3, we
have

1 1 (!
—f gWG; Wg(dv — —f f gOW(8,G ,()yg(r)dvdr,
2 RS 2 0 R3

1 !
=2 fR SOWG Ogodv+ fo (Lg(0). UG (DWg(1) od.
Since (see Ref. [10])

10:Gs(1.6)| < Go(1,€) < €] > and [|Gs.4(0)rgoll2> < Cllwrgoll? .

we have

! !
| fo fR \ g(T)lﬁ(atGﬁA(T))lﬂg(r)dvdrl52 fo IAY G4 g(DI21IG s.athg (D)l 2d.

Combining with (3.3), we obtain
t 1
G agIEs +C, f IAGsatg(IRdr < IGsatigolls + C, f G arg(DIPsdr
0 0
! !
+2 [ INGaawgOlpIGaalladr s [ (€54 CilglE e
0 0

! !
< Gaavgolls + f IAGaaug(Dladr +(C) +Cy) f IGsatsg(@IPadr +C.
0 0

Choosing x = C), and a constant R satisfying (C| + C,)Rt > C, we have

f
(IGsatg®I2> + R) < (IGsaygolly, + R) + (C} + C) f (G548, +Rydr.
0
Then Gronwall inequality yields

(G547, + R) < €T (|G aprgollZ, +R) < e (Callgol?, +R),

where C3,C4 are the positive constants independent of ¢ € [0, 1]. Let 6 — 0, we obtain for
any given 7 € (0,T), Gyg(r) € L.
In addition, because there exists a positive constant C; < +oo satisfying

. 1 _
P inex " <>z ¢,
€

we have 1
e P yg(t v € 12,

and this completes the proof of Theorem 1.1. O
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