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Abstract

An operator version of the Young’s result [Proc. Amer. Math. Soc., 94 (1985),
636-640] is obtained, via non-differential techniques.
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1 Introduction

A basic tool of the differential/integral equations theory is the Gronwall-Bellman inequality;
it asserts that, if the function u : R+→ R+ is continuous and

(a01) u(t) ≤ b(t)+
∫ t

0
k(s)u(s)ds, t ∈ R+

(where b,k : R+→ R+ are continuous functions) then

u(t) ≤ b(t)+
∫ t

0
exp[
∫ s

0
k(r)dr]b(s)ds, t ∈ R+; (1.1)

see, for instance, Corduneanu [4, Ch 1, Sect 1.5]. This evaluation is the best possible one;
because the right member of (1.1) is just the solution of the integral equation attached to
(a01). However, in many concrete situations, these solutions are difficult to be handled. So,
it would be useful to substitute the exact evaluation (1.1) with an approximate one, having
a ”simpler” structure. For example, if b is in addition increasing, an approximate solution
to (a01) is

u(t) ≤ b(t)exp[
∫ t

0
k(s)ds], t ∈ R+; (1.2)

referred to as the Wendroff inequality; cf. Lakshmikantham and Leela [5, Ch 1, Sect 1.9]. A
further extension of this result was performed in 1973 by Pachpatte [8]; which established
that, if u : R+→ R+ is continuous and
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(a02) u(t) ≤ b(t)+
∫ t

0
k(s)u(s)ds+

∫ t

0
k(s)
∫ s

0
h(r)u(r)drds, t ∈ R+

(with b : R+→ R+, continuous increasing and k,h : R+→ R+, continuous) then

u(t) ≤ b(t)[1+
∫ t

0
k(s)exp[

∫ s

0
(k(r)+h(r))dr]b(s)ds], t ∈ R+. (1.3)

Finally, in his 1985 paper, Young [13] extended these results to the case of

(a03) u(t) ≤ b(t)+
∫ t

0
k1(t1)u(t1)dt1+

∫ t

0

∫ t1

0
k1(t1)k2(t2)u(t2)dt2dt1+ ...

+

∫ t

0
...

∫ tp−1

0
k1(t1)...kp(tp)u(tp)dtp...dt1, t ∈ R+;

where b,k1, ...,kp (for p ≥ 3) are continuous functions from R+ to itself. Precisely, let us
introduce the (p, p)-matrix function and the p-vector function

A(t) =


k1 k1 0 ... 0 0
k2 0 k2 ... 0 0
. . . . . .

kp−1 0 0 ... 0 kp−1

kp 0 0 ... 0 0


; B(t) = b(t)


k1

k2

...

kp−1

kp


.

Then, each solution of (a03) is majorized as

u(t) ≤ b(t)+ v1(t), t ∈ R+; (1.4)

where v1 is the first component of the vector function V(t) =
∫ t

0 Y(t)Y−1(s)B(s)ds, t ∈ R+,
and Y(.) is a fundamental (p, p)-matrix of the linear differential system Z′(t) = A(t)Z(t),
t ∈ R+.

The methods used by these authors are strongly related to the differential inequalities
theory. An alternate operator way of proving Pachpatte’s result was provided in the 1982
paper by Turinici [11]. It is our aim in this exposition to show that these techniques allow
as well a non-differential proof of Young’s result; details will be given in Section 4. The
basic tool for deducing it is an ”abstract” comparison principle in linear spaces ordered by
cones; cf. Section 3. Finally, Section 2 is devoted to some preliminary facts.

2 Normal maps

Let X be a (real) linear space; and X+, a (convex) cone of it [αX+ + βX+ ⊆ X+, for each
α,β ≥ 0]. Its associated relation (≤) on X [defined as: x ≤ y iff y− x ∈ X+] is reflexive and
transitive; hence a quasi-order (on X). If in addition

(b01) X+ is pointed (x,y ∈ X+, x+ y = 0 imply x = y = 0)

this quasi-order is antisymmetric as well; hence, it becomes a (partial) order. Further, take
the family of seminorms G = {|.|i; i ∈ I} according to
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(b02) G is sufficient (|x|i = 0 for all i ∈ I imply x = 0).

Sometimes, one may impose upon X+ a regularity condition like

(b03) X+ is sequentially G-closed (the G-limit of each sequence in X+ belongs to X+).

The remaining conventions are standard.

(A) Let M(X) stand for the class of all maps T : X → X. We say that T ∈ M(X) is
positive if x ≥ 0 implies T x ≥ 0 (i.e., T (X+)⊆ X+). This property is naturally connected with
the increasing one: x≤ y implies T x≤ Ty. Precisely, increasing =⇒ positive under T (0)≥ 0.
On the other hand, increasing ⇐⇒ positive if T is linear. Denote IP(X)={T ∈ M(X); T
is increasing positive}. This class is a cone in M(X); invariant to the functional product
(T,S ∈ IP(X) implies TS ∈ IP(X)). Moreover, under (b03), this cone is also invariant to
the pointwise sequential G-convergence. Finally, put LIP(X)={T ∈ IP(X); T is linear}.
This is a subcone in IP(X), invariant to the functional product (see above).

We are now passing to some basic facts involving these objects. Call the mapping T in
IP(X), normal on X+ when

i) T has a unique fixed point z = z(T ) in X+
ii) u ∈ X+, u ≤ Tu imply u ≤ z.

A basic example of such maps is to be given in the context of (b02)+(b03) and

(b04) X is sequentially G-complete: each G-Cauchy sequence is G-convergent.

Precisely, for each i ∈ I, let fi(.) stand for the (extended) real valued function

fi(t) = sup{|T x−Ty|i; x,y ∈ X, |x− y|i ≤ t}, t ∈ R+.

Call the mapping T , G-contractive on X provided for each i ∈ I,

(b05) fi(t) <∞ and f n
i (t)→ 0 as n→∞, for all t > 0.

(Here, f n
i stands for the n-th iterate of fi). Note that, as fi is increasing on R+, this gives

fi(t) < t, for all t > 0 and all i ∈ I; cf. Matkowski [6]. In particular, (b05) holds provided
fi(t) ≤ λit, t > 0, i ∈ I; where Λ = (λi; i ∈ I) is such that λi ∈]0,1[, i ∈ I; we then say that T is
(Λ,G)-contractive.

Proposition 2.1. For each T ∈ IP(X) we have: G-contractive =⇒ normal (on X+).

Proof. By Turinici [12], T has a unique fixed point z ∈ X+; and

T nx→ z (modulo G) as n→∞, for each x ∈ X+. (2.1)

Let u ∈ X+ be such that u ≤ Tu. From the increasing property, u ≤ T nu, ∀n; and this, along
with (2.1), yields u ≤ z if one takes (b03) into account. �

Remark 2.2. The 1986 author’s result we just quoted was partially re-obtained in 2005 by
Nieto and Lopez [7]; further aspects will be discussed elsewhere.
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(B) A basic model of these developments is the one below. Let m be a positive integer;
and Rm stand for the m-dimensional vector space endowed with some usual norm ||.|| and
the ordering (≤) given by the standard positive cone Rm

+ [x ≥ 0 iff x ∈ Rm
+ ]. Given the (m,m)-

matrix A = (ai j) over the reals, denote Q(A) = {x ∈ Rm; Ax ≥ 0}; it is a closed (convex) cone
in Rm. [In general, Q(A) is not pointed; however, when A is non-singular (Ax= 0⇐⇒ x= 0)
this happens]. The quasi-order associated to Q(A) will be denoted as (�); hence: x ∈ Q(A)
⇐⇒ x � 0⇐⇒ Ax ≥ 0. In particular, when A = I (the identity (m,m)-matrix) the associated
cone Q(A) is just Rm

+ .
Let Cm (resp., C0) indicate the class of all continuous functions from R+ to Rm (resp.,

R+). A useful Frechet structure on Cm is that indicated as below. Let (α(i); i ∈ N) be a
sequence in R0

+ :=]0,∞[ with

(b06) (α(i)) is strictly ascending and divergent (α(i)→∞ as i→∞).

We associate it a sequence (gi; i ∈ N) in C0 with

(b07) gi is strictly positive on [0,α(i)], i ∈ N.

Let the family of seminorms G = {|.|i; i ∈ N} on Cm be defined as:

|x|i = sup{||x(t)||/gi(t); t ∈ [0,α(i)]}, x ∈Cm, i ∈ N.

The associated topology is nothing but the local uniform one; because

xn→ x (modulo G) iff xn→ x uniformly on each compact of R+. (2.2)

This shows that G is sufficient and Cm is sequentially G-complete.
A basic (convex) cone in Cm is to be constructed as below. Let A = (ai j) be a (m,m)-

matrix over the reals; and Q := Q(A) denote its associated cone (see above). Denote by
Cm[Q] the class of all continuous functions from R+ to Q. Clearly, it is a cone in Cm (by the
choice of Q). Its associated quasi-order in Cm will be also denoted as (�); hence x ∈Cm(Q)
means x � 0; and

x � 0 iff x(t) � 0, ∀t ∈ R+ (or, equivalently: Ax(t) ≥ 0, ∀t ∈ R+).

Moreover, by the closeness of Q (in Rm), Cm[Q] is G-closed.
The following auxiliary fact will be useful in the sequel.

Lemma 2.3. Let the (m,m)-matrix H = (hi j) over Cm be such that A commutes with H(t),
for each t ≥ 0. Further, let x ∈Cm be arbitrary fixed. Then,

A
∫ q

p
H(s)x(s)ds =

∫ q

p
H(s)Ax(s)ds, ∀p,q ∈ R+, p < q.

Proof. By definition, we have (with ri,n = p+ i(q− p)/n, i ≥ 0)

∫ q

p
H(s)x(s)ds = lim

n

n−1∑
i=0

((q− p)/n)H(ri,n)x(ri,n).
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This gives at once (by the posed hypothesis)

A
∫ q

p H(s)x(s)ds = A limn
∑n−1

i=0 ((q− p)/n)H(ri,n)x(ri,n) =
limn
∑n−1

i=0 ((q− p)/n)AH(ri,n)x(ri,n) =
limn
∑n−1

i=0 ((q− p)/n)H(ri,n)Ax(ri,n) =
∫ q

p H(s)Ax(s)ds;

and the conclusion follows. �

Now, let D0 stand for the class of all continuous functions from R(2)
+ :={(t, s) ∈ R2

+; t ≥ s}
to R+. Denote byMm(D0) the class of all (m,m)-matrices with elements in D0. Fix such an
object, K = (ki j), with

(b08) A commutes with K(t, s), ∀(t, s) ∈ R(2)
+ .

The associated mapping L := L[K] from X :=Cm to itself

(b09) L(x)(t) =
∫ t

0
K(t, s)x(s)ds, x ∈ X

is linear and leaves invariant the cone X+ :=Cm[Q]; since (cf. Lemma 2.3)

AL(x)(t) = A
∫ t

0
K(t, s)x(s)ds =

∫ t

0
K(t, s)Ax(s)ds ≥ 0, ∀t ∈ R+, ∀x ∈ X+.

As a consequence, L is increasing with respect to the associated quasi-order (�); i.e.: x � y
implies L(x) � L(y). wherefrom, L ∈ LIP(X) (see above). This also tells us that, for the
fixed b ∈ X+, the translated operator T = b+ L is increasing and positive (modulo (�)); so,
it is an element of IP(X). Concerning its contractive properties, put

(b10) ωi = sup{||K(t, s)||;0 ≤ s ≤ t ≤ α(i)}, i ∈ N;

and let Λ = (λi; i ∈ N) be taken so as λi ∈]0,1[, i ∈ N. Define the functions

(b11) gi(t) = exp[(ωi/λi)t], t ∈ R+, i ∈ N.

Clearly, (b07) holds; moreover, we have

ωi

∫ t

0
gi(s)ds ≤ λigi(t), t ∈ R+, i ∈ N. (2.3)

Proposition 2.4. Let these conventions be accepted. Then, T is (Λ,G)-contractive; hence,
all the more normal.

Proof. Let x,y ∈ Cm be such that |x− y|i ≤ τ, for some τ ≥ 0, i ∈ N. By definition, ||x(t)−
y(t)|| ≤ τgi(t), t ∈ [0,α(i)]; so that (if one takes (2.3) into account)

||T x(t)−Ty(t)|| ≤
∫ t

0
||K(t, s)||.||(x(s)− y(s)||ds

≤ τωi

∫ t

0
gi(s)ds ≤ λiτgi(t), t ∈ [0,α(i)].

As a consequence, |T x−Ty|i ≤ λiτ; and from this, we are done. �
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(C) Let Dm stand for the class of all continuous functions from R(2)
+ to Rm. Denote by

Mm(D) the class of all (m,m)-matrices with elements in D :=D1. A useful Frechet structure
onMm(D) is that indicated under the model above. Precisely, let (α(i); i ∈ N) be a sequence
in R0

+ with the property (b06); and (gi; i ∈ N) be a sequence in C0 as in (b07). Let the family
of seminorms G = {|.|i; i ∈ N} onMm(D) be defined as:

|z|i = sup{||z(t, s)||/gi(t);0 ≤ s ≤ t ≤ α(i)}, z ∈Mm(D), i ∈ N.

The associated topology is nothing but the local uniform one. This results at once from
the matrix analog of (2.2); we do not give details. Hence, G is sufficient and Mm(D) is
sequentially G-complete (see above). Fix an object, K = (ki j) in Mm(D0). The mapping
M := M[K] from X :=Mm(D) to itself

(b12) M(Z)(t, s) =
∫ t

s
K(t,r)Z(r, s)ds, (t, s) ∈ R(2)

+ , Z ∈Mm(D)

is linear and leaves invariant the cone X+ :=Mm(D0); so, it is element of LIP(X). More-
over, given B = (bi j) inMm(D0), the translated operator U = B+M is again increasing and
positive (modulo X+); so, it is an element of IP(X). Concerning its contractive properties,
let (ωi; i ∈ N) be the one of (b10); and let Λ = (λi; i ∈ N) be taken so as λi ∈]0,1[, i ∈ N.
Further, define the functions (gi; i ∈ N) in C0 via (b11).

Proposition 2.5. Let these conventions be accepted. Then, U is (Λ,G)-contractive; hence,
all the more normal.

The proof is very similar to the one of Proposition 2.4; so, we omit it.

3 Main results

Let X be a (real) linear space; and X+, some (convex) cone of it. Also, let G = {|.|i; i ∈ I}
be a family of seminorms on X; and assume that the regularity conditions (b02)-(b04) hold.
Take a map S in IP(X) and consider the operator inequality on X+

(u ∈ X+ and) u ≤ S (u). (3.1)

It is our aim in the following to give some upper bounds for the solutions of (3.1). First, as
a direct consequence of Proposition 2.1, one has

Theorem 3.1. Suppose that (in addition)

(c01) S is contractive on X (cf. Section 2).

Then, necessarily,
u ≤ z (=the unique fixed point of S in X+). (3.2)

This evaluation is the best possible one (see above). However, when S has a complicated
structure, it is difficult to be handled. This e.g., is the case when S = S 1 is to be expressed
in terms of a family {T1, ...,Tn} in IP(X) as

(c02) S j = T j(I+S j+1), j = 1, ...,n (where S n+1 = 0).
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[As usually, I denotes the identity map]. And then, the question arises of determining an
upper bound for a solution of (3.1) with the aid of these maps. An appropriate answer to
this may be given along the following lines.

Theorem 3.2. Assume that

(c03) P := T1+ ...+Tn is normal (see above).

Then, for each solution u ∈ X+ of (3.1) we have the evaluation

u ≤ T1(T1+T2)...(T1+ ...+Tn−1)(w) (3.3)

where w is the unique fixed point of P in X+.

Proof. Let u = u1 be a solution in X+ of (3.1); hence u1 ≤ S 1(u1) = T1(u1+S 2(u1)). Denote
u2 = u1 + S 2(u1); hence u1 ≤ T1(u2). By the positivity of S 2, we have u1 ≤ u2; so that (by
the above) u2 ≤ T1(u2)+S 2(u2) ≤ T1(u2)+T2(u2+S 3(u2)). Further, denote u3 = u2+S 3(u2);
hence u2 ≤ T1(u2)+T2(u3). By the positivity of S 3 one has u2 ≤ u3; so that u2 ≤ (T1+T2)(u3)
as well as u3 ≤ (T1+T2)(u3)+S 3(u3); and so on. Hence, after n steps, we construct a system
of elements {u1,u2, ...,un} in X+ with u = u1 ≤ ... ≤ un and

ui ≤ (T1+ ...+Ti)(ui+1), i = 1, ...,n−1; un ≤ (T1+ ...+Tn)(un).

But, from these relations, (3.3) is clear. Hence the conclusion. �

Remark 3.3. Denote for simplicity Pi = T1+ ...+Ti, i= 1, ...,n; hence P1 = T1, Pn = P. From
P1 ≤ P2 ≤ ... ≤ Pn(= P), we derive Piw ≤ Pw = w, i = 1, ...,n; and the conclusion (3.3) of
Theorem 3.2 yields: for each solution u ∈ X+ of (3.1) we have

u ≤ w (=the unique fixed point of P in X+). (3.4)

Clearly, the evaluation (3.3) is finer than this one. However, in many concrete situations, it
gives, practically, the same amount of information.

4 Particular aspects

(A) Let m be a positive integer. Given the (m,m)-matrix A = (ai j) over the reals, denote
by Q := Q(A) the associated cone; and by (�), the induced quasi-order. Further, take an
object, K = (ki j) inMm(D0), according to (b08); as well as some b ∈ Cm[Q]. The mapping
T := b+ L from X := Cm to itself where L := L[K] is given by (b09), is increasing and
leaves invariant the cone X+ :=Cm[Q]; so, it is element of IP(X) (cf. Section 2). Sufficient
conditions for the normality of T were established in Proposition 2.4 above. Suppose these
are effective. It then follows, via Theorem 3.1, that each solution u ∈Cm[Q] of

(d01) u � T (u); i.e.: u(t) � b(t)+
∫ t

0
K(t, s)u(s)ds, t ∈ R+

is majorized (modulo (�)) by the unique solution w ∈Cm[Q] of
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(d02) w = T (w); i.e.: w(t) = b(t)+
∫ t

0
K(t, s)w(s)ds, t ∈ R+.

Now (cf. Tricomi [10, Ch 1, Sect 1.3]) this unique solution has the representation

w(t) = b(t)+
∫ t

0
H(t, s)b(s)ds, t ∈ R+ (4.1)

where H = (hi j) (the resolvent kernel) is the solution inMm(D) of the matrix Volterra inte-
gral equation:

(d03) Z(t, s) = K(t, s)+
∫ t

s K(t,r)Z(r, s)dr, (t, s) ∈ R(2)
+ .

Note that the associated operator U = K +M, where M := M[K] is the linear operator of
(b12), was already shown to be normal; hence, the existence and uniqueness alongMm(D)
of (d03) are assured. Summing up, we derived

Theorem 4.1. Let u ∈Cm[Q] be a solution of the integral inequality (d01). Then, u(t)�w(t),
t ∈ R+, where w ∈ Cm[Q] is the solution of the integral equation (d02); which, in addition,
has the representation (4.1).

In particular, when Q = Rm
+ , this result is nothing but the one in Chu and Metcalf [3];

see also Chandra and Davis [2].
(B) Fix a finite family {Kr = (kr

i j);r = 1, ..., p} (where p ≥ 3), of elements in Mm(D0)
fulfilling (b08); as well as some b ∈ Cm[Q]. The mapping T1 := b+ L[K1] from X := Cm

to itself is a normal element of IP(X); and, for each i ∈ {2, ..., p}, Ti := L[Ki] is a normal
element of LIP(X). Note that, as a consequence of this, T := T1+T2+ ...+Tp is a normal
element of IP(X). And this, along with Theorem 3.2 gives the following practical result.
Denote for simplicity K[i] = K1+ ...+Ki, i = 1,2, ..., p (hence K[1] = K1).

Theorem 4.2. Let u ∈Cm[Q] be a solution of the (iterated Gronwall-Bellman) inequality

(d04)
u(t) � b(t)+

∫ t
0 K1(t, t1)u(t1)dt1

+
∫ t

0

∫ t1
0 K1(t, t1)K2(t1, t2)u(t2)dt2dt1

+...+
∫ t

0 ...
∫ tp−1

0 K1(t, t1)...K p(tp−1, tp)u(tp)dtp...dt1, t ∈ R+.

Then, necessarily,

u(u) � b(t)+
∫ t

0 K[1](t, t1)b(t1)dt1
+
∫ t

0

∫ t1
0 K[1](t, t1)K[2](t1, t2)b(t2)dt2dt1

+...+
∫ t

0 ...
∫ tp−2

0 K[1](t, t1)...K[p−1](tp−2, tp−1)w(tp−1)dtp−1...dt1, t ∈ R+,
(4.2)

where w ∈Cm[Q] is the unique solution of the integral equation

(d05) w(t) = b(t)+
∫ t

0 K[p](t, s)w(s)ds, t ∈ R+.

Remark 4.3. By the developments in Section 3, one derives that for each solution u ∈ X+
of (d04) we have u � w (=the unique solution in X+ of (d05)). Clearly, the evaluation (4.2)
is finer than this one. However, in many concrete situations, it gives, practically, the same
amount of information.

In particular, when Ki(t, s) is not depending on the first variable (for i ∈ {1, ..., p}) The-
orem 4.2 includes the Young’s result [13] we already quoted. Note that, under the lines in
Popenda [9], all these statements have a correspondent in the difference inequalities theory.
Further aspects may be found in Bainov and Simeonov [1, Ch 1, Sect 1].
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