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Abstract

In this paper, K denotes a complete, non-trivially valued, non-archimedean field.
Sequences and infinite matrices have entries in K. Supplementing [4], we make a
further study of sequences of 0’s and 1’s in K.
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1 Introduction

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. Entries of
sequences and infinite matrices are in K. In [4], we made a study of sequences of 0’s and 1’s
in K. In the present paper, we make a further study of sequences of 0’s and 1°’s in K. Classes
¢ of subsets of the set N of positive integers called “non-archimedean full” are defined and
studied. Characterizing conditions for a covering, hereditary class of subsets of N to be
non-archimedean full in terms of the entries of an infinite matrix A = (a,;) are obtained. In
the main result, we obtain necessary and sufficient conditions for c4 2 X in terms of the
entries of the infinite matrix A, where ¢ is non-archimedean full. We then deduce Hahn’s
theorem, in the non-archimedean case, that an infinite matrix sums all bounded sequences
in K if and only if it sums all sequences of 0’s and 1’s in K.

We recall the following, which is needed in the sequel. Given an infinite matrix A =
(ank), anx € K, n,k =1,2,... and a sequence x = {x}, xx € K, k =1,2,..., by the A-
transform of x, we mean the sequence Ax = {(Ax), }, where

(Ax)fl: Zankxk7 n=12,...,
k=1
it being assumed that the series on the right converge. If lim (Ax), = ¢, we say that x = {x; }
n—oo

is summable or A-summable to £. ¢4 denotes the convergence field of A, i.e., the set of all
sequences x = {x;} which are A-summable.
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2 Non-archimedean Full Sets and Main Results

Definition 2.1. A class of ¢ of subsets of N (the set of positive integers) is said to be “non-
archimedean full” if

(i) U S = N (covering);
Seg

(ii) If S C T where T € @, then S € @ (hereditary);
and

(iii) if {t} is a sequence in K such that sup |ty| < oo for every S € @, then sup |tx| < oo.
keS k>1

Example 2.1. ¢ = 2" is an example of a non-archimedean full class.

Theorem 2.1. Let @ be a class of subsets of N satisfying (i), (ii) of Definition 2.1. Then @ is

non-archimedean full if and only if for any infinite matrix (a,;) for which sup | sup |aqx| | <
n>1 \kes

oo for every S € @, then sup |ay| < .
nk>1

Proof. Necessity. Let ¢ be non-archimedean full. Suppose for some infinite matrix (g, ),

sup <sup |ank\> < oo for every S € @ but sup |a,i| = 0. We can now choose strictly in-
n>1 \keS nk>1

creasing sequences {n(j)}, {k(j)} of positive integers such that

M) il >
Jj)=  sup an(j)il > =,
wimnizey O P
where, since K is non-trivially valued, © € K is such that 0 < p = |n| < 1. Let N(j) =
{i/k(j—1)<i<k(j)}, j=1,2,...,k(0) = 1. Now, define

bi=ay)W, i€N(j),ji=12,...

sup |bi| = sup |a,(j).ilp’
ieN(j) ieN(j)
=p/M(j)
1
J
>0

so that
sup |b;| = oo,

i>1

since — — oo, j — o0, — > 1.
p/
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Since @ is non-archimedean full, there exists S € @ with sup|b;| = co. Consequently, we
icS
have
sup |b;| > 1 for infinitely many j's,
i€SNN(j)

for, otherwise, sup |b;| <1, j=1,2,... and so sup|b;| < 1, a contradiction. Hence for
ieSNN(;) i>1
these infinitely many j’s,

sup |a,(j) il = sup |ap(jy.il
ies i€SNN(j)
_ |bi
= sup —
iesnN(j) P’
1 .
> — — oo, j — oo, since — > 1,

p./

contradicting the fact that sup (sup |ank|> < oo forevery S € Q.
n>1 \keS

Sufficiency. Let {#:} be any sequence in K such that sup |tx| < oo for every S € ¢. Define
keS

the matrix (aux), where ay =y, k=1,2,...;n=1,2,.... Then sup (sup|ank|> < oo for

n>1 \keS
every S € @. By hypothesis, sup |au| < co. It now follows that sup|f;| < e and so @ is
nk>1 k>1
non-archimedean full. This completes the proof of the theorem. O

Corollary 2.1. @ is a class of subsets of N satisfying (i) and (ii) of Definition 2.1. Then @ is
non-archimedean full if and only if for any infinite matrix (an) for which sup Z ank‘ < oo

nzl |kes

for every S € @, then sup |au| < ce.
nk>1

Proof. Necessity. Let @ be non-archimedean full. Let (a,,) be an infinite matrix for which

sup Z an| < oo forevery S € @. Let S € @ and ko € S. Since @ is hereditary, S = S\ {ko} €
n2l\kes
¢. So
sup | Y. anc— Y ani| < oo,
n=1|kes kes'
1.e.,

Sup |auk,| < oo,
n>1

for every ko € S and so sup (sup ank]> < oo, for every S € @. Since @ is non-archimedean
n>1 \kesS
full, it follows, from Theorem 2.1, that sup |a,| < .
nk>1
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Sufficiency. Let (a,) be an infinite matrix such that sup (Z !ank|> < oo for every S € @.
n>l \kes
Then,

sup
n>1

Z Ak

< sup (sup ]ank])
kesS n>1 \keS

< oo,

for every S € @. By hypothesis, sup |au| < e and so @ is non-archimedean full, using
nk>1
Theorem 2.1, completing the proof. O

The following result is worthwhile to record.
Theorem 2.2. There is no minimal non-archimedean full class.

Proof. Let Sy be any infinite subset of a non-archimedean full class @ and A = {S € ¢/Sy

S}. Then A G ¢ and A satisfies (i) and (ii) of Definition 2.1. Let {#} be a sequence in

K such that sup [t¢| = eo. Since ¢ is non-archimedean full, there exists W € ¢ such that
k>1

sup |fy| =oco. So sup |fx| =c0 or sup [t =eo. In the first case, if T = W\Sy, then

kew keW\Sy kewnSy

T € A and sup|ty| = e. In the second case, take T = Sp\{s}, where s € Sp. Then T € A

keT
and sup |tx| > sup |f| = eo. In view of Definition 2.1, A is non-archimedean full, where
keT keWNSo
A G ¢. Thus there is no minimal non-archimedean full class. O

We define o = {Xs/S € ¢}, where x5 denotes the characteristic function of the subset
S of N.
As an application to matrix summability, we have the following result.

Theorem 2.3. Let @ be a non-archimedean full class and A = (ay;) be any infinite matrix.
Then ca 2 Y if and only if

(i) limay=0,n=12,..;

(ii) lim sup|api1x — ank| = 0 for every S € @.
=% pes /

Proof. Necessity. Let ¢4 2 Xo. Itis clear that (i) holds. So
l}glolo (Ang1x —am) = 0.

Suppose (ii) does not hold. We use the “sliding hump method” to arrive at a contradiction.
We can now choose € > 0, § € ¢ and two strictly increasing sequences {n(i)}, {k(i)} of
positive integers such that

SUP [y (i) +1 4 — @iy | > &
kes
£
SUP  an(iy 41k — Gn(i) k| < g’
1<k<k(i—1)
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and
€

i —ayikl < =
ks>lil()z) ‘an(z)Jrl,k an(l),k| 3

In view of the above inequalities, there exists k(n(i)) € S, k(i —1) < k(n(i)) < k(i) such that

| ()41 k(n(i)) = @n(i) k(n(i))] > €-

Define x = {x; }, where

{1, if k = k(n(i));
X =

0, otherwise.

Now,
(AX) (i) 41 — (AX)n(i)
= Z {an(i)-&-hk - an(i),k}xk
k=1
k(i—1) k(i)
= {an(iy+1.k = @iy g} + Z {an(iy+1.k — (i)} Xk
k=1 k=k(i—1)+1
+ Z L)1,k — Qni) e}k
k=k(i)+1
k(i—1)
= L)1k = (i) 3% @iy 41k (i) — On(i) k(ni)) }
k=1
+ Z {an(i)+1,k - an('),k}xka
k=k(i)+1
so that

€ < |@n(i)+1.k(n(i)) — i) k(n(i))]
€ €
< max [|(Ax)u 1 — (Ax)ugo | 5 <

which implies that
’(Ax)n(i)+1 - (Ax)n(,-)] >ei=1,2,....

Thus x & ca. Note, however, that x € (. Consequently %o £ ca, a contradiction. Conse-
quently (ii) holds.

Sufficiency. Let (i) and (ii) hold. In view of (i), Z an converges for every S € @. Now,
keS

Y =Y an

kesS keS

Z {an-‘rl,k - ank}

keS

< Sup |@pq1 k — Ank|
kes

— 0,n — oo, using (ii),

which implies that lim Z ayy, exists for every S € ¢. Thus cs D Y, completing the proof
n—oo

kesS
of the theorem. OJ
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Corollary 2.2 (Hahn’s theorem for the non-archimedean case). An infinite matrix A = (au)
sums all bounded sequences if and only if it sums all sequences of 0’s and 1’s.

Proof. Leaving the trivial part of the result, suppose A sums all sequences of 0’s and 1’s,
i.e., cq 2 Yo, Where ¢ = 2N Since N € o,

/}imank:0, n=12,....

Also
lim sup |a,+1 ¢ — an| =0
= keN
ie.,
lim sup |a,+1x — an| = 0.
In view of Theorem 2 of [3], it follows that A sums all bounded sequences. OJ
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