On Sequences of Zeros and Ones in Non-Archimedean Analysis A Further Study

P N NATARAJAN

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram
Chennai 600 028, India
pinnangudinatarajan@gmail.com

Abstract

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in K. Supplementing [4], we make a further study of sequences of 0 's and 1 's in K.

AMS Subject Classification: 40, 46.
Keywords: Non-archimedean field, non-archimedean full sets, hereditary class of sets.

1 Introduction

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. Entries of sequences and infinite matrices are in K. In [4], we made a study of sequences of 0 's and 1 's in K. In the present paper, we make a further study of sequences of 0 's and 1 's in K. Classes φ of subsets of the set \mathbb{N} of positive integers called "non-archimedean full" are defined and studied. Characterizing conditions for a covering, hereditary class of subsets of \mathbb{N} to be non-archimedean full in terms of the entries of an infinite matrix $A=\left(a_{n k}\right)$ are obtained. In the main result, we obtain necessary and sufficient conditions for $c_{A} \supseteq \chi_{\varphi}$ in terms of the entries of the infinite matrix A, where φ is non-archimedean full. We then deduce Hahn's theorem, in the non-archimedean case, that an infinite matrix sums all bounded sequences in K if and only if it sums all sequences of 0 's and 1 's in K.

We recall the following, which is needed in the sequel. Given an infinite matrix $A=$ $\left(a_{n k}\right), a_{n k} \in K, n, k=1,2, \ldots$ and a sequence $x=\left\{x_{k}\right\}, x_{k} \in K, k=1,2, \ldots$, by the A transform of x, we mean the sequence $A x=\left\{(A x)_{n}\right\}$, where

$$
(A x)_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k}, \quad n=1,2, \ldots,
$$

it being assumed that the series on the right converge. If $\lim _{n \rightarrow \infty}(A x)_{n}=\ell$, we say that $x=\left\{x_{k}\right\}$ is summable or A-summable to $\ell . c_{A}$ denotes the convergence field of A, i.e., the set of all sequences $x=\left\{x_{k}\right\}$ which are A-summable.

2 Non-archimedean Full Sets and Main Results

Definition 2.1. A class of φ of subsets of \mathbb{N} (the set of positive integers) is said to be "nonarchimedean full" if
(i) $\bigcup_{S \in \varphi} S=\mathbb{N}$ (covering);
(ii) If $S \subset T$ where $T \in \varphi$, then $S \in \varphi$ (hereditary);
and
(iii) if $\left\{t_{k}\right\}$ is a sequence in K such that $\sup _{k \in S}\left|t_{k}\right|<\infty$ for every $S \in \varphi$, then $\sup _{k \geq 1}\left|t_{k}\right|<\infty$.

Example 2.1. $\varphi=2^{\mathbb{N}}$ is an example of a non-archimedean full class.
Theorem 2.1. Let φ be a class of subsets of \mathbb{N} satisfying (i), (ii) of Definition 2.1. Then φ is non-archimedean full if and only iffor any infinite matrix $\left(a_{n k}\right)$ for which $\sup _{n \geq 1}\left(\sup _{k \in S}\left|a_{n k}\right|\right)<$ ∞ for every $S \in \varphi$, then $\sup _{n, k \geq 1}\left|a_{n k}\right|<\infty$.

Proof. Necessity. Let φ be non-archimedean full. Suppose for some infinite matrix $\left(a_{n k}\right)$, $\sup _{n \geq 1}\left(\sup _{k \in S}\left|a_{n k}\right|\right)<\infty$ for every $S \in \varphi$ but $\sup _{n, k \geq 1}\left|a_{n k}\right|=\infty$. We can now choose strictly increasing sequences $\{n(j)\},\{k(j)\}$ of positive integers such that

$$
M(j)=\sup _{k(j-1)<i \leq k(j)}\left|a_{n(j), i}\right|>\frac{1}{\rho^{2 j}},
$$

where, since K is non-trivially valued, $\pi \in K$ is such that $0<\rho=|\pi|<1$. Let $\mathbb{N}(j)=$ $\{i / k(j-1)<i \leq k(j)\}, j=1,2, \ldots, k(0)=1$. Now, define

$$
\begin{aligned}
b_{i}=a_{n(j), i} \pi^{j}, & \quad i \in \mathbb{N}(j), j=1,2, \ldots \\
\sup _{i \in \mathbb{N}(j)}\left|b_{i}\right| & =\sup _{i \in \mathbb{N}(j)}\left|a_{n(j), i}\right| \rho^{j} \\
& =\rho^{j} M(j) \\
& >\rho^{j} \frac{1}{\rho^{2 j}} \\
& =\frac{1}{\rho^{j}}
\end{aligned}
$$

so that

$$
\sup _{i \geq 1}\left|b_{i}\right|=\infty,
$$

since $\frac{1}{\rho^{j}} \rightarrow \infty, j \rightarrow \infty, \frac{1}{\rho}>1$.

Since φ is non-archimedean full, there exists $S \in \varphi$ with $\sup _{i \in S}\left|b_{i}\right|=\infty$. Consequently, we have

$$
\sup _{i \in S \cap \mathbb{N}(j)}\left|b_{i}\right|>1 \text { for infinitely many } j^{\prime} s,
$$

for, otherwise, $\sup _{i \in S \cap \mathbb{N}(j)}\left|b_{i}\right| \leq 1, j=1,2, \ldots$ and so $\sup _{i \geq 1}\left|b_{i}\right| \leq 1$, a contradiction. Hence for these infinitely many j 's,

$$
\begin{aligned}
\sup _{i \in S}\left|a_{n(j), i}\right| & \geq \sup _{i \in S \cap \mathbb{N}(j)}\left|a_{n(j), i}\right| \\
& =\sup _{i \in S \cap \mathbb{N}(j)} \frac{\left|b_{i}\right|}{\rho^{j}} \\
& >\frac{1}{\rho^{j}} \rightarrow \infty, j \rightarrow \infty, \text { since } \frac{1}{\rho}>1,
\end{aligned}
$$

contradicting the fact that $\sup _{n \geq 1}\left(\sup _{k \in S}\left|a_{n k}\right|\right)<\infty$ for every $S \in \varphi$.
Sufficiency. Let $\left\{t_{k}\right\}$ be any sequence in K such that $\sup _{k \in S}\left|t_{k}\right|<\infty$ for every $S \in \varphi$. Define the matrix $\left(a_{n k}\right)$, where $a_{n k}=t_{k}, k=1,2, \ldots ; n=1,2, \ldots$. Then $\sup _{n \geq 1}\left(\sup _{k \in S}\left|a_{n k}\right|\right)<\infty$ for every $S \in \varphi$. By hypothesis, $\sup _{n, k \geq 1}\left|a_{n k}\right|<\infty$. It now follows that $\sup _{k \geq 1}\left|t_{k}\right|<\infty$ and so φ is non-archimedean full. This completes the proof of the theorem.

Corollary 2.1. φ is a class of subsets of \mathbb{N} satisfying (i) and (ii) of Definition 2.1. Then φ is non-archimedean full if and only if for any infinite matrix $\left(a_{n k}\right)$ for which $\sup _{n \geq 1}\left|\sum_{k \in S} a_{n k}\right|<\infty$ for every $S \in \varphi$, then $\sup _{n, k \geq 1}\left|a_{n k}\right|<\infty$.

Proof. Necessity. Let φ be non-archimedean full. Let $\left(a_{n k}\right)$ be an infinite matrix for which $\sup _{n \geq 1}\left|\sum_{k \in S} a_{n k}\right|<\infty$ for every $S \in \varphi$. Let $S \in \varphi$ and $k_{0} \in S$. Since φ is hereditary, $S^{\prime}=S \backslash\left\{k_{0}\right\} \in$ φ. So

$$
\sup _{n \geq 1}\left|\sum_{k \in S} a_{n k}-\sum_{k \in S^{\prime}} a_{n k}\right|<\infty,
$$

i.e.,

$$
\sup _{n \geq 1}\left|a_{n k_{0}}\right|<\infty,
$$

for every $k_{0} \in S$ and so $\sup _{n \geq 1}\left(\sup _{k \in S}\left|a_{n k}\right|\right)<\infty$, for every $S \in \varphi$. Since φ is non-archimedean full, it follows, from Theorem 2.1, that $\sup _{n, k}\left|a_{n k}\right|<\infty$.

$$
n, k \geq 1
$$

Sufficiency. Let $\left(a_{n k}\right)$ be an infinite matrix such that $\sup _{n \geq 1}\left(\sum_{k \in S}\left|a_{n k}\right|\right)<\infty$ for every $S \in \varphi$. Then,

$$
\begin{aligned}
\sup _{n \geq 1}\left|\sum_{k \in S} a_{n k}\right| & \leq \sup _{n \geq 1}\left(\sup _{k \in S}\left|a_{n k}\right|\right) \\
& <\infty,
\end{aligned}
$$

for every $S \in \varphi$. By hypothesis, $\sup _{n, k \geq 1}\left|a_{n k}\right|<\infty$ and so φ is non-archimedean full, using Theorem 2.1, completing the proof.

The following result is worthwhile to record.
Theorem 2.2. There is no minimal non-archimedean full class.
Proof. Let S_{0} be any infinite subset of a non-archimedean full class φ and $\Delta=\left\{S \in \varphi / S_{0} \nsubseteq\right.$ $S\}$. Then $\Delta \varsubsetneqq \varphi$ and Δ satisfies (i) and (ii) of Definition 2.1. Let $\left\{t_{k}\right\}$ be a sequence in K such that $\sup \left|t_{k}\right|=\infty$. Since φ is non-archimedean full, there exists $W \in \varphi$ such that $\sup _{k \in W}\left|t_{k}\right|=\infty$. So $\sup _{k \in W \backslash S_{0}}\left|t_{k}\right|=\infty$ or $\sup _{k \in W \cap S_{0}}\left|t_{k}\right|=\infty$. In the first case, if $T=W \backslash S_{0}$, then $T \in \Delta$ and $\sup \left|t_{k}\right|=\infty$. In the second case, take $T=S_{0} \backslash\{s\}$, where $s \in S_{0}$. Then $T \in \Delta$ and $\sup _{k \in T}\left|t_{k}\right| \geq \sup _{k \in W \cap S_{0}}\left|t_{k}\right|=\infty$. In view of Definition 2.1, Δ is non-archimedean full, where $\Delta \varsubsetneqq \varphi$. Thus there is no minimal non-archimedean full class.

We define $\chi_{\varphi}=\left\{\chi_{S} / S \in \varphi\right\}$, where χ_{S} denotes the characteristic function of the subset S of \mathbb{N}.

As an application to matrix summability, we have the following result.
Theorem 2.3. Let φ be a non-archimedean full class and $A=\left(a_{n k}\right)$ be any infinite matrix. Then $c_{A} \supseteq \chi_{\varphi}$ if and only if
(i) $\lim _{k \rightarrow \infty} a_{n k}=0, n=1,2, \ldots$;
(ii) $\lim _{n \rightarrow \infty} \sup _{k \in S}\left|a_{n+1, k}-a_{n k}\right|=0$ for every $S \in \varphi$.

Proof. Necessity. Let $c_{A} \supseteq \chi_{\varphi}$. It is clear that (i) holds. So

$$
\lim _{k \rightarrow \infty}\left(a_{n+1, k}-a_{n k}\right)=0 .
$$

Suppose (ii) does not hold. We use the "sliding hump method" to arrive at a contradiction. We can now choose $\varepsilon>0, S \in \varphi$ and two strictly increasing sequences $\{n(i)\},\{k(i)\}$ of positive integers such that

$$
\begin{aligned}
& \sup _{k \in S}\left|a_{n(i)+1, k}-a_{n(i), k}\right|>\varepsilon ; \\
& \sup _{1 \leq k \leq k(i-1)}\left|a_{n(i)+1, k}-a_{n(i), k}\right|<\frac{\varepsilon}{8} ;
\end{aligned}
$$

and

$$
\sup _{k>k(i)}\left|a_{n(i)+1, k}-a_{n(i), k}\right|<\frac{\varepsilon}{8}
$$

In view of the above inequalities, there exists $k(n(i)) \in S, k(i-1)<k(n(i)) \leq k(i)$ such that

$$
\left|a_{n(i)+1, k(n(i))}-a_{n(i), k(n(i))}\right|>\varepsilon .
$$

Define $x=\left\{x_{k}\right\}$, where

$$
x_{k}=\left\{\begin{array}{lc}
1, & \text { if } k=k(n(i)) \\
0, & \text { otherwise }
\end{array}\right.
$$

Now,

$$
\begin{aligned}
& (A x)_{n(i)+1}-(A x)_{n(i)} \\
& \quad=\sum_{k=1}^{\infty}\left\{a_{n(i)+1, k}-a_{n(i), k}\right\} x_{k} \\
& =\sum_{k=1}^{k(i-1)}\left\{a_{n(i)+1, k}-a_{n(i), k}\right\} x_{k}+\sum_{k=k(i-1)+1}^{k(i)}\left\{a_{n(i)+1, k}-a_{n(i), k}\right\} x_{k} \\
& \quad+\sum_{k=k(i)+1}^{\infty}\left\{a_{n(i)+1, k}-a_{n(i), k}\right\} x_{k} \\
& \quad=\sum_{k=1}^{k(i-1)}\left\{a_{n(i)+1, k}-a_{n(i), k}\right\} x_{k}+\left\{a_{n(i)+1, k(n(i))}-a_{n(i), k(n(i))}\right\} \\
& \quad+\sum_{k=k(i)+1}^{\infty}\left\{a_{n(i)+1, k}-a_{n(i), k}\right\} x_{k},
\end{aligned}
$$

so that

$$
\begin{aligned}
\varepsilon & <\left|a_{n(i)+1, k(n(i))}-a_{n(i), k(n(i))}\right| \\
& \leq \max \left[\left|(A x)_{n(i)+1}-(A x)_{n(i)}\right|, \frac{\varepsilon}{8}, \frac{\varepsilon}{8}\right],
\end{aligned}
$$

which implies that

$$
\left|(A x)_{n(i)+1}-(A x)_{n(i)}\right|>\varepsilon, i=1,2, \ldots
$$

Thus $x \notin c_{A}$. Note, however, that $x \in \chi_{\varphi}$. Consequently $\chi_{\varphi} \nsubseteq c_{A}$, a contradiction. Consequently (ii) holds.
Sufficiency. Let (i) and (ii) hold. In view of (i), $\sum_{k \in S} a_{n k}$ converges for every $S \in \varphi$. Now,

$$
\begin{aligned}
\left|\sum_{k \in S} a_{n+1, k}-\sum_{k \in S} a_{n k}\right| & =\left|\sum_{k \in S}\left\{a_{n+1, k}-a_{n k}\right\}\right| \\
& \leq \sup _{k \in S}\left|a_{n+1, k}-a_{n k}\right| \\
& \rightarrow 0, n \rightarrow \infty, \operatorname{using}(i i)
\end{aligned}
$$

which implies that $\lim _{n \rightarrow \infty} \sum_{k \in S} a_{n k}$ exists for every $S \in \varphi$. Thus $c_{A} \supseteq \chi_{\varphi}$, completing the proof of the theorem.

Corollary 2.2 (Hahn's theorem for the non-archimedean case). An infinite matrix $A=\left(a_{n k}\right)$ sums all bounded sequences if and only if it sums all sequences of 0's and l's.

Proof. Leaving the trivial part of the result, suppose A sums all sequences of 0 's and 1 's, i.e., $c_{A} \supseteq \chi_{\varphi}$, where $\varphi=2^{\mathbb{N}}$. Since $\mathbb{N} \in \varphi$,

$$
\lim _{k \rightarrow \infty} a_{n k}=0, \quad n=1,2, \ldots
$$

Also

$$
\lim _{n \rightarrow \infty} \sup _{k \in \mathbb{N}}\left|a_{n+1, k}-a_{n k}\right|=0
$$

i.e.,

$$
\lim _{n \rightarrow \infty} \sup _{k \geq 1}\left|a_{n+1, k}-a_{n k}\right|=0 .
$$

In view of Theorem 2 of [3], it follows that A sums all bounded sequences.

References

[1] G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press, 1964
[2] H. Hahn, Über Folgen linearer operationen, Monatsh. Math. 32 (1922), 3-88.
[3] P.N. Natarajan, The Steinhaus theorem for Toeplitz matrices in non-archimedean fields, Comment. Math. Prace Mat. 20 (1978), 417-422.
[4] P.N. Natarajan, On certain spaces containing the space of Cauchy sequences, J. Orissa Math. Soc. 9 (1990), 1-9.
[5] J.J. Sember and A.R. Freedman, On summing sequences of 0's and 1's, Rocky Mountain J. Math. 11 (1981), 419-425.

