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Abstract

In this paper, K denotes a complete, non-trivially valued, non-archimedean field.
Sequences and infinite matrices have entries in K. Supplementing [4], we make a
further study of sequences of 0’s and 1’s in K.
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1 Introduction

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. Entries of
sequences and infinite matrices are in K. In [4], we made a study of sequences of 0’s and 1’s
in K. In the present paper, we make a further study of sequences of 0’s and 1’s in K. Classes
ϕ of subsets of the set N of positive integers called “non-archimedean full” are defined and
studied. Characterizing conditions for a covering, hereditary class of subsets of N to be
non-archimedean full in terms of the entries of an infinite matrix A = (ank) are obtained. In
the main result, we obtain necessary and sufficient conditions for cA ⊇ χϕ in terms of the
entries of the infinite matrix A, where ϕ is non-archimedean full. We then deduce Hahn’s
theorem, in the non-archimedean case, that an infinite matrix sums all bounded sequences
in K if and only if it sums all sequences of 0’s and 1’s in K.

We recall the following, which is needed in the sequel. Given an infinite matrix A =
(ank), ank ∈ K, n,k = 1,2, . . . and a sequence x = {xk}, xk ∈ K, k = 1,2, . . . , by the A-
transform of x, we mean the sequence Ax = {(Ax)n}, where

(Ax)n =
∞

∑
k=1

ankxk, n = 1,2, . . . ,

it being assumed that the series on the right converge. If lim
n→∞

(Ax)n = `, we say that x = {xk}
is summable or A-summable to `. cA denotes the convergence field of A, i.e., the set of all
sequences x = {xk} which are A-summable.
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2 Non-archimedean Full Sets and Main Results

Definition 2.1. A class of ϕ of subsets of N (the set of positive integers) is said to be “non-
archimedean full” if

(i)
[
S∈ϕ

S = N (covering);

(ii) If S ⊂ T where T ∈ ϕ, then S ∈ ϕ (hereditary);
and

(iii) if {tk} is a sequence in K such that sup
k∈S

|tk|< ∞ for every S ∈ ϕ, then sup
k≥1

|tk|< ∞.

Example 2.1. ϕ = 2N is an example of a non-archimedean full class.

Theorem 2.1. Let ϕ be a class of subsets of N satisfying (i), (ii) of Definition 2.1. Then ϕ is

non-archimedean full if and only if for any infinite matrix (ank) for which sup
n≥1

(
sup
k∈S

|ank|
)

<

∞ for every S ∈ ϕ, then sup
n,k≥1

|ank|< ∞.

Proof. Necessity. Let ϕ be non-archimedean full. Suppose for some infinite matrix (ank),

sup
n≥1

(
sup
k∈S

|ank|
)

< ∞ for every S ∈ ϕ but sup
n,k≥1

|ank| = ∞. We can now choose strictly in-

creasing sequences {n( j)}, {k( j)} of positive integers such that

M( j) = sup
k( j−1)<i≤k( j)

|an( j),i|>
1

ρ2 j ,

where, since K is non-trivially valued, π ∈ K is such that 0 < ρ = |π| < 1. Let N( j) =
{i/k( j−1) < i≤ k( j)}, j = 1,2, . . . , k(0) = 1. Now, define

bi = an( j),iπ
j, i ∈ N( j), j = 1,2, . . .

sup
i∈N( j)

|bi|= sup
i∈N( j)

|an( j),i|ρ j

= ρ
jM( j)

> ρ
j 1
ρ2 j

=
1
ρ j ,

so that
sup
i≥1

|bi|= ∞,

since
1
ρ j → ∞, j → ∞,

1
ρ

> 1.
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Since ϕ is non-archimedean full, there exists S ∈ ϕ with sup
i∈S

|bi|= ∞. Consequently, we

have
sup

i∈S∩N( j)
|bi|> 1 for infinitely many j′s,

for, otherwise, sup
i∈S∩N( j)

|bi| ≤ 1, j = 1,2, . . . and so sup
i≥1

|bi| ≤ 1, a contradiction. Hence for

these infinitely many j’s,

sup
i∈S

|an( j),i| ≥ sup
i∈S∩N( j)

|an( j),i|

= sup
i∈S∩N( j)

|bi|
ρ j

>
1
ρ j → ∞, j → ∞, since

1
ρ

> 1,

contradicting the fact that sup
n≥1

(
sup
k∈S

|ank|
)

< ∞ for every S ∈ ϕ.

Sufficiency. Let {tk} be any sequence in K such that sup
k∈S

|tk| < ∞ for every S ∈ ϕ. Define

the matrix (ank), where ank = tk, k = 1,2, . . . ; n = 1,2, . . . . Then sup
n≥1

(
sup
k∈S

|ank|
)

< ∞ for

every S ∈ ϕ. By hypothesis, sup
n,k≥1

|ank| < ∞. It now follows that sup
k≥1

|tk| < ∞ and so ϕ is

non-archimedean full. This completes the proof of the theorem.

Corollary 2.1. ϕ is a class of subsets of N satisfying (i) and (ii) of Definition 2.1. Then ϕ is

non-archimedean full if and only if for any infinite matrix (ank) for which sup
n≥1

∣∣∣∣∣∑k∈S
ank

∣∣∣∣∣< ∞

for every S ∈ ϕ, then sup
n,k≥1

|ank|< ∞.

Proof. Necessity. Let ϕ be non-archimedean full. Let (ank) be an infinite matrix for which

sup
n≥1

∣∣∣∣∣∑k∈S
ank

∣∣∣∣∣< ∞ for every S ∈ ϕ. Let S ∈ ϕ and k0 ∈ S. Since ϕ is hereditary, S′ = S\{k0} ∈

ϕ. So

sup
n≥1

∣∣∣∣∣∑k∈S
ank− ∑

k∈S′
ank

∣∣∣∣∣< ∞,

i.e.,
sup
n≥1

|ank0 |< ∞,

for every k0 ∈ S and so sup
n≥1

(
sup
k∈S

|ank|
)

< ∞, for every S ∈ ϕ. Since ϕ is non-archimedean

full, it follows, from Theorem 2.1, that sup
n,k≥1

|ank|< ∞.
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Sufficiency. Let (ank) be an infinite matrix such that sup
n≥1

(
∑
k∈S

|ank|

)
< ∞ for every S ∈ ϕ.

Then,

sup
n≥1

∣∣∣∣∣∑k∈S
ank

∣∣∣∣∣≤ sup
n≥1

(
sup
k∈S

|ank|
)

< ∞,

for every S ∈ ϕ. By hypothesis, sup
n,k≥1

|ank| < ∞ and so ϕ is non-archimedean full, using

Theorem 2.1, completing the proof.

The following result is worthwhile to record.

Theorem 2.2. There is no minimal non-archimedean full class.

Proof. Let S0 be any infinite subset of a non-archimedean full class ϕ and ∆ = {S ∈ ϕ/S0 6⊆
S}. Then ∆ $ ϕ and ∆ satisfies (i) and (ii) of Definition 2.1. Let {tk} be a sequence in
K such that sup

k≥1
|tk| = ∞. Since ϕ is non-archimedean full, there exists W ∈ ϕ such that

sup
k∈W

|tk| = ∞. So sup
k∈W\S0

|tk| = ∞ or sup
k∈W∩S0

|tk| = ∞. In the first case, if T = W\S0, then

T ∈ ∆ and sup
k∈T

|tk| = ∞. In the second case, take T = S0\{s}, where s ∈ S0. Then T ∈ ∆

and sup
k∈T

|tk| ≥ sup
k∈W∩S0

|tk| = ∞. In view of Definition 2.1, ∆ is non-archimedean full, where

∆ $ ϕ. Thus there is no minimal non-archimedean full class.

We define χϕ = {χS/S ∈ ϕ}, where χS denotes the characteristic function of the subset
S of N.

As an application to matrix summability, we have the following result.

Theorem 2.3. Let ϕ be a non-archimedean full class and A = (ank) be any infinite matrix.
Then cA ⊇ χϕ if and only if

(i) lim
k→∞

ank = 0, n = 1,2, . . . ;

(ii) lim
n→∞

sup
k∈S

|an+1,k−ank|= 0 for every S ∈ ϕ.

Proof. Necessity. Let cA ⊇ χϕ. It is clear that (i) holds. So

lim
k→∞

(an+1,k−ank) = 0.

Suppose (ii) does not hold. We use the “sliding hump method” to arrive at a contradiction.
We can now choose ε > 0, S ∈ ϕ and two strictly increasing sequences {n(i)}, {k(i)} of
positive integers such that

sup
k∈S

|an(i)+1,k−an(i),k|> ε;

sup
1≤k≤k(i−1)

|an(i)+1,k−an(i),k|<
ε

8
;
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and
sup

k>k(i)
|an(i)+1,k−an(i),k|<

ε

8
.

In view of the above inequalities, there exists k(n(i))∈ S, k(i−1) < k(n(i))≤ k(i) such that

|an(i)+1,k(n(i))−an(i),k(n(i))|> ε.

Define x = {xk}, where

xk =

{
1, if k = k(n(i));
0, otherwise.

Now,

(Ax)n(i)+1− (Ax)n(i)

=
∞

∑
k=1
{an(i)+1,k−an(i),k}xk

=
k(i−1)

∑
k=1

{an(i)+1,k−an(i),k}xk +
k(i)

∑
k=k(i−1)+1

{an(i)+1,k−an(i),k}xk

+
∞

∑
k=k(i)+1

{an(i)+1,k−an(i),k}xk

=
k(i−1)

∑
k=1

{an(i)+1,k−an(i),k}xk +{an(i)+1,k(n(i))−an(i),k(n(i))}

+
∞

∑
k=k(i)+1

{an(i)+1,k−an(i),k}xk,

so that

ε < |an(i)+1,k(n(i))−an(i),k(n(i))|

≤max
[
|(Ax)n(i)+1− (Ax)n(i)|,

ε

8
,

ε

8

]
,

which implies that
|(Ax)n(i)+1− (Ax)n(i)|> ε, i = 1,2, . . . .

Thus x 6∈ cA. Note, however, that x ∈ χϕ. Consequently χϕ 6j cA, a contradiction. Conse-
quently (ii) holds.
Sufficiency. Let (i) and (ii) hold. In view of (i), ∑

k∈S
ank converges for every S ∈ ϕ. Now,

∣∣∣∣∣∑k∈S
an+1,k−∑

k∈S
ank

∣∣∣∣∣=
∣∣∣∣∣∑k∈S

{an+1,k−ank}

∣∣∣∣∣
≤ sup

k∈S
|an+1,k−ank|

→ 0,n→ ∞, using (ii),

which implies that lim
n→∞

∑
k∈S

ank exists for every S ∈ ϕ. Thus cA ⊇ χϕ, completing the proof

of the theorem.
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Corollary 2.2 (Hahn’s theorem for the non-archimedean case). An infinite matrix A = (ank)
sums all bounded sequences if and only if it sums all sequences of 0’s and 1’s.

Proof. Leaving the trivial part of the result, suppose A sums all sequences of 0’s and 1’s,
i.e., cA ⊇ χϕ, where ϕ = 2N. Since N ∈ ϕ,

lim
k→∞

ank = 0, n = 1,2, . . . .

Also
lim
n→∞

sup
k∈N

|an+1,k−ank|= 0

i.e.,
lim
n→∞

sup
k≥1

|an+1,k−ank|= 0.

In view of Theorem 2 of [3], it follows that A sums all bounded sequences.
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