Advances in Differential Equations Volume 1, Number 4, July 1996, pp. 611—-634

ASYMPTOTIC BEHAVIOR FOR MINIMIZERS OF A
GINZBURG-LANDAU-TYPE FUNCTIONAL IN HIGHER
DIMENSIONS ASSOCIATED WITH n-HARMONIC MAPS

MiN-CHUN HONG

Centre for Mathematics and its Application, Australian National University
Canberra, ACT 0200, Australia

(Submitted by: Haim Brezis)

Abstract. We describe the behavior as € — 0 of minimizers for a Ginzburg-Landau functional

Ee(w; Q) :/Q[W:'" L ) de

4em

in the space Hgl’"(Q;R”), where  C R” and the boundary data g : 9Q — S™~! has a nonzero
topological degree. Some recent results of Bethuel, Brezis and Hélein, and of Struwe on the
two-dimensional problem, are extended to higher-dimensional cases. New proofs for their results
are also presented in this paper.

1. Introduction. Let 2 be an open bounded domain in R™ with smooth boundary
0Q = 8"~ ! and let g be a smooth function, g : Q2 — S"~!. We may associate with g
a topological degree d. Let

H;’p(Q;R") ={uc H'"P(Q,R") : ulgq = g}
Let us consider for € > 0 the Ginzburg-Landau-type functional

E.(u;Q) = /Q[|v;|p + ﬁ(l — |ul*)?] dx (1.1)

where 1 < p < n.

The functional E. is related to models introduced by Ginzburg and Landau in [13]
for the study of phase transitions. For the scalar-value case, numerous mathematically
interesting results have been obtained by many authors (see [9], [15], [23], [22] and [24]).

In the vector-value case (i.e., n > 2), it is well known that H}?(€;R") is nonempty
and for € > 0 the functional F. achieves its minimizer in H;’p(Q; R™) by a function uc;
ie.,

v(e) := Ec(ue; ) = min  E.(u; Q). (1.2)
ueHy P (Q;R™)
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Define
1, .aon—1y . 1, LTRNY . —
HpP(Q;8"77) = {u € HyP(QR") : [u| =1 a.e. on Q}.

If p < m, it can be easily proven that u. converges strongly to a p-harmonic map since
H;’p(ﬂ, S7~1) is always nonempty. For p =n > 2, HgL”(Q, S7=1) is empty if the degree
d # 0. The value v(¢) may go to infinity as ¢ — 0. The first part of the energy
E (u;Q), fﬂ %|Vu|" dzx, is conformal invariant allowing change of variable z, so it is
interesting to study asymptotic behavior of minimizers u. of E. in H, 917" for the case
p = n. For p = n = 2, Bethuel, Brezis and Hélein (see [1], [2], [3] and [4]) first proved
many beautiful results about asymptotic behavior for minimizers of E.. One of the
main results in [4] is the following:

Theorem ([4]). Let n = p = 2 and u. be a minimizer of the minimizing problem
(1.2). If Q is star-shaped, there is a subsequence {ue, } which converges uniformly on
a compact set of Q\X to a harmonic map with values in S* and the singular set ¥ is
exactly |d| points in Q.

An extension to non-star-shaped domains of the above work was obtained by Struwe
(see [25] and [26]).

In this paper we consider the Ginzburg-Landau functional in the case of p =n > 2.

A function u(x) € H,™™(Q,R™) is said to be a critical point of the Ginzburg-Landau
functional (1.1) if u(z) € Hy™(Q,R") is a weak solution to the following Euler-Lagrange
equation:

1
—V - (|Vu|""2Vu) = E—nu(l — |uf?) in Q, (1.3)

’u,|g)Q =4d. (1.4)

One special case of interest is 2 = B and g = x on 0B where B is the unit ball in R™.
For each € > 0, we can find a symmetric solution to equations (1.3)-(1.4) of the form
Ue = fg(r)‘%l.

Theorem 1.1. Assume that n > 2. Let Q = B and let g = x be the boundary data.
For each € > 0, there exists a symmetric uc to the Ginzburg-Landau equation (1.3) with
(1.4). For this sequence of critical points u., there exists a subsequence (ug, ) such that
as e — 0

Ue

—~ L i HEMB\[0},RY).

k ‘$| loc

Theorem 1.1 is proved directly by using the Pohozaev identity (see Lemma 2.3).
A map u: Q — S" ! is called an n-harmonic map if u € HV"(£2, S"~1) satisfies

V- (|Vu"2Vu) + |[Vu|"u = 0 (1.5)
in the distribution sense.

For a general case, we give a partial answer to the problem posed by Bethuel, Brezis
and Hélein in their book (see Problem 17 in [4]) in the following:
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Theorem 1.2. Let d # 0 be the degree of the boundary data g. For each € > 0,
there exists a minimizer u. for E.. For this sequence of minimizers u., there exists a
subsequence (ug,) and finite points x;, | =1,...J, such that as e, — 0

. 1n n
e, = u in HJU(Q\{z1,... 25}, R"),
where w is an n-harmonic map with values in S"~*. Moreover, ue, converges to u
weakly in HY9 for ¢ < n.

For the proof of Theorem 1.2, we modify Bethuel, Brezis and Hélein’s main ideas in
[4] and the Struwe’s ideas in [25]. For n = 2, Bethuel, Brezis and Hélein in [2] showed
the estimate |Vue| < % holds, where C' is a constant independent of ¢. It seems that
their proof can not be applied to the case n > 3. To overcome this difficulty, we first
regularize the functional (1.1) by following an idea of Uhlenbeck in [27] (also see [12])
and rescale the minimization problem (1.2) as in [25] to establish Theorem 2.2. The
proof of Theorem 2.2 relies on the fact that for 29 € Q and for some p > 0 we have

/ |[Vue|"dx < C,
Bps(l‘o)ﬁﬂ

where C' is a uniform constant for . Based on a Bochner-type inequality, a local
bounded theorem (see Theorems 8.17 of Gilbarg and Trudinger’s book, [14]) and the
reverse Holder inequality (see [11, Theorem 3.9, page 159], or [19] ), we obtain an interior
estimate for |Vu,| (see (i) of Theorem 2.2). Using the reverse Holder inequality (see
[21]) and Sobolev imbedding theorem, we get |u.| > 3 near the boundary 9 (see (ii)
of Theorem 2.2).

Another difficult step (see Theorem 3.10) in the proof of Theorem 1.2 is to show that
there exists a finite collection of points zy, for k =1,...,J such that for any o > 0

E(us; Q\ U B, (21)) < C(0) (1.6)

where C(0) is a constant independent of . For n = 2, this result was first proven by
Bethuel, Brezis and Hélein, with a simplified proof given by Struwe in [25]. But their
proofs rely heavily on the following result of Brezis, F. Merle and Riviere in [6].

Theorem ([6]). Assume e < Ry < R < L. Let zp € Q and denote
AR,ry = Br(20)\Bg,(70) N {2

and let uw € H"?(Ag, gr,,R?) be a function satisfying 3 < |u| <1 in AR, Ry. Assume
that there exists a constant K such that
1

= [ (1= uf)?ds < K. (1.7)
€ Ja
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Then there exists a constant C'(K,d)

/ Va2 > wldn 2~ O(K, d)
R,R, Ry

240
where d is the degree of u on each OB, (xg), Ry <r < R.

The condition (1.7) in the above theorem can be replaced in [20] by the following
weaker assumption; i.e., there exists a constant K such that

% (1—|u*)?de < K(|lng|+1) and %/ (1— |ul*)?de < K. (1.8)
& Ja €% JB_15(w0)

The assumption (1.8) is applied in [25]. However, all proofs about the Brezis, F. Merle
and Riviere’s theorem in [6], [25] and [20] are based on two-dimensional complex analysis
and seem not to apply in the case n > 3. We prove Brezis-Merle-Riviere’s theorem by a
new approach which is easily extended to higher-dimensional cases (see Theorem 3.9).
Roughly speaking, combining a result of Brezis, Coron and Leib in [5, Theorem 8.2] with
the reverse Holder inequality due to [16, Section 6] and [10] for minimizing a functional
among maps from a domain into S"~!, we set up a new minimization problem of a
functional over maps from S™~! into S”~! with the topological degree d. Then we
compare a minimizer of this new minimization problem with u. to prove Theorem 3.9.
The estimate (1.6) is finally proven using an idea of Struwe in [25]. Other proofs of
Theorem 1.2 are extended from [25] to higher-dimensional cases.

Remark 1.3. The number J of the singular points z; in Theorem 1.2 is exactly |d|
following [4]. If n = 2, Theorem 1.2 holds for any minimizer u. of the functional (1.1)
by our proofs.

Related results for p-harmonic maps have been obtained by Hardt and Lin in [18] for
n = 2, and by Chen and Hardt in [7] for n > 2.

Acknowledgment. The author would like to thank Prof. M. Struwe for his encourage-
ment and many useful discussions and suggestions. The work was partially done at the
Department Mathematik, ETH-Ziirich with the support of a postdoctoral fellowship.
The work is partially supported by the Australian Research Council.

2. Some lemmas and the proof of Theorem 1.1.

Lemma 2.1. There exists a constant C1 = C1(€, g) such that for 0 <e <1,

v(e) <|d]

—1)%
%w"—lulnd + Cy, (2.1)

where |S™~| denotes the area of the unit sphere S"~! in R™.

Proof. Without loss of generality, we may assume that d > 0. We can follow the steps
in [25] by deleting d balls. Let z; (i = 1,... ,d) be d different points inside €2 such that

Bp(xl) N Bp(ll'j) =0 for i#j,
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where p is small enough. We then introduce Dirichlet boundary conditions

T — T

gi@) = g5 on 0B,(w)

to obtain a new domain Q = Q\U%_, B,(z;). Choose ug be a function from  into 5”1
with ug = g on 99 and ug = g; on each 0B,(x0) and

Q
As in [25], we can thus reduce to the case 2 = B = B}(0) and g(z) = x. Set

ue () = fs(w)%

where f;(2) = tanh( ). Since Vue(z) =V fe(r) - Tay + fe(x)Vﬁ, we have

9 11-f)?, (n=1)f?
2 _ 2 2
Vue(o) = |5 fo ) + PV P = 5 +
by a simple calculation.

For a > 0 and b > 0, we have
n—1 ) )
> a't" Tt < Cla" b+ b").
i=1

Then using this inequality we obtain
/ V" (1~ JuP)? da
Q
-1 1—f?)% 1
Qn

72 22 4em Jg
</Q%(("_1T)1/2|f| - 1\;§£2|)”dx+4in/ﬂ(1—f2)2dx
</Q(n—nl)”/2 Ifl"d +ZC/ n—l 1/Z\fl) (|1\;§£2)n-z

+45% (1—f2)2dm

_ n2 n _

(nfl)l/Q\fl n*1|1*f2| n—1 Q ! 22, n—1
JrC'/O( . ) e T dr+€n/0(1 fo) T dr,
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T

V2e

' 11— f?\n mn*1|1—f2| n—1 Q ! _ £2\2,n—1
L ESE - e S [ ppetar

< [T o g (L g

+ c/ (1 — | tanh(s)[?)2 5" 1ds < +o0
0

we have

where C' is a constant. By changing the variable s =

and

1 n ﬁ tanh n 1 tanh n
/ ﬂdr</ ’ Md8+/ Mdsﬁﬂns\—i—&
0 r 1 S 0 s

where C' is a constant. Therefore Lemma 2.1 is proved. [

Let u. be a minimizer of the functional E.. We do not know whether the minimizer u,
is regular. However we find a new minimizer which can be approximated by a sequence
of smooth maps. Following Uhlenbeck’s idea in [27] (see also [12]), we regularize the
minimization problem (1.2) by minimizing the functionals:

(IVol?> +npe=?)2 1 2\2
I7(v; ) = Aot o (1=
J(v; Q) /Q[ " + 4€n( [v]*) ]dﬂ?

over all functions v € H;”(Q;R") where n > 0 is a small constant. Let u! be the
minimizer. Hence u] is also a smooth solution of the following equation:

—V - [(|Vu]? +7e2) "5 Vu] = ! (1 — |ul?) in €. (2.2)

—u
E’ﬂ
Since I7(u?;Q) < I7(ug;Q), ul — @ in HY"(Q;R™) as n — 0. By the weakly low
semicontinuity of I, we have

lim I7(ul; Q) = E (4., 2) = min E.(v; Q).

n—0 vEHF™ (R™)
Therefore u” — 4. strongly in H;’"(Q; R™) and . is a new minimizer of E.. Moreover,

repeating Uhlenbeck’s proofs, we may show u. € C’llo’g (€2), although this result is not
needed here.
Denote for p > 0
QP2 = {x e Q: dist (z,00) > pe}.

Theorem 2.2. Any critical point u € H)"(;R™) of E. satisfies the estimate |u| < 1
almost everywhere on Q. For each €, there exists a minimizer u. of the functional
FE. such that u. can be approrimated in Hgl’" by a sequence of minimizers ull of the
functional I". Then there exist constants p and Cy = C3(2, g, p) such that

@) IVul| < Cy(Q, g, p)et  almost everywhere on QP (i)
n—
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Moreover there exists a § > 0 such that

1
lue| > 5 on Q\Q09), (i)

Proof. Choose ® =u — 1 min{1, |u|} as a test function in equation (1.3) and define
Qp ={ze€Q:|u(z)| >1a.e. onN}. Then we have

0, a.e. ¢ € Q\Q
Vu_[ﬂ u(u u]7

lal B a.e. x € Qy.
This implies that
1 - Vul?
/ IVau|™(1 — —)dz +/ |vu|”*2% da
N |ul o |ul
1
o [ - Pl - s =0,
9 Q
so meas(24) = 0. Hence |u| < 1 almost everywhere as claimed.
Moreover, rescaling equation (1.3) by @(z) = u(ez), we have

—V - (|Va"'va) = a1 - |a]*) in Q.:=Q/e. (2.3)

We regularize the solution to equation (2.3) by minimizing the rescaled functional

_ o £t
g = [ 00 L0 o] o

over all functions v € Hg’n(Qs) where §(z) = g(ex) and n > 0 is a small constant. Let
u" be the minimizer. Hence u" is a smooth solution of the following equation:

V- [(Vul +7)* T Vu] = u(l - [u]?) in Q.. (2.4)
Choosing ® = u" — \Z—:I min{1, |u"|} as a test function in equation (2.4), we obtain that

- . 1 . ..
[u" <1 a.e. on .. u" — . strongly in Hg’n(QE; R™) as n — 0 where @ is a minimizer

of E.. For simplicity we denote u" by u. Denote 0; = % and O, = %. By

equation (2.4) we have

W]()MU 8ku }

= 0{(IVul? + 1) T 0P Ou® + O [(|Vul? + ) "= 0P Oyd®)

= 9,{0k[(IVul? + 1) "7 9;u’|9pu’}

= 0;{0s, [(IVul®> + n) "2 0ul)}0,u® + 0, [(|Vul® + ) "2 0;u”) O

= O[(Juf? — DuP)0ku® + O [(|Vul? + ) T 0iu”)Oiu®

A {(IVul® + 1) "7 [655 +
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(p—2)u® u?

“i - Applying the above identity

(r—2)ug,ul,
G

Define a;; = d;5 + VPR a(‘)}ﬁ = 0ij0ap +

1,

and setting V = (|Vul? +7)? + 1, we have

LV : = (ai;Va) e, = 0iln(|Vul* + )T ai;00ju’0})
— nd[(Jul® = DuP1ohu® + 0[(|Vul® + n) "7 8iu”) O’
= n(|u]® — 1)|VuP|? + 2n|u - Vu|® + n(|Vu|* + n)%a%ﬂc‘?kiuo‘ﬁkﬂ-uﬁ
> n(jul* = 1)|Vul* > —c(n)V, (2.5)

where ¢(n) is an absolute constant. (2.5) is a so-called Bochner-type inequality.
Note that «" is a minimizer of I with |u”| < 1. Consider a new functional

(+|Vu*)® + }min{(l ~ luf)*, 1] da.

F(u,aa—/st<x,u7w>dx—/ga[ . 1

Then u,, is also a minimizer of F.

Let x¢ be an interior point of €.; i.e., By,(z9) C Q. for some p > 0. Using the
standard LP-estimate of the functional F (see [11, Theorem 3.1, page 159] and [19]),
there exist constants ¢ > 0 and C(p) > 0 (independent of 1) such that

(f,  wers o mera)t o, o)

B3p(z0)

where C'(p) is a uniform constant for < 1. Using (2.5), (2.6) and Theorem 8.17 in [14]
we have

sup |Vul" < C(/B ( )|Vu|”+5)”%‘S < C/B ( )|Vu|” dz + C(%, g).

By (z0)

Then letting n — 0, it implies

lim [Vu"|* < C |Vii.|" dz 4+ C(Q, g). (2.7)
n—=0 Ba,(0)

Now consider the boundary case. For zg € 0., we know that u” is C'-continuous at
zo. By the standard method in [14], for each € there exists a transformation (g;) from
Q. N B,(xo) to the domain B (0) := B,(0) NR%}. We claim that these transformations
are uniform for €. Set x; = exg € IN. After a translation Y.(Z) = & — %xl + x1, we
have Y (0 N B,(z0)) N (02N By(z1)) = x1. Let Pr be the tangent plane of both
O and Y. (99.) at x1. We know that Y:(99.) locally lies between Pr and 99 in a
neighborhood of x1; i.e., 9Q. N B,(z0) is flatter than 9QN B,(x1). Thus this proves our
claim. Then there exists a constant ¢ independent of € such that

cTHEP <Y 9568 < g, for € €R™

.3
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Therefore we only need to consider the norm of the gradient of the map
|Vu|?> = ngjDiuDju
0,J

on the domain B} (0) instead of B,(x9)N€.. Note that the boundary data g is a smooth
function. Then from the argument of Jost and Meier in [21], we know that the reverse

Holder inequality also holds at the boundary point xg; i.e., there exists a constant § > 0
and C(p) such that

(/ | V|0 cl;z:)ﬁ < C(p) (/ [Vu'|™ dm)% + C(p). (2.6b)
Ba, (10)NQe Bs,(x0)NQe

Let g be a point in Q.. For 3p <t < s < 4p, let ¢ be a smooth function in €. such

that
6= { 0, for x € Q.\Bs(xo)
1, forx € By(zo)

with [¢| < 1, and [V¢| < <<, Let ug be a given smooth vector-value function in € with
uoloo = g with [, |Vue|™ dz < C. Setting ig(x) = ug(ex), we have

/ |Vig|"dx < C.
Q.
Choosing (@ — )¢ as a test function in equation (2.3), we obtain

/ |Va|" " 2VaV (@ — i) ¢ dx + / |Va|" 2V - (@ — o) Vo dr
B4p(ibo)ﬂQ€

B4p (Io)ﬁﬁg

-/ (1= |l?) - (7 — i) do.
B4p(10)ﬂQE

Denote

h(t) = / v,
Bt(lo)ﬂga

Noting that |u| < 1 and using the standard “filling hole” technique in [11], we obtain

1

+1),

where 6 < 1 is a constant. Then from [11, Lemma 3.1, pages 161-162] or [19, Lemma
2.2] we have

1
) = | Vill" de < C(L+ ) = C(6,p.9), (2)
B3, (20)NQe p
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where C'(0, p, g) is a constant independent of .
Let xy be a interior point of 2. Combining (2.7) with (2.8), we have

@J [Vu" < C(2,9) on B,(xo).
n—

Rescaling 4. back to u, (i) is proved.
Let 29 be a boundary point; i.e., 2y € 9Q.. By (2.6b), (2.8) and applying the Sobolev
imbedding theorem, there exists an a > 0 such that for |x; — 23] < 2p there holds

|’INL(1‘1) — a(x2)| = hr% ‘ﬂn(l‘l) — ﬂn(I2)| S C hH%) ||1~L||H1,n+5‘.731 — xg‘a
n— n—

S C lim ||ﬁ||H1n|.’)31 — .’172|a g é|.’l?1 — .’L‘2|a.
n—0

Since |a| = 1 on 09, there exists d; > 0 such that for |z — zg| < §; there holds
|ie (1) — Gic (0)| < COF

Choosing ¢; small enough, we obtain

ja(2) > 5 in 2\,

1
2
where Q) = {z € Q. : dist (z,090.) > 61}. Rescaling back to u,, (ii) is obtained.
This proves Theorem 2.2 [

In the next lemma, we assume that for each €, the minimizer u. can be approximated
by minimizers u? in H}"(Q;R").
For p > 0 let

Vuzl" (1= )
n 4em

£ o) = Fan. . B, N 00 = Fimp [ [ ] dr,
9B, (w0)NQ5)

n—0

Vul|? 1— |ul]?)?
f(pm)::f(xo,umBmm:p/ [Vugl” | (= 2Py

9B, (zo)n N 4em

with dr denoting the area element on 95,.
The following lemma is related to the Courant Lemma, as in [25].

Lemma 2.3. (i) For 0 <e <e~! there exists a constant C3 such that

— E.(ue, 2N Boaya
B it f(p) <4 r+(@0))

< Cy
n—0el/2<p<el/4 |Ine|

and o
lim inf flp,m) <2Cs.

n—0 551/4SP§551/8
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(ii) There are constants v and o = €9(§2, g) > 0 such that for 0 < & < &g

inf U > =
Bp(m)ﬂ(l(é) | E| 2

whenever /2 < p < e'/* and f©)(p) < ~.

Proof. (i) As in [25], we have

mn_,o EE (ug, Qn B€1/4 (ZC()))
|Inel

ap
fm i f(p,n)g4mf1/2f(p’)ﬂ

<4
N—0e1/2<p<el/4 n—0 |ln€\

<C.

The second inequality is also proved as in [25].

(ii) Choose g1 = £1(€2) > 0 such that for 0 < p < 5}/4 the domain D = Q9 N\ B, ()
is strongly star-shaped; i.e., ro - > i p for x € 9D where 1y denotes the outer unit
normal. Let 7 = (71,... ,7%71) denote a smooth basis of tangent vector fields along dD.
Let u? be a smooth solution to equation (2.2). We drop € and 7 for ull. By equation
(2.2) we have the following Pohozaev identity:

n

n—2
Z [(IVul® + ng_Q)Tuzjxiuxi]wj
ij=1
n

n
= Z [(|VU|2 + ne_z)%UIj]wjxiu$i + Z (|VU|2 + 775_2)%%%3-%”3-

i,j=1 i,j=1
<|Vu|2 )" |Vul?

= |u|2 leuL + Z zi ((IVul® + ne™ 2)%)“ + (|Vul* +ne72) %]

n

n 1 )
= 5 P = 1%, - D= )+ Y = (@ Vul? + e,

i=1
Integrating both sides of the above equality gives

/ Orou(|Vul?> +ne=2) "z g Vudr + —— 4 — (17 lul?)? dx

By LS LS
oD

4em n

[ro-adr — 176_2/ (IVul? + ne2)"2" da.
D
Note

Orott| V| "2 (- V) > 1g - |0y u|™ — |0yl p| V| [ V|~

— Cp|V ul™

T0
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Letting n — 0, we have

1 1

= D(l = [uc?)? do = = limg D(l — |ul[*)? dx

— Vol (1= [u?]?)? 5
<Cpl 2 = dr < Cf9(p) < ) 2.
< Cplim 8D[ o <O () < Oy (2.9)

If |uc(z1)| < 4 for some 1 € D, by Theorem 2.2 we have

3 €
<2 — -
us(y)l < 7 for Jz1 —yl < G,
Hence oo
1 —
/ A=lef)” 0 s o >0 (2.10)
D en

Choosing €7 and « small enough gives Lemma 2.3. O

Now consider a special case 2 = B and g = x on 92. We define a symmetric class X
in Hgl’”; i.e., a function u(z) € H;’” belongs to the symmetric class X if there exists a
function f(r) : [0,1] — R such that the functional u(z) has the form of u(x) = f(r)=

m )
where r = |z|.
For a function u(x) € X, by a simple calculation, we have

Vul? = [V +295(r) - Vi PV = £20) + 20

n—
|| || re

For a function u(z) € X, define an energy for the corresponding f(r) by

B s = Bxute) B) = [ Vel L ) de

n 4en

' B
151 R0 + P2 )t + = ) e,
o m" r2 4en

A function f(r) belongs to the space H;"[0,1] if and only if f(r) satisfies

1
/ (fr+f™)yr"tdr < +o0 and f(1) = 1.
0
Consider the minimization problem

min B (f(r)). (2.11)
feHT™0,1]

Since Eés)( f(r)) is weak low semicontinuous on H;'"[0,1], the functional E§S>( i)
achieves its minimizer in H;""[0, 1] by a function f.(r). But we do not know whether the
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minimum f,(r) is regular. Following the idea of Uhlenbeck in [27] again, we regularize
the minimization problem (2.11) by minimizing the functional

BELP ) ) (- P20)2

) =157 [ + -

r

over all functions f(r) € H}"[0,1] where 1 > 0 is a small constant. Let f7(r) be the
minimizer of I" in H;™[0,1]. Hence u"(z) = f™(|lz]) 3 is a smooth solution of the
following equation:

n—

—-V - [(|Vul? +n)T2vu] = sinu(l —Ju*) in B. (2.12)

Let f. be a minimizer of E. in H;™[0,1]. Since I(f") < I"(f.), f" — f. weakly in
H7™[0,1]. Since I" is weak low semicontinuous, we have

lim 17(f7(r)) = ES (f(r)).

Define @, = f8(|x\)% Then u" — @, strongly in H;" Letting n — 0 in equation
(2.12), @, is a critical point of E.(u;€). The corresponding f.(r) is a minimizer of
B (f(r)) in Hy (0,1,

Lemma 2.4. Letu. = f (T)lfc—l be a critical point of E. which is reqularized by solutions

of equation (2.12). Then we have:
(i) There exists a constant Cg independent of € such that

/1 (1 — fsz(r))z 7,,nfl dr S Cﬁ.
0

£ n

(ii) For each p, 0 < p < 1, there exist two constants C7 and Cgs independent of p
and € such that

1
/ 10, £(r)|"r" Y dr < Cs|Inp| + Cs.
p

Tol
D = B,(0) and 7 denote the outer unit normal of D. Let o = (¢!,... ,0""1) denote a
smooth basis of tangent vector fields along dD. Using the Pohozaev identity as in the

proof of Lemma 2.3, we have

Proof. At first, we suppose that the critical point u. = f.(|z])% is smooth. Let

n _ 2\2
/ ro - x| Opu|"™ do + in/ (1— |u*)?dx < Cr/ [|8Uu| + u ‘:' ) |do. (2.13)
oD € Jp oD~ T 4e




624 MIN-CHUN HONG

Letting u.(x) = f5(|x\)ﬁ and setting D = B in (2.13), we get
1 Do g|™
Ll ey ar < c/ 991" 415 < .
e JB o M
This proves (i).
Setting D = B, in (2.13), we obtain

ao’ . n 1— - 2\2 C 1— . 2)\2
Tn_1|6rf€(’r‘)|n§0/ [| U‘ +( |U|) ]d0<_+/ ( |'LiL|) do.
OB, op, 4
Integrating the above inequality and using (i) gives
1 2\2
1 1-—-
[ s ar <om - [ Gl
P P B 4em
This proves (ii). If the critical point u.(x) is not smooth, we repeat the above proofs
using solutions u" = f”l";—‘ of equation (2.12) instead of u.. The conclusion of Lemma
2.4 follows by letting n — 0. O

Proof of Theorem 1.1. Applying Lemma 2.4, there exists a constant C' such that
Ee(ue; B\B,(0)) < C
for each p > 0. Thus u. — & in HL2(B\B,(0);R"). O

|z loc

n 4en T

dx < Cr|lnp| + Cs.

3. Proof of Theorem 1.2. We again consider the general domain ) and boundary
data ¢, and assume that u. is a minimizer of E, such that u. is approximated by u
and v is a minimizer of the functional I7.

For 0 < € < g9 and minimizers u. of E., consider the set

Ye={r€Q:|uc(a)] < 1} ={z € Q0 : u(a)] < 1}
and its cover (B_1 (2))sex.. For z € X let e'/? < p(z) < e'/* be determined as in
Lemma 2.3 such that
4E€(u5; Q((SE) N B€1/4 (fL’))
[Ine|

> f(é)(p<x),.%’,€,u5) > 9.

By Vitali’s covering lemma there exists a finite collection of disjoint balls B; = B,1/4(x;),
x; €3, 1 <i<TI=1I(u.) such that

(Qn U le/4) - UB551/4(2L‘¢).
TEX, i
Moreover, we obtain the uniform bound
I § Z 4E€(U5; an BE1/4($0)) < 4E5(U€; Q)

<C3y =1, 3.1
ne] = e - 0 (3-1)

on the number of “bad” balls B;.
For o € Q, there exist constants pj € [5e'/4,5¢'/8] such that

I T] _ I .
lim f(pg,x0,€,uy) = lim inf f(p,xo,e,ul) < 2Cs
n—0 n—0 5el/4<p<5el/8

and let D = QN By.1/4(20). Repeating the same proof in Lemma 2.3 (ii), we have
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Lemma 3.1. There ezists a constant Co = Co(£2,g) > 0 such that

1
— [ (= uf?)?dx < Co
en D
uniformly in 0 < e <eg for1 <i<1.
Combining Theorem 2.2 with Lemma 3.1 we have from [25]
Lemma 3.2. There exists a number Jy = Jo(,g9) € N such that for any disjoint
collection of balls B, 5(x;), x; € Q, 1 < j < J with |uc(z;)] < %, we have J < Jy.
Theorem 8.2 of [5] gives

Lemma 3.3. Let ¢: S ! — S"7 1 be a CO-map with degp = d. Then

n—

1
/ Vo dr > Jd|(n — 1)"F 5",
Sn—l

where |S™~| denotes the area of S™7L.

Lemma 3.4. Assume that ¢ < Ry < R < L where L is a constant. Let ¢(r,7) :
S x [Ro, R] — S™ ! be a CV-map. For each fived v, Ry < r < R, the degree of the
map ¢(r,-) is d. Then we have

R
- n n n R
/ (/ |VT¢|”_%d7') "2 ldr > |d|"T (n — 1)7|S’”_1\2571 In —.
Ry JSn—1 Ry

Proof. By Hélder’s inequality, we have

/ |VT¢|n—1 dr < (/ |VT¢|n—%)§|Sn—llm.
Sn—1 Sgn—1

By Lemma 3.1, we have

(/ |Vr¢\n_% dT)"T%— > (/ |VT¢|”_1 d7>%|sn—1|fﬁ(ﬁ)
Sn—1 Sgn—1
> (|d|(n — 1)"z ) w1 |§n— 1 =t

The desired result is proved. O

Lemma 3.5. Assume that e < Ry < R < L. Suppose that u : Br(zo)\Br,(xo) — R"
with 3 < |u| < 1 and u € H*"(Bg(x0)\Bg,(70),R"). Assume that there exists a
constant K such that



626 MIN-CHUN HONG

and
1

— (1—|uf*)?de < K.
€ B_1/2(wo)

Then for any o with 0 < o < 1, there exists a constant C(«, K) (independent of €) such

that n
/ [/ (1— |u?)? dr]*rVdr < Cla K).
Ro Sn—1

Proof. Without loss of generality, we assume that ¢ < Ry < el/2 <« R< L.
Choose p and ¢ such that p = é and ¢ = ﬁ with % + % = 1. By the Holder
inequality, we obtain

/ / — Jul?)? ) r~tdr

RO Sn 1

= /1/2 (/S (1- |u|2)2r"*1d7)ar*a("*l)*1 dr
I3 n—1

c1/2

+/ (/ (1- |u|2)27""_1d7)a7"_a(”_1)_1 dr
Ro Sn—1

n/('n 1) 1 1
n—1 -
/ / — [u®)? drr" " dr] / / dr dr]«
e1/2 Jgn—1 c1/2 Sn 1

e1/2
1 a(n— 1
/ / — [ul?)? dr R* " dr] 11’ / / — = ldeT}“
Ro Ssn—1 Ro Sn—1
n—1 715 [ qn-1 —ng+n—1 i
< [a—n /BR(M)( ul®)? drr™ ! dr] [s |S |/1/2 a dr dr]

1
+[=

‘UI>—'

c1/2

1. ng 1
/ (1 — |u*)? drr™! dr]’l’ [e® |S™ pnatnl dr] s
B 1/2($0) Ro
1 n 1 _(na=m)11/q

< |K(]1 1]r|smt S 2
< [ el + D] I5 Y ied o [

1 24 n(1— %
(nqg —n)t/a [eve ( q)]

= KY/?|S" Y (ng —n) "7 [(|Ine| + 1)/Pe3 +1] < C

+ K75|S"

fore <gy. O

Lemma 3.6 (Reverse Holder inequality). Consider the functional

A(U,Q):/QA(x,u,Vu) dx
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where A is a measurable function satisfying the uniform growth condition:
A2 TE = < Ay, 2) S A2"TE 4

Let v be a minimizer for the functional A(u) in Hl’”*%(ﬂ;snfl). Then for every
B(a) C Q, there exists a > 0 such that

1
(/ Vo] 00— 4) T55 < c(,n)(/ Vol da 4 1),
By (a) B

r(a)
2

where C(r) is a constant depending on r.

For the proof of Lemma 3.6, we refer to see Section 6 of [16], pages 314-317. The
idea comes from Giaquinta’s book, [11].
Assume that u(x) = u(rli—‘) = u(r,7) with § < |u| < 1. Denote

Ar(¢, Sn—l) _ /S B |u|"_1/2\VT¢|”_1/2 dr

and Vy = {¢p € HV"~2 0 CO(S"~1, 57~ 1) : degg = d}.

Lemma 3.7. There exists a map ¢g € Vi such that
1 1 1 1
w|""2|V,rdo|" " 2 dr = min u|" 2|V, "2 dr.
ARl mip [ 9.0
Moreover, there exists 3 > 0 such that
([ Vel 0D an < [ (vt
Sn,—l S‘n,—l

where C is a constant.

Proof. The proof of existence is due to [7]. Let ¢ be a minimizing sequence in Vj.
Then ¢ — ¢o in H-"~2(5"~1 §"=1). Moreover by the Sobolev imbedding theorem,
¢ converges uniformly to ¢ in C%7 for v € (0,1).

Let 71 and 75 be two points on S"~!. Let |1 — 72|gn—1 be the distance between 7
and 75 on S"~!. Let 79 be a point on S"~! and denote

3271(7’0) ={reS" |1 —10|gn1 < p}.

Since ¢ is Holder continuous on S™~!, there exists a p > 0 such that if |71 — 72|gn-1
for 7 and 75 on S™~! | then

1
Sn—1 S 5

|po(T1) — ¢o(72)
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For 19 € S™~ !, denote

wo Byt = [ ol

Let 1 : B;L_I(To) — S7~ ! with ’(/}|6B,7}_1(7'0) = ¢0|aé{;—1(70) and

G S5
4

(B~ (10)) = bo(70)
Let

- | do, forre S"il\B;‘*l(zg)
¥, for T € Br(xo).

Then deg ¢ = deg ¢ = d. Since ¢ is minimizer of A(p, S™ ') on Vg,
Algo, B; ™! (0)) < A(w, B! (m0)).

Thus ¢y is a local minimizer of A in H"~ 2 (B;‘_l(m); Sm=1) with an obstacle u = {y €
5§71 |y — ¢o(To)|gn-1 < 2}. Similarly to Lemma 3.6 (see [10]), we have the following
reverse Holder inequality:

(/ |VT¢0|<1+5>("—%>d7)ﬁ < 0/ Vo[~ 2 dr + C.
B’éfl(yo) B~ (yo)

Since S”~! is a compact manifold without boundary, this proves Lemma 3.7. [

Lemma 3.8. Let a, b be two constants with a >0, a+b > 0. Then we have

(a+0b)TT > a=T — [p|z-T, (3.2)
2n—1 ) .
(a+b)=T > am-T1 — Z Ci |a|z=7 |b|2n=1 (3.3)
=0
where C9, =1 and C§, = 2”(2”71)'1.'!'(2"7”1) fori=1,...,2n—1.

Proof. Since ) )
[B]7775 + (a + )71 > (bl + (e +b) > a,

then the first inequality (3.2) is proved. Note

2n—1

(a+b)% _ [(aer)zn]ﬁ _ [azn+ Z C;naib%*i]ﬁ.
i=0

Then from the inequality (3.2) we have

2n—1 . 2n—1
2 2 ; : PR S 2 . P 2n—i
(a + b) T > azn7—11 — ’ E C’énale"_Z‘ -1 > a?nzl — E C’éna%l—l ‘b 1 .
i=0 =0

(3.3) is proved. O
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Theorem 3.9. Let Ar r, = (Br(20)\Br,(%0)) NQ withe < Ry < R < L. Assume

that w € Hy" (4 R™) and § < |u| <1 on Agg,. Assume that there exists a constant

K such that
1

1
L (1= [u)?de < K(/Ine| +1) and —n/ (1= [u?)?dz < K.
€ € 351/2(900)

AR, R,

Then for e < ey there holds

/ |Vul™ dz > |d
AR, Rg

where C(K,d,g) is a constant (independent of €) and d is the degree of u on each
8(Br(w0) n Q), R() S T S R.

ﬁ(n_ 1)%|Sn71‘h’lR£; — C(K,dvg)a

Proof. As in [25] or in [4], we assume that

AR,RO = BR(xo)\BRO (fﬂo) c Q.

Denote

ou(x) U(Tﬁz_\) _u(rr) gl =
A e R e B s R

o

=]’

Then ¢(r,7) : S*~1 — S"~1 with deg ¢(r,-) = d for each r with Ry <r < R.
Since 3 < |u| <1 on Ag g,, we have

IVul? = |V]ul[? + |u|2|V%|2.
Then
|vu‘2 > |U|2T72|v7.(j)(7“,')|2.
By the Holder inequality, we obtain

nol

1 nfl n— L n n TZ
AR e e TR A D

Sn

Therefore

R
/ |Vu|"dx2// [u|™|V | drr~ " dr
AR,RO Ry Sn—1
R 1 1 1 -
z/ |sn—1|*m(/ [ul" "2V g m2) " e e
Ry Sn—1

Let ¢g = ¢o(r) be a minimizer of A, on V. Set

a:/ IV-o|" "2 dr, b:/ (1= u""2) |V |2 dr.
Sn—l Sn—l
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By Lemma 3.7, we have

R n
AR N e B e e B R
AR,RO Ry Sn—1

R _n
= / \S"_1|_’M1771(a +b)" e tdr

Ro
R " 2n—1 R
n—l|—gtes n-1 —1 i n—1|— gt otrp 2=l 1
> |S" T T mTar 2T dr — E s, |S" T T mTaTh1 T N dr
Ro i=0 Ro
.= .[1 —IQ.

By Lemma 3.4, we have

71 (n — 1)%|S”_1|ln£

I > |d .
12| e

1

Since 3 < |u| < 1, then 1 — [u[""2 < C(1 — |u[*). By Lemma 3.7 and the Holder

inequality

[_f —_—
b < (/ (1 — |u|2)% dl‘) T8 (/ |VT¢O‘(1+K3)(7L—%) dT) Hl_[,
sn-1 gn—1
B
< C(/ (1= ul?)® dx) ™7 / IV - bo|" ™ dr.
Sn—1 gn—1
There exists a constant C' such that
T / |VT¢0‘n_% dr < 2""% min A(g,S"h <C.
Sn—l ¢€Vd

By Lemma 3.5 I < C(K,d). This proves Theorem 3.9. [

Now consider the cover (B./5())zex,. of ¥.. Again by Vitali’s covering lemma we
can find a disjoint collection of balls B, /5(x;), x; € ¥c, 1 < j < J such that

e C | Be(a)).

J

By Lemma 3.2 we have J < Jj independent of €.
For each ¢ > 0 and any corresponding minimizer u, we fix this choice of (z;). Given

o > 0 we denote
07 =072 = O\ J B ().
J

Set G = U;_, Bo(x;)\ U/, B:(x;).
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Theorem 3.10. There exists a constant C11 > 0 such that for any o > 0
E (ue;0%) < (n— 1)"/2|S"_1||d|| Ino| + Cyy

uniformly in 0 < € < gq.

Proof. We give the proof following that in [25]. Fix a point z;, j € {1,...,J}.
We suppose z; = 0. For R < R; denote by d; r the topological degree of the map
u: (2N Br(0)) =2 5"t — S"~1 Let RZ denote the set of all numbers R € [e, 0]
such that 0Bg(x;)(\B:(z;;) = 0 for all j # j’ and such that for some collection
Jr C {1,...,J}, satistying Jp C Jp if " < R, the family {Bgr(z;)},cs, is disjoint

and

U B:(;) ¢ |J Br(x;) C |J Br(x;), if R <R

JjeJ jEJR/ J€JR
Note that R? is the union of closed intervals [Rél), R(l)], 1 <1 < L, whose right endpoints
correspond to a number R = R such that

OBr(x;) () Br(z;) # 0
for some pair j # j' € Jgr and whose left endpoints correspond to a number R(()l)
such that Bra-v (2/)\Uje s, Rm(xj) # 0 for j ¢ JRE)’)' Jr = JW is a constant
for R € [RY,RO) and JGD ¢ JO, JO+) £ JO Thus L < J < Jy = Lo(, g),
independently of . Moreover, there exists a constant M = M (), g) > 0 such that
R < Me, RD > % and R{*Y < MR® (3.4)

forall I =1,...,L — 1. Finally, observe that for all R € RZ and J € Jgr
|d| = | Z di,r| < Z |di, |- (3.5)
JEJIR JjE€JR

Applying (3.4), (3.5), Lemma 2.1, Lemma 3.1 and Theorem 3.9 we have

/ |Vue|™ dx>z Z/ |Vue|™ dx

=1 jeJ " AW g1 (z5)

>ZZIS” Y(n —1)"2|d; go| In(RO/RY) — C(K, g)

> |s"-1|<n —1)"2d] Y (m RO~ RY) - C(K, g)
l

> |57 |(n = 1)"2Jd| In(2) - C(K. g,9). (3.6)

This proves Theorem 3.10. [J
From the Theorem 2.1 of [8], we have
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Lemma 3.11. Let Q be an open domain in R™. For each k € N, let u* € HYP(Q,R")
be a solution to the following equation:

-V (|Vuk|p*2Vuk) = Fy,

where p > 2. If [ |Vug[Pde < C, |ug| <1 and ||Fy||11) < C, then uy, — u weakly in
HY?(Q,R"™) and Vuy — Vu strongly in LY. _(Q,R™) for all ¢ < p.

loc

Proof of Theorem 1.2. Consider any subsequence of minimizers u, = u., where
er — 0as k — oo. Let (zj%), 1 < j < Jg, denote the corresponding centers of the
“bad” balls. Note that J < Jy. Passing to a subsequence, if necessary, we assume that
Ji = J independent of k and z;, — z; as k — oo foreach j =1,...,J.

For o > 0 let Q7 = Q\ U; Bs(x;). For any ¢ > 0 and k < ko(o), by Theorem 3.10
we have

1
-/ Vupl de < B, (ug, 07) < Cha| Ino]| + Cis.

2
Choosing o = g, — 0 and passing to a further subsequence, we obtain that up — u
weakly locally in H2"(Q\{z1,... ,2,};R™). Since u minimizes Ej, we have

1
-V (|Vuk\"72Vuk) = a(l — |uk\2)uk.

Let K; be a compact subdomain of Q\{x1,...,2,;}. There exists another compact
subdomain Ky such that K; cC Ky cC Q\{z1,... ,z;}. Choose o small enough such
that Ko C Q7. Using u¢ as a test function, we have

1
o [0 uPluPods = [ [Vuode+ [ [V u - Vods
(ex)™ Jo Q Q

where ¢ is a smooth function on 2, ¢ =1 on K; and ¢ = 0 outside Q\Ky. By Theorem
3.10 we have

1
W/K (1= Jux]?) | d < C. (3.7)
Since |ug| > % on K, we have
1 2
G S (1 — |ugl®) dz < C, (3.8)

1

where C' is a constant independent of ;. Setting Fjy = e (1 — |ug|*)ux, and p = n in

Lemma 3.11, we have
|Vug|" 2 Vug, — [Vu|"*Vu.

Therefore,

—V - (|Vu" " 2Vu) Au = — klim V- (|Vur|" 2 Vug) A uy = 0.
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Hence u is a weak n-harmonic map in K; (see [8]). Since K; is any compact subdomain
of O\{z1,..., 27}, u, converges to u weakly in HL"(Q\{z1,... ,xs};R"). Moreover,
Ue, — u in HYP(Q;R™) for p < n following [25]. O

Added in proof. In a recent paper “Degenerate elliptic systems and applications to
Ginzburg-Landau type equations, Part one,” Z.C. Han and Y.Y. Li have independently
obtained that Theorem 1.2 holds for any sequence of minimizers by a different method.
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