Advances in Differential Equations

Volume 1, Number 4, July 1996, pp. 611-634

ASYMPTOTIC BEHAVIOR FOR MINIMIZERS OF A GINZBURG-LANDAU-TYPE FUNCTIONAL IN HIGHER DIMENSIONS ASSOCIATED WITH *n*-HARMONIC MAPS

MIN-CHUN HONG

Centre for Mathematics and its Application, Australian National University Canberra, ACT 0200, Australia

(Submitted by: Haim Brezis)

Abstract. We describe the behavior as $\varepsilon \to 0$ of minimizers for a Ginzburg-Landau functional

$$E_{\varepsilon}(u;\Omega) = \int_{\Omega} \left[\frac{|\nabla u|^n}{n} + \frac{1}{4\varepsilon^n} (1 - |u|^2)^2 \right] dx$$

in the space $H_g^{1,n}(\Omega;\mathbb{R}^n)$, where $\Omega \subset \mathbb{R}^n$ and the boundary data $g: \partial\Omega \to S^{n-1}$ has a nonzero topological degree. Some recent results of Bethuel, Brezis and Hélein, and of Struwe on the two-dimensional problem, are extended to higher-dimensional cases. New proofs for their results are also presented in this paper.

1. Introduction. Let Ω be an open bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega \cong S^{n-1}$, and let g be a smooth function, $g : \partial \Omega \to S^{n-1}$. We may associate with g a topological degree d. Let

$$H_g^{1,p}(\Omega;\mathbb{R}^n) = \{ u \in H^{1,p}(\Omega,\mathbb{R}^n) : u|_{\partial\Omega} = g \}.$$

Let us consider for $\varepsilon > 0$ the Ginzburg-Landau-type functional

$$E_{\varepsilon}(u;\Omega) = \int_{\Omega} \left[\frac{|\nabla u|^p}{p} + \frac{1}{4\varepsilon^p} (1 - |u|^2)^2 \right] dx$$
(1.1)

where 1 .

The functional E_{ε} is related to models introduced by Ginzburg and Landau in [13] for the study of phase transitions. For the scalar-value case, numerous mathematically interesting results have been obtained by many authors (see [9], [15], [23], [22] and [24]).

In the vector-value case (i.e., $n \geq 2$), it is well known that $H_g^{1,p}(\Omega; \mathbb{R}^n)$ is nonempty and for $\varepsilon > 0$ the functional E_{ε} achieves its minimizer in $H_g^{1,p}(\Omega; \mathbb{R}^n)$ by a function u_{ε} ; i.e.,

$$\nu(\varepsilon) := E_{\varepsilon}(u_{\varepsilon}; \Omega) = \min_{u \in H_g^{1,p}(\Omega; \mathbb{R}^n)} E_{\varepsilon}(u; \Omega).$$
(1.2)

Received for publication September 1995.

AMS Subject Classifications: 35B25, 35J70, 49K20; 58G18.

Define

$$H_q^{1,p}(\Omega; S^{n-1}) := \{ u \in H_q^{1,p}(\Omega; \mathbb{R}^n) : |u| = 1 \text{ a.e. on } \Omega \}.$$

If p < n, it can be easily proven that u_{ε} converges strongly to a *p*-harmonic map since $H_{g}^{1,p}(\Omega, S^{n-1})$ is always nonempty. For $p = n \ge 2$, $H_{g}^{1,n}(\Omega, S^{n-1})$ is empty if the degree $d \ne 0$. The value $\nu(\varepsilon)$ may go to infinity as $\varepsilon \to 0$. The first part of the energy $E_{\varepsilon}(u;\Omega)$, $\int_{\Omega} \frac{1}{n} |\nabla u|^n dx$, is conformal invariant allowing change of variable x, so it is interesting to study asymptotic behavior of minimizers u_{ε} of E_{ε} in $H_{g}^{1,n}$ for the case p = n. For p = n = 2, Bethuel, Brezis and Hélein (see [1], [2], [3] and [4]) first proved many beautiful results about asymptotic behavior for minimizers of E_{ε} . One of the main results in [4] is the following:

Theorem ([4]). Let n = p = 2 and u_{ε} be a minimizer of the minimizing problem (1.2). If Ω is star-shaped, there is a subsequence $\{u_{\varepsilon_k}\}$ which converges uniformly on a compact set of $\Omega \setminus \Sigma$ to a harmonic map with values in S^1 and the singular set Σ is exactly |d| points in Ω .

An extension to non-star-shaped domains of the above work was obtained by Struwe (see [25] and [26]).

In this paper we consider the Ginzburg-Landau functional in the case of $p = n \ge 2$. A function $u(x) \in H_g^{1,n}(\Omega, \mathbb{R}^n)$ is said to be a critical point of the Ginzburg-Landau functional (1.1) if $u(x) \in H_g^{1,n}(\Omega, \mathbb{R}^n)$ is a weak solution to the following Euler-Lagrange equation:

$$-\nabla \cdot (|\nabla u|^{n-2} \nabla u) = \frac{1}{\varepsilon^n} u(1-|u|^2) \text{ in } \Omega, \qquad (1.3)$$

$$u|_{\partial\Omega} = g. \tag{1.4}$$

One special case of interest is $\Omega = B$ and g = x on ∂B where B is the unit ball in \mathbb{R}^n . For each $\varepsilon > 0$, we can find a symmetric solution to equations (1.3)–(1.4) of the form $u_{\varepsilon} = f_{\varepsilon}(r) \frac{x}{|x|}$.

Theorem 1.1. Assume that $n \geq 2$. Let $\Omega = B$ and let g = x be the boundary data. For each $\varepsilon > 0$, there exists a symmetric u_{ε} to the Ginzburg-Landau equation (1.3) with (1.4). For this sequence of critical points u_{ε} , there exists a subsequence (u_{ε_k}) such that as $\varepsilon_k \to 0$

$$u_{\varepsilon_k} \rightharpoonup \frac{x}{|x|}$$
 in $H^{1,n}_{\text{loc}}(B \setminus \{0\}, \mathbb{R}^n)$.

Theorem 1.1 is proved directly by using the Pohozaev identity (see Lemma 2.3). A map $u: \Omega \to S^{n-1}$ is called an *n*-harmonic map if $u \in H^{1,n}(\Omega, S^{n-1})$ satisfies

$$\nabla \cdot (|\nabla u|^{n-2} \nabla u) + |\nabla u|^n u = 0 \tag{1.5}$$

in the distribution sense.

For a general case, we give a partial answer to the problem posed by Bethuel, Brezis and Hélein in their book (see Problem 17 in [4]) in the following:

Theorem 1.2. Let $d \neq 0$ be the degree of the boundary data g. For each $\varepsilon > 0$, there exists a minimizer u_{ε} for E_{ε} . For this sequence of minimizers u_{ε} , there exists a subsequence (u_{ε_k}) and finite points x_l , $l = 1, \ldots J$, such that as $\varepsilon_k \to 0$

$$u_{\varepsilon_k} \rightharpoonup u \quad in \quad H^{1,n}_{\text{loc}}(\Omega \setminus \{x_1, \ldots, x_J\}, \mathbb{R}^n),$$

where u is an n-harmonic map with values in S^{n-1} . Moreover, u_{ε_k} converges to u weakly in $H^{1,q}$ for q < n.

For the proof of Theorem 1.2, we modify Bethuel, Brezis and Hélein's main ideas in [4] and the Struwe's ideas in [25]. For n = 2, Bethuel, Brezis and Hélein in [2] showed the estimate $|\nabla u_{\varepsilon}| \leq \frac{C}{\varepsilon}$ holds, where C is a constant independent of ε . It seems that their proof can not be applied to the case $n \geq 3$. To overcome this difficulty, we first regularize the functional (1.1) by following an idea of Uhlenbeck in [27] (also see [12]) and rescale the minimization problem (1.2) as in [25] to establish Theorem 2.2. The proof of Theorem 2.2 relies on the fact that for $x_0 \in \overline{\Omega}$ and for some $\rho > 0$ we have

$$\int_{B_{\rho\varepsilon}(x_0)\cap\Omega} |\nabla u_{\varepsilon}|^n \, dx \le C,$$

where C is a uniform constant for ε . Based on a Bochner-type inequality, a local bounded theorem (see Theorems 8.17 of Gilbarg and Trudinger's book, [14]) and the reverse Hölder inequality (see [11, Theorem 3.9, page 159], or [19]), we obtain an interior estimate for $|\nabla u_{\varepsilon}|$ (see (i) of Theorem 2.2). Using the reverse Hölder inequality (see [21]) and Sobolev imbedding theorem, we get $|u_{\varepsilon}| \geq \frac{1}{2}$ near the boundary $\partial \Omega$ (see (ii) of Theorem 2.2).

Another difficult step (see Theorem 3.10) in the proof of Theorem 1.2 is to show that there exists a finite collection of points x_k for k = 1, ..., J such that for any $\sigma > 0$

$$E(u_{\varepsilon}; \Omega \setminus \cup B_{\sigma}(x_k)) \le C(\sigma) \tag{1.6}$$

where $C(\sigma)$ is a constant independent of ε . For n = 2, this result was first proven by Bethuel, Brezis and Hélein, with a simplified proof given by Struwe in [25]. But their proofs rely heavily on the following result of Brezis, F. Merle and Rivière in [6].

Theorem ([6]). Assume $\varepsilon \leq R_0 \leq R \leq L$. Let $x_0 \in \Omega$ and denote

$$A_{R,R_0} = B_R(x_0) \backslash B_{R_0}(x_0) \cap \Omega$$

and let $u \in H^{1,2}(A_{R,R_0}, \mathbb{R}^2)$ be a function satisfying $\frac{1}{2} \leq |u| \leq 1$ in $A_!R, R_0$. Assume that there exists a constant K such that

$$\frac{1}{\varepsilon^2} \int_{\Omega} (1 - |u|^2)^2 \, dx \le K. \tag{1.7}$$

Then there exists a constant C(K, d)

$$\int_{A_{R,R_0}} |\nabla u|^2 \ge \pi |d| \ln \frac{R}{R_0} - C(K,d)$$

where d is the degree of u on each $\partial B_r(x_0)$, $R_0 \leq r \leq R$.

The condition (1.7) in the above theorem can be replaced in [20] by the following weaker assumption; i.e., there exists a constant K such that

$$\frac{1}{\varepsilon^2} \int_{\Omega} (1 - |u|^2)^2 \, dx \le K(|\ln \varepsilon| + 1) \quad \text{and} \quad \frac{1}{\varepsilon^2} \int_{B_{\varepsilon^{1/2}}(x_0)} (1 - |u|^2)^2 \, dx \le K. \tag{1.8}$$

The assumption (1.8) is applied in [25]. However, all proofs about the Brezis, F. Merle and Rivière's theorem in [6], [25] and [20] are based on two-dimensional complex analysis and seem not to apply in the case $n \geq 3$. We prove Brezis-Merle-Rivière's theorem by a new approach which is easily extended to higher-dimensional cases (see Theorem 3.9). Roughly speaking, combining a result of Brezis, Coron and Leib in [5, Theorem 8.2] with the reverse Hölder inequality due to [16, Section 6] and [10] for minimizing a functional among maps from a domain into S^{n-1} , we set up a new minimization problem of a functional over maps from S^{n-1} into S^{n-1} with the topological degree d. Then we compare a minimizer of this new minimization problem with u_{ε} to prove Theorem 3.9. The estimate (1.6) is finally proven using an idea of Struwe in [25]. Other proofs of Theorem 1.2 are extended from [25] to higher-dimensional cases.

Remark 1.3. The number J of the singular points x_k in Theorem 1.2 is exactly |d| following [4]. If n = 2, Theorem 1.2 holds for any minimizer u_{ε} of the functional (1.1) by our proofs.

Related results for *p*-harmonic maps have been obtained by Hardt and Lin in [18] for n = 2, and by Chen and Hardt in [7] for $n \ge 2$.

Acknowledgment. The author would like to thank Prof. M. Struwe for his encouragement and many useful discussions and suggestions. The work was partially done at the Department Mathematik, ETH-Zürich with the support of a postdoctoral fellowship. The work is partially supported by the Australian Research Council.

2. Some lemmas and the proof of Theorem 1.1.

Lemma 2.1. There exists a constant $C_1 = C_1(\Omega, g)$ such that for $0 < \varepsilon \leq 1$,

$$\nu(\varepsilon) \le |d| \frac{(n-1)^{\frac{n}{2}}}{n} |S^{n-1}|| \ln \varepsilon| + C_1, \qquad (2.1)$$

where $|S^{n-1}|$ denotes the area of the unit sphere S^{n-1} in \mathbb{R}^n .

Proof. Without loss of generality, we may assume that d > 0. We can follow the steps in [25] by deleting d balls. Let x_i (i = 1, ..., d) be d different points inside Ω such that

$$B_{\rho}(x_i) \cap B_{\rho}(x_j) = \emptyset \quad \text{for} \ i \neq j,$$

where ρ is small enough. We then introduce Dirichlet boundary conditions

$$g_i(x) = \frac{x - x_i}{|x - x_i|}$$
 on $\partial B_{\rho}(x_i)$

to obtain a new domain $\tilde{\Omega} = \Omega \setminus \bigcup_{i=1}^{d} B_{\rho}(x_i)$. Choose u_0 be a function from $\tilde{\Omega}$ into S^{n-1} with $u_0 = g$ on $\partial\Omega$ and $u_0 = g_i$ on each $\partial B_{\rho}(x_0)$ and

$$\int_{\tilde{\Omega}} |\nabla u_0|^n \le C$$

As in [25], we can thus reduce to the case $\Omega = B = B_1^n(0)$ and g(x) = x. Set

$$u_{\varepsilon}(x) = f_{\varepsilon}(x) \frac{x}{|x|}$$

where $f_{\varepsilon}(x) \cong \tanh(\frac{r}{\sqrt{2\varepsilon}})$. Since $\nabla u_{\varepsilon}(x) = \nabla f_{\varepsilon}(r) \cdot \frac{x}{|x|} + f_{\varepsilon}(x) \nabla \frac{x}{|x|}$, we have

$$|\nabla u_{\varepsilon}(x)|^{2} = |\frac{\partial}{\partial r}f_{\varepsilon}(r)|^{2} + |f_{\varepsilon}(r)|^{2}|\nabla \frac{x}{|x|}|^{2} = \frac{1}{2}\frac{(1-f)^{2}}{\varepsilon^{2}} + \frac{(n-1)f^{2}}{r^{2}}$$

by a simple calculation.

For a > 0 and b > 0, we have

$$\sum_{i=1}^{n-1} a^i b^{n-i} \le C(a^{n-1}b + b^n).$$

Then using this inequality we obtain

$$\begin{split} E_{\varepsilon}(u_{\varepsilon}) &= \frac{1}{n} \int_{\Omega} |\nabla u|^{n} \, dx + \frac{1}{4\varepsilon^{n}} \int_{\Omega} (1 - |u|^{2})^{2} \, dx \\ &\leq \int_{\Omega} \frac{1}{n} \Big[\frac{(n-1)f^{2}}{r^{2}} + \frac{(1 - f^{2})^{2}}{2\varepsilon^{2}} \Big]^{\frac{n}{2}} \, dx + \frac{1}{4\varepsilon^{n}} \int_{\Omega} (1 - f^{2})^{2} \, dx \\ &\leq \int_{\Omega} \frac{1}{n} \Big(\frac{(n-1)^{1/2} |f|}{r} + \frac{|1 - f^{2}|}{\sqrt{2}\varepsilon} \Big)^{n} \, dx + \frac{1}{4\varepsilon^{n}} \int_{\Omega} (1 - f^{2})^{2} \, dx \\ &\leq \int_{\Omega} \frac{(n-1)^{n/2}}{n} \frac{|f|^{n}}{r^{n}} \, dx + \sum_{1=1}^{n-1} C \int_{\Omega} \frac{1}{n} \Big(\frac{(n-1)^{1/2} |f|}{r} \Big)^{i} \Big(\frac{|1 - f^{2}|}{\sqrt{2}\varepsilon} \Big)^{n-i} \\ &+ \frac{C}{4\varepsilon^{n}} \int_{\Omega} (1 - f^{2})^{2} \, dx \\ &\leq \frac{(n-1)^{n/2}}{n} |S^{n-1}| \int_{0}^{1} \frac{|f|^{n}}{r} \, dr + C \int_{0}^{1} \Big(\frac{|1 - f^{2}|}{\sqrt{2}\varepsilon} \Big)^{n} \, r^{n-1} \, dr \\ &+ C \int_{0}^{1} \Big(\frac{(n-1)^{1/2} |f|}{r} \Big)^{n-1} \frac{|1 - f^{2}|}{\sqrt{2}\varepsilon} \, r^{n-1} \, dr + \frac{C}{\varepsilon^{n}} \int_{0}^{1} (1 - f^{2})^{2} \, r^{n-1} \, dr \end{split}$$

where C is a constant. By changing the variable $s = \frac{r}{\sqrt{2\varepsilon}}$ we have

$$\begin{split} &\int_{0}^{1} \Big[\Big(\frac{|1 - f^{2}|}{\sqrt{2\varepsilon}} \Big)^{n} + \Big(\frac{|f|}{r} \Big)^{n-1} \frac{|1 - f^{2}|}{\sqrt{2\varepsilon}} \Big] r^{n-1} dr + \frac{C}{\varepsilon^{n}} \int_{0}^{1} (1 - f^{2})^{2} r^{n-1} dr \\ &\leq \int_{0}^{\infty} \Big[\Big(\frac{|1 - |\tanh(s)|^{2}|}{\sqrt{2}} \Big)^{n} s^{n-1} + |\tanh(s)|^{n-1} \Big(\frac{|1 - \tanh^{2}(s)|}{\sqrt{2}} \Big) \Big] ds \\ &+ C \int_{0}^{\infty} (1 - |\tanh(s)|^{2})^{2} s^{n-1} ds < +\infty \end{split}$$

and

$$\int_0^1 \frac{|f|^n}{r} dr \le \int_1^{\frac{1}{\sqrt{2\varepsilon}}} \frac{|\tanh(s)|^n}{s} ds + \int_0^1 \frac{|\tanh(s)|^n}{s} ds \le |\ln\varepsilon| + C,$$

where C is a constant. Therefore Lemma 2.1 is proved. \Box

Let u_{ε} be a minimizer of the functional E_{ε} . We do not know whether the minimizer u_{ε} is regular. However we find a new minimizer which can be approximated by a sequence of smooth maps. Following Uhlenbeck's idea in [27] (see also [12]), we regularize the minimization problem (1.2) by minimizing the functionals:

$$I_{\varepsilon}^{\eta}(v;\Omega_{\varepsilon}) = \int_{\Omega} \left[\frac{(|\nabla v|^2 + \eta \varepsilon^{-2})^{\frac{n}{2}}}{n} + \frac{1}{4\varepsilon^n} (1 - |v|^2)^2 \right] dx$$

over all functions $v \in H^{1,n}_g(\Omega; \mathbb{R}^n)$ where $\eta > 0$ is a small constant. Let u^{η}_{ε} be the minimizer. Hence u^{η}_{ε} is also a smooth solution of the following equation:

$$-\nabla \cdot \left[(|\nabla u|^2 + \eta \varepsilon^{-2})^{\frac{n-2}{2}} \nabla u \right] = \frac{1}{\varepsilon^n} u (1 - |u|^2) \text{ in } \Omega.$$
(2.2)

Since $I^{\eta}_{\varepsilon}(u^{\eta}_{\varepsilon};\Omega) \leq I^{\eta}_{\varepsilon}(u_{\varepsilon};\Omega), u^{\eta}_{\varepsilon} \rightharpoonup \bar{u}_{\varepsilon}$ in $H^{1,n}_{g}(\Omega;\mathbb{R}^{n})$ as $\eta \to 0$. By the weakly low semicontinuity of I^{η}_{ε} , we have

$$\lim_{\eta\to 0} I^\eta_\varepsilon(u^\eta_\varepsilon;\Omega) = E_\varepsilon(\bar u_\varepsilon,\Omega) = \min_{v\in H^{1,n}_g(\Omega;\mathbb{R}^n)} E_\varepsilon(v;\Omega).$$

Therefore $u^{\eta} \to \bar{u}_{\varepsilon}$ strongly in $H^{1,n}_{g}(\Omega; \mathbb{R}^{n})$ and \bar{u}_{ε} is a new minimizer of E_{ε} . Moreover, repeating Uhlenbeck's proofs, we may show $\bar{u}_{\varepsilon} \in C^{1,\alpha}_{\text{loc}}(\Omega)$, although this result is not needed here.

Denote for $\rho > 0$

$$\Omega^{(\rho\varepsilon)} := \{ x \in \Omega : \text{ dist } (x, \partial \Omega) \ge \rho\varepsilon \}.$$

Theorem 2.2. Any critical point $u \in H_g^{1,n}(\Omega; \mathbb{R}^n)$ of E_{ε} satisfies the estimate $|u| \leq 1$ almost everywhere on Ω . For each ε , there exists a minimizer u_{ε} of the functional E_{ε} such that u_{ε} can be approximated in $H_g^{1,n}$ by a sequence of minimizers u_{ε}^{η} of the functional I_{ε}^{η} . Then there exist constants ρ and $C_2 = C_2(\Omega, g, \rho)$ such that

$$\overline{\lim_{\eta \to 0}} |\nabla u_{\varepsilon}^{\eta}| \le C_2(\Omega, g, \rho) \varepsilon^{-1} \quad almost \ everywhere \ on \ \Omega^{(\rho \varepsilon)}.$$
(i)

Moreover there exists a $\delta > 0$ such that

$$|u_{\varepsilon}| \ge \frac{1}{2} \quad on \quad \Omega \setminus \Omega^{(\delta \varepsilon)}.$$
 (ii)

Proof. Choose $\Phi = u - \frac{u}{|u|} \min\{1, |u|\}$ as a test function in equation (1.3) and define $\Omega_+ = \{x \in \Omega : |u(x)| > 1 \text{ a.e. on } \Omega\}$. Then we have

$$\nabla \Phi = \begin{cases} 0, & \text{a.e. } x \in \Omega \backslash \Omega_+ \\ \nabla u - \left[\frac{\nabla u}{|u|} - \frac{u(u \cdot \nabla u)}{|u|^3}\right], & \text{a.e. } x \in \Omega_+. \end{cases}$$

This implies that

$$\begin{split} &\int_{\Omega_{+}} |\nabla u|^{n} (1 - \frac{1}{|u|}) \, dx + \int_{\Omega_{+}} |\nabla u|^{n-2} \frac{|u \cdot \nabla u|^{2}}{|u|^{3}} \, dx \\ &+ \frac{1}{\varepsilon^{n}} \int_{\Omega_{+}} (1 - |u|^{2}) |u| (1 - |u|) \, dx = 0, \end{split}$$

so meas $(\Omega_+) = 0$. Hence $|u| \le 1$ almost everywhere as claimed.

Moreover, rescaling equation (1.3) by $\tilde{u}(x) = u(\varepsilon x)$, we have

$$-\nabla \cdot (|\nabla \tilde{u}|^{n-1} \nabla \tilde{u}) = \tilde{u}(1 - |\tilde{u}|^2) \quad \text{in} \quad \Omega_{\varepsilon} := \Omega/\varepsilon.$$
(2.3)

We regularize the solution to equation (2.3) by minimizing the rescaled functional

$$\tilde{I}^{\eta}(v;\Omega_{\varepsilon}) = \int_{\Omega_{\varepsilon}} \left[\frac{(|\nabla v|^2 + \eta)^{\frac{n}{2}}}{n} + \frac{1}{4}(1 - |v|^2)^2 \right] dx$$

over all functions $v \in H^{1,n}_{\tilde{g}}(\Omega_{\varepsilon})$ where $\tilde{g}(x) = g(\varepsilon x)$ and $\eta > 0$ is a small constant. Let u^{η} be the minimizer. Hence u^{η} is a smooth solution of the following equation:

$$-\nabla \cdot \left[\left(|\nabla u|^2 + \eta \right)^{\frac{n-2}{2}} \nabla u \right] = u(1 - |u|^2) \quad \text{in } \ \Omega_{\varepsilon}.$$

$$(2.4)$$

Choosing $\Phi = u^{\eta} - \frac{u^{\eta}}{|u^{\eta}|} \min\{1, |u^{\eta}|\}$ as a test function in equation (2.4), we obtain that $|u^{\eta}| \leq 1$ a.e. on Ω_{ε} . $u^{\eta} \to \tilde{u}_{\varepsilon}$ strongly in $H^{1,n}_{\tilde{g}}(\Omega_{\varepsilon}; \mathbb{R}^n)$ as $\eta \to 0$ where \tilde{u} is a minimizer of E_{ε} . For simplicity we denote u^{η} by u. Denote $\partial_i = \frac{\partial}{\partial x_i}$ and $\partial_{ik} = \frac{\partial^2}{\partial x_i \partial x_k}$. By equation (2.4) we have

$$\begin{aligned} \partial_i \{ (|\nabla u|^2 + \eta)^{\frac{n-2}{2}} [\delta_{ij} + \frac{(n-2)u_{x_i}^{\alpha} u_{x_j}^{\alpha}}{|\nabla u|^2 + \eta}] \partial_{kj} u^{\beta} \partial_k u^{\beta} \} \\ &= \partial_i \{ (|\nabla u|^2 + \eta)^{\frac{n-2}{2}} \partial_{ki} u^{\beta} \partial_k u^{\beta} + \partial_k [(|\nabla u|^2 + \eta)^{\frac{n-2}{2}}] \partial_i u^{\beta} \partial_k u^{\beta} \} \\ &= \partial_i \{ \partial_k [(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} \partial_i u^{\beta}] \partial_k u^{\beta} \} \\ &= \partial_i \{ \partial_{x_k} [(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} \partial_i u^{\beta}] \partial_k u^{\beta} + \partial_k [(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} \partial_i u^{\beta}] \partial_{ki} u^{\beta} \\ &= \partial_k [(|u|^2 - 1) u^{\beta}] \partial_k u^{\beta} + \partial_k [(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} \partial_i u^{\beta}] \partial_{ki} u^{\beta} \end{aligned}$$

Define $a_{ij} = \delta_{ij} + \frac{(p-2)u_{x_i}^{\alpha}u_{x_j}^{\alpha}}{|\nabla u|^2 + \eta}, a_{ij}^{\alpha\beta} = \delta_{ij}\delta_{\alpha\beta} + \frac{(p-2)u_{x_i}^{\alpha}u_{x_j}^{\beta}}{|\nabla u|^2 + \eta}$. Applying the above identity and setting $V = (|\nabla u|^2 + \eta)^{\frac{n}{2}} + 1$, we have

$$LV := (a_{ij}V_{x_j})_{x_i} = \partial_i [n(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} a_{ij}\partial_k j u^\beta \partial_u^\beta]$$

$$= n\partial_k [(|u|^2 - 1)u^\beta] \partial_k u^\beta + \partial_k [(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} \partial_i u^\beta] \partial_{ki} u^\beta$$

$$= n(|u|^2 - 1) |\nabla u^\beta|^2 + 2n|u \cdot \nabla u|^2 + n(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} a_{ij}^{\alpha\beta} \partial_{ki} u^\alpha \partial_{kj} u^\beta$$

$$\geq n(|u|^2 - 1) |\nabla u|^2 \geq -c(n)V, \qquad (2.5)$$

where c(n) is an absolute constant. (2.5) is a so-called Bochner-type inequality.

Note that u^{η} is a minimizer of I^{η} with $|u^{\eta}| \leq 1$. Consider a new functional

$$\mathbb{F}(u,\Omega_{\varepsilon}) = \int_{\Omega_{\varepsilon}} f(x,u,\nabla u) \, dx = \int_{\Omega_{\varepsilon}} \left[\frac{(\eta + |\nabla u|^2)^{\frac{n}{2}}}{n} + \frac{1}{4} \min\{(1 - |u|^2)^2, 1\} \right] dx.$$

Then u_{η} is also a minimizer of \mathbb{F} .

Let x_0 be an interior point of Ω_{ε} ; i.e., $B_{4\rho}(x_0) \subset \Omega_{\varepsilon}$ for some $\rho > 0$. Using the standard L^p -estimate of the functional \mathbb{F} (see [11, Theorem 3.1, page 159] and [19]), there exist constants $\delta > 0$ and $C(\rho) > 0$ (independent of η) such that

$$\left(\int_{B_{2\rho}(x_0)} |\nabla u^{\eta}|^{n+\delta} \, dx\right)^{\frac{1}{n+\delta}} \le C(\rho) \left(\int_{B_{3\rho}(x_0)} |\nabla u^{\eta}|^n \, dx\right)^{\frac{1}{n}} + C(\rho), \tag{2.6}$$

where $C(\rho)$ is a uniform constant for $\eta < 1$. Using (2.5), (2.6) and Theorem 8.17 in [14] we have

$$\sup_{B_{\rho}(x_0)} |\nabla u|^n \le C \left(\int_{B_{2\rho}(x_0)} |\nabla u|^{n+\delta} \right)^{\frac{n}{n+\delta}} \le C \int_{B_{2\rho}(x_0)} |\nabla u|^n \, dx + C(\Omega, g).$$

Then letting $\eta \to 0$, it implies

$$\overline{\lim_{\eta \to 0}} |\nabla u^{\eta}|^n \le C \int_{B_{2\rho}(x_0)} |\nabla \tilde{u}_{\varepsilon}|^n \, dx + C(\Omega, g).$$
(2.7)

Now consider the boundary case. For $x_0 \in \partial \Omega_{\varepsilon}$, we know that u^n is C^1 -continuous at x_0 . By the standard method in [14], for each ε there exists a transformation (g_{ij}^{ε}) from $\Omega_{\varepsilon} \cap B_{\rho}(x_0)$ to the domain $B_{\rho}^+(0) := B_{\rho}(0) \cap \mathbb{R}^n_+$. We claim that these transformations are uniform for ε . Set $x_1 = \varepsilon x_0 \in \partial \Omega$. After a translation $Y_{\varepsilon}(\tilde{x}) = \tilde{x} - \frac{1}{\varepsilon}x_1 + x_1$, we have $Y_{\varepsilon}(\partial \Omega_{\varepsilon} \cap B_{\rho}(x_0)) \cap (\partial \Omega \cap B_{\rho}(x_1)) = x_1$. Let P_T be the tangent plane of both $\partial \Omega$ and $Y_{\varepsilon}(\partial \Omega_{\varepsilon})$ at x_1 . We know that $Y_{\varepsilon}(\partial \Omega_{\varepsilon})$ locally lies between P_T and $\partial \Omega$ in a neighborhood of x_1 ; i.e., $\partial \Omega_{\varepsilon} \cap B_{\rho}(x_0)$ is flatter than $\partial \Omega \cap B_{\rho}(x_1)$. Thus this proves our claim. Then there exists a constant c independent of ε such that

$$c^{-1}|\xi|^2 \le \sum_{i,j} g_{ij}^{\varepsilon} \xi_i \xi_j \le c|\xi|^2$$
, for $\xi \in \mathbb{R}^n$.

Therefore we only need to consider the norm of the gradient of the map u

$$|\nabla u|^2 = \sum_{i,j} g_{ij}^{\varepsilon} D_i u D_j u$$

on the domain $B_{\rho}^{+}(0)$ instead of $B_{\rho}(x_0) \cap \Omega_{\varepsilon}$. Note that the boundary data g is a smooth function. Then from the argument of Jost and Meier in [21], we know that the reverse Hölder inequality also holds at the boundary point x_0 ; i.e., there exists a constant $\delta > 0$ and $C(\rho)$ such that

$$\left(\int_{B_{2\rho}(x_0)\cap\Omega_{\varepsilon}} |\nabla u^{\eta}|^{n+\delta} dx\right)^{\frac{1}{n+\delta}} \le C(\rho) \left(\int_{B_{3\rho}(x_0)\cap\Omega_{\varepsilon}} |\nabla u^{\eta}|^n dx\right)^{\frac{1}{n}} + C(\rho).$$
(2.6b)

Let x_0 be a point in $\overline{\Omega}_{\varepsilon}$. For $3\rho \leq t < s \leq 4\rho$, let ϕ be a smooth function in Ω_{ε} such that

$$\phi = \begin{cases} 0, & \text{for } x \in \Omega_{\varepsilon} \setminus B_s(x_0) \\ 1, & \text{for } x \in B_t(x_0) \end{cases}$$

with $|\phi| \leq 1$, and $|\nabla \phi| \leq \frac{C}{s-t}$. Let u_0 be a given smooth vector-value function in $\overline{\Omega}$ with $u_0|_{\partial\Omega} = g$ with $\int_{\Omega} |\nabla u_0|^n dx \leq C$. Setting $\tilde{u}_0(x) = u_0(\varepsilon x)$, we have

$$\int_{\Omega_{\varepsilon}} |\nabla \tilde{u}_0|^n dx \le C.$$

Choosing $(\tilde{u} - \tilde{u}_0)\phi$ as a test function in equation (2.3), we obtain

$$\begin{split} &\int_{B_{4\rho}(x_0)\cap\Omega_{\varepsilon}} |\nabla \tilde{u}|^{n-2} \nabla \tilde{u} \nabla (\tilde{u} - \tilde{u}_0) \phi \, dx + \int_{B_{4\rho}(x_0)\cap\Omega_{\varepsilon}} |\nabla \tilde{u}|^{n-2} \nabla \tilde{u} \cdot (\tilde{u} - \tilde{u}_0) \nabla \phi \, dx \\ &= \int_{B_{4\rho}(x_0)\cap\Omega_{\varepsilon}} (1 - |\tilde{u}|^2) \tilde{u} \cdot (\tilde{u} - \tilde{u}_0) \phi \, dx. \end{split}$$

Denote

$$h(t) = \int_{B_t(x_0) \cap \Omega_{\varepsilon}} |\nabla \tilde{u}|^n.$$

Noting that $|u| \leq 1$ and using the standard "filling hole" technique in [11], we obtain

$$h(t) \le \theta h(s) + C(\frac{1}{(s-t)^n} + 1),$$

where $\theta < 1$ is a constant. Then from [11, Lemma 3.1, pages 161–162] or [19, Lemma 2.2] we have

$$h(3\rho) = \int_{B_{3\rho}(x_0)\cap\Omega_{\varepsilon}} |\nabla \tilde{u}|^n \, dx \le C(1+\frac{1}{\rho^n}) = C(\theta,\rho,g), \tag{2.8}$$

where $C(\theta, \rho, g)$ is a constant independent of ε .

Let x_0 be a interior point of Ω . Combining (2.7) with (2.8), we have

$$\overline{\lim_{\eta \to 0}} |\nabla u^{\eta}| \le C(\Omega, g) \quad \text{on } B_{\rho}(x_0)$$

Rescaling \tilde{u}_{ε} back to u_{ε} , (i) is proved.

Let x_0 be a boundary point; i.e., $x_0 \in \partial \Omega_{\varepsilon}$. By (2.6b), (2.8) and applying the Sobolev imbedding theorem, there exists an $\alpha > 0$ such that for $|x_1 - x_2| \leq 2\rho$ there holds

$$\begin{split} |\tilde{u}(x_1) - \tilde{u}(x_2)| &= \lim_{\eta \to 0} |\tilde{u}^{\eta}(x_1) - \tilde{u}^{\eta}(x_2)| \le C \lim_{\eta \to 0} \|\tilde{u}\|_{H^{1,n+\delta}} |x_1 - x_2|^{\epsilon} \\ &\le C \lim_{\eta \to 0} \|\tilde{u}\|_{H^{1,n}} |x_1 - x_2|^{\alpha} \le \tilde{C} |x_1 - x_2|^{\alpha}. \end{split}$$

Since $|\tilde{u}| = 1$ on $\partial \Omega_{\varepsilon}$, there exists $\delta_1 > 0$ such that for $|x - x_0| \leq \delta_1$ there holds

$$|\tilde{u}_{\varepsilon}(x_1) - \tilde{u}_{\varepsilon}(x_0)| \le \tilde{C}\delta_1^{\alpha}.$$

Choosing δ_1 small enough, we obtain

$$|\tilde{u}(x)| \ge \frac{1}{2}$$
 in $\Omega_{\varepsilon} \setminus \Omega_{\varepsilon}^{(\delta_1)}$,

where $\Omega_{\varepsilon}^{(\delta_1)} := \{x \in \Omega_{\varepsilon} : \text{ dist } (x, \partial \Omega_{\varepsilon}) \ge \delta_1\}$. Rescaling back to u_{ε} , (ii) is obtained. This proves Theorem 2.2 \Box

In the next lemma, we assume that for each ε , the minimizer u_{ε} can be approximated by minimizers u_{ε}^{η} in $H_{g}^{1,n}(\Omega; \mathbb{R}^{n})$. For $\rho > 0$ let

$$f^{(\delta)}(\rho) := f(x_0, \rho, B_\rho \cap \Omega^{(\delta\varepsilon)}) = \overline{\lim_{\eta \to 0}} \rho \int_{\partial B_\rho(x_0) \cap \Omega^{(\delta\varepsilon)}} \left[\frac{|\nabla u_{\varepsilon}^{\eta}|^n}{n} + \frac{(1 - |u_{\varepsilon}^{\eta}|^2)^2}{4\varepsilon^n} \right] d\tau,$$

$$f(\rho, \eta) := f(x_0, u^{\eta}, \rho, B_\rho \cap \Omega) = \rho \int_{\partial B_\rho(x_0) \cap \Omega} \left[\frac{|\nabla u_{\varepsilon}^{\eta}|^n}{n} + \frac{(1 - |u_{\varepsilon}^{\eta}|^2)^2}{4\varepsilon^n} \right] d\tau$$

with $d\tau$ denoting the area element on ∂B_{ρ} .

The following lemma is related to the Courant Lemma, as in [25].

Lemma 2.3. (i) For $0 < \varepsilon \leq e^{-1}$ there exists a constant C_3 such that

$$\overline{\lim_{\eta \to 0}} \inf_{\varepsilon^{1/2} \le \rho \le \varepsilon^{1/4}} f(\rho, \eta) \le 4 \frac{E_{\varepsilon} (u_{\varepsilon}, \Omega \cap B_{\varepsilon^{1/4}}(x_0))}{|\ln \varepsilon|} \le C_3$$

and

$$\overline{\lim_{\eta \to 0}} \inf_{5\varepsilon^{1/4} \le \rho \le 5\varepsilon^{1/8}} f(\rho, \eta) \le 2C_3.$$

(ii) There are constants γ and $\varepsilon_0 = \varepsilon_0(\Omega, g) > 0$ such that for $0 < \varepsilon < \varepsilon_0$

$$\inf_{B_{\rho(x_0)} \cap \Omega^{(\delta)}} |u_{\varepsilon}| \ge \frac{1}{2}$$

whenever $\varepsilon^{1/2} \leq \rho \leq \varepsilon^{1/4}$ and $f^{(\delta)}(\rho) \leq \gamma$.

Proof. (i) As in [25], we have

$$\overline{\lim_{\eta\to 0}} \inf_{\varepsilon^{1/2} \le \rho \le \varepsilon^{1/4}} f(\rho,\eta) \le 4 \overline{\lim_{\eta\to 0}} \frac{\int_{\varepsilon^{1/2}}^{\varepsilon^{1/4}} f(\rho,\eta) \frac{d\rho}{\rho}}{|\ln \varepsilon|} \le 4 \frac{\overline{\lim_{\eta\to 0} E_{\varepsilon}(u_{\varepsilon}^{\eta}; \Omega \cap B_{\varepsilon^{1/4}}(x_0))}}{|\ln \varepsilon|} \le C.$$

The second inequality is also proved as in [25].

(ii) Choose $\varepsilon_1 = \varepsilon_1(\Omega) > 0$ such that for $0 < \rho < \varepsilon_1^{1/4}$ the domain $D = \Omega^{(\delta\varepsilon)} \cap B_{\rho}(x_0)$ is strongly star-shaped; i.e., $r_0 \cdot x \ge \frac{1}{4}\rho$ for $x \in \partial D$ where r_0 denotes the outer unit normal. Let $\tau = (\tau^1, \ldots, \tau^{n-1})$ denote a smooth basis of tangent vector fields along ∂D . Let u_{ε}^{η} be a smooth solution to equation (2.2). We drop ε and η for u_{ε}^{η} . By equation (2.2) we have the following Pohozaev identity:

$$\begin{split} &\sum_{i,j=1}^{n} \left[\left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n-2}{2}} u_{x_{j}} x_{i} u_{x_{i}} \right]_{x_{j}} \\ &= \sum_{i,j=1}^{n} \left[\left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n-2}{2}} u_{x_{j}} \right]_{x_{j}} x_{i} u_{x_{i}} + \sum_{i,j=1}^{n} \left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n-2}{2}} x_{i} u_{x_{j}} u_{x_{i}x_{j}} \\ &+ \left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n-2}{2}} |\nabla u|^{2} \\ &= \frac{1}{\varepsilon^{n}} \left(|u|^{2} - 1 \right) u \sum_{i=1}^{n} x_{i} u_{x_{i}} + \sum_{i=1}^{n} \frac{1}{n} \left[x_{i} \left(\left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n}{2}} \right)_{x_{i}} + \left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n}{2}} \right] \\ &- \eta \varepsilon^{-2} \left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n-2}{2}} \\ &= \frac{1}{4\varepsilon^{n}} \sum_{i=1}^{n} \left[\left(|u|^{2} - 1 \right)^{2} x_{i} \right]_{x_{i}} - \frac{n}{4\varepsilon^{n}} (1 - |u|^{2})^{2} + \sum_{i=1}^{n} \frac{1}{n} \left(x_{i} \left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n}{2}} \right)_{x_{i}} \\ &- \eta \varepsilon^{-2} \left(|\nabla u|^{2} + \eta \varepsilon^{-2} \right)^{\frac{n-2}{2}}. \end{split}$$

Integrating both sides of the above equality gives

$$\int_{\partial D} \partial_{r_0} u(|\nabla u|^2 + \eta \varepsilon^{-2})^{\frac{n-2}{2}} x \cdot \nabla u \, d\tau + \frac{n}{4\varepsilon^n} \int_D (1-|u|^2)^2 \, dx$$
$$= \int_{\partial D} \Big[\frac{(1-|u|^2)^2}{4\varepsilon^n} + \frac{(|\nabla u|^2 + \eta \varepsilon^{-2})^{\frac{n}{2}}}{n} \Big] r_o \cdot x \, d\tau - \eta \varepsilon^{-2} \int_D (|\nabla u|^2 + \eta \varepsilon^{-2})^{\frac{n-2}{2}} \, dx.$$

Note

$$\partial_{r_0} u |\nabla u|^{n-2} (x \cdot \nabla u) \ge r_0 \cdot x |\partial_{r_0} u|^n - |\partial_{r_0} u| \rho |\nabla_{\tau} u| |\nabla u|^{n-2} \ge \frac{r_0 \cdot x}{n} |\partial_{r_0} u|^n - C\rho |\nabla_{\tau} u|^n.$$

Letting $\eta \to 0$, we have

$$\frac{1}{\varepsilon^n} \int_D (1 - |u_{\varepsilon}|^2)^2 \, dx = \frac{1}{\varepsilon^n} \lim_{\eta \to 0} \int_D (1 - |u_{\varepsilon}^{\eta}|^2)^2 \, dx$$
$$\leq C\rho \lim_{\eta \to 0} \int_{\partial D} \Big[\frac{|\nabla_{\tau} u_{\varepsilon}^{\eta}|^n}{n} + \frac{(1 - |u_{\varepsilon}^{\eta}|^2)^2}{4\varepsilon^n} \Big] d\tau \leq Cf^{(\delta)}(\rho) \leq C_4 \gamma.$$
(2.9)

If $|u_{\varepsilon}(x_1)| < \frac{1}{2}$ for some $x_1 \in D$, by Theorem 2.2 we have

$$|u_{\varepsilon}(y)| \leq \frac{3}{4}$$
 for $|x_1 - y| < \frac{\varepsilon}{4C_2}$.

Hence

$$\int_D \frac{(1-|u_\varepsilon|^2)^2}{\varepsilon^n} \, dx \ge C_5 > 0. \tag{2.10}$$

Choosing ε_1 and γ small enough gives Lemma 2.3. \Box

Now consider a special case $\Omega = B$ and g = x on $\partial\Omega$. We define a symmetric class \mathcal{X} in $H_g^{1,n}$; i.e., a function $u(x) \in H_g^{1,n}$ belongs to the symmetric class \mathcal{X} if there exists a function $f(r) : [0,1] \to \mathbb{R}$ such that the functional u(x) has the form of $u(x) = f(r) \frac{x}{|x|}$, where r = |x|.

For a function $u(x) \in \mathcal{X}$, by a simple calculation, we have

$$|\nabla u|^{2} = |\nabla f(r)|^{2} + 2\nabla f(r) \cdot \nabla \frac{x}{|x|} + f^{2}(r)|\nabla \frac{x}{|x|}|^{2} = f_{r}^{2}(r) + f^{2}(r)\frac{n-1}{r^{2}}.$$

For a function $u(x) \in \mathcal{X}$, define an energy for the corresponding f(r) by

$$\begin{split} E_{\varepsilon}^{(S)}(f(r)) &:= E_{\varepsilon}(u(x); B) = \int_{B} \left[\frac{|\nabla u|^{n}}{n} + \frac{1}{4\varepsilon^{n}} (1 - |u|^{2})^{2} \right] dx \\ &= |S^{n-1}| \int_{0}^{1} \left[\frac{1}{n} (f_{r}^{2}(r) + \frac{n-1}{r^{2}} f^{2}(r))^{\frac{n}{2}} + \frac{1}{4\varepsilon^{n}} (1 - f^{2}(r))^{2} \right] r^{n-1} dr. \end{split}$$

A function f(r) belongs to the space $\mathcal{H}_1^{1,n}[0,1]$ if and only if f(r) satisfies

$$\int_0^1 (f_r^n + f^n) r^{n-1} dr < +\infty \text{ and } f(1) = 1.$$

Consider the minimization problem

$$\min_{f \in \mathcal{H}_1^{1,n}[0,1]} E_{\varepsilon}^{(S)}(f(r)).$$
(2.11)

Since $E_{\varepsilon}^{(S)}(f(r))$ is weak low semicontinuous on $\mathcal{H}_{1}^{1,n}[0,1]$, the functional $E_{\varepsilon}^{(S)}(f)$ achieves its minimizer in $\mathcal{H}_{1}^{1,n}[0,1]$ by a function $f_{\varepsilon}(r)$. But we do not know whether the

minimum $f_{\varepsilon}(r)$ is regular. Following the idea of Uhlenbeck in [27] again, we regularize the minimization problem (2.11) by minimizing the functional

$$I^{\eta}(f(r)) = |S^{n-1}| \int_0^1 \left[\frac{1}{n} (f_r^2(r) + \frac{n-1}{r^2} f^2(r) + \eta)^{\frac{n}{2}} + \frac{1}{4\varepsilon^n} (1 - f^2(r))^2\right] r^{n-1} dr$$

over all functions $f(r) \in \mathcal{H}_1^{1,n}[0,1]$ where $\eta > 0$ is a small constant. Let $f^{\eta}(r)$ be the minimizer of I^{η} in $\mathcal{H}_1^{1,n}[0,1]$. Hence $u^{\eta}(x) = f^{\eta}(|x|) \frac{x}{|x|}$ is a smooth solution of the following equation:

$$-\nabla \cdot \left[(|\nabla u|^2 + \eta)^{\frac{n-2}{2}} \nabla u \right] = \frac{1}{\varepsilon^n} u (1 - |u|^2) \quad \text{in } B.$$
 (2.12)

Let f_{ε} be a minimizer of E_{ε} in $\mathcal{H}_{1}^{1,n}[0,1]$. Since $I^{\eta}(f^{\eta}) \leq I^{\eta}(f_{\varepsilon}), f^{\eta} \to \tilde{f}_{\varepsilon}$ weakly in $\mathcal{H}_{1}^{1,n}[0,1]$. Since I^{η} is weak low semicontinuous, we have

$$\lim_{\eta \to 0} I^{\eta}(f^{\eta}(r)) = E_{\varepsilon}^{(S)}(f_{\varepsilon}(r)).$$

Define $\tilde{u}_{\varepsilon} = \tilde{f}_{\varepsilon}(|x|)\frac{x}{|x|}$. Then $u^{\eta} \to \tilde{u}_{\varepsilon}$ strongly in $H_g^{1,n}$. Letting $\eta \to 0$ in equation (2.12), \tilde{u}_{ε} is a critical point of $E_{\varepsilon}(u;\Omega)$. The corresponding $\tilde{f}_{\varepsilon}(r)$ is a minimizer of $E_{\varepsilon}^{(S)}(f(r))$ in $\mathcal{H}_1^{1,n}[0,1]$.

Lemma 2.4. Let $u_{\varepsilon} = f_{\varepsilon}(r) \frac{x}{|x|}$ be a critical point of E_{ε} which is regularized by solutions of equation (2.12). Then we have:

(i) There exists a constant C_6 independent of ε such that

$$\int_0^1 \frac{(1 - f_{\varepsilon}^2(r))^2}{\varepsilon^n} r^{n-1} \, dr \le C_6$$

(ii) For each ρ , $0 < \rho < 1$, there exist two constants C_7 and C_8 independent of ρ and ε such that

$$\int_{\rho}^{1} \left| \partial_{r} f_{\varepsilon}(r) \right|^{n} r^{n-1} dr \leq C_{7} |\ln \rho| + C_{8}.$$

Proof. At first, we suppose that the critical point $u_{\varepsilon} = f_{\varepsilon}(|x|)\frac{x}{|x|}$ is smooth. Let $D = B_r(0)$ and r_0 denote the outer unit normal of D. Let $\sigma = (\sigma^1, \ldots, \sigma^{n-1})$ denote a smooth basis of tangent vector fields along ∂D . Using the Pohozaev identity as in the proof of Lemma 2.3, we have

$$\int_{\partial D} r_0 \cdot x |\partial_r u|^n \, d\sigma + \frac{1}{\varepsilon^n} \int_D (1 - |u|^2)^2 \, dx \le Cr \int_{\partial D} \left[\frac{|\partial_\sigma u|^n}{n} + \frac{(1 - |u|^2)^2}{4\varepsilon^n} \right] \, d\sigma. \tag{2.13}$$

Letting $u_{\varepsilon}(x) = f_{\varepsilon}(|x|) \frac{x}{|x|}$ and setting D = B in (2.13), we get

$$\frac{1}{\varepsilon^n} \int_B (1 - |u_\varepsilon|^2)^2 \, dx \le C \int_{\partial B} \frac{|\partial_\sigma g|^n}{n} \, d\sigma \le C_6$$

This proves (i).

Setting $D = B_r$ in (2.13), we obtain

$$r^{n-1}|\partial_r f_{\varepsilon}(r)|^n \le C \int_{\partial B_r} \Big[\frac{|\partial_{\sigma} u_{\varepsilon}|^n}{n} + \frac{(1-|u_{\varepsilon}|^2)^2}{4\varepsilon^n}\Big] \, d\sigma \le \frac{C}{r} + \int_{\partial B_r} \frac{(1-|u_{\varepsilon}|^2)^2}{4\varepsilon^n} \, d\sigma.$$

Integrating the above inequality and using (i) gives

$$\int_{\rho}^{1} |\partial_{r} f_{\varepsilon}(r)|^{n} r^{n-1} dr \leq C \ln \frac{1}{\rho} + \int_{B} \frac{(1-|u_{\varepsilon}|^{2})^{2}}{4\varepsilon^{n}} dx \leq C_{7} |\ln \rho| + C_{8}.$$

This proves (ii). If the critical point $u_{\varepsilon}(x)$ is not smooth, we repeat the above proofs using solutions $u^{\eta} = f^{\eta} \frac{x}{|x|}$ of equation (2.12) instead of u_{ε} . The conclusion of Lemma 2.4 follows by letting $\eta \to 0$. \Box

Proof of Theorem 1.1. Applying Lemma 2.4, there exists a constant C such that

$$E_{\varepsilon}(u_{\varepsilon}; B \setminus B_{\rho}(0)) \le C$$

for each $\rho > 0$. Thus $u_{\varepsilon} \rightharpoonup \frac{x}{|x|}$ in $H^{1,2}_{\text{loc}}(B \setminus B_{\rho}(0); \mathbb{R}^n)$. \Box

3. Proof of Theorem 1.2. We again consider the general domain Ω and boundary data g, and assume that u_{ε} is a minimizer of E_{ε} such that u_{ε} is approximated by u_{ε}^{η} and u_{ε}^{η} is a minimizer of the functional I_{ε}^{η} .

For $0 < \varepsilon < \varepsilon_0$ and minimizers u_{ε} of E_{ε} , consider the set

$$\Sigma_{\varepsilon} = \{ x \in \Omega : |u_{\varepsilon}(x)| < \frac{1}{2} \} = \{ x \in \Omega^{(\delta \varepsilon)} : |u_{\varepsilon}(x)| < \frac{1}{2} \}$$

and its cover $(B_{\varepsilon^{\frac{1}{4}}}(x))_{x\in\Sigma_{\varepsilon}}$. For $x\in\Sigma_{\varepsilon}$ let $\varepsilon^{1/2}<\rho(x)<\varepsilon^{1/4}$ be determined as in Lemma 2.3 such that

$$\frac{|E_{\varepsilon}(u_{\varepsilon};\Omega^{(\delta\varepsilon)}\cap B_{\varepsilon^{1/4}}(x))|}{|\ln\varepsilon|} \ge f^{(\delta)}(\rho(x),x,\varepsilon,u_{\varepsilon}) \ge \gamma.$$

By Vitali's covering lemma there exists a finite collection of disjoint balls $B_i = B_{\varepsilon^{1/4}}(x_i)$, $x_i \in \Sigma_{\varepsilon}$, $1 \le i \le I = I(u_{\varepsilon})$ such that

$$(\Omega \bigcap \bigcup_{x \in \Sigma_{\varepsilon}} B_{\varepsilon^{1/4}}) \subset \bigcup_{i} B_{5\varepsilon^{1/4}}(x_i).$$

Moreover, we obtain the uniform bound

$$I \le \sum_{i} \frac{4E_{\varepsilon}(u_{\varepsilon}; \Omega \cap B_{\varepsilon^{1/4}}(x_0))}{|\ln \varepsilon|} \le \frac{4E_{\varepsilon}(u_{\varepsilon}; \Omega)}{|\ln \varepsilon|} \le C_3 \gamma^{-1} := I_0$$
(3.1)

on the number of "bad" balls B_i .

For $x_0 \in \Omega$, there exist constants $\rho_0^{\eta} \in [5\varepsilon^{1/4}, 5\varepsilon^{1/8}]$ such that

$$\overline{\lim_{\eta\to 0}}\,f(\rho_0^\eta,x_0,\varepsilon,u_\varepsilon^\eta)=\overline{\lim_{\eta\to 0}}\inf_{5\varepsilon^{1/4}\leq\rho\leq 5\varepsilon^{1/8}}f(\rho,x_0,\varepsilon,u_\varepsilon^\eta)<2C_3$$

and let $D = \Omega \cap B_{5\varepsilon^{1/4}}(x_0)$. Repeating the same proof in Lemma 2.3 (ii), we have

Lemma 3.1. There exists a constant $C_9 = C_9(\Omega, g) > 0$ such that

$$\frac{1}{\varepsilon^n} \int_D (1 - |u_\varepsilon|^2)^2 \, dx \le C_9$$

uniformly in $0 < \varepsilon < \varepsilon_0$ for $1 \le i \le I$.

Combining Theorem 2.2 with Lemma 3.1 we have from [25]

Lemma 3.2. There exists a number $J_0 = J_0(\Omega, g) \in \mathbb{N}$ such that for any disjoint collection of balls $B_{\varepsilon/5}(x_j)$, $x_j \in \Omega$, $1 \le j \le J$ with $|u_{\varepsilon}(x_j)| < \frac{1}{2}$, we have $J \le J_0$.

Theorem 8.2 of [5] gives

Lemma 3.3. Let $\phi: S^{n-1} \to S^{n-1}$ be a C^0 -map with $\deg \phi = d$. Then

$$\int_{S^{n-1}} |\nabla_{\tau}\phi|^{n-1} \, dx \ge |d|(n-1)^{\frac{n-1}{2}} |S^{n-1}|,$$

where $|S^{n-1}|$ denotes the area of S^{n-1} .

Lemma 3.4. Assume that $\varepsilon \leq R_0 < R \leq L$ where L is a constant. Let $\phi(r,\tau)$: $S^{n-1} \times [R_0, R] \to S^{n-1}$ be a C⁰-map. For each fixed r, $R_0 \leq r \leq R$, the degree of the map $\phi(r, \cdot)$ is d. Then we have

$$\int_{R_0}^R \left(\int_{S^{n-1}} |\nabla_\tau \phi|^{n-\frac{1}{2}} d\tau\right)^{\frac{n}{n-\frac{1}{2}}} r^{-1} dr \ge |d|^{\frac{n}{n-1}} (n-1)^{\frac{n}{2}} |S^{n-1}|^{\frac{2n}{2n-1}} \ln \frac{R}{R_0}.$$

Proof. By Hölder's inequality, we have

$$\int_{S^{n-1}} |\nabla_{\tau}\phi|^{n-1} d\tau \le \left(\int_{S^{n-1}} |\nabla_{\tau}\phi|^{n-\frac{1}{2}}\right)^{\frac{n-1}{n-\frac{1}{2}}} |S^{n-1}|^{\frac{1}{2n-1}}.$$

By Lemma 3.1, we have

$$\left(\int_{S^{n-1}} |\nabla_{\tau}\phi|^{n-\frac{1}{2}} d\tau\right)^{\frac{n}{n-\frac{1}{2}}} \ge \left(\int_{S^{n-1}} |\nabla_{\tau}\phi|^{n-1} d\tau\right)^{\frac{n}{n-1}} |S^{n-1}|^{-\frac{n}{n-1}(\frac{1}{2n-1})} \ge \left(|d|(n-1)^{\frac{n-1}{2}}\right)^{\frac{n}{n-1}} |S^{n-1}|^{\frac{2n}{2n-1}}.$$

The desired result is proved. \Box

Lemma 3.5. Assume that $\varepsilon \leq R_0 < R \leq L$. Suppose that $u : B_R(x_0) \setminus B_{R_0}(x_0) \to \mathbb{R}^n$ with $\frac{1}{2} \leq |u| \leq 1$ and $u \in H^{1,n}(B_R(x_0) \setminus B_{R_0}(x_0), \mathbb{R}^n)$. Assume that there exists a constant K such that

$$\frac{1}{\varepsilon^n} \int_{B_R(x_0)} (1 - |u|^2)^2 \, dx \le K(|\ln \varepsilon| + 1)$$

and

$$\frac{1}{\varepsilon^n} \int_{B_{\varepsilon^{1/2}}(x_0)} (1 - |u|^2)^2 \, dx \le K.$$

Then for any α with $0 < \alpha < 1$, there exists a constant $C(\alpha, K)$ (independent of ε) such that

$$\int_{R_0}^{R} \left[\int_{S^{n-1}} (1 - |u|^2)^2 \, d\tau \right]^{\alpha} r^{-1} \, dr \le C(\alpha, K).$$

Proof. Without loss of generality, we assume that $\varepsilon \leq R_0 \leq \varepsilon^{1/2} < R \leq L$. Choose p and q such that $p = \frac{1}{\alpha}$ and $q = \frac{1}{1-\alpha}$ with $\frac{1}{p} + \frac{1}{q} = 1$. By the Hölder inequality, we obtain

$$\begin{split} &\int_{R_0}^{R} \left(\int_{S^{n-1}} (1-|u|^2)^2 d\tau \right)^{\alpha} r^{-1} dr \\ &= \int_{\varepsilon^{1/2}}^{R} \left(\int_{S^{n-1}} (1-|u|^2)^2 r^{n-1} d\tau \right)^{\alpha} r^{-\alpha(n-1)-1} dr \\ &+ \int_{R_0}^{\varepsilon^{1/2}} \left(\int_{S^{n-1}} (1-|u|^2)^2 r^{n-1} d\tau \right)^{\alpha} r^{-\alpha(n-1)-1} dr \\ &\leq \left[\int_{\varepsilon^{1/2}}^{R} \int_{S^{n-1}} (1-|u|^2)^2 d\tau r^{n-1} dr \right]^{\frac{1}{p}} \left[\int_{\varepsilon^{1/2}}^{R} \int_{S^{n-1}} r^{-\frac{\alpha(n-1)-1}{1-\alpha}} d\tau dr \right]^{\frac{1}{q}} \\ &+ \left[\int_{R_0}^{\varepsilon^{1/2}} \int_{S^{n-1}} (1-|u|^2)^2 d\tau r^{n-1} dr \right]^{\frac{1}{p}} \left[\int_{R_0}^{\varepsilon^{1/2}} \int_{S^{n-1}} r^{-\frac{\alpha(n-1)-1}{1-\alpha}} d\tau dr \right]^{\frac{1}{q}} \\ &\leq \left[\frac{1}{\varepsilon^n} \int_{B_R(x_0)} (1-|u|^2)^2 d\tau r^{n-1} dr \right]^{\frac{1}{p}} \left[\varepsilon^{\frac{nq}{p}} |S^{n-1}| \int_{\varepsilon^{1/2}}^{R} r^{-nq+n-1} d\tau dr \right]^{\frac{1}{q}} \\ &+ \left[\frac{1}{\varepsilon^n} \int_{B_{\varepsilon^{1/2}}(x_0)} (1-|u|^2)^2 d\tau r^{n-1} dr \right]^{\frac{1}{p}} \left[\varepsilon^{\frac{nq}{p}} |S^{n-1}| \int_{R_0}^{\varepsilon^{1/2}} r^{-nq+n-1} dr \right]^{\frac{1}{q}} \\ &\leq \left[K(|\ln\varepsilon|+1) \right]^{\frac{1}{p}} |S^{n-1}|^{\frac{1}{q}} \varepsilon^{\frac{n}{p}} \frac{1}{(nq-n)^{1/q}} \left[\varepsilon^{-\frac{(nq-n)}{2}} \right]^{1/q} \\ &+ K^{\frac{1}{p}} |S^{n-1}|^{\frac{1}{q}} \frac{1}{(nq-n)^{1/q}} \left[\varepsilon^{\frac{nq}{p}} \varepsilon^{n(1-q)} \right]^{\frac{1}{q}} \\ &= K^{1/p} |S^{n-1}|^{1/q} (nq-n)^{-\frac{1}{q}} \left[(|\ln\varepsilon|+1)^{1/p} \varepsilon^{\frac{n}{2p}} + 1 \right] \leq C \end{split}$$

for $\varepsilon \leq \varepsilon_0$. \Box

Lemma 3.6 (Reverse Hölder inequality). Consider the functional

$$\mathbb{A}(u,\Omega) = \int_{\Omega} A(x,u,\nabla u) \, dx,$$

where A is a measurable function satisfying the uniform growth condition:

$$\lambda^{-1}|z|^{n-\frac{1}{2}} - \mu \le A(x, y, z) \le \lambda |z|^{n-\frac{1}{2}} + \mu.$$

Let v be a minimizer for the functional $\mathbb{A}(u)$ in $H^{1,n-\frac{1}{2}}(\Omega; S^{n-1})$. Then for every $B_r(a) \subset \Omega$, there exists a $\beta > 0$ such that

$$\left(\int_{B_{\frac{r}{2}}(a)} |\nabla v|^{(1+\beta)(n-\frac{1}{2})} dx\right)^{\frac{1}{1+\beta}} \le C(r) \left(\int_{B_{r}(a)} |\nabla v|^{n-\frac{1}{2}} dx + 1\right),$$

where C(r) is a constant depending on r.

For the proof of Lemma 3.6, we refer to see Section 6 of [16], pages 314–317. The idea comes from Giaquinta's book, [11].

Assume that $u(x) = u(r\frac{x}{|x|}) = u(r,\tau)$ with $\frac{1}{2} \le |u| \le 1$. Denote

$$\mathbb{A}_r(\phi, S^{n-1}) = \int_{S^{n-1}} |u|^{n-1/2} |\nabla_\tau \phi|^{n-1/2} \, d\tau$$

and $V_d = \{\phi \in H^{1,n-\frac{1}{2}} \cap C^0(S^{n-1}, S^{n-1}) : \deg \phi = d\}.$

Lemma 3.7. There exists a map $\phi_0 \in V_d$ such that

$$\int_{S^{n-1}} |u|^{n-\frac{1}{2}} |\nabla_{\tau}\phi_0|^{n-\frac{1}{2}} d\tau = \min_{\phi \in V_d} \int_{S^{n-1}} |u|^{n-\frac{1}{2}} |\nabla_{\tau}\phi|^{n-\frac{1}{2}} d\tau.$$

Moreover, there exists $\beta > 0$ such that

$$\left(\int_{S^{n-1}} |\nabla_{\tau}\phi_0|^{(1+\beta)(n-\frac{1}{2})} d\tau\right)^{\frac{1}{1+\beta}} \le C \int_{S^{n-1}} |\nabla_{\tau}\phi_0|^{n-\frac{1}{2}} d\tau,$$

where C is a constant.

Proof. The proof of existence is due to [7]. Let ϕ_k be a minimizing sequence in V_d . Then $\phi_k \rightharpoonup \phi_0$ in $H^{1,n-\frac{1}{2}}(S^{n-1}, S^{n-1})$. Moreover by the Sobolev imbedding theorem, ϕ_k converges uniformly to ϕ_0 in $C^{0,\gamma}$ for $\gamma \in (0, 1)$.

 ϕ_k converges uniformly to ϕ_0 in $C^{0,\gamma}$ for $\gamma \in (0,1)$. Let τ_1 and τ_2 be two points on S^{n-1} . Let $|\tau_1 - \tau_2|_{S^{n-1}}$ be the distance between τ_1 and τ_2 on S^{n-1} . Let τ_0 be a point on S^{n-1} and denote

$$\tilde{B}_{\rho}^{n-1}(\tau_0) = \{ \tau \in S^{n-1} : |\tau - \tau_0|_{S^{n-1}} \le \rho \}.$$

Since ϕ_0 is Hölder continuous on S^{n-1} , there exists a $\rho > 0$ such that if $|\tau_1 - \tau_2|_{S^{n-1}}$ for τ_1 and τ_2 on S^{n-1} , then

$$|\phi_0(\tau_1) - \phi_0(\tau_2)|_{S^{n-1}} \le \frac{1}{2}.$$

For $\tau_0 \in S^{n-1}$, denote

$$\mathbb{A}(\phi, \tilde{B}_{\rho}^{n-1}(\tau_{0})) = \int_{\tilde{B}_{\rho}^{n-1}(\tau_{0})} |u|^{n-\frac{1}{2}} |\nabla_{\tau}\phi|^{n-\frac{1}{2}} d\tau.$$

Let $\psi : \tilde{B}_{\rho}^{n-1}(\tau_{0}) \to S^{n-1}$ with $\psi|_{\partial \tilde{B}_{\rho}^{n-1}(\tau_{0})} = \phi_{0}|_{\partial \tilde{B}_{\rho}^{n-1}(\tau_{0})}$ and
 $|\psi(\tilde{B}_{\rho}^{n-1}(\tau_{0})) - \phi_{0}(\tau_{0})|_{S^{n-1}} \leq \frac{3}{4}.$

Let

$$\tilde{\phi} = \begin{cases} \phi_0, & \text{for } \tau \in S^{n-1} \backslash \tilde{B}^{n-1}_{\rho}(x_0) \\ \psi, & \text{for } \tau \in \tilde{B}^{n-1}_{\rho}(x_0). \end{cases}$$

Then $\deg \tilde{\phi} = \deg \phi_0 = d$. Since ϕ_0 is minimizer of $\mathbb{A}(\phi, S^{n-1})$ on V_d ,

$$\mathbb{A}(\phi_0, \tilde{B}^{n-1}_{\rho}(\tau_0)) \le \mathbb{A}(\psi, \tilde{B}^{n-1}_{\rho}(\tau_0)).$$

Thus ϕ_0 is a local minimizer of \mathbb{A} in $H^{1,n-\frac{1}{2}}(\tilde{B}^{n-1}_{\rho}(\tau_0); S^{n-1})$ with an obstacle $\mu = \{y \in S^{n-1} : |y - \phi_0(\tau_0)|_{S^{n-1}} \leq \frac{3}{4}\}$. Similarly to Lemma 3.6 (see [10]), we have the following reverse Hölder inequality:

$$\left(\int_{\tilde{B}^{n-1}_{\rho}(y_0)} |\nabla_{\tau}\phi_0|^{(1+\beta)(n-\frac{1}{2})} d\tau\right)^{\frac{1}{1+\beta}} \le C \int_{\tilde{B}^{n-1}_{\rho}(y_0)} |\nabla_{\tau}\phi_0|^{n-\frac{1}{2}} d\tau + C.$$

Since S^{n-1} is a compact manifold without boundary, this proves Lemma 3.7. \Box Lemma 3.8. Let *a*, *b* be two constants with a > 0, $a + b \ge 0$. Then we have

$$(a+b)^{\frac{1}{2n-1}} \ge a^{\frac{1}{2n-1}} - |b|^{\frac{1}{2n-1}}, \tag{3.2}$$

$$(a+b)^{\frac{2n}{2n-1}} \ge a^{\frac{2n}{2n-1}} - \sum_{i=0}^{2n-1} C_{2n}^{i} |a|^{\frac{i}{2n-1}} |b|^{\frac{2n-i}{2n-1}}$$
(3.3)

where $C_{2n}^0 = 1$ and $C_{2n}^i = \frac{2n(2n-1)\cdots(2n-i+1)}{i!}$ for $i = 1, \dots, 2n-1$. **Proof.** Since

$$\left[|b|^{\frac{1}{2n-1}} + (a+b)^{\frac{1}{2n-1}}\right]^{2n-1} \ge |b| + (a+b) \ge a,$$

then the first inequality (3.2) is proved. Note

$$(a+b)^{\frac{2n}{2n-1}} = \left[(a+b)^{2n}\right]^{\frac{1}{2n-1}} = \left[a^{2n} + \sum_{i=0}^{2n-1} C_{2n}^i a^i b^{2n-i}\right]^{\frac{1}{2n-1}}.$$

Then from the inequality (3.2) we have

$$(a+b)^{\frac{2n}{2n-1}} \ge a^{\frac{2n}{2n-1}} - \Big|\sum_{i=0}^{2n-1} C_{2n}^{i} a^{i} b^{2n-i}\Big|^{\frac{1}{2n-1}} \ge a^{\frac{2n}{2n-1}} - \sum_{i=0}^{2n-1} C_{2n}^{i} a^{\frac{i}{2n-1}} |b|^{\frac{2n-i}{2n-1}}.$$

(3.3) is proved. \Box

Theorem 3.9. Let $A_{R,R_0} = (B_R(x_0) \setminus B_{R_0}(x_0)) \cap \Omega$ with $\varepsilon \leq R_0 < R \leq L$. Assume that $u \in H_g^{1,n}(\Omega; \mathbb{R}^n)$ and $\frac{1}{2} \leq |u| \leq 1$ on A_{R,R_0} . Assume that there exists a constant K such that

$$\frac{1}{\varepsilon^n} \int_{A_{R,R_0}} (1 - |u|^2)^2 \, dx \le K(|\ln \varepsilon| + 1) \quad and \quad \frac{1}{\varepsilon^n} \int_{B_{\varepsilon^{1/2}}(x_0)} (1 - |u|^2)^2 \, dx \le K.$$

Then for $\varepsilon \leq \varepsilon_0$ there holds

$$\int_{A_{R,R_0}} |\nabla u|^n \, dx \ge |d|^{\frac{n}{n-1}} (n-1)^{\frac{n}{2}} |S^{n-1}| \ln \frac{R}{R_0} - C(K,d,g),$$

where C(K, d, g) is a constant (independent of ε) and d is the degree of u on each $\partial(B_r(x_0) \cap \Omega), R_0 \leq r \leq R$.

Proof. As in [25] or in [4], we assume that

$$A_{R,R_0} = B_R(x_0) \backslash B_{R_0}(x_0) \subset \Omega.$$

Denote

$$\phi(r,\tau) := \frac{u(x)}{|u(x)|} = \frac{u(r\frac{x}{|x|})}{|u(r\frac{x}{|x|})|} = \frac{u(r\tau)}{|u(r\tau)|}, \quad r = |x|, \tau = \frac{x}{|x|}.$$

Then $\phi(r,\tau): S^{n-1} \to S^{n-1}$ with deg $\phi(r,\cdot) = d$ for each r with $R_0 \leq r \leq R$. Since $\frac{1}{2} \leq |u| \leq 1$ on A_{R,R_0} , we have

$$|\nabla u|^2 = |\nabla |u||^2 + |u|^2 |\nabla \frac{u}{|u|}|^2.$$

Then

$$|\nabla u|^2 \ge |u|^2 r^{-2} |\nabla_\tau \phi(r, \cdot)|^2.$$

By the Hölder inequality, we obtain

$$\int_{S^{n-1}} |u|^{n-\frac{1}{2}} |\nabla_{\tau}\phi|^{n-\frac{1}{2}} d\tau \le |S^{n-1}|^{\frac{1}{2n}} \left(\int_{S^{n-1}} |u|^n |\nabla_{\tau}\phi|^n\right)^{\frac{n-\frac{1}{2}}{n}}.$$

Therefore

$$\int_{A_{R,R_0}} |\nabla u|^n \, dx \ge \int_{R_0}^R \int_{S^{n-1}} |u|^n |\nabla_\tau \phi|^n d\tau \, r^{-1} \, dr$$
$$\ge \int_{R_0}^R |S^{n-1}|^{-\frac{1}{2n-1}} \left(\int_{S^{n-1}} |u|^{n-\frac{1}{2}} |\nabla_\tau \phi|^{n-\frac{1}{2}} \right)^{\frac{n}{n-\frac{1}{2}}} r^{-1} \, dr.$$

Let $\phi_0 = \phi_0(r)$ be a minimizer of \mathbb{A}_r on V_d . Set

$$a = \int_{S^{n-1}} |\nabla_{\tau} \phi_0|^{n-\frac{1}{2}} d\tau, \quad b = \int_{S^{n-1}} (1 - |u|^{n-\frac{1}{2}}) |\nabla_{\tau} \phi_0|^{n-\frac{1}{2}} d\tau$$

By Lemma 3.7, we have

$$\begin{split} &\int_{A_{R,R_0}} |\nabla u|^n \, dx \ge \int_{R_0}^R |S^{n-1}|^{-\frac{1}{2n-1}} \Big(\int_{S^{n-1}} |u|^{n-\frac{1}{2}} |\nabla_\tau \phi_0|^{n-\frac{1}{2}}\Big)^{\frac{n}{n-\frac{1}{2}}} \, r^{-1} \, dr \\ &= \int_{R_0}^R |S^{n-1}|^{-\frac{1}{2n-1}} (a+b)^{\frac{n}{n-\frac{1}{2}}} r^{-1} \, dr \\ &\ge \int_{R_0}^R |S^{n-1}|^{-\frac{1}{2n-1}} a^{\frac{n}{n-\frac{1}{2}}} r^{-1} \, dr - \sum_{i=0}^{2n-1} C_{2n}^i \int_{R_0}^R |S^{n-1}|^{-\frac{1}{2n-1}} a^{\frac{i}{2n-1}} b^{\frac{2n-i}{2n-1}} r^{-1} \, dr \\ &:= I_1 - I_2. \end{split}$$

By Lemma 3.4, we have

$$I_1 \ge |d|^{\frac{n}{n-1}} (n-1)^{\frac{n}{2}} |S^{n-1}| \ln \frac{R}{R_0}.$$

Since $\frac{1}{2} \leq |u| \leq 1$, then $1 - |u|^{n-\frac{1}{2}} \leq C(1 - |u|^2)$. By Lemma 3.7 and the Hölder inequality

$$b \leq \left(\int_{S^{n-1}} (1-|u|^2)^{\frac{1+\beta}{\beta}} dx\right)^{\frac{\beta}{1+\beta}} \left(\int_{S^{n-1}} |\nabla_\tau \phi_0|^{(1+\beta)(n-\frac{1}{2})} d\tau\right)^{\frac{1}{1+\beta}}$$
$$\leq C \left(\int_{S^{n-1}} (1-|u|^2)^2 dx\right)^{\frac{\beta}{1+\beta}} \int_{S^{n-1}} |\nabla_\tau \phi_0|^{n-\frac{1}{2}} d\tau.$$

There exists a constant C such that

$$a = \int_{S^{n-1}} |\nabla_{\tau} \phi_0|^{n-\frac{1}{2}} d\tau \le 2^{n-\frac{1}{2}} \min_{\phi \in V_d} \mathbb{A}(\phi, S^{n-1}) \le C.$$

By Lemma 3.5 $I_2 \leq C(K, d)$. This proves Theorem 3.9. \Box

Now consider the cover $(B_{\varepsilon/5}(x))_{x\in\Sigma_{\varepsilon}}$ of Σ_{ε} . Again by Vitali's covering lemma we can find a disjoint collection of balls $B_{\varepsilon/5}(x_j)$, $x_j \in \Sigma_{\varepsilon}$, $1 \le j \le J$ such that

$$\Sigma_{\varepsilon} \subset \bigcup_{j} B_{\varepsilon}(x_j).$$

By Lemma 3.2 we have $J \leq J_0$ independent of ε .

For each $\varepsilon > 0$ and any corresponding minimizer u_{ε} we fix this choice of (x_j) . Given $\sigma > 0$ we denote

$$\Omega^{\sigma} = \Omega^{\sigma}_{\varepsilon} = \Omega \setminus \bigcup_{j} B_{\sigma}(x_j).$$

Set $G_{\varepsilon}^{\sigma} = \bigcup_{j=1}^{J} B_{\sigma}(x_j) \setminus \bigcup_{j=1}^{J} B_{\varepsilon}(x_j).$

Theorem 3.10. There exists a constant $C_{11} > 0$ such that for any $\sigma > 0$

$$E_{\varepsilon}(u_{\varepsilon}; \Omega^{\sigma}) \le (n-1)^{n/2} |S^{n-1}| |d| |\ln \sigma| + C_{11}$$

uniformly in $0 < \varepsilon < \varepsilon_0$.

Proof. We give the proof following that in [25]. Fix a point x_j , $j \in \{1, \ldots, J\}$. We suppose $x_j = 0$. For $R < R_1$ denote by $d_{j,R}$ the topological degree of the map $u : \partial(\Omega \cap B_R(0)) \cong S^{n-1} \to S^{n-1}$. Let R_{ε}^{σ} denote the set of all numbers $R \in [\varepsilon, \sigma]$ such that $\partial B_R(x_j) \cap B_{\varepsilon}(x_{j'}) = \emptyset$ for all $j \neq j'$ and such that for some collection $J_R \subset \{1, \ldots, J\}$, satisfying $J_R \subset J_{R'}$ if $R' \leq R$, the family $\{B_R(x_j)\}_{j \in J_R}$ is disjoint and

$$\bigcup_{j\in J} B_{\varepsilon}(x_j) \subset \bigcup_{j\in J_{R'}} B_{R'}(x_j) \subset \bigcup_{j\in J_R} B_R(x_j), \quad \text{if } R' \leq R.$$

Note that R_{ε}^{σ} is the union of closed intervals $[R_0^{(l)}, R^{(l)}], 1 \leq l \leq L$, whose right endpoints correspond to a number $R = R^{(l)}$ such that

$$\partial B_R(x_j) \bigcap \overline{B_R(x_{j'})} \neq \emptyset$$

for some pair $j \neq j' \in J_R$ and whose left endpoints correspond to a number $R_0^{(l)}$ such that $\overline{B_{R^{(l-1)}}(x_{j'})} \setminus \bigcup_{j \in J_0} B_{R_0^{(l)}}(x_j) \neq \emptyset$ for $j' \notin J_{R_0^{(l)}}$. $J_R = J^{(l)}$ is a constant for $R \in [R_0^{(l)}, R^{(l)}]$ and $J^{(l+1)} \subset J^{(l)}, J^{(l+1)} \neq J^{(l)}$. Thus $L \leq J \leq J_0 = L_0(\Omega, g)$, independently of ε . Moreover, there exists a constant $M = M(\Omega, g) > 0$ such that

$$R_0^{(1)} \le M\varepsilon, \quad R^{(L)} \ge \frac{\sigma}{M} \quad \text{and} \ R_0^{(l+1)} \le MR^{(l)}$$
 (3.4)

for all l = 1, ..., L - 1. Finally, observe that for all $R \in R^{\sigma}_{\varepsilon}$ and $J \in J_R$

$$|d| = |\sum_{j \in J_R} d_{i,R}| \le \sum_{j \in J_R} |d_{i,R}|.$$
(3.5)

Applying (3.4), (3.5), Lemma 2.1, Lemma 3.1 and Theorem 3.9 we have

$$\begin{split} \int_{G_{\varepsilon}^{\sigma}} |\nabla u_{\varepsilon}|^{n} \, dx &\geq \sum_{l=1}^{L} \sum_{j \in J^{(l)}} \int_{A_{R^{(l)}, R_{0}^{(l)}}(x_{j})} |\nabla u_{\varepsilon}|^{n} \, dx \\ &\geq \sum_{l} \sum_{j} |S^{n-1}| (n-1)^{n/2} |d_{j, R^{(l)}}| \ln(R^{(l)} / R_{0}^{(l)}) - C(K, g) \\ &\geq |S^{n-1}| (n-1)^{n/2} |d| \sum_{l} (\ln R^{(l)} - \ln R_{0}^{(l)}) - C(K, g) \\ &\geq |S^{n-1}| (n-1)^{n/2} |d| \ln(\frac{\sigma}{\varepsilon}) - C(K, g, \Omega). \end{split}$$
(3.6)

This proves Theorem 3.10. \Box

From the Theorem 2.1 of [8], we have

Lemma 3.11. Let Ω be an open domain in \mathbb{R}^n . For each $k \in \mathbb{N}$, let $u^k \in H^{1,p}(\Omega, \mathbb{R}^n)$ be a solution to the following equation:

$$-\nabla \cdot (|\nabla u_k|^{p-2} \nabla u_k) = F_k$$

where $p \geq 2$. If $\int_{\Omega} |\nabla u_k|^p \, dx \leq C$, $|u_k| \leq 1$ and $||F_k||_{L^1(\Omega)} \leq C$, then $u_k \rightharpoonup u$ weakly in $H^{1,p}(\Omega, \mathbb{R}^n)$ and $\nabla u_k \rightarrow \nabla u$ strongly in $L^q_{loc}(\Omega, \mathbb{R}^n)$ for all q < p.

Proof of Theorem 1.2. Consider any subsequence of minimizers $u_k = u_{\varepsilon_k}$ where $\varepsilon_k \to 0$ as $k \to \infty$. Let $(x_{j,k})$, $1 \le j \le J_k$, denote the corresponding centers of the "bad" balls. Note that $J_k \le J_0$. Passing to a subsequence, if necessary, we assume that $J_k = J$ independent of k and $x_{j,k} \to x_j$ as $k \to \infty$ for each $j = 1, \ldots, J$.

For $\sigma > 0$ let $\Omega^{\sigma} = \Omega \setminus \bigcup_{j} B_{\sigma}(x_{j})$. For any $\sigma > 0$ and $k \leq k_{0}(\sigma)$, by Theorem 3.10 we have

$$\frac{1}{2} \int_{\Omega^{\sigma}} |\nabla u_k|^2 \, dx \le E_{\varepsilon_k}(u_k, \Omega^{\sigma}) \le C_{12} |\ln \sigma| + C_{13}.$$

Choosing $\sigma = \sigma_k \to 0$ and passing to a further subsequence, we obtain that $u_k \to u$ weakly locally in $H^{1,n}_{\text{loc}}(\Omega \setminus \{x_1, \ldots, x_J\}; \mathbb{R}^n)$. Since u_k minimizes E_k , we have

$$-\nabla \cdot (|\nabla u_k|^{n-2} \nabla u_k) = \frac{1}{\varepsilon_k} (1 - |u_k|^2) u_k.$$

Let \mathbb{K}_1 be a compact subdomain of $\Omega \setminus \{x_1, \ldots, x_J\}$. There exists another compact subdomain \mathbb{K}_2 such that $\mathbb{K}_1 \subset \subset \mathbb{K}_2 \subset \subset \Omega \setminus \{x_1, \ldots, x_J\}$. Choose σ small enough such that $\mathbb{K}_2 \subset \Omega^{\sigma}$. Using $u\phi$ as a test function, we have

$$\frac{1}{(\varepsilon_k)^n} \int_{\Omega} (1 - |u_k|^2) |u_k|^2 \phi \, dx = \int_{\Omega} |\nabla u_k|^n \phi \, dx + \int_{\Omega} |\nabla u_k|^{n-2} \nabla u_k \cdot \nabla \phi \, dx,$$

where ϕ is a smooth function on Ω , $\phi \equiv 1$ on \mathbb{K}_1 and $\phi \equiv 0$ outside $\Omega \setminus \mathbb{K}_2$. By Theorem 3.10 we have

$$\frac{1}{(\varepsilon_k)^n} \int_{\mathbb{K}_1} (1 - |u_k|^2) |u_k|^2 \, dx \le C.$$
(3.7)

Since $|u_k| \ge \frac{1}{2}$ on \mathbb{K}_1 , we have

$$\frac{1}{(\varepsilon_k)^n} \int_{\mathbb{K}_1} (1 - |u_k|^2) \, dx \le C,\tag{3.8}$$

where C is a constant independent of ε_k . Setting $F_k = \frac{1}{\varepsilon_k^n} (1 - |u_k|^2) u_k$ and p = n in Lemma 3.11, we have

$$|\nabla u_k|^{n-2} \nabla u_k \rightharpoonup |\nabla u|^{n-2} \nabla u_k$$

Therefore,

$$-\nabla \cdot (|\nabla u|^{n-2} \nabla u) \wedge u = -\lim_{k \to \infty} \nabla \cdot (|\nabla u_k|^{n-2} \nabla u_k) \wedge u_k = 0$$

Hence u is a weak *n*-harmonic map in \mathbb{K}_1 (see [8]). Since \mathbb{K}_1 is any compact subdomain of $\Omega \setminus \{x_1, \ldots, x_J\}$, u_{ε_k} converges to u weakly in $H^{1,n}_{\text{loc}}(\Omega \setminus \{x_1, \ldots, x_J\}; \mathbb{R}^n)$. Moreover, $u_{\varepsilon_k} \rightharpoonup u$ in $H^{1,p}(\Omega; \mathbb{R}^n)$ for p < n following [25]. \Box

Added in proof. In a recent paper "Degenerate elliptic systems and applications to Ginzburg-Landau type equations, Part one," Z.C. Han and Y.Y. Li have independently obtained that Theorem 1.2 holds for any sequence of minimizers by a different method.

REFERENCES

- F. Bethuel, H. Brezis, and F. Hélein, Limite singulière pour la minimisation de fonctionelles du type Ginzburg-Landau, C.R. Acad. Sci. Paris 314 (1992), 891–895.
- F. Bethuel, H. Brezis, and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. 1 (1993), 123–148.
- F. Bethuel, H. Brezis, and F. Hélein, Tourbillons de Ginzburg-Landau et énergie renormalisé, C.R. Acad. Sc. Paris 317 (1993), 165–171.
- [4] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Birkhäuser, 1994.
- [5] H. Brezis, J.-M. Coron, and E.H. Lieb, *Harmonic maps with defects*, Commun. Math. Phys. 107 (1986), 649–705.
- [6] H. Brezis, F. Merle, and T. Rivière, Quantization effects for $-\bigtriangleup u = u(1 |u|^2)$ in \mathbb{R}^2 , Arch. Rational Mech. Anal. **126** (1994), 35–58.
- [7] B. Chen and R. Hardt, *Prescribing singularities for p-harmonic maps*, Preprint.
- Y. Chen, M.-C. Hong, and N. Hungerbühler, Heat flow of p-harmonic maps with values into spheres, Math. Z. 215 (1994), 25–35.
- E. De Giorgi, Some remarks on Γ-convergence and least squares method, in Composite media and homogenization theory (G. Dal Maso and G.F. Dell'Antonio eds.), Birkhäuser, 1991.
- [10] F. Duzaar and M. Fuchs, Optimal regularity theorem for variational problems with obstacles, Manus. Math. 56 (1986), 209–234.
- M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Stud. vol. 105, Princeton University Press, 1983.
- [12] M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functional, Manus. Math. 57 (1986), 55–99.
- [13] V. Ginzburg and L. Landau, On the theory of superconctivity, Zh. Eksp. Teor. Fiz. 20 (1950), 1064–1082.
- [14] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order (2nd ed.), Spinger-Verlag, Berlin and New York, 1983.
- [15] M.E. Gurtin, On a theory of phase transitions with interfacial energy, Arch. Rational. Mech. Anal. 87 (1985), 187–212.
- [16] R. Hardt, D. Kinderlehrer, and F.-H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Analyse non Linéaire 5 (1988), 297–322.
- [17] R. Hardt and F.-H. Lin, Mapping minimizing the L^p norm of the gradient, Comm. P. A. M 15 (1987), 555–588.
- [18] R. Hardt and F.-H. Lin, Singularities for p-energy minimzing unit vectorfields on planar domains, preprint.
- M.-C. Hong, Existence and partial regularity in the calculus of variations, Ann. Mat. Pura Appl. 149 (1987), 311–328.
- [20] M.-C. Hong, On a problem of Bethuel, Brezis and Hélein concerning the Ginzburg-Landau functional, C.R. Acad. Sci. Paris 320 (1995), 679–684.
- [21] J. Jost and M. Meier, Boundary Regularity for minima of certain quadratic functional, Math. Ann. 262 (1983), 549–561.
- [22] R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh 111 (1989), 69–84.

- [23] L. Modica, Gradient theory of phase transitions and minimal interface criterion, Arch. Rational. Mech. Anal. 98 (1987), 123–142.
- [24] P. Sternberg, The effect of a singular on nonconvex variational problems, Arch. Rational. Mech. Anal. 101 (1988), 209–260.
- [25] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential and Integral Equations 7 (1994), 1613–1624.
- [26] M. Struwe, An asymptotic estimate for the Ginzburg-Landau model, C.R. Acad. Sci. Paris 317 (1993), 677–680.
- [27] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219– 240.