
Advances in Di↵erential Equations Volume 3, Number 4, July 1998, pp. 575–593.

EXISTENCE AND UNIQUENESS OF POSITIVE
SOLUTIONS TO CERTAIN DIFFERENTIAL SYSTEMS

Patricio Felmer† and Salomé Mart́ınez †
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Abstract. In this article we study existence and uniqueness of positive solutions
for elliptic systems of the form

��v =f(x, u) in ⌦

��u =v� in ⌦,

with Dirichlet boundary condition on a bounded smooth domain in RN . The non-
linearity f is assumed to have a sub-� growth with � > 0, that in case f(x, u) =
u↵, ↵ > 0, corresponds to ↵� < 1.

The results are also valid for a larger class of systems, including some infinite
dimensional Hamiltonian Systems.

1. Introduction. In recent years a lot of attention has been given to
the study of the nonlinear elliptic system

��v = u↵ in ⌦

��u = v� in ⌦
u = v = 0 on @⌦,

(1.1)

and several of its generalizations. Here ⌦ ⇢ RN is a bounded smooth do-
main. We mention the work of Clément, de Figueiredo and Mitidieri [5], [6],
Hulshof and van der Vorst [16], de Figueiredo and Felmer [12], Clément and
van der Vorst [9], and others, for the existence of positive solutions for the
superlinear, subcritical case. In the quasilinear case we mention the work of
Clément, Manásevich and Mitidieri [10].
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576 p. felmer and s. martÍnez

The sublinear case of (1.1), that here corresponds to ↵� < 1, has been less
studied. It is the purpose of this paper to obtain conditions for the existence
and uniqueness of positive solutions for (1.1) and generalizations.

Following a recent work of Clément, Felmer and Mitidieri [7] and [8], we
isolate v in the second equation to obtain the fourth order scalar equation

��(��u)1/� =u↵ in ⌦
u = ��u =0 in @⌦.

This equation has a variational structure, and its solutions can be obtained
through minimization arguments. We let J : W 2,1+�⇤(⌦) \W 1,1+�⇤

0 (⌦) !
R be a functional defined as

J(u) =
1

1 + �⇤

Z
⌦
|��u|1+�⇤ � 1

1 + ↵

Z
⌦
|u+|1+↵,

where we use �⇤ = 1/� for notational convenience. The sublinearity as-
sumption ↵� < 1 allows to prove that J is coercive and that it takes nega-
tive values. Thus J possesses a nontrivial critical point, that gives rise to a
solution to the equation and then to system (1.1).

In Section §2 we follow this approach to obtain existence results in a very
general setting. We consider a functional I : B ! R defined as

I(u) =
1

1 + �⇤

Z
⌦
|Au|1+�⇤ �

Z
⌦

F (x, u)dx,

where B is a Banach space compactly contained in L1+�⇤(⌦), A is an iso-
morphism A : B ! L1+�⇤(⌦) and the function F is a primitive of the
nonlinearity f : ⌦⇥R ! R. This setting was considered in [7] and [8] in the
study of superlinear problems. In what follows we will denote by || · ||1+�⇤

the norm in L1+�⇤(⌦).
Our existence condition will be given in terms of certain generalized eigen-

values determined by the asymptotic behavior of the nonlinearity f . We
consider the functions a±0 and a±1 defined as

a±0(x) = lim inf
u!0±

f(x, u)
u�⇤

and a±1(x) = lim sup
u!±1

f(x, u)
u�⇤

. (1.2)

In Section §2, we prove our main existence result that states that the func-
tional I possesses nontrivial critical points when

(E) �(A, a+0, a�0) < 0 and �(A, a+1, a�1) > 0,
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where the generalized eigenvalues �(A, a, b) are defined by

�(A, a, b) = inf
kAuk1+�⇤=1

Z
⌦
|Au|1+�⇤�a(x)|u+|�⇤+1� b(x)|u�|�⇤+1dx. (1.3)

What is interesting is that, by particularizing somehow the operator A and
the nonlinearity f , we can prove that condition (E) above is also necessary.
We do this in Section §4.

In studying the semilinear elliptic equation

��u = f(x, u), (1.4)

with sublinear nonlinearity, Brezis and Oswald in [4], introduced the asymp-
totic condition (E) on f to assure existence of nontrivial positive solutions.
This work was generalized by Dı́az and Saa [11] to a quasilinear version
of (1.4). Later, Felmer, Manásevich and de Thélin in [13] considered cer-
tain quasilinear systems obtaining similar results. More recently Fleckinger,
Hernández and de Thélin in [14], and Fleckinger-Pellé and Takác in [15] ob-
tained further results for quasilinear systems. Our results can be considered
as generalization of the work in [11] to higher order quasilinear operators,
or as generalization to systems, often called Hamiltonian, of results in [13],
[14] and [15].

Starting from the results on existence of critical points obtained in Section
§2, we derive in Section §3 existence theorems for the associated general
systems. Imposing additional positivity hypotheses on the operator A and
the function f , we obtain existence of positive solutions. Our results apply,
in particular, to existence of positive solutions of elliptic systems of the form

��v = f(x, u) in ⌦

��u = v� in ⌦
u = v = 0 in @⌦,

(1.5)

and to existence of periodic positive solutions for a class of infinite dimen-
sional Hamiltonian systems like

@v

@t
= �v + f(t, x, u) in (�T, T )⇥ ⌦

@u

@t
= ��u� v� in (�T, T )⇥ ⌦

u(t, x) = v(t, x) = 0 in R⇥ @⌦,

u(�T, x) = u(T, x), v(�T, x) = u(T, x) in ⌦.

(1.6)
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This class of systems has been recently considered in the work of Clément,
Felmer and Mitidieri [7], [8] and Barbú [1].

In Section §5 we discuss the uniqueness problem. When the nonlinearity
f satisfies a monotonicity condition, uniqueness results have been proved
for the semilinear equation (1.4) by Brezis and Oswald, based on an idea
of Benguria, see [2] and [3]. Also, extension to some quasilinear operator
of second order of the p-laplacian type has been obtained in [11], and for
corresponding systems by [13], [14] and [15].

In this paper we prove a uniqueness result for positive solutions to system
(1.5) and for positive periodic solutions of (1.6). See Theorem 5.1 and 5.2.
Easy extensions can be given to systems of this nature, but with variable
coe�cients.

In view of the known results, and the form of the functional I, it seems
reasonable to expect a uniqueness result for a general di↵erential system of
the form considered in Section §3. However di�culties arise quickly since
general operators do not have rules to deal with powers. We believe that
our results can be further generalized, but we do not have an appropriate
characterization of the class of operators to be considered.

2. A general existence result: Su�cient conditions. In this section
we study the existence of critical points for the general functional I defined in
the Introduction. The existence theorem we prove in this section will provide
existence of solutions of general systems as we will discuss in Section §3.

We start introducing the setting in which we will study the critical point
problem. Let ⌦ ⇢ RN be an open, bounded domain, and let (B, ||·||) be a
real Banach space satisfying
(B1) B is compactly contained in L1+�⇤(⌦), for �⇤ > 0 and
(B2) L1(⌦) \B is dense in B.
Next we consider a linear operator A satisfying
(A1) A : B ! L1+�⇤(⌦) is an isomorphism.

We observe that, in view of (A1), we can use kAuk1+�⇤ as an equivalent
norm in B. We will study critical points of the functional I defined in the
Introduction, which can also be written as

I(u) =
1

1 + �⇤
||Au||1+�⇤

1+�⇤ �
Z

⌦
F (x, u)dx,

where F (x, u) =
R u
0 f(x, t)dt. We assume the function f : ⌦ ⇥ R ! R is a

Caratheodory function satisfying the following growth conditions:
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(f1) There is a constant C > 0 such that

f(x, u)u  C(|u|1+�⇤ + |u|) 8u 2 R, x 2 ⌦ a.e.

(f2) For all � > 0, there is C� > 0 such that

f(x, u)u � �C�|u|1+�⇤ 8u 2 [��, �], x 2 ⌦ a.e.

We observe that from (f1) we have

F (x, u)  C
⇣
|u|1+�⇤ + 1

⌘
, (2.2)

for a certain constant C. Thus I(u) is well defined in B with values in
(�1,1].

In studying critical points of I, a key role is played by the asymptotic
behavior of f , both in zero and infinity. To take this into account we consider
the functions a+0, a�0, a+1 and a�1 defined in (1.2). It follows from the
hypotheses (f1) and (f2) that for a constant C

�C  a±0(x) and a±1(x)  C for all x 2 ⌦ a.e. (2.3)

This estimates implies that the generalized eigenvalues defined in (1.3) satisfy
�(A, a+0, a�0) 2 [�1,1) and �(A, a+1, a�1) 2 (�1,1].

Now we can state the main theorem of this section

Theorem 2.1. Under the general hypotheses (B1), (B2), (A1) and assum-
ing f satisfies (f1) and (f2), the condition (E) implies that the functional
I has a non trivial critical point, characterized as a global minimum.

Remark 2.1. We want to observe that our definition of generalized eigen-
value slightly di↵ers from that in the work of Brezis and Oswald [4] and in
[11], [13]. The present form is more suitable for treating our general problem.

In order to prove Theorem 2.1 we follow the strategy considered in [4].
First we show that the functional I is coercive and weakly lower semi con-
tinuous. Then, since I is bounded below, it possesses a minimum. Next,
to make sure this critical point is not trivial, we show that I takes negative
values.
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Lemma 2.1. The functional I : B ! (�1,1] is coercive.

Proof. Assume I is not coercive. Then there exists {un} ⇢ B and C 2 R
so that |Aun|1+�⇤ !1 and I(un)  C. From here, using (2.2) we find that

||Aun||1+�⇤

1+�⇤  C

Z
⌦

⇣
|un|1+�⇤ + 1

⌘
. (2.4)

Let us define tn = ||un||1+�⇤ and vn = un/tn, then from (2.4) we have that
tn ! 1 and |vn| is bounded. Then, up to a subsequence, vn * v in B
and vn ! v in L1+�⇤(⌦) after (B1); thus ||v||1+�⇤ = 1. Moreover there is
h 2 L1+�⇤(⌦) such that

vn ! v pointwise and |vn|  h. (2.5)

Since tnvn = un we haveZ
⌦

F (x, un)dx =
Z
{v0}

F (x, tnv+
n )dx +

Z
{v�0}

F (x, tnv�n )dx

+
Z
{v>0}

F (x, tnv+
n )dx +

Z
{v<0}

F (x, tnv�n )dx.
(2.6)

First we see that, using (2.2) and (2.5), we haveZ
{v�0}

F (x, tnv�n )dx

t1+�⇤
n

dx +
Z
{v0}

F (x, tnv+
n )

t1+�⇤
n

dx  o(1) as n !1. (2.7)

To study the third integral in (2.6), we first see from (1.2) and (2.5) that

lim sup
n!1

F (x, tnv+
n )

t1+�⇤
n

 1
1 + �⇤

a+1(x)(v+)1+�⇤ , 8x 2 {v(x) > 0}. (2.8)

Next we use (2.2), (2.5) and Fatou’s Lemma to obtain

lim sup
n!1

Z
{v>0}

F (x, tnv+
n )

t1+�⇤
n


Z
{v>0}

1
1 + �⇤

a+1(x)(v+)1+�⇤ . (2.9)

A similar estimate can be obtained for the fourth integral in (2.6). Thus,
from (2.6) and the estimates obtained above we find finally that

|Av|1+�⇤

1+�⇤ 
Z

⌦
a+1(x)|v+|1+�⇤ +

Z
⌦

a�1(x)|v�|1+�⇤ ,

that contradicts the hypothesis �(A, a1, a�1) > 0. ⇤

The next lemma will allow us to show that the critical point we find is
not trivial.
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Lemma 2.2. There is v 2 B such that I(v) < 0.

Proof. We first see, from (1.2) and (f2), that

lim inf
u!0+

F (x, u)
u1+�⇤

� a+0(x)
1 + �⇤

, 8x 2 ⌦. (2.10)

Next, since we are assuming �(A, a+0, a�0) < 0, using (B2) we can find
w 2 L1(⌦) \B, w 6= 0 such that

||Aw||1+�⇤

1+�⇤ �
Z

⌦
a+0(x)|w+|1+�⇤dx�

Z
⌦

a�0(x)|w�|1+�⇤dx < 0. (2.11)

Using (f2) and the fact that w 2 L1(⌦) we can find a constant M 2 R so
that

F (x, ✏w+(x))
✏1+�⇤

� M and
F (x, ✏w�(x))

✏1+�⇤
� M 8x 2 ⌦. (2.12)

Then we can apply the Fatou’s Lemma, and use (2.10) to conclude that

lim inf
✏!0

Z
⌦

F (x, ✏w)
✏1+�⇤

� 1
1 + �⇤

Z
⌦

a+0(x)|w+|1+�⇤ + a�0(x)|w�|1+�⇤ . (2.13)

Consequently, from (2.11), we finally obtain that for a small ✏

I(✏w) = ||A(✏w)||1+�⇤

1+�⇤ �
Z

⌦
F (x, ✏w)dx < 0.

Proof of Theorem 2.1. Using standard arguments we can prove that
the functional I is weakly lower semi continuous. Here it will be used, in
particular, hypothesis (B1). Then, using Lemmas 2.1 and 2.2 we obtain that
I attains its global minimum that is a nontrivial critical point. ⇤

Remark 2.2. We would like to observe that hypothesis (B2) is not very
restrictive, since whenever B is an appropriate Sobolev space then the C1

functions will be dense in B.
Remark 2.3. The existence theorem we just proved provides a nontrivial
critical point for the functional I. This is interesting in the case f(x, 0) ⌘ 0,
since then u ⌘ 0 is always a solution.

With regard to the Remark 2.3, we have the following extension of The-
orem 2.1.
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Theorem 2.2. Under the general hypotheses (B1), (B2), (A1) and as-
suming f satisfies (f1), the condition

�(A, a+1, a�1) > 0

implies that the functional I has a critical point, characterized as a global
minimum.

Remark 2.4. Theorem 2.2 permits to treat functions of the form f(x, u) =
g(u) + l(x).

We conclude this section considering the case of a pure power, that is the
case when f(x, u) = u↵ with ↵ < �⇤. Here we do not need hypothesis (B2),
and we can treat the case of a general measure space. Let (⌦,�, µ) be a
measure space, with µ a �-finite measure and (B, ||·||) a real Banach space
satisfying
(M1) B is compactly contained in L↵+1(⌦,�, µ).
We also consider a continuous linear operator A satisfying
(M2) A : B ! L�⇤+1(⌦,�, µ) is an isomorphism.

For the functional I : B ! R defined as

I(u) =
1

1 + �⇤

Z
⌦
|Au|1+�⇤dµ� 1

↵+ 1

Z
⌦
|u|↵+1dµ,

we have the following theorem

Theorem 2.3. Under the hypotheses (M1) and (M2), assuming ↵� < 1,
the functional I attains its global maximum and it is not trivial.

Remark 2.5. The existence result for the superlinear case, that is when
↵� > 1, was considered in the article [8], via the Mountain Pass Theorem.

3. Sublinear di↵erential systems. Positive solutions. In this
section we obtain, as a consequence of Theorem 2.1, 2.2 and 2.3, existence
results for sublinear di↵erential systems. By adding positivity hypotheses on
the linear operators and nonlinearities, we give results on positive solutions
for the corresponding systems. A brief discussion is finally given regarding
systems (1.5) and (1.6).

We start introducing a second Banach space, (B⇤, || · ||), and a second
linear operator A⇤ satisfying
(B1)⇤ B⇤ is contained in L�+1(⌦),
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(A1)⇤ A⇤ : B⇤ ! L�+1(⌦) is an isomorphism.
The spaces and operators are assumed to satisfy the following duality

condition
(D)

R
⌦ Auv =

R
⌦ uA⇤v for all u 2 B and v 2 B⇤.

We want to study existence of solutions in (u, v) 2 B⇥B⇤ for the following
nonlinear system

A⇤v = f(x, u)

Au = v� .
(3.1)

For this purpose we will find critical points of the functional I. Then, as-
suming the nonlinearity f satisfies a stronger growth condition, we can prove
the critical point of I provides a solution for (3.1).

Specifically, we assume f satisfies
(f3) There exists C > 0 such that |f(x, u)|  C(|u|�⇤ + 1) 8x 2 ⌦ a.e.
Condition (f3) implies (f1) certainly.

Theorem 3.1. Under the hypotheses (B1)–(B1)⇤, (B2), (A1)–(A1)⇤,
(D), and assuming f satisfies (f2) and (f3), the condition (E) implies that
system (3.1) possesses a nontrivial solution (u, v) 2 B ⇥B⇤.

Proof. From Theorem 2.1 the functional I possesses a nontrivial critical
point u 2 B, that satisfies

Z
⌦
(Au)�⇤Aw =

Z
⌦

f(x, u)w 8w 2 B. (3.2)

Since u 2 B, using (B1) and (f3) we find that f(x, u) 2 L�+1(⌦), so that
(B1)⇤ implies the existence of a unique v 2 B⇤ such that A⇤v = f(x, u).
Then, from (3.2) and (D) we obtain

Z
⌦
(Au)�⇤Aw =

Z
⌦

A⇤vw =
Z

⌦
vAw 8w 2 B,

from where (Au)�⇤ = v or Au = v� . ⇤

Next we give conditions for system (3.1) to have positive solutions. First
we assume that the operators A and A⇤ are positive, that is
(P) If w 2 L�⇤+1(⌦), w � 0 then A�1w � 0 , and if z 2 L�+1(⌦), z � 0
then

(A⇤)�1z � 0.
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For a function f : ⌦ ⇥ R+ [ {0} ! R we define f̄ as f̄(x, u) = f(x, u)
if u � 0 and f̄(x, u) = f(x, 0) if u < 0. We observe that for f̄ we have
a�1(x) = 0 and if f(x, 0) = 0 then a�0(x) = 0.

We have the following theorem

Theorem 3.2. Under the general hypotheses of Theorem 3.1, we assume
further that A and A⇤ satisfy (P), that f(x, u) � 0 and that f̄ satisfy (f1)
and (f3) then condition (E) implies that system (3.1) has a nontrivial posi-
tive solution.

Proof. Direct from Theorem 3.1 and the positivity hypotheses of A, A⇤ and
f . ⇤

Remark 3.1. Using Theorems 2.2 and 2.3 we obtain existence theorems for
system (3.1) like Theorems 3.1 and 3.2.

In the rest of the section we see how we apply the general existence the-
orems just discussed to study our two model systems (1.5) and (1.6).

We start with the elliptic system (1.5). We consider the spaces

B = W 2,1+�⇤(⌦) \W 1,1+�⇤

0 (⌦) and B⇤ = W 2,1+�(⌦) \W 1,1+�
0 (⌦),

and the operators A = �� : B ! L1+�⇤(⌦) and A⇤ = �� : B⇤ ! L1+�(⌦).
From Lp theory for elliptic equations and Rellich embedding theorem

we have that the spaces and operators satisfy the general hypotheses (B1)-
(B1⇤), (A1)-(A1⇤). Further, Green Theorem implies (D), (B2) is clearly true,
and the Maximum Principle implies (P). Thus if the function f satisfies the
appropriate growth conditions we have strong solutions for system (1.5).
Next, by the application of elliptic regularity theory we can prove that the
solutions are actually classical solutions if f satisfies further

(H) the function f : ⌦̄⇥ R ! R belongs to C0,↵(⌦̄⇥ R).
In particular we have the following

Theorem 3.3. We assume the nonlinearity f satisfies f(x, u) � 0 and f̄
satisfy (f1), (f3) and (H) then condition (E) implies that system (1.5) has
a nontrivial positive classical solution.

Next we consider the infinite dimensional Hamiltonian system (1.6).
Let ⌦T = [�T, T ]⇥⌦ ⇢ RN+1. For 1 < r < +1 and for a Banach space

E, we define Lr
T (E) as Lr([�T, T ], E). We consider the Banach space

Br = W 1,r
T (Lr(⌦)) \ Lr

T (W 2,r(⌦) \W 1,r
0 (⌦)), (3.4)
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endowed with the norm

||u|| =

2
4

TZ
�T

Z
⌦
{|u(t, x)|r + |@u

@t
(t, x)|r+

+
NX

i=1

| @u

@xi
(t, x)|r +

NX
i,j=1

| @2u

@xi@xj
(t, x)|r}dxdt

3
5

1
r

,

(3.5)

where W 1,r
T (Lr(⌦)) is the space of functions defined on [�T, T ] with values

in Lr(⌦) with derivatives in Lr(⌦T ), and periodic in t. We define the Banach
spaces B = B1+�⇤ and B⇤ = B�+1. We identify Lr

T (Lr(⌦)) with Lr(⌦T )
and as a consequence we have that Br ⇢ Lr(⌦T ). If we further consider the
Rellich theorem we find that B and B⇤ satisfies (B1)-(B1⇤). See Lemma A.1
in [8].

Next we introduce the operators A and A⇤:

A =
@u

@t
��u : B1+�⇤ ! L1+�⇤(⌦T ) and

A⇤ = �@u

@t
��u : B1+� ! L1+�(⌦T ).

This operators are isomorphism of Banach spaces. See Lemma 3.1 in [8].
Furthermore they satisfy

TZ
�T

Z
⌦
(
@u

@t
��u)(t, x)v(t, x)dxdt =

TZ
�T

Z
⌦

u(t, x)(�@v

@t
��v)(t, x)dxdt, (3.6)

and so (A1)-(A1⇤) and (D) are satisfied. The operators A and A⇤ also
satisfies the Maximum Principle, so that they are positive.

Thus we only need to assume appropriate hypotheses on the nonlinearity
f in order to apply the general theorems to system (1.6). In addition to
the growth conditions (f1) and (f3) we need to assume in this case that the
function f : ⌦T ⇥ R ! R is T -periodic in the temporal variable t.

In particular we will have the following theorem

Theorem 3.4. We assume the nonlinearity f is nonnegative and T -periodic
in the temporal variable. Further we assume f̄ satisfy (f1), (f3) and (H).
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Then condition (E) implies that system (1.6) has a nontrivial positive peri-
odic classical solution.

The regularity part in this theorem can be found in the Appendix of [8].

4. A general existence result: Necessary conditions. We devote
this section to show that under certain conditions, hypothesis (E) on the
generalized eigenvalues is also necessary for the existence of critical points
of the functional I.

In order to do so we will need to make some additional assumptions on
the function f . Instead of considering (f1) and (f2), we will assume
(f0+) f is a Caratheodory function, and the function x ! f(x, u) is in
L1(⌦)

for all u 2 R.
(f4) The function

u ! f(x, u)
|u|�⇤

is strictly decreasing in R \ {0}.
We note that if f satisfies (f0+) and (f4) then f satisfies (f1) and (f2).

Our first result deals with the eigenvalue associated to the behavior of f at
zero.

Theorem 4.1. Assume the hypothesis (B1), (A1), (f0+) and (f4) hold.
Then, the existence of a nontrivial critical point of the functional I implies
that

�(A, a0, a�0) < 0.

Proof. Let u 2 B be a nontrivial critical point of I, then u satisfiesZ
⌦

Au�⇤Av �
Z

⌦
f(x, u)v = 0 8v 2 B. (4.1)

From hypothesis (f4) and the fact that u is not trivial we see that

a+0(x)|u+(x)|1+�⇤ + a�0(x)|u�(x)|1+�⇤ > f(x, u(x))u(x),

on a set of positive measure. This inequality and the evaluation of (4.1) in
v = u give the result. ⇤

Next we see that the condition on the eigenvalue at infinity is also nec-
essary. For this we need to restrict our attention to positive operators, and
assume that �⇤ = 1 and that f is nonnegative.
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Theorem 4.2. Under the hypothesis of Theorem 4.1. We further assume
that �⇤ = 1, that A is positive and that f(x, u) � 0 for u � 0 and f(x, u) =
f(x, 0) for u  0. Then the existence of a nontrivial critical point u of I
that is in L1(⌦) and u(x) > 0 a.e. in ⌦ implies that

�(A, a1, a�1) > 0.

Proof. From our assumptions on f we have a�1(x) = 0, so that if we define
µ = �(A, a1, a�1), then

µ = inf
||Au||2=1

||Au||22 �
Z

⌦
a1(x)|u+(x)|2dx. (4.2)

Let us define
a(x) =

f(x, k u k1 + 1)
k u k1 + 1

.

From the positivity of f and (f4) we have

a(x) � 0 and a(x) > a1(x) 8x 2 ⌦, (4.3)

and then, as u > 0 in ⌦,

a(x)u < f(x, u) 8x 2 ⌦. (4.4)

We define an auxiliary generalized eigenvalue as

� = inf
kAuk2=1

||Au||1+�⇤

1+�⇤ �
Z

⌦
a(x)|u+(x)|2dx. (4.5)

We note that from (4.3) µ � � and then we only need to prove that � > 0.
We do this assuming that �  0. We claim that, under this assumption, the
infimum in (4.5) is achieved at a function �.

Let us assume the claim is true for the moment. Let  = A�1|A�|, then
we have ||A ||2 = ||A�||2 = 1 and  � 0 so that  � �+. Thus the infimum
is also achieved at  , and consequently

�

Z
⌦

A Av =
Z

⌦
A Av �

Z
⌦

a(x) v 8v 2 B. (4.6)
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On the other hand, since A and f are positive, for the critical point u of I,
we have Z

⌦
Auw =

Z
⌦

f(x, u)A�1w � 0, (4.7)

for all w � 0 in L2(⌦) and then Au � 0. Evaluating (4.6) in u and using
again that u is a critical point of I we obtain

��
Z

⌦
A Au =

Z
⌦

a(x) u�
Z

⌦
f(x, u) . (4.8)

From (4.4) we find D ⇢ ⌦ of positive measure, so that a(x) u�f(x, u) < 0
in D. Thus, from (4.8) and the facts that Au � 0 and A = |A�| � 0, we
conclude that � > 0.

Now we prove the claim. Let {un} ⇢ B be a minimizing sequence for
(4.5). As ||Aun||2 = 1, after a subsequence, we have un * w in B and
un ! w in L2(⌦), as n !1. Then we have ||Aw||22  1, and

||Aw||22 �
Z

⌦
a(x)|w+(x)|2dx  �. (4.9)

If � < 0, then from (4.9) w 6= 0, and we can define v = w/||Aw||2, and we
have ||Av||2 = 1. Then, as ||Aw||22  1 we conclude that infimum in (4.5) is
achieved at v. Now we look at the case � = 0. We have

1 = lim
n!1

||Aun||22 = lim
n!1

Z
⌦

a(x)|u+
n (x)|2dx,=

Z
⌦

a(x)|w+(x)|2dx, (4.10)

so that w 6= 0. Now we proceed as in the case � < 0 to obtain that the
infimum is achieved at v = w/||Aw||2. ⇤

Remark 4.1. It is interesting to note that if A satisfies the strong maximum
principle, then the positivity hypothesis in Theorem 4.2 can be replaced by
u 6= 0. The operators associated to equations (1.5) and (1.6) satisfy the
strong maximum principle.

5. Uniqueness theorem. This section is devoted to study the unique-
ness question for some of the systems considered in this article.

First we consider the case of system (1.5). Assuming that the nonlinearity
f satisfies a monotonicity hypothesis, we are able to show that system (1.5)
admits at most one positive solution. The proof of this result is based on a
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convexity property of the di↵erential part of the operator together with the
assumption on f .

A similar argument can be given to prove that system (1.6) also has the
uniqueness property.

We will assume that the function f satisfies the condition (f4), but only
on the positive axis.

(f5) The function

u ! f(x, u)
u�⇤

is strictly decreasing and nonegative in R+.
We observe that if f satisfies assumption (f5) then the function u !

F (u1��⇤) is strictly concave.
We state our uniqueness theorem for system (1.5).

Theorem 5.1. When the function f satisfies (f5) then system (1.5) pos-
sesses at most one positive solution.

The following lemma is needed in our proof and it is a consequence of the
maximum principle.

Lemma 5.1. If (u1, v1), (u2, v2) 2 C2(⌦̄)⇥C2(⌦̄) are solutions (1.5), then
for all r > 0 we have

ur+1
1

ur
2

2 C1(⌦̄) \ C2(⌦) ,
ur�1

1

ur
2

v1 2 C0(⌦̄) \ C2(⌦) and

ur+1
1

ur
2

= 0 on @⌦.

Next we recall that if (u, v) is a classical positive solution of (1.5) then
the function u is a classical solution of the fourth order equation

��(��u)1/� = f(x, u) in ⌦
u = ��u = 0 in @⌦,

(5.1)

and u > 0, v = ��u > 0 in ⌦. Then we see from the lemma that if
u1, u2 2 C2(⌦̄) are solutions of (5.1), then

u�⇤+1
1

u�⇤

2

,
u�⇤+1

2

u�⇤

1

2 C1(⌦̄) \ C2(⌦),
u�⇤+1

1

u�⇤

2

=
u�⇤+1

2

u�⇤

1

= 0 in @⌦
(5.2)

and
u�⇤�1

2

u�⇤

1

(��u1)�⇤ ,
u�⇤�1

1

u�⇤

2

(��u2)�⇤ 2 C0(⌦̄) \ C2(⌦). (5.3)
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Proof of Theorem 5.1. Let u1 and u2 be solutions of (5.1). Our goal is
to show that the following inequality holds

Z
⌦

 
��(��u2)�⇤

u�⇤

2

� ��(��u1)�⇤

u�⇤

1

!⇣
u�⇤+1

2 � u�⇤+1
1

⌘
dx � 0. (5.4)

This will finish the proof. In fact, if we call I(u1, u2) the left hand side of
(5.4), and we assume that u1 and u2 are distinct solutions of (5.1), then from
(f5) we have

I(u1, u2) =
Z

⌦

 
f(x, u2)

u�⇤

2

� f(x, u1)
u�⇤

1

!⇣
u�⇤+1

2 � u�⇤+1
1

⌘
dx < 0, (5.5)

that contradicts (5.4). In order to prove (5.4) the following identity is crucial

�

 
u�⇤+1

2

u�⇤

1

!
= (�⇤ + 1)�⇤

u�⇤�1
2

u�⇤

1

|ru2 �
u2

u1
ru1|2

+ (�⇤ + 1)
✓

u2

u1

◆�⇤

�u2 � �⇤
✓

u2

u1

◆�⇤+1

�u1.

(5.6)

A similar identity is obtained for �
⇣
u�⇤+1

1 /u�⇤

2

⌘
.

Using the Green Theorem for I(u1, u2) and then the identities just men-
tioned we obtain

I(u1, u2) =
Z

⌦
(��u2)�⇤+1dx +

Z
⌦
(��u1)�⇤+1dx

+
Z

⌦
(��u2)�⇤

 
(�⇤ + 1)

✓
u1

u2

◆�⇤

�u1 � �⇤
✓

u1

u2

◆�⇤+1

�u2

!
dx

+
Z

⌦
(��u1)�⇤

 
(�⇤ + 1)

✓
u2

u1

◆�⇤

�u2 � �⇤
✓

u2

u1

◆�⇤+1

�u1

!
dx

+
Z

⌦
(��u2)�⇤

 
(�⇤ + 1)�⇤

u�⇤�1
1

u�⇤

2

����ru1 �
u1

u2
ru2

����
2
!

dx

+
Z

⌦n

(��u1)�⇤

 
(�⇤ + 1)�⇤

u�⇤�1
2

u�⇤

1

����ru2 �
u2

u1
ru1

����
2
!

dx.
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We observe that, since u1 � 0, u2 � 0,��u2 � 0 and ��u1 � 0 the last
two terms above are nonegative. Thus, if we define the auxiliary functional
H as

H(u, v) =
Z

⌦
(��v)�⇤+1 � (�⇤ + 1)

⇣v

u

⌘�⇤

(��u)�⇤(��v)

+ �⇤
⇣v

u

⌘�⇤+1
(��u)�⇤+1dx,

(5.7)

we have that I(u1, u2) � H(u1, u2) + H(u2, u1), and so we are only left
to prove H(u, v) � 0 for all u, v. For this purpose we put x = ��v and
y = v

u (��u) and we note that the integrand in (5.7) is

�(x, y) = x�⇤+1 � (�⇤ + 1) y�⇤x + �⇤y�⇤+1.

The following calculus lemma finishes the proof.

Lemma 5.2. �(x, y) � 0 for all x, y � 0 .

Proof. Since the function � is homogeneous we only need to prove that it
is nonegative on A = {(x, y)/x + y = 1, x, y > 0}, that is equivalent to show
that the function

g(x) = �(x, 1� x) = x�⇤+1 � (�⇤ + 1) (1� x)�⇤x + �⇤(1� x)�⇤+1

is nonnegative in (0, 1). Di↵erentiating g we obtain that g0(1/2) = g(1/2) =
0 and that g0(x) = 0 only if x x 2 (0, �+1

�+2). Next by di↵erentiating we
find that g00(x) > 0 if 0 < x < 2�+1

�+2 . From here and the condition on the
critical points of g we find that g has exactly one critical point in (0, 1), this
is x = 1/2 and it is the global minimum, so that g(x) � 0 en (0, 1). ⇤

We finish with a uniqueness theorem for the infinite dimensional Hamil-
tonian system (1.6). We have

Theorem 5.2. When the function f satisfies (f5) then system (1.6) pos-
sesses at most one positive solution.

Proof. We prove this theorem following the lines of the proof of Theorem
5.1. At first we need to use the maximum Principle and the Hopf Lemma
for parabolic operators to obtain a result like Lemma 5.1. Then we follow
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the steps in the proof of Theorem 5.1. In doing so we need the equivalent of
identity (5.6), that here takes the surprisingly analogous form

A

✓
v�⇤+1

u�⇤

◆
= �(�⇤ + 1)�⇤

u�⇤�1
2

u�⇤

1

|ru2 �
u2

u1
ru1|2

+ (�⇤ + 1)
⇣v

u

⌘�⇤

Av � �⇤
⇣v

u

⌘�⇤+1
Au

(5.8)

where we use A for the operator

Au =
@u

@t
��u.

From here the proof follows exactly in the same way. ⇤

Remark 5.1. As a consequence of this uniqueness theorem we see that,
when system (1.6) is autonomous, that is f does not depend on t, then the
solution does not depend on t. Moreover, in view of Theorem 5.1 the solution
of (1.6) is the unique solution of (1.5).

We observe that for linear operators satisfying a maximum and Hopf
principle, and also identity (5.8), a uniqueness theorem for the corresponding
system will hold. However we do not have a characterization of such linear
operators.

In any case, our theorems will apply to operators of the form given, but
with variable coe�cient.
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