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Abstract. We study a one dimensional Dirichlet problem of fourth
order and a corresponding “buckling eigenvalue problem” under Dirich-
let boundary conditions. These problems may serve as model prob-
lems for “Orr-Sommerfeld” like boundary and eigenvalue problems. It
turns out that eigenvalue curves in appropriate parameter domains look
completely different than for the same equation under so called Navier
boundary conditions. Further emphasis is laid on positivity properties,
and also here, fundamental differences with Navier conditions arise: It
may e.g. happen that one has infinitely many linearly independent pos-
itive eigenfunctions. Connections and analogies with the clamped plate
boundary value problem on families of deformed domains are discussed.

1. Introduction

When the eigenvalue problem arising in the linearized stability prob-
lem for the parallel plane Couette flow is transformed by means of the so
called poloidal-toroidal decomposition of the velocity field (see [4, p. 156]),
among others a nonselfadjoint eigenvalue problem of the following “Orr-
Sommerfeld”-type arises:

Lu + λΔu := Δ2u +
3∑

i=1

ai( . )
∂

∂xi
Δu + λΔu = 0. (1.1)

The coefficients ai( . ) are real valued sufficiently smooth functions. This
eigenvalue problem has to be studied in a layer-like domain Ω ⊂ R

3 under
suitable boundary conditions, and one wants to show stability by proving

Re λ > 0 (1.2)
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for all eigenvalues λ ∈ C of (1.1). “Rigid” boundary conditions in the Cou-
ette problem lead to Dirichlet conditions

u = ∇u = 0 on ∂Ω, (1.3)

while “stress free” boundary conditions yield Navier conditions

u = Δu = 0 on ∂Ω. (1.4)

In related (strongly) non-selfadjoint second order problems

−Δu −
∑

ai
∂

∂xi
u = λu in Ω, u|∂Ω = 0,

the desired property (1.2) is shown with help of real analytic methods,
namely maximum principles and a Krein-Rutman type argument, which
yield a positive first eigenfunction. This may serve as comparison function
in the corresponding nonstationary problem. In what follows we would like
to ask whether one may expect that these methods may be extended to treat
also problems like (1.1). So, we may restrict to real parameters λ ∈ R. As far
as problem (1.1) under Navier boundary conditions is concerned, the method
just explained can be perfectly extended. For example, (u, λ) is a solution
of ⎧⎪⎨

⎪⎩
Δ2u +

n∑
i=1

ai( . )
∂

∂xi
Δu + λΔu = 0, u �≡ 0, in Ω,

u = Δu = 0 on ∂Ω,

(1.5)

if and only if (v, λ) solves⎧⎪⎨
⎪⎩

−Δv −
n∑

i=1

ai( . )
∂v

∂xi
= λv in Ω,

v = 0 on ∂Ω,

(1.6)

where v = −Δu; and u can be reconstructed from v as solution of −Δu = v in
Ω, u = 0 on ∂Ω. In particular, we have existence, uniqueness and positivity of
suitably normalized first eigenfunctions. Similarly one proves a comparison
principle for solutions u of⎧⎪⎨

⎪⎩
Δ2u +

n∑
i=1

ai( . )
∂

∂xi
Δu + λΔu = f in Ω,

u = Δu = 0 on ∂Ω.

(1.7)

For λ < λ1,Navier one has that f ≥ 0 implies u ≥ 0. Here λ1,Navier is the (pos-
itive) first eigenvalue of (1.5). With help of these tools, based on comparison
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and positivity arguments, it is a not too difficult task to treat the original
stability problem.

The situation changes completely, when the Navier boundary conditions
(1.4) are replaced with Dirichlet boundary conditions (1.3). It is true that
the underlying stability problem has been solved in a special geometric situ-
ation [11] by means of extremely difficult explicit and numerical calculations,
based on “elementary functions”. For a more extensive treatment, see also
[3]. But with regard to a more elegant proof, to possible extensions and to a
better understanding, it would be nevertheless interesting, whether similar
results as for (1.5) and (1.7) may be obtained also under Dirichlet conditions
(1.3), at least in geometrically very simple domains like balls or layers with
additional periodic boundary conditions with respect to the unbounded di-
rections. Although there is an encouraging partial result, see Proposition 1
below, an exhaustive discussion of these problems with respect to positivity
under Dirichlet conditions seems out of reach (at least for us). To get an
idea, which kind of results may be expected, we study the one-dimensional
model problem {

u′′′′ + a u′′′ + λ u′′ = f in (−1, 1),

u(−1) = u′(−1) = u(1) = u′(1) = 0,
(1.8)

and the corresponding eigenvalue problem{
u′′′′ + a u′′′ = λ (−u′′), u �≡ 0, in (−1, 1),

u(−1) = u′(−1) = u(1) = u′(1) = 0.
(1.9)

We call the boundary value problem (1.8) (or more precisely: its solution op-
erator) positivity preserving, if positive data always yield positive solutions,
i.e. f ≥ 0 ⇒ u ≥ 0. For λ ≤ 0 we can prove that (1.8) is positivity preserv-
ing, see Proposition 1 below, while for the discussion of λ > 0 we have to
combine explicit calculations, a positivity criterion of Schröder [12, 13, 14]
and support from the graphical package of MAPLE to obtain a complete
description of the positivity or, more general, sign properties of (1.8) and
(1.9).

Our results concerning the connections between positivity preserving prop-
erties and eigenvalue problems may be summarized as follows: In particular
for a = 0 and also for |a| small, the problem behaves similarly under Dirich-
let boundary conditions as under Navier conditions. On the other hand, for
|a| large, there are striking differences: if we keep a fixed and increase λ,
before reaching the first eigenvalue (which is on the same eigenvalue-curve
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Figure 1. Sign changing first eigenfunction for a = 2.11

in the a-λ-plane as the third, fifth or seventh etc. eigenvalue for a = 0 resp.,
see Figure 5), first change of sign and also further oscillations of the Green
function for (1.8) occur.

Further the first eigenfunction need not be of fixed sign, even not in the
case, when the first eigenvalue is simple. As an example, the first eigenfunc-
tion for a = 2.11 is plotted in Figures 1 and 2.

Not only for the sake of curiosity we would like to already mention that
for a = 0 the even eigenfunctions are all of fixed sign

uλ2k−1
= 1 − (−1)k cos

(√
λ2k−1x

)
, λ2k−1 = k2 π2, (1.10)

while the odd ones

uλ2k
= x sin

(√
λ2k

)
− sin

(√
λ2kx

)
,

λ2k the k-th positive solution of
√

λ = tan
√

λ,
(1.11)

have the expected number of (2k − 1) nodes in (−1, 1).
The existence of infinitely many positive eigenfunctions for (1.9) with

a = 0 shows that this problem is not selfadjoint as an eigenvalue prob-
lem, although the differential operator itself is symmetric under appropriate
boundary conditions and my be defined as selfadjoint operator.
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Figure 2. Looked at more closely

Different parameter dependent buckling eigenvalue problems in variational
form have e.g. been studied in [9], see also the references therein.

2. A positive result

Proposition 1. For λ ≤ 0 and a ∈ R the solution operator for (1.8) is
strongly positivity preserving. That means that for every solution u of{

u′′′′ + a u′′′ + λ u′′ = f in (−1, 1),

u(−1) = u′(−1) = u(1) = u′(1) = 0,

0 �≡ f ≥ 0 implies u > 0.

Proof. We define v := u′′, then v is a subsolution of

v′′ + a v′ + λv ≥ 0.

We will exploit a weak maximum principle for v in the following form: As-
sume there are x1, x2 ∈ [−1, 1], x1 < x2 with v(x1) = v(x2) = 0, then
v ≤ 0 in [x1, x2]. We distinguish four cases according to the sign of v at the
boundary of (−1, 1).
Case 1: v(−1) ≤ 0 and v(1) ≤ 0. Then by the maximum principle, v ≤ 0
in [−1, 1]. Hence u is concave and can satisfy the boundary conditions only
if u ≡ 0. A contradiction; this case cannot occur.
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Case 2: v(−1) > 0 and v(1) ≤ 0. There exists x1 ∈ (−1, 1] such that
v > 0 on [−1, x1) and v ≤ 0 on [x1, 1]. The strict convexity of u and
u(−1) = u′(−1) = 0 imply that u(x1) > 0. On the other hand, looking at
[x1, 1], we find also that u(x1) ≤ 0. Again a contradiction; this case cannot
occur, too.

Case 3: v(−1) ≤ 0 and v(1) > 0. By considering x �→ u(−x), this reduces
to Case 2 and cannot occur neither.

Case 4: v(−1) > 0 and v(1) > 0. As u cannot be convex everywhere, there
exist −1 < x1 < x2 < 1 such that v > 0 on [−1, x1) ∪ (x2, 1] and v ≤ 0
on [x1, x2]. The boundary data of u imply that u > 0 on (−1, x1) ∪ (x2, 1).
Concavity of u on [x1, x2] finally yields also u > 0 on [x1, x2]. �
Remarks. 1) The preceding proof remains valid without any change, if we
consider continuous functions a, λ : [−1, 1] → R, where λ ≤ 0.
2) The preceding proof is strictly one dimensional. In dimensions n ≥ 2 it
seems that even in the special case a = λ = 0 nobody has yet been able to
take advantage of the seemingly quadratic form of the biharmonic operator
Δ2 under Dirichlet conditions in the context of positivity.

From now on we want to investigate the case λ > 0. As the positivity
behaviour for (1.8) is rather subtle we restrict to the case of constant coeffi-
cients and first even to a = 0. It will turn out that the positivity and, more
generally, sign properties in the latter case are similar as one would expect
by analogy from the second order theory, except the sign of the respective
even eigenfunctions already mentioned in the introduction.

Definition 1. Let λk = λk(a)|a=0, 0 < λ1 < λ2 < . . . denote the eigenvalues
of u′′′′ = λ (−u′′) in (−1, 1), u(−1) = u′(−1) = u(1) = u′(1) = 0.

These eigenvalues are zeros of

sin
√

λ
(
sin

√
λ −

√
λ cos

√
λ
)

= 0; (2.1)

the respective (suitably) normalized eigenfunctions are given in (1.10) and
(1.11) above.

Corollary 1. For λ < λ1 = λ1(a)|a=0, the solution operator of the problem{
u′′′′ + λ u′′ = f in (−1, 1)

u(−1) = u′(−1) = u(1) = u′(1) = 0,
(2.2)

is positivity preserving, i.e. f ≥ 0 always implies u ≥ 0.
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Proof. By means of the previous proposition and a positivity result of [14,
p. 147] it suffices to show that for 0 < λ < λ1, all the eigenvalue problems

u′′′′ = λ(−u′′) in (−1, 1), u(−1) = u′(−1) = u(1) = u′(1) = 0, (2.3)

u′′′′ = λ(−u′′) in (−1, 1), u(−1) = u(1) = u′(1) = u′′(1) = 0, (2.4)

u′′′′ = λ(−u′′) in (−1, 1), u(−1) = u′(−1) = u′′(−1) = u′(1) = 0, (2.5)

only have the trivial solution u(x) ≡ 0. For (2.3) this is obvious by definition
of λ1.

For λ > 0, the general solution of the differential equation u′′′′ = λ(−u′′)
is:

u(x) = α + β x + γ cos
(√

λx
)

+ δ sin
(√

λx
)
.

The determinant, which has to vanish in order that (2.4) has a nontrivial
solution, is

det

⎛
⎜⎜⎝

1 −1 cos
√

λ − sin
√

λ

1 1 cos
√

λ sin
√

λ

0 1 −
√

λ sin
√

λ
√

λ cos
√

λ

0 0 −λ cos
√

λ −λ sin
√

λ

⎞
⎟⎟⎠ = λ

(
2
√

λ − sin
(
2
√

λ
))

.

The latter term, however, is always positive for λ > 0. A very similar
matrix with the same determinant shows that also (2.5) only has the trivial
solution. �
Remark. This proof is strictly one dimensional, too, even if Proposition 1
could be shown in higher dimensions. The positivity criterion of Schröder has
not yet been generalized to n ≥ 2, although under suitable and sufficiently
strong assumptions such a generalization seems very likely to hold true.

Also for regular values λ > λ1 the behaviour of the Green function Gλ

corresponding to problem (2.2) is as expected. This Green function can be
calculated explicitly:

Gλ(x, y) =
1
2λ

|x − y| − 1
2λ

√
λ

sin
(√

λ|x − y|
)
− cos

√
λ +

√
λ sin

√
λ

2λ
√

λ sin
√

λ
(2.6)

+
cos

(√
λx

)
2λ

√
λ sin

√
λ

+
cos

(√
λy

)
2λ

√
λ sin

√
λ

+
cos

√
λ

2
√

λ
(√

λ cos
√

λ − sin
√

λ
) xy

− y sin
(√

λx
)

2λ
(√

λ cos
√

λ − sin
√

λ
) − x sin

(√
λy

)
2λ

(√
λ cos

√
λ − sin

√
λ
)
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− cos
√

λ

2λ
√

λ sin
√

λ
cos

(√
λx

)
cos

(√
λy

)
+

cos
√

λ +
√

λ sin
√

λ

2λ
√

λ
(√

λ cos
√

λ − sin
√

λ
) sin

(√
λx

)
sin

(√
λy

)
.

A feature, which this Green function shares with Green functions for many
different examples, is the oscillatory behaviour beyond the first eigenvalue:

Theorem 1. The Green function for (2.2) changes sign for all regular values
of λ with λ > λ1 .

In particular, we do not have a uniform anti-maximum-principle. That
means that there is no ε > 0 such that for λ ∈ (λ1, λ1 + ε) the solution
operator for (1.8) is sign reversing, i.e. Gλ < 0. Cf. [2, 7].
Proof. First we have to show that for every regular λ > λ1, the Green
function has (also) positive values. For this purpose we consider

fλ(x) := Gλ(x, x)

and calculate its derivatives:

f ′
λ(x) =

(
cos

(√
λx

)
− cos

√
λ
)(

sin
(√

λx
)
− x sin

√
λ
)

√
λ sin

√
λ
(√

λ cos
√

λ − sin
√

λ
) ;

f ′′
λ (x) =

−
√

λ sin
(√

λx
)(

sin
(√

λx
)
− x sin

√
λ
)

√
λ sin

√
λ
(√

λ cos
√

λ − sin
√

λ
)

+

(
cos

(√
λx

)
− cos

√
λ
)(√

λ cos
(√

λx
)
− sin

√
λ
)

√
λ sin

√
λ
(√

λ cos
√

λ − sin
√

λ
) ;

f ′′′
λ (x) =

−
√

λ cos
(√

λx
)(

sin
(√

λx
)
− x sin

√
λ
)

sin
√

λ
(√

λ cos
√

λ − sin
√

λ
)

−
√

λ sin
(√

λx
)(

cos
(√

λx
)
− cos

√
λ
)

sin
√

λ
(√

λ cos
√

λ − sin
√

λ
)

− 2
sin

(√
λx

)(√
λ cos

(√
λx

)
− sin

√
λ
)

sin
√

λ
(√

λ cos
√

λ − sin
√

λ
) .

We conclude fλ(1) = f ′
λ(1) = f ′′

λ (1) = 0 and f ′′′
λ (1) = −2. Hence for any

regular λ > λ1 there exists an ε > 0 such that for x ∈ (1 − ε, 1), we have

Gλ(x, x) > 0.
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It remains to show that for any regular λ > λ1 there are also (x, y) ∈
(−1, 1) × (−1, 1) with Gλ(x, y) < 0.

Case 1:
√

λ ∈ ((2k − 1)π, 2kπ), k ∈ N. Here we consider

Gλ(0, 0) =
1 − cos

√
λ

λ
√

λ sin
√

λ
− 1

2λ
.

This value is obviously negative, as sin
√

λ < 0.

Case 2:
√

λ ∈
(
2kπ,

(
2k + 1

2

)
π
)
, k ∈ N. Here, again we consider

Gλ(0, 0) =
1 − cos

√
λ

λ
√

λ sin
√

λ
− 1

2λ
,

but now we have to argue a bit more carefully. We have cos
√

λ > 0, sin
√

λ >
0, 1 ≤ | cos

√
λ| + | sin

√
λ| = cos

√
λ + sin

√
λ, and hence

Gλ(0, 0) ≤ 1
λ
√

λ
− 1

2λ
=

2 −
√

λ

2λ
√

λ
< 0.

Case 3:
√

λ ∈
((

2k + 1
2

)
π, (2k + 1)π

)
, k ∈ N. Now we consider

∂2

∂y2
Gλ(x, 1) =

cos
(√

λx
)
− cos

√
λ

2
√

λ sin
√

λ
+

x sin
√

λ − sin
(√

λx
)

2
(√

λ cos
√

λ − sin
√

λ
)

and choose

xλ =
2π −

√
λ√

λ
∈ (−1, 0).

For this choice we obtain

∂2

∂y2
Gλ(xλ, 1) =

π sin
√

λ√
λ(
√

λ cos
√

λ − sin
√

λ)
< 0,

because sin
√

λ > 0 and cos
√

λ < 0. Consequently, for y close to 1, it follows
that Gλ(xλ, y) < 0. �

A full discussion of the very complicated explicit expression for the Green
function Gλ would be too difficult and require too much effort. Instead we
give a few plots, which illustrate, how the number of oscillations increases,
whenever λ has crossed an eigenvalue, see Figures 3 and 4.



186 Hans-Christoph Grunau

3. The eigenvalue problem with a nonsymmetric term

In the preceding section we were mainly concerned with the symmetric
eigenvalue and resolvent problem (2.2). It turned out, that except the sign
of the even eigenfunctions, this problem seems to resemble in many respects
the second order resolvent problem

−u′′ = λu + f in (−1, 1), u(−1) = u(1) = 0.

When turning to the nonsymmetric problem (1.8) with a ∈ R \ {0}, the
situation becomes completely different, at least when |a| is large. While for
the second order eigenvalue problem

−u′′ − a u′ = λu in (−1, 1), u(−1) = u(1) = 0,

the eigenvalue curves are given by the following family of parabolas

λk =
k2

4
+

a2

4
, (3.1)

we find for the eigenvalue curves of the fourth order “buckling” eigenvalue
problem {

u′′′′ + au′′′ = λ(−u′′), u �≡ 0, in (−1, 1)

u(−1) = u′(−1) = u(1) = u′(1) = 0,
(3.2)

in the a-λ-plane the following result:

Theorem 2. The connected components of the eigenvalue curves in the a-
λ-plane corresponding to the buckling eigenvalue problem (3.2) are compact.

Eigenvalue curves are the set {(a, λ) : (3.2) has a solution}.
Proof. First we show that for any a ∈ R and any eigenvalue λ ∈ R of (3.2)
there holds

λ >
a2

4
. (3.3)

Indeed, for λ ≤ a2

4 and −1 ≤ x1 < x2 ≤ 1, we have positivity of the Green
function for

Lv = −
(
v′′ + a v′ + λv

)
in (x1, x2), v(x1) = v(x2) = 0,

cf. (3.1). And that was the only point in the proof of Proposition 1, where
we used λ ≤ 0. Hence one has strong positivity preserving for the solution
operator for (1.8), if the coefficients a and λ are constant and satisfy λ ≤ a2

4
and in particular no nontrivial solution of the homogeneous equation.
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Figure 3. Gλ for
√

λ = 4.4, between
√

λ1 = π and
√

λ2 ≈ 4.49

Figure 4. Gλ for
√

λ = 4.4, between
√

λ1 = π and
√

λ2 ≈ 4.49
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So, in what follows, we may restrict ourselves to the case λ > a2

4 . Here
the general solution of the differential equation

u′′′′ + au′′′ + λu′′ = 0

is given by

u = α + βx + γe−ax/2 cos
(√

λ − a2

4 x
)

+ δe−ax/2 sin
(√

λ − a2

4 x
)
.

In order to find eigenvalues, we have to investigate, whether there is a non-
trivial choice of parameters (α, β, γ, δ) ∈ R

4 \ {0}, such that also the bound-
ary conditions

u(−1) = u′(−1) = u(1) = u′(1) = 0
are satisfied. This gives us the task to find the zeroes

f(a, λ) = 0 (3.4)

of the following determinant:

f :
{

(a, λ) ∈ R
2 : λ > a2

4

}
→ R,

f(a, λ) = λ cos
(√

λ − a2

4

)
sin

(√
λ − a2

4

)
−

(√
λ − a2

4

)(
sinh2

(
a
2

)
+ sin2

(√
λ − a2

4

))
=

1
2

√
λ − a2

4

{
2λ

sin
√

4λ − a2

√
4λ − a2

+ cos
√

4λ − a2 − cosh(a)
}

. (3.5)

We will show first that for any k ∈ N

f(a, k2π2) < 0 for a ∈ (−2kπ, 2kπ) \ {0}. (3.6)

For this purpose we consider for k ∈ N, |a| < 2kπ:

gk(a) :=
2 f(a, k2π2)√

k2π2 − a2

4

= 2k2π2 sin
√

4k2π2 − a2

√
4k2π2 − a2

+cos
√

4k2π2 − a2−cosh(a).

For a �= 0 we always have cos( . ) − cosh(a) < 0, and for a2 ≤ (4k − 1)π2,
there holds: √

4k2π2 − a2 ∈ [(2k − 1)π, 2kπ] .
Hence the first term of gk(a) is here nonpositive, too, and it remains to
consider (4k − 1)π2 < a2 < 4k2π2. Here we have:

gk(a) ≤ 2k2π2 + 1 − 1
2
e|a| ≤ 2k2π2 + 1 − 1

2
− 1

2
|a| − 1

4
a2 − 1

48
a4
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≤ 2k2π2 +
1
2
− 1

2

√
7π −

(
k − 1

4

)
π2 − π2

48
(4k − 1)2π2

< 2k2π2 −
(
k − 1

4

)
π2 − π2

96

(
4 − 1

k

)2 (
2k2π2

)
.

If we assume further that k ≥ 2, we may conclude

π2

96

(
4 − 1

k

)2
≥ 49π2

192
> 1

and hence gk(a) < 0.
If k = 1, for 3π2 < a2 < 4π2 we obtain from the estimate above:

g1(a) <
(
2 − 3

4
− 3π2

16

)
π2 < 0.

We show now that f(λ, a) < 0 also for |a| sufficiently small and λ < k2π2

and close to k2π2. In this situation the first term in curly brackets in (3.5)
is negative as well as the sum of the second and third term.

That means that any connected component of the eigenvalue curves

{(a, λ) : f(a, λ) = 0}
can be found in a suitable slice (k ∈ N):

{(a, λ) : λ >
a2

4
, k2π2 < λ < (k + 1)2π2}. �

A MAPLE-plot gives a more detailed impression of the shape of the com-
ponents of these eigenvalue curves, see Figure 5.

In particular, the intervals {0} × (λ2k, λ2k+1), k ∈ N, where the Green
function is also oscillating, can be connected in the a-λ-plane with the sub-
region {(a, λ) : λ ≤ 0} of positivity without intersecting any eigenvalue
curve. At the first glance this is somehow unexpected, and it means that
the mechanisms, which lead to the sign changing and oscillatory behaviour
of the Green function in the above mentioned intervals depends on the path,
with which one connects these intervals with the halfplane {(a, λ) : λ ≤ 0}.
We will look at this phenomenon more closely in the following section.

A further interesting point is also that positive and sign changing eigen-
functions (corresponding to λ2k−1 and λ2k) are on the same connected com-
ponent of the eigenvalue curves. At which point (a, λ), starting with the
positive eigenfunction for (0, λ2k−1), can change of sign be observed for the
first time? Which special feature characterizes the corresponding eigenfunc-
tion? Also these questions and their connections to the problems mentioned
just before will be addressed in the next section.
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Figure 5. Eigenvalue curves

4. Transition from positivity to sign change, behaviour of the

resolvent

In Section 2 the sign behaviour of the resolvent in the selfadjoint case a = 0
seemed to be quite similar as for related second order problems: positivity
for λ < λ1 and sign change for λ > λ1. And the number of oscillations
of the Green function Gλ increases, whenever one passes across a further
eigenvalue.

But after we have taken into account the skew symmetric term a u′′′ and
discussed the shape of the eigenvalue curves in the a-λ-plane in the pre-
ceding section, this point of view seems no longer adequate. The intervals
(λ2k(a)|a = 0, λ2k+1(a)|a = 0) on the λ-axis can now be reached from the
point (0, 0) and hence from the region of positivity by curves in the a-λ-plane
without passing across an eigenvalue curve. That means that in our situa-
tion the transition from positivity to sign change must occur by a completely
different mechanism.

It will turn out that further eigenvalue problems (and the corresponding
eigenvalue curves in the a-λ-plane) have to be considered under different
boundary conditions. As in the proof of Corollary 1 we again refer to a posi-
tivity criterion of J. Schröder, but now, we need the version for nonselfadjoint
operators:
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Lemma 1. ([13, Theorem 10]). For (a, λ) ∈ R
2 we consider the boundary

value problem

Lu := u′′′′ + au′′′ + λu′′ = f in (−1, 1), (4.1)
u(−1) = u′(−1) = u(1) = u′(1) = 0. (4.2)

Suppose that some (a0, λ0) ∈ R
2 can be connected with (0, 0) by a smooth

curve such that for every (a, λ) on this curve, the eigenvalue problem

L u = 0 (4.3)

under either Dirichlet boundary conditions (4.2) or one of the unsymmetric
boundary conditions

u(−1) = u′(−1) = u′′(−1) = u(1) = 0 (4.4)

or
u(−1) = u(1) = u′(1) = u′′(1) = 0 (4.5)

only has the trivial solution.
Then the boundary value problem (4.1), (4.2) is positivity preserving for

(a0, λ0) and any (a, λ) on the connecting curve, i.e., here one has:

f ≥ 0 ⇒ u ≥ 0.

To see that this lemma fits into the original formulation of [13, Theorem
10], one has to consider L̃u = (ãu′′)′′ − (b̃u′)′ + βu′ with ã = exp

(
a
2x

)
,

b̃ = (a2

4 − λ) exp(a
2x) and β = b̃′ = a

2 (a2

4 − λ) exp(a
2x). This transformation

was introduced in [12].
On any curve connecting (0, 0) and any point in

{0} × (λ2k(a)|a = 0, λ2k+1(a)|a = 0) ,

which does not intersect the eigenvalue curves of the preceding section, we
know by Theorem 1, that transition from positivity to sign change occurs.
Such curves exist indeed according to the proof of Theorem 2. Lemma 1
shows (after some lengthy, tedious but nevertheless elementary calculations)
that this transition must occur in a point of intersection with the set{

(a, λ) ∈ R
2 : λ >

a2

4
and g(a, λ) · g(−a, λ) = 0

}
, (4.6)

where

g(a, λ) =
(
2λ − a2

)
sin

√
4λ − a2 + a

√
4λ − a2 cos

√
4λ − a2

− (2λ + a)
√

4λ − a2 exp(−a).
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The nodal set (4.6) is plotted in Figure 6 together with the eigenvalue curves
{(a, λ) : f(a, λ) = 0}; the latter can already be seen in Figure 5. Here f is
defined in (3.5).

Actually we think that it happens precisely that the number of oscillations
of the Green function increases, whenever a curve in the a-λ-plane crosses
this nodal set in the direction of increasing λ.

This picture as well as some MAPLE experiments with eigenfunctions,
which can be determined explicitly – up to finding zeroes of a transcendental
equation –, suggest the following conjecture:
Conjecture 1.

• Any component of the “sign change curves” {g(a, λ) = 0} intersects
exactly one component of the “eigenvalue curves” {f(a, λ) = 0} tan-
gentially in precisely one point. This tangent is not parallel to the
λ-axis.

• When moving on the k-th component of the “eigenvalue curve”
{f(a, λ) = 0} and starting in (0, λ2k−1(a)|a = 0), the correspond-
ing eigenfunction of (3.2) is of fixed sign precisely until one reaches
the intersection point just mentioned. In this intersection point, the
corresponding eigenfunction has a boundary degeneracy u′′(1) = 0 or
u′′(−1) = 0 resp. If k ≥ 2, it seems that the skew term takes the local
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minima of the eigenfunctions up, so that they become even strictly
positive on this part of the eigenvalue curve.

• When proceeding further on this component of the “eigenvalue curve”
to (0, λ2k(a)|a = 0), – in the case k ≥ 2 – additional nodes of the
respective eigenfunctions arise in the interior of the interval (−1, 1).
That may happen by local minima of these eigenfunctions, which were
originally positive, becoming smaller and finally negative.

5. Transition to sign change in a family of two dimensional

ellipses

Quite similar positivity and sign change phenomena arise in a two dimen-
sional problem, which looks at the first glance rather different from (1.1) and
our model problem (1.8). Already Boggio [1] and Hadamard [8] were inter-
ested in positivity properties of the clamped plate boundary value problem{

Δ2u = f in Ω ⊂ R
2,

u|∂Ω = ∇u|∂Ω = 0.
(5.1)

As before we call (5.1) positivity preserving, if always f ≥ 0 ⇒ u ≥ 0. (More
precisely: it’s the solution operator which preserves positivity.) Like Boggio
and Hadamard we are interested in, for which Ω ⊂ R

2 the clamped plate
boundary value problem (5.1) is indeed positivity preserving.

It is known that the answer is affirmative, if Ω is the unit disk B (see [1,
p. 126]), and that it is negative if Ω is e.g. an Ellipse E1 with half axes 1 and
≈ 1.6, see [5]. For a more extensive historical survey and bibliography we
refer to [6]. However, if we connect E0 := B and E1 by the smooth family
of ellipses

Et :=
{

(x1, x2) : x2 +
( y

1 + 0.6 t

)2}
,

we will have transition from positivity to sign change. We will show that
(5.1) can be transformed into a problem, which indeed resembles the one-
dimensional model problem (1.8) so much that we would like to suggest:

The transition from positivity to sign change in the clamped
plate boundary value problem (5.1), when deforming the
disk B via the family Et into the ellipse E1, is caused by
the same mechanisms as in the problem (1.8), when passing
with a curve in the a-λ-plane across the “sign change curves”
{g(a, λ) = 0} in (4.6).
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We feel that positivity criteria like in [12, 13, 14] should also hold for the
clamped plate boundary value problem e.g. on families of ellipses (Et)t∈(0,1)

and think that the following explanations give strong support to it. Let
ht : B → Et be biholomorphic mappings according to the Riemann mapping
theorem. The explicit description is somehow delicate (see [15]). However,
in [6, 10] it was shown (also in a much more general setting) that these
mappings can be chosen such that for any k

‖ht − ht0‖Ck(B̄) → 0 as t → t0.

We keep t fixed and omit that index for a moment. We assume that u solves
(5.1) in Et. We pull this solution back to the unit disk

v : B → R, v(x) := (u ◦ h)(x),

and find the following boundary value problem for v:⎧⎪⎨
⎪⎩

(
1

|h′|2 Δ
)2

v = f ◦ h in B,

v = ∇v = 0 on ∂B.

We determine the explicit form of this operator; thereby we use the complex
notation x = x1 + ix2, ∂

∂x = 1
2( ∂

∂x1
− i ∂

∂x2
), h′ = ∂

∂xh, etc.

Lv := |h′|4
( 1
|h′|2 Δ

)2
v = |h′|2Δ

( 1
|h′|2 Δv

)
= 4|h′|2 ∂

∂x

∂

∂x̄

( 1
|h′|2 Δv

)
= 4|h′|2 ∂

∂x

(
− h′ h′′

(h′h′)2
Δv +

1
h′h′

∂

∂x̄
Δv

)
= Δ2v − 2

|h′|2
(
h′h′′((Δv)x1 − i(Δv)x2

)
+ h′h′′((Δv)x1 + i(Δv)x2

))
+ 4

|h′′|2
|h′|2 Δv

= Δ2v − 4
Re

(
h′h′′)

|h′|2 (Δv)x1 − 4
Im

(
h′h′′)

|h′|2 (Δv)x2 + 4
|h′′|2
|h′|2 Δv.

Hence, when pulling back the clamped plate boundary value problem (5.1)
from the ellipses Et to the unit disk B with help of the holomorphic mappings
ht, we come up with the following operators under homogeneous Dirichlet
boundary conditions:{

Ltv := Δ2v +
∑2

j=1 at,j(x) (Δv)xj
+ λt(x)Δv in B,

v = ∇v = 0 on ∂B.
(5.2)
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Here, the coefficients are given by:

at,1(x) = −4
Re (h′

th
′′
t )

|h′
t|2

, at,2(x) = −4
Im (h′

th
′′
t )

|h′
t|2

, λt(x) = 4
|h′′

t |2
|h′

t|2
.

This differential operator has indeed the same form as in (1.1) and hence we
feel that our considerations concerning the model problem (1.8) should be
applicable. We expect the modulus of the coefficients at,j , λt to grow and to
tend to infinity as t → ∞, if we extend our family of ellipses to arbitrarily
eccentric ones.

That means that we are here in a situation parallel to Sect. 4. Although
there the reasoning is strictly one dimensional, we think that similar mech-
anisms also apply and similar positivity criteria should hold true also in
the two (and higher) dimensional problems (1.1), (5.1), (5.2). In particular,
somehow unexpectedly, in (5.2) transition from positivity to sign change will
occur without passing any kind of “eigenvalue curves”.

To conclude and to sum up the “key message” of the present paper: In
problems like (1.1), the difference between Dirichlet conditions (1.3) and
Navier conditions (1.4) is not only small and of technical nature but sub-
stantial, and many fundamental properties do not carry over from Navier
to Dirichlet conditions. Instead, new and (in our opinion) completely unex-
pected phenomena arise.
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