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Abstract. We investigate the existence of sign-changing radial solutions
for a class of singular equations:

−Δu(x) + b(|x|)u(x) = |u(x)|θ−1u(x) + h(|x|) x ∈ R
N

where b(|x|) may change sign and behaves like |x|−α at infinity for some
α ∈ (0, 2), and θ > 1.

1. Introduction

In this paper we deal with a class of elliptic superlinear problems in R
N

(N ≥ 2) of the following form:

−Δu(x) + b(|x|)u(x) = |u(x)|θ−1u(x) + h(|x|) (P )

where θ > 1: our aim is to investigate the existence of radially symmetric
solutions with prescribed nodal properties.

The problem of existence and multiplicity of radial solutions to superlinear
elliptic equations on R

N has been widely investigated in literature in the case
when the coefficient b is strictly positive; i.e., b(|x|) ≥ b0 > 0, at least for large
|x|. We quote e.g. [2, 3, 5, 6, 7, 10, 12, 13, 16, 17, 18] and references therein
for a variety of results and techniques, such as topological, variational, and
ODE methods.

In the present work we are interested in the case when b(|x|) vanishes at
infinity as |x|−α, α ∈ (0, 2). In this situation the equation has an irregular
singular point at ∞: as a consequence, a compatibility condition between
the exponents θ and α is expected; the reader can compare with [8, 9], where
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the singular linear problem is treated. Moreover we allow b to change sign
on a compact set (see assumption (A1)).

To our knowledge, only a few papers deal with nonlinear equations with
a singular coefficient; some references can be found in [4] where the authors
prove existence and nonexistence results of positive solutions to a class of
unforced problems similar to (P ).

For our class of singular problems, we shall prove the existence of a double
sequence of radial solutions having prescribed nodal properties; as stressed
in [6], the situation is structurally different when either h ≡ 0 or not. In the
first case we are allowed to prescribe the number of nodes of the solutions
(Theorem 2.2); on the other hand, when h �≡ 0 (Theorem 2.3), we can only
characterize our solutions by a weaker nodal condition that does not take into
account zeroes due to “small” oscillations. Both these results are proved in
a suitable variational framework by a sharp extension of the Nehari method
[14], along the lines of [19].

2. Assumptions and main results

Throughout the paper we shall make the following assumption on b(|x|):
(A1) b ∈ L∞, ∃0 < α < 2 : lim

r→+∞
rαb(r) = 1.

Due to the singular behaviour of b(|x|), the natural variational framework
to study (P ) is the following space:

H :=
{
u : R

N → R : u(x) = u(|x|),
∫

RN

(
|∇u(x)|2+ 1

1 + |x|α u2(x)
)
dx < +∞

}
.

(2.1)
We will assume that θ is subcritical in the sense of the Sobolev critical
exponent (see Section 2.1). When looking for sign-changing solutions to
(P ), the following nonexistence result (which will be proved in Section 5)
shows that the range of the admissible exponents θ has to be bounded also
below:

Theorem 2.1. Let h ≡ 0, 0 < α < 2, b(r) = r−α. If

2 < θ + 1 ≤ pα := 2 +
2α

N − 1 − α
2

and u ∈ H solves (P ) on R
N \ BR with u(R) = 0, then u ≡ 0.

Hence we will assume
(A2) pα < θ + 1 < 2∗.
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We introduce m, the Morse index of the quadratic form∫
RN

(|∇u|2 + b(|x|)u2)dx,

as the number of nonpositive eigenvalues of such a quadratic form; here the
eigenvalues are defined as in Lemma 2.2, where we also prove that m < +∞.
Under these assumptions and notation we will prove (Section 4)

Theorem 2.2. Let h ≡ 0 and assumptions (A1) and (A2) hold. Then for
any k ≥ m problem (P ) has a pair of solutions u+

k , u−
k ∈ H with the following

properties:
(i) u−

k (0) < 0 < u+
k (0)

(ii) u±
k has exactly k simple zeroes.

When dealing with the forced case, it is natural to expect that solutions
with few zeroes may be lost, and it is well known (see [6]) that there are cases
when all the possible solutions have infinitely many zeroes. To describe this
situation our method leads us to introduce the idea of “essential change of
sign” for a radial function u; the precise notion will be given in Definition 3.1,
but now, roughly speaking, we can say that the number of changes of sign
is at least equal to the number of the essential ones (indeed such a number
does not take into account the changes of sign due to small oscillations).

The result we shall prove in Section 4 deals with integrable forcing terms
of the following type:

(A3) h(x) = h(|x|), h ∈ (Lθ+1)′.
Under these assumptions we have

Theorem 2.3. Let assumptions (A1), (A2) and (A3) hold. Then there
exists k0 ∈ N such that for all k ≥ k0 problem (P ) has a pair of solutions
u+

k , u−
k ∈ H with the following properties:

(i) u−
k (0) < 0 < u+

k (0)
(ii) u±

k has exactly k essential changes of sign and u±
i �≡ u±

j if i �= j.

2.1. Preliminaries. In the following we will always assume that assump-
tions (A1), (A2) and (A3) hold. The reader can easily check that in the
following arguments assumption (A3) can be replaced by

(A3′)
∫

RN

(1 + |x|α)h(|x|)2dx < +∞

without any substantial change in the following arguments. We also wish to
point out that our results hold for more general nonlinearities than f(r, s) =
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|s|θ−1s as in (P ). Along the lines of [2], we could prove them for any sub-
critical f satisfying a monotonicity condition of the following type:

∂

∂s
f(r, s)s2 ≥ θf(r, s)s > 0

with θ > pα − 1 as in (A2).
We now come to describe the variational framework where we settle prob-

lem (P ), giving an equivalent (and more detailed) definition of the space H.
First, let X denote the completion of C∞

0 (RN ) with respect to the norm
( ∫

RN

(|∇u(x)|2 + b+(|x|)u2(x))dx
)1/2

.

Looking for radial solutions of (P ), it is natural to introduce the subspace
H ⊂ X of all its radial functions, endowed with the norm

‖u‖2
H =

∫
RN

(|∇u(x)|2+b+(|x|)u2(x))dx =
∫ +∞

0
rN−1(u̇2(r)+b+(r)u2(r))dr.

Note that this definition is equivalent to (2.1). It turns out that H has the
following properties:

Lemma 2.1. For every R > 0 there exists C(R) > 0 such that

v ∈ H =⇒ v2(r) ≤ C(R)
rN−1−α/2

‖u‖2
H ∀r > R.

Proof. Let r ≥ R. By elementary computation, we have

v2(r) = −2
∫ ∞

r
v′(s)v(s)ds

<
2

rN−1−α/2

∫ ∞

r
s(N−1)/2|v′(s)| · s(N−1−α)/2|v(s)|ds

≤ 2
rN−1−α/2

( ∫ ∞

r
sN−1|v′(s)|2ds

) 1
2
( ∫ ∞

r
sN−1−αv2(s)ds

) 1
2

≤ C(R)
rN−1−α/2

‖v‖2
H ,

where the last inequality follows by assumption (A1) and the Poincaré in-
equality. �

As a consequence, if N ≥ 2, we have that H is embedded in Lp(RN ) for
all p such that

2 +
2α

N − 1 − α
2

=: pα ≤ p ≤ 2∗
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where as usual 2∗ := 2 + 4
N−2 when N ≥ 3 and 2∗ = +∞ when N = 2.

Indeed, for p ≥ 2, it holds that:∫
{|x|>r}

|u(x)|pdx =
∫ ∞

r
sN−1|u(s)|pds ≤ max

s≥r
{sα|u(s)|p−2}

∫ ∞

r
sN−1−αu2(s)ds

≤ C(R)(p−2)/2

r
1
2
(N−1−α/2)(p−2)−α

‖u‖p−2
H

∫ ∞

r
sN−1−αu2(s)ds≤ C

r
1
2
(N−1−α/2)(p−2)−α

‖u‖p
H

which gives the result for p such that the exponent (N−1−α/2)(p−2)/2−α
is not negative; i.e., p ≥ pα.

Now a standard argument (see e.g. [20]) proves that the embeddings
are compact if the strict inequality occurs; i.e., pα < p < 2∗. Hence one
can easily extend the eigenvalue theory for the quadratic form naturally
associated to (P ):

Lemma 2.2. Let

λi := inf
W⊂H

dimW=i

sup
u∈W
u �≡0

∫
RN

(
|∇u|2 + b(|x|)u2

)
dx∫

RN (|∇u|2 + b+(|x|)u2) dx
.

We have that each λi is well defined, simple, achieved by ϕi that changes
sign exactly i − 1 times, and the sequence (λi) is strictly increasing to 1 (in
particular m < +∞).

Proof. We observe that∫
RN

(
|∇u|2 + b(|x|)u2

)
dx∫

RN (|∇u|2 + b+(|x|)u2) dx
= 1 −

∫
RN b−(|x|)u2dx

‖u‖2
H

.

Hence by assumption (A1) and standard analysis (in particular by the Sturm
comparison lemma) the lemma follows. �

3. Solving the Dirichlet problem on annuli

Let us fix 0 ≤ a < b ≤ ∞ and let [a, b] := {x ∈ R
N : a ≤ |x| ≤ b} be the

annular domain corresponding to the radii a and b. The aim of this section
is to find radial solutions for the Dirichlet problem associated to equation
(P ) on [a, b]:{

−Δu(x) + b(|x|)u(x) = |u(x)|θ−1u(x) + h(|x|) x ∈ [a, b]
u(x) = 0 x ∈ ∂[a, b]. (Dh)

Solving (Dh) is equivalent to finding critical points of the energy functional
naturally associated to the problem

J[a,b](u) =
1
2
Q[a,b](u) − 1

θ + 1
I[a,b](u) − H[a,b](u) (3.1)
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where

Q[a,b](u) :=
∫

[a,b]

(
|∇u(x)|2 + b(|x|)u2(x)

)
dx

I[a,b](u) :=
∫

[a,b]
|u(x)|θ+1dx, H[a,b](u) :=

∫
[a,b]

h(|x|)u(x)dx,

defined on a suitable subset of H, say V (a, b), and C1(V (a, b), R). Precisely,
if 0 < a′ < b′ < +∞, we define

V (0, b′) := {u ∈ H : u(b′) = 0}
V (a′, b′) := {u ∈ H : u(a′) = u(b′) = 0}

V (a′,+∞) := {u ∈ H : u(a′) = 0}.
It is worth noticing that, due to the fact that the coefficient b may change

sign on [a, b], the quadratic form Q[a,b] needs not be positively definite. Thus
it make sense to introduce the first (possibly negative) eigenvalue of Q[a,b]:

λ1(a, b) := inf
u∈V (a,b)

u �≡0

Q[a,b](u)
‖u‖2

H

.

By assumption (A1) λ1 is well defined, achieved and simple (see the proof
of Lemma 2.2). It turns out that

Lemma 3.1. There exist δ̄ and R such that, for all [a, b] with either |b−a| ≤
δ̄ or a ≥ R, then λ1(a, b) > 0.

Proof. By elementary computations we can prove that the L2
rad-norm of u

is dominated by the same norm of the gradient, with coefficient depending
on a and |b − a| as follows:

|u(r)| ≤
∫ b

a
|u̇(s)|ds ≤ 1

a(N−1)/2

∫ b

a
s(N−1)/2|u̇(s)|ds

≤ |b − a|1/2

a(N−1)/2

( ∫ b

a
sN−1u̇(s)2ds

) 1
2
.

By multiplying by rN−1 and then integrating for a < r < b, we obtain∫ b

a
rN−1u2(r)dr ≤ |b − a|

aN−1

∫ b

a
sN−1u̇(s)2ds

∫ b

a
rN−1dr,

which gives∫ b

a
rN−1u̇2(r)dr ≥ C(a, b)

∫ b

a
sN−1u(s)2ds, C(a, b) :=

NaN−1

|b − a|(bN − aN )
.
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Now fix δ > 0: we can choose |b − a| sufficiently small or a large enough so
that δC(a, b) > ‖b−‖∞; this implies

δ

∫ b

a
rN−1u̇2(r)dr ≥

∫ b

a
rN−1b−(r)u2(r)dr

and provides∫ b

a
rN−1(u̇2(r)dr+b(r)u2(r))dr ≥ (1−δ)

( ∫ b

a
rN−1(u̇2(r)dr+b+(r)u2(r))dr

)

for all u ∈ V (a, b). This finally gives λ1(a, b) ≥ 1 − δ as required. �
Remark 3.1. λ1(a, b) is continuous as a function of a and b and decreasing
for the inclusion ordering ([a′, b′] ⊂ [a, b] ⇒ λ1(a′, b′) ≥ λ1(a, b)).

The following lemma concerns the behaviour of the optimal constant of
the embedding V (a, b) ⊂ Lθ+1 as either |b − a| → 0 or a → ∞:

Lemma 3.2. For all [a, b] there exist S(a, b) > 0 such that

u ∈ V (a, b) =⇒ S(a, b)‖u‖θ+1 ≤ ‖u‖H .

Moreover, if either |b − a| → 0 or a → ∞, then S(a, b) → ∞.

Proof. Let us define

S(a, b) := inf
u∈V (a,b)

u �≡0

‖u‖H

‖u‖θ+1
.

Let a > 1 and u ∈ V (a, b); taking into account Lemma 2.1 and the fact that
θ + 1 > p∗, we can estimate as follows∫

[a,b]
|u(x)|θ+1dx =

∫ b

a
rN−1|u(r)|θ+1dr

≤ max
a≤r≤b

{rα|u(r)|θ−1} ·
∫ b

a
rN−1−αu2(r)dr ≤ C

a
1
2
(N−1−α/2)(θ−1)−α

‖u‖θ+1
H .

Thus we obtain S(a, b)θ+1 ≥ Ca
1
2
(N−1−α/2)(θ−1)−α; since the exponent of a

is positive by condition θ + 1 > p∗, we obtain that S(a, b) → ∞ in the case
a → ∞.

In order to handle the case of a small annulus [a, b] with 0 < a < b < ∞,
let us consider the constrained minimization leading to the definition of the
nonlinear eigenvalue λ(a, b), where

λ(a, b) := inf
u∈V (a,b)

u �≡0

‖∇u‖2

‖u‖θ+1
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(note that S(a, b) ≥ λ(a, b)). It is well known that λ(a, b) is strictly positive
and it is achieved by a function ū ∈ V (a, b) that (suitably rescaled) is a
solution of the Dirichlet problem{

−Δū(x) = |ū(x)|θ−1ū(x) x ∈ [a, b]
ū(x) = 0 x ∈ ∂[a, b].

Now let us fix 0 < A < B < ∞ such that |B − A| = 1 and consider the
function v̄ ∈ V (A, B) defined by the identity

ū(x) = |b − a|
−2
θ−1 v̄

(
A +

B − A

b − a
(x − a)

)
x ∈ [a, b].

By a simple computation it holds that:∫
[a,b]

|∇ū(x)|2dx = |b − a|N−2 θ+1
θ−1

∫
[A,B]

|∇v̄(x)|2dx

∫
[a,b]

|ū(x)|θ+1dx = |b − a|N−2 θ+1
θ−1

∫
[A,B]

|v̄(x)|θ+1dx.

Thus we obtain

S(a, b) ≥ λ(a, b) =
(
∫
[a,b] |∇ū(x)|2dx)

1
2

(
∫
[a,b] |ū(x)|θ+1dx)

1
θ+1

≥ λ(A, B)|b − a|
N(θ−1)−2(θ+1)

2(θ+1)

where the exponent of |b− a| is negative by the assumption θ + 1 < 2∗, and
thus S(a, b) → ∞ if |b − a| → 0. �
Notation. In the following we shall often omit the dependence on [a, b],
writing simply V for V (a, b), J for the functional and Q, I, H for the corre-
sponding integrals in (3.1). Moreover in all the computation C will denote
any positive constant, independent of [a, b], that we need not specify.

3.1. The structure of the Nehari set. Here and in the following we only
deal with annuli of the form [a, b] satisfying the assumptions of Lemma 3.1,
thus λ1(a, b) > 0 and Q[a,b] is positive definite.
Let us consider the so-called Nehari set:

N (a, b) := {u ∈ V (a, b) \ {0} : ∇J(u) · u = 0}.
It goes back to the original work by Nehari [14] that, in the unforced case, the
set N \{0} is a regular manifold and a natural constraint for the functional.
The main goal of this section is that, when either the annulus [a, b] is thin
enough or sufficiently far from the origin, then the Nehari set N (a, b) corre-
sponding to the forced problem (Dh) is the disjoint union of two connected
components. A first, possibly irregular component is that of the functions u
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which realize the (negative) minimum of J along lines of the form t �→ tu,
t ≥ 0; the second one is made of the corresponding positive maxima, and in-
deed it turns out to be a manifold radially homeomorphic to the unit sphere
of V (a, b). To achieve these results, we first study the behaviour of the map
t �→ J(tu).

Lemma 3.3. There exist δ̄ and R such that, for all the annuli of the form
[a, b] with either |b − a| ≤ δ̄ or a ≥ R, the following property holds: let
u ∈ V (a, b) \ {0}; then the alternative is

(i) ∃ t̄(u) > 0 : t̄(u)u ∈ N and J(t̄(u)u) = maxt≥0 J(tu) > 0;
(ii) ∃ 0 < t(u) < t̄(u) : t̄(u)u ∈ N , t(u)u ∈ N and J(t(u)u) =

mint≥0 J(tu) < 0, while J(t̄(u)u) = maxt≥0 J(tu) > 0.

Proof. Let u ∈ V (a, b) \ {0} and consider the function

t �→ J(tu) =
t2

2
Q(u) − tθ+1

θ + 1
I(u) − tH(u).

In order to study the sign of its derivative, we consider the equation

tQ(u) − tθI(u) = H(u). (3.2)

When H(u) is negative, there exists a unique t̄ > 0 solution of (3.2), and
t �→ J(tu) is increasing for t < t̄ and decreasing when t > t̄, proving assertion
(i) Now let

m(u) := max
t≥0

{tQ(u) − tθI(u)} ≡ C(θ)Q(u)
θ

θ−1 /I(u)
1

θ−1 .

Note that (3.2) has exactly two solutions 0 < t < t̄ if 0 ≤ H(u) < m(u);
moreover t = t(u) and t̄ = t̄(u) satisfy assertion (ii). Thus we need only to
prove that H(u) < m(u); since H(u) ≤ C‖h‖(θ+1)′‖u‖H (where ‖ · ‖(θ+1)′ is
the norm in the dual space of Lθ+1(a, b)) and Q(u) ≥ λ1‖u‖2

H , it suffices to
prove that

C‖h‖(θ+1)′‖u‖H ≤ C‖u‖
2θ

θ−1

H /‖u‖
θ+1
θ−1

θ+1 ,

which is equivalent to saying

‖h‖(θ+1)′ ≤ C‖u‖
θ+1
θ−1

H /‖u‖
θ+1
θ−1

θ+1 .

Let us consider the infimum on u of the right-hand side, and note that
it coincides with S(a, b)

θ+1
θ−1 ; by Lemma 3.2 we know that S(a, b) tends to

infinity if either |b − a| → 0 or a → ∞, and furthermore ‖h‖(θ+1)′ vanishes.
Thus the last inequality holds and guarantees that H(u) < m(u) at least for
small annuli [a, b] or a large, concluding the proof. �
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It turns out that the local minimals along lines are of small norm, as
shown by the following lemma:

Lemma 3.4. If either |b − a| → 0 or a → ∞, then

ε(a, b) := sup{‖u‖θ+1 : u ∈ N , J(u) ≤ 0} → 0.

Proof. Since u ∈ N it holds that Q(u) − I(u) − H(u) = 0; furthermore
since J(u) ≤ 0 we obtain that θ+1

2 Q(u)− I(u)− (θ + 1)H(u) ≤ 0. Summing
up the two equations we deduce the inequality θ−1

2 Q(u) ≤ θH(u). We
continue on the right of the inequality by the Hölder inequality, |H(u)| ≤
‖h‖(θ+1)′‖u‖θ+1 ≤ ‖h‖2

(θ+1)′ + ‖u‖2
θ+1; on the left we exploit the fact that

λ1(a, b)‖u‖2 ≤ Q(u), and then the embedding V (a, b) ⊂ Lθ+1 in Lemma 3.2.
This leads to

C(λ1(a, b)S(a, b) − 1)‖u‖2
θ+1 ≤ C‖h‖(θ+1)′ .

Now we recall Lemma 3.2: as |b − a| → 0 or a → ∞, then S(a, b) → ∞;
on the other hand we have ‖h‖(θ+1)′ → 0. Thus we obtain the existence of
α(a, b) → 0 such that the above inequality is satisfied for all ‖u‖θ+1 ≤ α(a, b).
From this the assertion immediately follows. �

Motivated by this result we define

M(a, b) := inf{‖u‖θ+1 : u ∈ N , ‖u‖θ+1 > 1}
and we study its behaviour as the annulus becomes either small or far from
the origin:

Lemma 3.5. If either |b − a| → 0 or a → ∞, then M(a, b) → ∞.

Proof. Let u �= 0 such that ∇J(u) · u = 0, i.e. Q(u) − I(u) − H(u) =
0. Applying the inequality |H(u)| ≤ ‖h‖2

(θ+1)′ + ‖u‖2
θ+1 as in the previous

lemma, we compute as follows:

λ1(a, b)S(a, b)‖u‖2
θ+1≤ Q(u) = I(u)+H(u) ≤ C‖u‖θ+1

θ+1 +‖h‖2
(θ+1)′ +‖u‖2

θ+1.

Letting x := ‖u‖2
θ+1, we have that x must satisfy the inequality

Ax ≤ x
θ+1
2 + B, (3.3)

where A = C(λ1(a, b)S(a, b) − 1) → ∞ and B = ‖h‖2
(θ+1)′ → 0 when either

|b−a| → 0 or a → ∞. As before, it follows by an elementary comparison the
existence of α(a, b) → 0 and β(a, b) → ∞ such that (3.3) is satisfied iff either
x ≤ α(a, b) or x ≥ β(a, b). Since by assumption x = ‖u‖2

θ+1 > 1, the second
of the two possibilities must hold, and thus M(a, b) ≥ β(a, b), proving the
result. �
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Collecting together all the previous results we finally obtain

Lemma 3.6. There exist δ̄ and R̄ such that for all the annuli [a, b] with
either |b − a| ≤ δ̄ or a ≥ R̄ the following decomposition holds:

N (a, b) = M(a, b) ∪M−(a, b),

where

M(a, b) := {u ∈ V (a, b) : ∇J(u) · u = 0, J(u) > 0}
= {u ∈ V (a, b) : ∇J(u) · u = 0, ‖u‖θ+1 > 1}

M−(a, b) := {u ∈ V (a, b) : ∇J(u) · u = 0, J(u) < 0}
= {u ∈ V (a, b) : ∇J(u) · u = 0, ‖u‖θ+1 < 1}.

Moreover, M is disjoint from M−; it is a manifold radially homeomorphic
to the unit sphere in V , and if u ∈ M is a constrained critical point of J on
M, then u is a free critical point of J , in the sense that ∇J(u) = 0.

Note that, by combining the assertions in Lemmas 3.3 and 3.5, it holds
that

M(a, b) ≡ inf
u∈M

‖u‖θ+1.

3.2. Three variational problems. In this section we are going to solve
the Dirichlet problem (Dh) on [a, b]. One might try to minimize J[a,b] on the
component M(a, b) of the Nehari set, and this would immediately provide
one solution to the problem. In fact, in order to apply a Nehari-type pro-
cedure we need two solutions characterized by “opposite” sign properties.
Due to the presence of h, this can not be accomplished by the usual trick of
minimizing over M:

J±(u) :=
∫

[a,b]

(
|∇u(x)|2 + b(|x|)u2(x) − 1

θ + 1
|u±(x)|θ+1

)
dx. (3.4)

(Here and in the following u = u+ − u−.) This is not a purely technical
obstacle: as already noticed, we cannot expect to find, in any annulus, a
completely positive solution and a negative one. As a matter of fact we shall
find a first solution u that is “essentially” positive, in the sense that the norm
of its negative part u− is small when compared with the global norm of u
itself (analogous arguments will provide a solution “essentially” negative).
In order to make this idea clearer we introduce the auxiliary functional

g+(u) :=
‖u−‖θ+1

‖u‖θ+1
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—note that g+ ∈ C1(V, R). Let 0 < ε < 1 (we shall fix ε in the subsequent
Theorem 3.1), and then let us define the cone C+ ⊂ V of the “essentially”
positive functions as C+ := {u ∈ V \ {0} : g+(u) ≤ ε}.

In order to find a solution u for (Dh) lying in C+, following the line of [2],
we define three minimax values as follows:

d+(a, b) := inf
u∈C+

sup
t>0

J(tu)

ϕ+(a, b) := inf
M∩C+

J

c+(a, b) := inf
γ∈Γ+(a,b)

max
t∈[0,1]

J(γ(t))
(3.5)

where

Γ+(a, b) := {γ ∈ C([0, 1], V ) : γ(0) = 0, J(γ(1)) < 0, γ(t) ∈ C+ ∀t ∈ (0, 1]}.
We claim that the above values are critical for J at least for suitable choice
of ε in the definition of the functional g+.

Let us start by showing that the three variational problems coincide and
admit a solution.

Lemma 3.7. The functional J[a,b] satisfies the Palais–Smale condition; fur-
thermore for every u ∈ V (a, b)\{0} there exists R > 0 such that J[a,b](ru) < 0
if r > R.

The proof of the Palais–Smale condition is standard, with minor changes
due to the presence of the forcing term h; it can be found e.g. in Lemma 3.1
of [2]; the second part of the assertion is already contained in Lemma 3.3.

To prove that the three values coincide, it suffices to note that ϕ+ = d+

by definition of M; furthermore c+ ≤ d+ since for any u ∈ C+ the path
γ(t) := tRu (with R large enough as in Lemma 3.7) belongs to Γ+; finally
c+ ≥ ϕ+ because every γ ∈ Γ+ has to cross M by Lemma 3.6. Moreover
these levels becomes larger and larger when the annulus becomes small or
sufficiently far from the origin:

Lemma 3.8. If either |b − a| → 0 or a → ∞ then ϕ+(a, b) → ∞ uniformly
in ε.

Proof. Let u ∈ M; since Q(u) = I(u) + H(u) we can eliminate it in the
expression of J and then we can estimate as usual:

J(u) =
1
2
Q(u) − 1

θ + 1
I(u) − H(u) =

1
2

θ − 1
θ + 1

I(u) − 1
2
H(u)

≥ C‖u‖θ+1
θ+1 − C‖u‖2

θ+1 − C‖h‖2
(θ+1)′
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where the constants are independent of a, b and ε. Now the assertion fol-
lows by the fact that infu∈M ‖u‖θ+1 = M(a, b) and, by Lemma 3.5, M(a, b)
explodes when either |b − a| → 0 or a → ∞. �

Note that, if |b − a| is sufficiently small or a is large enough, the proof of
the previous lemma shows the existence of C1 > 0 (independent of a, b and
ε) such that ϕ+(a, b) ≥ C1(M+(a, b)θ+1 − 1) where

M+(a, b) := inf
u∈M∩C+

‖u‖θ+1 (≥ M(a, b)).

As a matter of fact, an opposite inequality holds too. Indeed, by definition of
infimum, let ū ∈ M∩C+ such that ‖ū‖θ+1 ≤ M+(a, b)+1. Computing as in
the lemma above we obtain that ϕ+(a, b) ≤ J(ū) ≤ C‖ū‖θ+1

θ+1 +C‖ū‖2
θ+1 +C.

This provides the existence of C2 > 0 (independent of a, b, ε) such that

ϕ+(a, b) ≤ C2(M+(a, b)θ+1 + 1) (3.6)

at least for small values of |b − a| or a sufficiently large.
It is easy to solve the first variational problem as shown in the following:

Lemma 3.9. There exists u ∈ M∩ C+ such that J(u) = ϕ+.

Proof. It follows by a standard argument: let us consider a minimizing
sequence (un) ⊂ M ∩ C+ such that J(un) → ϕ+. Since the Palais–Smale
condition holds, un strongly converges to a function u; note that u still
belongs to M∩C+; thus, by the continuity of J it holds that J(u) = ϕ+. �

We wish to show that each solution u of the minimum problem ϕ+ is
indeed a critical point for J . This will hold true for suitable choices of ε in
the definition of C+ and thanks to the equivalence between ϕ+ and c+.

Theorem 3.1. (i) If h ≡ 0 (and λ1(a, b) > 0) then, ∀ε ∈ (0, 1), each
u ∈ M∩ C+ realizing J(u) = ϕ+ is a critical point of J ; i.e., ∇J(u) = 0.

(ii) If h �≡ 0, let there be |b − a| small or a large enough such that the
previous results hold. Then ∃ε ∈ (0, 1), independent of [a, b], such that each
u ∈ M∩ C+ realizing J(u) = ϕ+ is a critical point of J .

Proof. The proof of the claim in the unforced case (i) is standard, since the
associated quadratic form Q[a,b] is positive definite. In order to prove (ii),
we first observe that the assertion is obvious if u belongs to the interior of
C+, since in that case it is a free critical point by Lemma 3.6. As a matter
of fact we are going to prove that, for a suitable choice of ε, u cannot belong
to ∂C+.

Claim: ∃ε ∈ (0, 1) such that g+(u) < ε for all u such that J(u) = ϕ+.
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Consider the path γ(t) := tRu (R large enough to give J(Ru) < 0) and
note that γ ∈ Γ+ is optimal, in the sense that for all t �= 1/R it holds
that J(γ(t)) < J(γ(1/R)) = J(u) = ϕ+. Now assume for the sake of
contradiction that g+(u) = ε and u ∈ ∂C+. By standard arguments in the
theory of constrained critical points the optimality of γ implies the existence
of a positive Lagrange multiplier μ such that

∇J(u) = −μ∇g+(u).

By an easy computation we get ∇g+(u) · (−u−) = ε(1−εθ+1), which implies

∇J(−u−) · (−u−) ≤ 0. (3.7)

Now we choose ε in order to obtain the opposite inequality in (3.7). To
this aim, note that, since J(u) = ϕ+(a, b), there exist positive D1 and D2

(independent of a, b and ε) such that D1ϕ
+(a, b) ≤ ‖u‖θ+1

θ+1 ≤ D2ϕ
+(a, b).

Taking into account (3.6) and Lemmas 3.4 and 3.5, we can choose ε in the
interval ( ε+(a, b)

(D1ϕ+(a, b))
1

θ+1

,
M+(a, b)

(D2ϕ+(a, b))
1

θ+1

)

where ε+(a, b) := sup{‖u‖θ+1 : u ∈ M∩C+, J(u) ≤ 0} ≤ ε(a, b). Note that
the choice of ε is independent of the annulus [a, b], due to the fact that the
ratio M+(a,b)θ+1

ϕ+(a,b)
is bounded below by a positive constant as in (3.6).

Now, since g+(u) = ε, we have ‖u−‖θ+1 ∈ (ε+(a, b) , M+(a, b)), and we
can conclude by exploiting a technical property contained in Lemma 3.3, i.e.,

v ∈ C+ : ε+(a, b) < ‖v‖θ+1 < M+(a, b) =⇒ ∇J(v) · v > 0 . (3.8)

Thus we get ∇J(−u−) ·(−u−) > 0, in contradiction with (3.7), and u cannot
belong to the boundary of C+. �

Lemma 3.10. ϕ±(a, b) is continuous as a function of a and b.

Proof. The proof is the same as the proof of Proposition 4.1(d) in [2]. �

Remark 3.2. When h ≡ 0, then ∀ε > 0 and u ∈ M∩C+ achieving ϕ+(a, b),
we have u > 0 on (a, b), the interior part of the annulus. Indeed, assuming for
the sake of contradiction that u− �≡ 0, the contribution of J(u−) is strictly
positive; moreover one can easily see that, since they solve the equation
except where they are zero, both u+ and u− belong to N ≡ M. Hence
u+ ∈ M∩ C+ is such that J(u+) < ϕ+(a, b), a contradiction. On the other
hand, when h �≡ 0 and the annulus is not too small then these solutions have
no reason to be one sign.
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Motivated by the previous remark we introduce the following:

Definition 3.1. We will say that u has an essential change of sign in the
annulus [a, b] if there exists a < c < b such that both u|[a,c] achieves ϕ+(a, c)
(respectively ϕ−(a, c)) and u|[c,b] achieves ϕ−(c, b) (respectively ϕ+(c, b)).

It is easy to see, arguing as in Remark 3.2, that if u achieves ϕ+(a, b) and
u =

∑
i ui, where the ui’s have disjoint supports and they are either positive

or negative, then only one of them can belong to M. This justifies the well
posedness of the previous definition.

4. Main results

In this section we shall prove the existence Theorems 2.2 and 2.3 as a
direct consequence of Theorem 4.1 and 4.2 below. Since the purpose is
to find solutions with (essential) changes of sign, we follow the basic idea
of Nehari [14]. In order to build a solution with one essential change of
sign on [a, c], we try to paste together an essentially positive solution on
[a, b], for some a < b < c, and an essentially negative solution on [b, c] by
minimizing (with respect to b) the function ϕ+(a, b) + ϕ−(b, c). To succeed
in this procedure it is fundamental the information that, when the left and
right derivatives in b are not the same, then the value ϕ+(a, b) + ϕ−(b, c)
decreases by moving b in the direction of the lower derivative.

Lemma 4.1. Let ψ(r) := ϕ+(a, r)+ϕ−(r, b) where 0 ≤ a < r < b ≤ +∞ and
assume that ∃r0 such that ψ(r0) is achieved by u1(|x|) ∈ M(a, r0) ∩ C+ and
u2(|x|) ∈ M(r0, b)∩ C− solutions of (Dh). Moreover let u1 + u2 change sign
across r0 (that is, u1(r0−s1)·u2(r0+s2) ≤ 0 but not identically 0 for every s1,
s2 belonging to some [0, s̄]). In such a situation, if |u̇1(r0 −0)| > |u̇2(r0 +0)|
then ∃h̄ > 0 : ∀h ∈ (0, h̄) ψ(r0 + h) < ψ(r0).

Proof. Let us consider the ordinary differential equation associated to (P )
(as in equation (5.1) below). We can apply to such an equation the argument
of [14] (see also [19], Theorem 2.1, Lemma 6.5). The only difference consists
in the fact that here ϕ± are defined with one more constraint; namely they
are achieved by functions lying in C±. This can easily be overcome observ-
ing that u1 and u2 lie in the interior of the cones, and since the variation
constructed to decrease ψ can be chosen as small as we want, by a continuity
argument also ũ1 and ũ2 (the variated functions that decrease ψ) must lie
in the relative C±. �

Now we will consider two different cases, namely either h ≡ 0 or h �≡ 0.
Indeed by Remark 3.2 in the unforced case we will be able to establish the
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precise number of zeroes of the solution. Anyway, both the results will be
obtained minimizing a suitable finite-dimensional functional under a con-
straint; more precisely, we will impose that the zeroes of the solution satisfy
all the assumptions in the previous machinery. For the unforced case the
minimal number of nodal regions we can expect in the solution is strictly
connected to the Morse index of the quadratic form Q[0,+∞](u):

Lemma 4.2. Let m be the Morse index of Q[0,+∞](u). Then if k ≥ m + 1
then for every partition 0 < r1 < · · · < rk < +∞ there exists at least one i
such that λ1(ri, ri+1) ≥ c(k) > 0.

Proof. The proof is exactly the same as in Lemma 5.1 in [5]. �
For the unforced case we introduce the constraint

Bl :=
{

(ri) ⊂ R
+, i = 0, . . . , k + 1 : 0 =: r0 < r1 < · · · < rk+1 := +∞

λ1(ri, ri+1) > l

}
,

where k ≥ m+1 and l > 0 is small to be fixed. Note that, by Lemma 2.2, Bl

is not empty, indeed it contains, for l sufficiently small, the partition given
by the zeroes of the eigenfunction corresponding to the eigenvalue λm+1. Let

σ(i) :=
{

+ i is even
− i is odd .

Hence, by Theorem 3.1 part (i), we can associate to each annulus [ri, ri+1]
in Bl a function ul

i ∈ M∩Cσ(i) that achieves ϕσ(i)(ri, ri+1) (i.e., it solves (P )
in the annulus). We have

Theorem 4.1. Let h ≡ 0 and assumptions (A1) and (A2) hold. Then for
every k ≥ m + 1 there exists l > 0 such that the value

ck := inf
Bl

k∑
i=0

ϕσ(i)(ri, ri+1)

is achieved by

ū :=
k∑

i=0

ul
i,

a solution of (P ) that changes sign exactly k times.

For the proof of Theorem 4.1 we need two technical lemmas (in the fol-
lowing we will assume h ≡ 0):

Lemma 4.3. Let (al, bl) → (a0, b0) as l → 0, and let ul achieve ϕ±(al, bl).
If λ1(a0, b0) = 0 then ‖ul‖C1 → 0.
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Proof. First we prove that if λ1(al, bl) → 0, then ϕ+(al, bl) → 0 (for ϕ− one
can easily argue in the same way). Let ϕl

1 be the first positive eigenfunction
with ‖ϕl

1‖H = 1. Since h ≡ 0 we can explicitly calculate the expression of
ϕ+ (using its equivalent definition as d+):

ϕ+(a, b) = inf
u∈C+

u �≡0

(
1
2
− 1

θ + 1
)
(Q[a,b](u))

θ+1
θ−1

(I[a,b](u))
2

θ+1

≤ C
(Q[a,b](ϕ1))

θ+1
θ−1

(I[a,b](ϕ1))
2

θ+1

= C
λ

θ+1
θ−1

1

(I[a,b](ϕ1))
2

θ+1

.

Therefore, we have to prove that I[al,bl](ϕl
1) �→ 0. Let for the sake of

contradiction I[al,bl](ϕl
1) → 0; since supp b−(|x|) is bounded, we obtain∫

b−(|x|)(ϕl
1)

2 → 0. Thus we have

0 ← λ1(al, bl) = Q[al,bl](ϕ
l
1) = ‖ϕl

1‖H −
∫

b−(ϕl
1)

2 → 1,

which is a contradiction. Thus ϕ+(al, bl) → 0. Let ul achieve ϕ+(al, bl); we
have both

ϕ+ = (
1
2
− 1

θ + 1
)Q(ul) = (

1
2
− 1

θ + 1
)I(ul)

and
−Δul + b+ul = |ul|θ−1ul + b−ul.

Since ϕ+ → 0 we have Q(ul) → 0 and I(ul) → 0, the right-hand side of the
previous equation tends to 0 in the dual space of H, ul → 0 in H1

loc and
finally, by standard regularity arguments, ul → 0 in C1. �

Lemma 4.4. Let (al, bl) → (a0, b0) as l → 0, and let ul achieve ϕ±(al, bl).
If λ1(a0, b0) > 0, then there exists c > 0 such that both |u̇l(al)| ≥ c and
|u̇l(bl)| ≥ c for all l small enough.

Proof. We have again

ϕ+(a, b) = inf
u∈C+

u �≡0

(
1
2
− 1

θ + 1
)
(Q[a,b](u))

θ+1
θ−1

(I[a,b](u))
2

θ+1

≥ Cλ
θ+1
θ−1

1 (a, b)S
2(θ+1)

θ−1 (a, b),

and then ϕ+(al, bl) → ϕ+(a0, b0) ≥ C > 0. If ul achieves ϕ+(al, bl) then
ul → u0 (in H and in C1), and J(u0) ≥ ϕ+(a0, b0); hence u0 �≡ 0, and
u̇0(a0) and u̇0(b0) can not be zero by the Cauchy uniqueness theorem. Since
u̇l(al) → u̇0(a0) and u̇l(bl) → u̇0(b0) the lemma follows. �
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Proof of Theorem 4.1. By Lemmas 3.10 and 3.8 ϕσ(i)(ri, ri+1) is contin-
uous and it explodes as |ri+1 − ri| → 0 or ri → +∞. Hence cl

k is achieved
(at least for l sufficiently small) by a partition

0 < rl
1 < · · · < rl

k < +∞.

Note that, since l1 ≤ l2 implies cl1
k ≤ cl2

k , we can assume the existence of t > 0
independent of l, such that rl

1 > t and rl
k < 1/t. Moreover by Remark 3.2

the minimum ul :=
∑k

i=0 ul
i has exactly k zeroes and each of them provides

a change of sign. The only thing we have to prove is that u̇l(rk
i − 0) =

u̇l(rk
i + 0) for every i, and we argue by contradiction. If λ1(rl

i−1, r
l
i) > l and

λ1(rl
i, r

l
i+1) > l we easily obtain a contradiction by applying Lemma 4.1.

Claim: there exists a small l such that λ1(rl
i, r

l
i+1) > l for every i.

For the sake of contradiction we assume that for every l there is some
annulus of the minimal partition with corresponding first eigenvalue equal
to l; on the other hand, by Lemma 4.2, there exists another annulus such
that its first eigenvalue is larger than a fixed constant c(k). Letting l → 0
we can assume, at least for some subsequence, that these two intervals are
consecutive, say there exists j (independent of l) such that λ1(rl

j−1, r
l
j) = l

and λ1(rl
j , r

l
j+1) ≥ c(k). By Lemma 4.3 u̇l(rl

j − 0) → 0, and by Lemma 4.4
there exists c > 0 independent of l such that |u̇l(rl

j +0)| ≥ c. Therefore, for l

sufficiently small, we infer |u̇l(rl
j −0)| < |u̇l(rl

j +0)|, and Lemma 4.1 applies,
moving rl

j onto the left-hand side. In this way we obtain another partition
belonging to Bl and strictly decreasing ck, reaching a contradiction. �

Now we consider the general case. Let δ̄ and R̄ satisfy Lemmas 3.1 and 3.6,
and k ∈ N large to be fixed. In such a situation we define a new constraint

B′
k :=

{
(ri) ⊂ R

+, i = 0, . . . , k + 1 : 0 =: r0 < r1 < · · · < rk+1 := +∞
ri ≤ R̄ ⇒ |ri+1 − ri| ≤ δ̄

}
,

and when k > R̄
δ̄

we obviously have that B′
k is not empty.

Theorem 4.2. Under assumptions (A1), (A2) and (A3) there exists k̄ ∈ N

such that for every k ≥ k̄,

ck := min
B′

k

k∑
i=0

ϕσ(i)(ri, ri+1)



nodal solutions to a class of nonstandard superlinear equations 315

is achieved by

ū :=
k∑

i=0

ui,

a solution of (P ) that changes sign at least k times.

Proof. As in the proof of Theorem 4.1 the minimum is achieved by some

0 < rk
1 < · · · < rk

k < +∞,

and the only thing to prove is that u̇k(rk
i − 0) = u̇k(rk

i +0); we will argue by
contradiction. First consider the case |rk

i − rk
i−1| < δ̄ and |rk

i+1 − rk
i | < δ̄ if

rk
i−1 ≤ R̄ and rk

i ≤ R̄, or any case with rk
i−1 > R̄. There are two possibilities,

either when rk
i provides a change of sign or not; if it provides a change of

sign, one can apply Lemma 4.1 obtaining the usual contradiction. Let us
see what happens when there is no change of sign through rk

i . To fix the
ideas we assume that uk

i−1 achieves ϕ+(rk
i−1, r

k
i ), uk

i achieves ϕ−(rk
i , rk

i+1),
u̇k(rk

i − 0) ≥ 0 and u̇k(rk
i + 0) ≤ 0 (but not both zero, otherwise there is

nothing to prove). Let r′ < rk
i be the point of change of sign for uk

i−1 nearest
to rk

i . We have uk|[r′,rk
i ] ≤ 0, and, since it solves the equation where it is

not zero, uk|[r′,rk
i ] ∈ N ; moreover uk|[r′,rk

i ] ∈ M−; indeed it must be that
J(uk|[r′,rk

i ]) < 0 (to prove this assertion one can easily argue as in Remark
3.2). We claim that uk|[rk

i−1,r′] ∈ M ∩ C+ and uk|[r′,rk
i+1] ∈ M ∩ C−. They

surely lie in the relative N , since they solve the equation where they are not
zero. Moreover, since J(uk|[rk

i−1,r′]) > J(uk|[rk
i−1,rk

i ]) and ‖uk|[r′,rk
i+1]‖θ+1 >

‖uk|[rk
i ,rk

i+1]‖θ+1, by Lemma 3.6 they lie in the relative M. At last, since

uk|[r′,rk
i ] ≤ 0, they respectively lie in C+, C−, and the claim follows. We

obtain

ϕ+(rk
i−1, r

k
i ) + ϕ−(rk

i , rk
i+1) = J[rk

i−1,rk
i )](u

k) + J[rk
i ,rk

i+1](u
k)

= J[rk
i−1,r′)](u

k) + J[r′,rk
i+1](u

k) > ϕ+(rk
i−1, r

′) + ϕ−(r′, rk
i+1),

where the last inequality is strict since uk|[r′,rk
i+1], not solving the equation in

rk
i , can not achieve ϕ−(r′, rk

i+1); thus also in this case we have a contradiction.
It remains to prove that for k sufficiently large it must be that |rk

i+1−rk
i | < δ̄

for every rk
i ≤ R̄. Assume for the sake of contradiction that for every k there

is some annulus Ik := [rk
j , rk

j+1] with rk
j ≤ R̄ and |Ik| = δ̄ (note that the

number of such annuli must be bounded independently of k). We have
ϕ±(Ik) ≤ C1, independent of k; moreover if we partition Ik into three equal
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subintervals Ik
1 , Ik

2 and Ik
3 we have (for example) ϕ+(Ik

1 )+ϕ−(Ik
2 )+ϕ+(Ik

3 ) ≤
C2, and also C2 does not depend on k. On the other hand when k → +∞
there must be three consecutive annuli [rk

i−1, r
k
i ], [rk

i , rk
i+1] and [rk

i+1, r
k
i+2] (i

possibly depending on k) with either |rk
i+2 − rk

i−1| → 0 or rk
i−1 → +∞; in

both cases this means (for example) ϕ+(rk
i−1, r

k
i ) + ϕ−(rk

i , rk
i+1) → +∞. We

choose k̄ such that ∀k ≥ k̄ it holds both that

ϕ+(rk
i−1, r

k
i ) + ϕ−(rk

i , rk
i+1) > C2 + 1

and that |rk
i+2 − rk

i−1| < δ̄ or rk
i−1 > R̄. For such k’s we easily obtain a

contradiction: indeed the partition obtained from the extremal by cutting
rk
i , rk

i+1 and placing two zeroes inside Ik strictly decreases the value of ck. �

5. A nonexistence result

In this final section we will prove Theorem 2.1, using an energy estimate.
Let us recall that such a theorem essentially states the optimality of the
supercritical assumption θ + 1 > pα when searching for nontrivial solutions
that do change sign (here and below h ≡ 0). To this aim we use some
Pucci–Serrin-type estimate (see [15]).
Proof of Theorem 2.1. Let θ + 1 ≤ pα. Assume for the sake of contradic-
tion the existence of a nontrivial solution u ∈ H of (P ) such that u(R) = 0;
note that, since h ≡ 0 and u �≡ 0, it must hold that u̇(R) �= 0. We introduce
the energy associated to the problem (P ):

E(r) :=
1
2
u̇2 − 1

2
r−αu2 +

1
θ + 1

|u|θ+1.

By writing the ODE corresponding to (P ) in the following form,

r1−N d

dr
(rN−1u̇) − r−αu + |u|θ−1u = 0, (5.1)

we obtain the derivative of E as
d

dr
E(r) = −(N − 1)

r
u̇2 − 1

2
− αr−α−1u2. (5.2)

By testing (5.1) with rβ−1u (β ≥ 1 to be chosen) and then integrating by
parts on (R,∞) we obtain

[rβ−1uu̇]∞R − (β − N)
∫ ∞

R
rβ−2uu̇ dr (5.3)

−
∫ ∞

R
rβ−1u̇2dr +

∫ ∞

R
rβ−1|u|θ+1dr = 0.
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Since uu̇ = 1
2

d
dru2, integrating by parts again the second term we have

∫ ∞

R
rβ−1u̇2dr +

∫ ∞

R
rβ−1−αu2dr = [rβ−1uu̇]∞R − 1

2
(β − N)[rβ−2u2]∞R

+
1
2
(β − N)(β − 2)

∫ ∞

R
rβ−3u2dr +

∫ ∞

R
rβ−1|u|θ+1dr. (5.4)

Let us now define

Eβ(r) := rβE(r). (5.5)

By (5.1) it holds that

Eβ(∞) − Eβ(R) =
∫ ∞

R

d

dr
Eβ(r)dr =

(
β

2
− N + 1

) ∫ ∞

R
rβ−1u̇2dr

+(α − β)
∫ ∞

R
rβ−1−αu2dr +

β

θ + 1

∫ ∞

R
rβ−1|u|θ+1dr. (5.6)

Now we multiply (5.4) by β
θ+1 and then sum up with (5.6):

(
− N + 1 +

β

2
+

β

θ + 1
) ∫ ∞

R
rβ−1u̇2dr + (

α

2
− β

2
+

β

θ + 1
)
∫ ∞

R
rβ−1−αu2dr

−β(β − N)(β − 2)
2(θ + 1)

∫ ∞

R
rβ−3u2dr = AR,∞ + Eβ(∞) − Eβ(R),

where AR,∞ = [rβ−1uu̇]∞R − 1
2(β − N)[rβ−2u2]∞R . Note that the terms in

AR,∞ involving R are zero by the assumption u(R) = 0. Let us choose
β = N − 1+α/2, and hence 2 < β < N . By the fact that u ∈ H and β < N
we obtain the existence of a sequence rn → +∞ such that Eβ(rn) → 0.
For the same reason also the terms in AR,∞ involving u and u̇ at infinity
are zero. Note moreover that the coefficient −β(β−N)(β−2)

2(θ+1) is positive since
2 < β < N . Thus

a

∫ ∞

R
rβ−1u̇2dr + b

∫ ∞

R
rβ−1−αu2dr ≤ −Eβ(R), (5.7)

where

a = b =
N − 1 − α

2

2(θ + 1)
· [pα − (θ + 1)].

Now, since θ + 1 ≤ pα, we obtain a ≥ 0 and b ≥ 0; furthermore E(R) > 0
by assumption. This leads to a contradiction of (5.7). �
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