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Abstract. We study concentrated positive bound states of the follow-
ing nonlinear Schrödinger equation:

h2Δu − V (x)u + up = 0, u > 0, x ∈ RN ,

where p is subcritical. We prove that, at a local maximum point x0 of
the potential function V (x) and for arbitrary positive integer K(K >
1), there always exist solutions with K interacting bumps concentrating
near x0. We also prove that at a nondegenerate local minimum point
of V (x) such solutions do not exist.

1. Introduction. Of concern are standing wave solutions of the follow-
ing nonlinear Schrödinger equation:

ih
∂ψ

∂t
=

−h2

2m
�ψ + V (x)ψ − γ |ψ|p−1 ψ with x ∈ RN , (1.1)

i.e., solutions of the form ψ (x, t) = exp (i E t/h)u(x), where h, m, γ and p
are positive constants, p > 1, E ∈ R, V is real and belongs to C2

(
RN

)
and

u is real. Assuming without loss of generality that 2m = 1, γ = 1 and E = 0,
it is easy to see that u satisfies

h2�u − V (x)u + |u|p−1 u = 0, x ∈ RN . (1.2)

In this paper, we always assume that

inf
x∈RN

V (x) > 0, V (x) ∈ C2
(
RN

)
, 1 < p < (

N + 2
N − 2

)+, (1.3)
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where (N+2
N−2)+ = N+2

N−2 if N ≥ 3; = +∞ if N = 1, 2.
Floer and Weinstein in [8] proved for small h > 0 (and for p = 3, N = 1)

the existence of a single-bump solution of (1.2) concentrating at each given
nondegenerate critical point of the potential function V, under the condition
that V is bounded. In [19] and [20], Oh generalized this result and obtained
for small h > 0 the existence of multi-bump solutions with u in (1.2) being
positive and concentrating at given finite collection of nondegenerate critical
points of V , under the condition N ≥ 1, 1 < p < (N+2

N−2)+ and V ∈ (V )a

(namely, either V ≡ a or V (x) > a and (V − a)−
1
2 ∈ Lip(RN )).

The existence of solutions of (1.2) and its various generalizations has long
been studied extensively (mostly by variational methods). The interested
reader may consult, in addition to the papers mentioned below, the survey
articles [15] and [17] and references therein. Most of the results provide
existence of solutions for arbitrary h > 0. Several papers deal with existence
of “ground states,” i.e., in case of (1.2), solutions with least “energy,”

1
2

∫
RN

(h2 |∇u|2 + V u2) dx − 1
p + 1

∫
RN

|u|p+1 dx (1.4)

among all nontrivial H1(RN ) solutions of (1.2).
In [21], Rabinowitz showed that (1.2) has a positive ground state for “ev-

ery h > 0” if lim sup|x|→∞ V (x) = supx∈RN V (x) or if lim inf |x|→∞ V (x) >
infx∈RN V (x). See [2] and [3] for more results on existence and [23] on asymp-
totic behavior of ground state solutions.

There are many interesting results concerning higher energy solutions.
Del Pino and Felmer in [4] studied the case when V (x) has a local minimum
point (may be degenerate) and constructed single-bump positive solutions.
Both Del Pino, Felmer [5] and Gui [9] glued the single bump positive solu-
tions and obtained multi-bump positive solutions at separate local minimum
points of V . Del Pino and Felmer in [6] were able to construct single-bump
positive solutions at any topologically nontrivial critical points of V (x). Re-
lated results are obtained by Ambrosetti, Badiale and Cingolani [1]; Li [14];
and Lu and the second author [16]. As far as we know, N. Thandi [22] ob-
tained the existence of infinite-bump solutions under some further hypothesis
on the potential function V .

In all the above papers multi-bump solutions are obtained at “separate”
local maximum or local minimum points of V . These bumps are well sepa-
rated, and hence the interactions of these bumps are neglected. (Here “in-
teraction” means the effect of one bump on other bumps. Mathematically, it
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can be computed as in Lemma 2.4 below.) The main purpose of this paper
is to study the effect of such interactions. We show that at a local maximum
point of V (x) the interactions can contribute to the existence of multi-bump
solutions while at a nondegenerate local minimum point of V (x) multi-bump
solutions do not exist.

Our first result of this paper is the following.

Theorem 1.1. Assume that V (x) and p satisfy assumption (1.3). Let P0

be a local maximum point of the potential V (x); i.e., there exists a bounded
open set Γ such that

P0 ∈ Γ, V (P0) = max
x∈Γ

V (x) > V (P ),∀P ∈ Γ\{P0}. (1.5)

Then for any positive integer K ∈ Z, there exists h0 > 0 such that for
any h < h0 there exists a positive solution uh of (1.2) with the following
properties:

(1) The solution uh has exactly K local maximum points Qh
1 , . . . , Qh

K and
Qh

i → P0 as h → 0. Moreover,

|Qh
i − Qh

j |
h

≥ V (P0)−
1
2 log

C

h
→ ∞, i 
= j, i, j = 1, . . . , K

for some C > 0, as h → 0.

(2) Thesolutionuh(x) ≤ Ce−β
mini=1,...,K |x−Qh

i |
h for some β > 0, C > 0

and uh(Qh
i ) → α, α > 0, i = 1, . . . , K as h → 0; i.e., uh concentrates at

Qh
1 , . . . , Qh

K .

Remark. In [14], Li proved that if V (x) has K (different) local maximum
points Q1, . . . , QK , Qi 
= Qj for i 
= j, then for h sufficiently small there
exists a positive solution uh of (1.2) such that uh has K local maximum
points Qh

1 , . . . , Qh
K with Qh

i → Qi, i = 1, . . . , K, as h → 0. Since the K
bumps are separated in the limit, the interactions between bumps are of the
order e−δ0/h for some constant δ0 > 0, which are exponentially small and are
essentially neglected in [14]. Our theorem here is quite different from his.
In fact we construct multi-bump solutions at one local maximum point of
V . The distance between the bumps are of the order O(h log h), and thus
the interactions between the bumps are of algebraic order O(hm) for some
m > 0, which can’t be neglected. So the interactions between bumps do play
a very important role. This is a new and interesting phenomenon. The next
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result shows that this phenomenon does not occur at a nondegenerate local
minimum point of V (x).

Theorem 1.2. Fix any positive integer K > 1. Let P0 be a local minimum
point of V (x) such that det(∇2V (P0)) 
= 0. Then there is h0 > 0 such
that for h < h0 equation (1.2) cannot have a positive solution uh with the
following properties:

(1) The solution uh has exactly K local maximum points Qh
1 , Qh

2 , . . . , Qh
K

and Qh
i → P0,

|Qh
i −Qh

j |
h → ∞ as h → 0, where i, j = 1, . . . , K, i 
= j.

(2) The solution uh(x) ≤ Ce−β
mini=1,...,K |x−Qh

i |
h for some β > 0, C > 0

and uh(Qh
i ) → α, α > 0, i = 1, . . . , K as h → 0.

In the rest of this section, we briefly outline the proof of Theorem 1.1.
The main idea is to reduce the problem on H2(RN ) into a finite-dimensional
problem on the space of bumps. To this end, we use the classical Liapunov-
Schmidt reduction method (a similar method has been used in [10], [11],
[26], [27], etc.) We shall follow the ideas in [10].

Without loss of generality, we can assume that P0 in Theorem 1.1 is
the origin and that V (P0) = 1. Since we are looking for positive solutions,
equation (1.2) becomes

h2Δu − V (x)u + up = 0, u > 0, x ∈ RN . (1.6)

(Recall that V (x) satisfies (1.3) and p is subcritical.)
To introduce the main idea of the proofs of Theorems 1.1, we need to

give some necessary notations and definitions first.
Let w be the unique solution of the following problem:⎧⎨

⎩
Δw − w + wp = 0 in RN

w > 0, w(0) = maxy∈RN w(y)
w(y) → 0 as |y| → ∞.

(1.7)

The solution of (1.7) is radial ([12]) and unique ([13]). Moreover, w is radially
symmetric, decreasing and

lim
|y|→∞

w(y)e|y||y|N−1
2 = λ0 > 0, lim

|y|→∞
w

′
(y)

w(y)
= −1 (1.8)

for some constant λ0 > 0. Let

I(w) =
1
2

∫
RN

|∇w|2 +
1
2

∫
RN

w2 − 1
p + 1

∫
RN

wp+1
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be the ground energy of w.
Note that for fixed a > 0, wa(y) := a

1
p−1 w(a

1
2 y) is the unique solution of

the following problem:⎧⎨
⎩

Δv − av + vp = 0 in RN

v > 0, v(0) = maxy∈RN v(y)
v(y) → 0 as |y| → ∞.

(1.9)

Associated with problem (1.2) is the following energy functional:

Jh(u) = h−N
(1
2

∫
RN

(h2|∇u|2 + V u2) −
∫

RN

F (u)
)
,

where F (u) =
∫ u
0 f(s) ds, f(s) = |s|p−1s and u ∈ E , where the space E is

defined by

E = {u :
∫

RN

(h2|∇u|2 + V u2) < ∞}. (1.10)

(The factor h−N comes from scaling.) Let Γ be as in Theorem 1.1 and c0 > 0
be a small number. Set

Λh =
{
P = (P1, . . . , PK) ∈ Γ × · · · × Γ, w(

|Pk − Pl|
h

) < c0h,

k, l = 1, . . . , K, k 
= l
}

.

Let χ(x) be a cut-off function such that χ(x) = 1 for x such that d(x,Γ) < 1
2

and χ(x) = 0 for x such that d(x,Γ) ≥ 1.
Fix P = (P1, P2, . . . , PK) ∈ Λh. We set

ŵPi(x) = wV (Pi)(
x − Pi

h
), wPi(x) = ŵPi(x)χ(x). (1.11)

Since we look for solutions of (1.6) of the K-bump type
∑K

i=1 wPi , we set

u(x) =
K∑

i=1

wPi + Φh,P.

However, since the linearized operator at
∑K

i=1 wPi is not uniformly invertible
with respect to h, we introduce the approximate kernel

Kh,P = span{h∂wPi

∂Pi,j
, i = 1, . . . , K, j = 1, . . . , N} ⊂ H2(RN )
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and the approximate cokernel

Ch,P = span {h∂wPi

∂Pi,j
, i = 1, . . . , K, j = 1, . . . , N} ⊂ L2(RN ),

where Pi,j is the j-th component of Pi, i = 1, . . . , K.
We first solve for Φh,P in K⊥

h,P up to C⊥
h,P by using the Liapunov-Schmidt

reduction method. (This method has been used by [8], [16], [19], [20] and
[14].) Then we show that Φh,P is C1 in P. After that, we define a new
function

Mh(P) = Jh(
K∑

i=1

wPi + Φh,P) : Λ̄h → R. (1.12)

We compute Mh and obtain the following asymptotic behavior:

Mh(P) =
K∑

i=1

(c + o(1))V (Pi)
p+1
p−1

−N
2 −

∑
k �=l

(d + o(1))w(
Pk − Pl

h
) (1.13)

for some positive constants c, d, where o(1) means |o(1)| → 0 as h → 0.
We maximize Mh(P) over Λh. Condition (1.5) ensures that Mh(P) at-

tains its maximum inside Λh, say Ph ∈ Λh. Then the corresponding function
uh =

∑K
i=1 wP h

i
+Φh,Ph is a solution of (1.6). We show that uh has the prop-

erties of Theorem 1.1.
Theorem 1.2 is proved by asymptotic analysis.
This paper is organized as follows. In Section 2, we state some prelimi-

nary estimates leading to (1.13). Section 3 contains the standard Liapunov-
Schmidt procedure. In Section 4, we apply a maximizing procedure to solve
the reduced problem and thus complete the proof of Theorem 1.1 in Section
5. Section 6 contains the proof of Theorem 1.2: We first obtain a system of
equations on the locations of the bumps, and then we reach a contradiction
by using the fact that V has a nondegenerate local minimum at P0. Finally
we make some remarks on possible generalizations of Theorems 1.1 and 1.2
to more general problems.

Throughout this paper, the constant C denotes various generic constants
independent of h. O(A) means |O(A)| ≤ C|A| and o(a) means |o(a)|/|a| → 0
as h → 0. We will always denote by 0 < δ < 1 a very small number and
f(u) = |u|p−1u. “

∑
” always means summation from 1 to K.
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2. Preliminary analysis. In this section, we first compute some in-
tegrals which will be useful in later sections. Then we obtain the energy
expansion of K-bumps in Λ̄h.

First we state a useful lemma about the interactions of two w’s.

Lemma 2.1 ((Lemma 2.1 of [2])). Let φ ∈ C(RN ) ∩ L∞(RN ), ψ ∈ C(RN )
be radially symmetric and satisfy for some α ≥ 0, β ≥ 0, γ0 ∈ R

φ(x) exp(α|x|)|x|β → γ0 as |x| → ∞,∫
RN

|ψ(x)| exp(α|x|)(1 + |x|β) < ∞.

Then

exp(α|y|)|y|β
∫

RN

φ(x + y)ψ(x) dx → γ0

∫
RN

ψ(x) exp(−αx1) dx as |y| → ∞.

Using Lemma 2.1 and the decay estimate (1.8), we then have the follow-
ing estimate.

Lemma 2.2. For h sufficiently small and P = (P1, . . . , PK) ∈ Λ̄h, we have

h−N

∫
RN

wp
Pi

wPj dx = (γ + o(1))w(
Pi − Pj

h
), i 
= j,

where Λ̄h is defined in Section 1, wPi is defined by (1.11) and

γ =
∫

RN

wp(y)e−y1dy > 0. (2.1)

Another direct application of Lemma 2.1 is the following useful corollary.

Corollary 2.3. Let β1 ≥ 1, β2 ≥ 1 be two positive numbers. Then we have

h−N

∫
RN

wβ1

Pi
wβ2

Pj
= O(wmin(β1,β2)−δ(

Pi − Pj

h
)), i 
= j, (2.2)

where δ > 0 is any small number. In particular, if β1 > β2 we can take
δ = 0.

The next lemma is the main result in this section.
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Lemma 2.4. For any P = (P1, . . . , PK) ∈ Λ̄h, where Λ̄h is defined in Sec-
tion 1, and h sufficiently small, we have

Jh(
K∑

i=1

wPi) =
K∑

i=1

V (Pi)
p+1
p−1

−N
2 I(w)

−(
γ

2
+ o(1))

K∑
i,l=1,i�=l

w(
Pi − Pl

h
) + O(h

K∑
i=1

|∇V (Pi)| + h2) (2.3)

where γ is defined by (2.1).

Remark. Roughly speaking, w(Pi−Pl
h ) measures the interaction between

the bump at Pi and the bump at Pl.

Proof. We shall only prove the case when K = 1, 2. The other cases are
similar. By (1.11) and (1.8), ŵPi := wV (Pi)(

x−Pi
h ) is exponentially decaying

outside any neighborhood Bδ(Pi) of Pi, where δ > 0 is a small fixed number.
Thus we obtain

wPi = ŵPi + O(e−
δ
h ) = wV (Pi)(

x − Pi

h
) + O(e−

δ
h ).

First for K = 1, if we set P1 + hy = x, then we have

Jh(wP1) = h−N (
1
2

∫
RN

(|∇wP1(x)|2 + V (x)w2
P1

(x)) − 1
p + 1

∫
RN

wp+1
P1

(x))

=
1
2

∫
RN

(|∇wV (P1)|2 + V (P1 + hy)w2
V (P1)) −

1
p + 1

∫
RN

wp+1
V (P1) + O(e−

δ
h )

=
1
2

∫
RN

(|∇wV (P1)|2 + V (P1)w2
V (P1)) −

1
p + 1

∫
RN

wp+1
V (P1)

+
∫

RN

(V (P1 + hy) − V (P1))w2
V (P1) + O(e−

δ
h )

= V (P1)
p+1
p−1

−N
2 I(w) + O(e−

δ
h ) + O(h|∇V (P1)|),

since

V (x) − V (P1) = O(|x − P1||∇V (P1)|) = O(h|y||∇V (P1)|)

and
∫
RN |y|w2(y) dy < ∞.
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Next we consider the case when K = 2. We first obtain for i 
= j

h−N

∫
RN

(∇wPi∇wPj + V (x)wPiwPj )

= h−N [
∫

RN

∇ŵPi∇ŵPj +
∫

RN

V ŵPiŵPj + O(e−
δ
h )]

=
∫

RN

wp
V (Pi)

wV (Pj) +
∫

RN

(V (x) − V (Pj))wV (Pi)wV (Pj) + O(e−
δ
h )

= (γ + o(1))w(
Pi − Pj

h
) + O(h|∇V (Pj)|) + O(e−

δ
h )

by Lemma 2.2, where γ is defined by (2.1). Let Ω1 := {y ∈ RN : |hy −
P1| ≤ 1−δ

2 |P1 − P2|}, Ω2 := {y ∈ RN : |hy − P2| ≤ 1−δ
2 |P1 − P2|} and

Ω3 := RN\(Ω1 ∪ Ω2). Then

h−N

∫
Ω3

|(wP1 + wP2)
p+1 − wp+1

P1
− wp+1

P2
| ≤ Ch−N

∫
Ω3

(wp+1
P1

+ wp+1
P2

)

≤ Ce−
(p+1)(1−δ)|P1−P2|

2h = o(w(
P1 − P2

h
))

by (1.8), if we choose δ such that (p + 1)(1 − δ) > 2 (note that P ∈ Λ̄h).
On Ω1, we have

h−N

∫
Ω1

((wP1 + wP2)
p+1 − wp+1

P1
− wp+1

P2
)

= (p + 1)h−N

∫
Ω1

wp
P1

wP2 + h−N

∫
Ω1

O(wp+1
P2

+ wp−δ
P1

w1+δ
P2

)

= (γ(p + 1) + o(1))w(
P1 − P2

h
)

by Lemma 2.2 and Corollary 2.3. Similarly, on Ω2 we have

h−N

∫
Ω2

((wP1 + wP2)
p+1 − wp+1

P1
− wp+1

P2
) = (γ(p + 1) + o(1))w(

P1 − P2

h
).

Hence

Jh(wP1 + wP2) = Jh(wP1) + Jh(wP2) + h−N

∫
RN

(∇wP1∇wP2 + V wP1wP2)

− 1
p + 1

h−N

∫
RN

((wP1 + wP2)
p+1 − wp+1

P1
− wp+1

P2
)
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= [V (P1)
p+1
p−1

−N
2 + V (P2)

p+1
p−1

−N
2 ]I(w) + (γ + o(1))w(

P1 − P2

h
)

+ O(h|∇V (P1)| + h|∇V (P2)|) − 2(γ + o(1))w(
P1 − P2

h
)

= [V (P1)
p+1
p−1

−N
2 + V (P2)

p+1
p−1

−N
2 ]I(w)

− (γ + o(1))w(
P1 − P2

h
) + O(h|∇V (P1)| + h|∇V (P2)|).

Lemma 2.4 is thus proved.

3. Liapunov-Schmidt reduction. In this section, we solve problem
(1.2) with an appropriate kernel and cokernel, respectively. Since the pro-
cedure has now become standard, we shall only give a sketch of the proof.
For more details, please see [20] and [14].

We first introduce some notations. Let Sh(u) = Δu − V (hy)u + f(u),
where f(u) = |u|p−1u, for u ∈ H2(RN ) ∩ E . Then solving equation (1.2) is
equivalent to solving Sh(u) = 0, u ∈ H2(RN )∩E . Fix P = (P1, . . . , PK) ∈ Λ̄h.
To study (1.2) we first consider the linearized operator

L̃h : Φ(z) �→ ΔΦ(z) − V (hz)Φ(z) + f ′(
K∑

i=1

wPi)Φ(z),

H2(RN ) ∩ E → L2(RN ). It is easy to see (integration by parts) that the
cokernel of L̃h coincides with its kernel. Choose the approximate cokernel
and kernel as

Ch,P = span{h∂wPi

∂Pi,j
|i = 1, . . . , K, j = 1, . . . , N} ⊂ L2(RN ),

Kh,P = span{h∂wPi

∂Pi,j
|i = 1, . . . , K, j = 1, . . . , N} ⊂ H2(RN ).

Remark. Note that h
∂ŵPi
∂Pi,j

satisfies the following equation:

Δv(y) − V (Pi)v(y) + pwp−1
V (Pi)

v(y) − h
∂V (Pi)

∂xj
wV (Pi) = 0, y ∈ RN ,

and hence it is easy to see that

h
∂wPi

∂Pi,j
= −

∂wV (Pi)(y)
∂yj

+ O(h|∇V (Pi)|wV (Pi) + e−
δ
h wV (Pi)). (3.1)
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Let πh,P denote the projection from L2(RN ) onto C⊥
h,P. Our goal in this

section is to show that the equation

πh,P ◦ Sh(
K∑

i=1

wPi + Φ) = 0

has a unique solution Φ = Φh,P ∈ K⊥
h,P if h is small enough. Moreover Φh,P

is C1 in P = (P1, . . . , PK).
As a preparation, in the following proposition we show the invertibility

of the corresponding linearized operator. The proofs are standard and thus
are omitted. See [19] and [20]. (Note that here Λ̄h depends on h. But the
same proof goes through since we have that |Pi − Pj |/h → +∞, i 
= j, as
h → 0, where P = (P1, . . . , PK) ∈ Λ̄h.)

Proposition 3.1. Let Lh,P := πh,P◦L̃h. Then there exist positive constants
h such that for all h ∈ (0, h) and P = (P1, . . . , PK) ∈ Λ̄h the map

Lh,P = πh,P ◦ L̃h : K⊥
h,P → C⊥

h,P

is both injective and surjective. Moreover

‖Lh,PΦ‖L2(RN ) ≥ C‖Φ‖H2(RN ) (3.2)

for all Φ ∈ K⊥
h,P.

We are now in a position to solve the equation

πh,P ◦ Sh(
K∑

i=1

wPi + Φ) = 0,Φ ∈ K⊥
h,P. (3.3)

Note that simple computations show that

Sh(
K∑

i=1

wPi + Φ) = L̃h(Φ) + Nh,P(Φ) +
3∑

j=1

M j
h,P, (3.4)

where

Nh,P(Φ) = f(
K∑

i=1

wPi + Φ) − f(
K∑

i=1

wPi) − f
′
(

K∑
i=1

wPi)Φ

M1
h,P = −

K∑
i=1

(V − V (Pi))wPi , M
2
h,P = f(

K∑
i=1

wPi) −
K∑

i=1

f(wPi)



910 kang xiaosong and juncheng wei

M3
h,P =

K∑
i=1

[ΔwPi − V (Pi)wPi + f(wPi)].

Before we move on, we need the following error estimates.

Lemma 3.2. For h sufficiently small, we have

|Nh,P(Φ)| ≤ C|Φ|1+σ (3.5)

‖M1
h,P‖L2(RN ) ≤ C(h

K∑
i=1

|∇V (Pi)|) (3.6)

‖M2
h,P‖L2(RN ) ≤ Cδ

(1+σ)/2
h (3.7)

‖M3
h,P‖L2(RN ) ≤ Ce−

δ
h , (3.8)

where

σ = min(1, p − 1) − δ, δh = max
i�=j

γw(
Pi − Pj

h
). (3.9)

Proof. It is easy to derive (3.5) from the mean value theorem. Inequality
(3.8) follows from the definition and (1.8). For (3.6), we note that V (x) −
V (Pi) = V (Pi + hy) − V (Pi) = O(h|∇V (Pi)||y|) and

∫
RN |y|2w2(y) < ∞.

It remains to prove (3.7). To this end, we divide the domain RN into
(K+1) parts: Let RN = ∪K+1

i=1 Ωi, where Ωi := {y : |hy−Pi| ≤ 1
2 mink �=l |Pk−

Pl|}, i = 1, . . . , K, ΩK+1 = RN\ ∪K
i=1 Ωi.

We now estimate M2
h,P in each domain. In ΩK+1, we have

|M2
h,P1,...,PK

| ≤ C(wP1 + · · · + wPK
)p ≤ O(e−

1+σ
2

1
h

mink �=l |Pk−Pl|).

Hence ‖M2
h,P‖L2(ΩK+1) ≤ O(δ

1+σ
2

h ). In Ωi, i = 1, . . . , K, we have

|M2
h,P| ≤

∑
j �=i

|f ′
(wPi)wPj | + O(

∑
j �=i

|wPj |1+σ).

Note that in Ωi, i = 1, . . . , K, we have wPj ≤ wPi for j 
= i, and hence

h−N

∫
Ω2

|f ′
(wPi)wPj |2 ≤ Ch−N

∫
Ω2

w
2(p−1)
Pi

w2
Pj

≤ δ2−δ
h
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if p ≥ 2, by Corollary 2.3. When 1 < p < 2, we have

h−N

∫
Ω2

|f ′
(wPi)wPj |2 ≤ Ch−N

∫
Ω2

w
2(p−1)+2−p−δ
Pi

wp+δ
Pj

≤ δp−δ
h

by Corollary 2.3 (here we need 2 − p − δ > 0). Hence we obtain

‖M2
h,P‖L2(Ωi) ≤ O(δ

1+σ
2

h ).

Combining the estimates for i = 1, . . . , K + 1, we obtain (3.7).
Next we solve (3.3). Since Lh,P|K⊥

h,P
is invertible (call the inverse L−1

h,P)
we can rewrite (3.3) as

Φ = −(L−1
h,P ◦ πh,P)(

3∑
j=1

M j
h,P) − (L−1

h,P ◦ πh,P)Nh,P(Φ) ≡ Gh,P(Φ), (3.10)

where the operator Gh,P is defined by the last equation for Φ ∈ H2(RN ).
We are going to show that the operator Gh,P is a contraction on

Bh,η ≡ {Φ ∈ H2(RN ) : ‖Φ‖H2(RN ) < η}

if η = C0(δ
1+σ

2
h + h

∑K
i=1 |∇V (Pi)|) and C0 > 0 is large enough. In fact, we

have

‖Gh,P(Φ)‖H2(RN ) ≤C(‖πh,P ◦ Nh,P(Φ)‖L2(RN ) + ‖πh,P ◦ (
3∑

j=1

M j
h,P)‖L2(RN ))

≤ C(c(η)η + δ
1+σ

2
h + h

K∑
i=1

|∇V (Pi)|) < η,

where C > 0 is independent of η > 0, δh is defined by (3.9) and c(η) → 0 as
η → 0. If we choose C0 large enough, then Gh,P is a map from Bh,η to Bh,η.
Similarly we can show

‖Gh,P(Φ) − Gh,P(Φ′)‖H2(RN ) ≤ Cc(η)‖Φ − Φ′‖H2(RN ),

where c(η) → 0 as η → 0. Therefore Gh,P is a contraction on Bh,η. The
existence of a fixed point Φ = Φh,P now follows from the contraction mapping
principle, and hence Φh,P is a solution of (3.10).
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Because of the fact that

‖Φh,P‖H2(RN ) ≤ C(‖Nh,P(Φh,P)‖L2(RN ) + ‖
3∑

j=1

M j
h,P‖L2(RN ))

≤ C(Cδ
1+σ

2
h + h

K∑
i=1

|∇V (Pi)| + c(η)‖Φh,P‖H2(RN )),

we have

(1 − Cc(η))‖Φh,P‖H2(RN ) ≤ C(δ
1+σ

2
h + h

K∑
i=1

|∇V (Pi)|).

We have thus proved the following:

Lemma 3.3. There exists h > 0 such that for any 0 < h < h and P ∈ Λ̄h

there exists a unique Φh,P ∈ K⊥
h,P satisfying Sh(

∑K
i=1 wPi + Φh,P) ∈ C⊥

h,P

and

‖Φh,P‖H2(RN ) ≤ Cδ
1+σ

2
h + Ch

K∑
i=1

|∇V (Pi)|. (3.11)

Finally we show that Φh,P is actually smooth in P.

Lemma 3.4. Let Φh,P be defined by Lemma 3.3. Then Φh,P ∈ C1 in P.

Proof. Recall that Φh,P is a solution of the equation

πh,P ◦ Sh(
K∑

i=1

wPi + Φh,P) = 0 (3.12)

such that

Φh,P ∈ K⊥
h,P. (3.13)

Notice that it is easy to see that the functions wPi and ∂2wPi/(∂Pi,j∂Pi,k)
are C1 in P. This implies that the projection πh,P is C1 in P.

Applying ∂/∂Pi,j to (3.12) gives

πh,P ◦ DSh

( K∑
i=1

wPi + Φh,P

)( K∑
i=1

∂wPi

∂Pi,j
+

∂Φh,P

∂Pi,j

)
(3.14)

+
∂πh,P

∂Pi,j
◦ Sh(

K∑
i=1

wPi + Φh,P) = 0,



nonlinear schrödinger equation 913

where

DSh(
K∑

i=1

wPi + Φh,P) = Δ − V + f
′
(

K∑
i=1

wPi + Φh,P).

We decompose ∂Φh,P

∂Pi,j
into two parts:

∂Φh,P

∂Pi,j
=

(∂Φh,P

∂Pi,j

)
1
+

(∂Φh,P

∂Pi,j

)
2
,

where (∂Φh,P

∂Pi,j
)1 ∈ Kh,P and (∂Φh,P

∂Pi,j
)2 ∈ K⊥

h,P.

We can easily see that (∂Φh,P

∂Pi,j
)1 is continuous in P since∫

RN

Φh,P
∂wPk

∂Pk,l
= 0, k, l = 1, . . . , N,

and hence ∫
RN

∂Φh,P

∂Pi,j

∂wPk

∂Pk,l
+

∫
RN

Φh,P
∂2wPk

∂Pi,j∂Pk,l
= 0

where i, j, k, l are indices running from 1 to K.
Now we can write equation (3.14) as

πh,P ◦ DSh(
K∑

i=1

wPi + Φh,P)
(
(
∂Φh,P

∂Pi,j
)2

)

+ πh,P ◦ DSh(
K∑

i=1

wPi + Φh,P)
( K∑

i=1

∂wPi

∂Pi,j
+ (

∂Φh,P

∂Pi,j
)1

)
(3.15)

+
∂πh,P

∂Pi,j
◦ Sh(

K∑
i=1

wPi + Φh,P) = 0.

As in the proof of Proposition 3.1 we can show that the operator πh,P ◦
DSh(

∑K
i=1 wPi + Φh,P) is invertible from K⊥

h,P to C⊥
h,P. Then we can take

the inverse of πh,P ◦ DSh(
∑K

i=1 wPi + Φh,P) in the above equation, and the
inverse is continuous in P.

Since ∂wPi
∂Pi,j

, (∂Φh,P

∂Pi,j
)1 ∈ Kh,P are continuous in P ∈ Λ̄h and so is ∂πh,P

∂Pi,j
, we

conclude that (∂Φh,P/(∂Pi,j))2 is also continuous in P. This is the same as
the C1 dependence of Φh,P in P. The proof is finished.
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4. A maximizing procedure. In this section, we study a maximizing
problem. Fix P ∈ Λh. Let Φh,P be the solution given by Lemma 3.3. We
define a new functional

Mh(P) = Jh(
K∑

i=1

wPi + Φh,P) : Λh → R. (4.1)

We first have the following asymptotic expansion of Mh(P).

Lemma 4.1. For P ∈ Λ̄h, we have

Mh(P) =
K∑

i=1

V (Pi)
p+1
p−1

−N
2 I(w) (4.2)

− (
γ

2
+ o(1))

∑
k �=l

w(
Pk − Pl

h
) + O(h

K∑
i=1

|∇V (Pi)| + h2).

Proof. For any P ∈ Λh, we have

Mh(P) = Jh(
K∑

i=1

wPi) + gh,P(Φh,P) + O(‖Φh,P‖2
H1(RN )),

where

gh,P(Φh,P) = h−N [
∫

RN

K∑
i=1

(∇wPi∇Φh,P + V wPiΦh,P) −
∫

RN

f(
K∑

i=1

wPi)Φh,P]

= h−N

∫
RN

[
K∑

i=1

(V − V (Pi))ŵPiΦh,P + (
K∑

i=1

f(ŵPi)

− f(
K∑

i=1

ŵPi))Φh,P + O(e−
δ
h |Φh,P|)]

≤ ‖
K∑

i=1

|(V − V (Pi))ŵPi |‖L2(RN )‖Φh,P‖L2(RN )

+ ‖|
K∑

i=1

f(ŵPi) − f(
K∑

i=1

ŵPi)|‖L2(RN )‖Φh,P‖L2(RN ) + Ce−
δ
h

≤ O(h
K∑

i=1

|∇V (Pi)| + e−
δ
h + δ1+σ

h ).
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By Lemma 2.4 and Lemma 3.3, we obtain (4.2).
From Lemma 4.1, we have the following:

Proposition 4.2. For h sufficiently small, the following maximizing prob-
lem,

max{Mh(P) : P ∈ Λh}, (4.3)

has a solution Ph ∈ Λh.

Proof. Since Jh(
∑K

i=1 wPi +Φh,P) is continuous in P, the maximizing prob-
lem has a solution. Let Mh(Ph) be the maximum of Jh, where Ph ∈ Λh.

We claim that Ph ∈ Λh. We prove this by energy comparison. We
first obtain a lower bound for Mh(Ph). Let us choose P 0

j = P0 + h3/4Xj

where Xj , j = 1, . . . , K are the K vortices of K-polygon centered at 0 with

|Xi − Xj | = 1 for i 
= j. Then certainly P 0
j ∈ Γ. Moreover, w(

|P 0
j −P 0

i |
h ) =

w(h−1/4) = o(h3/2) < c0h for h small. So P0 = (P 0
1 , . . . , P 0

K) ∈ Λh. We have
by Taylor’s expansion

V (P 0
i ) = V (0) + O(h3/2), |∇V (P 0

i )| = O(h3/4), i = 1, . . . , K.

Hence by (4.2) we obtain

Mh(Ph) = max
P∈Λ̄h

Mh(P) ≥ Mh(P0) ≥ KI(w) − Ch3/2,

which implies that (by Lemma 4.1)

K∑
i=1

V (P h
i )

p+1
p−1

−N
2 I(w) (4.4)

− (
γ

2
+ o(1))

∑
k �=l

w(
P h

k − P h
l

h
) + O(h

K∑
i=1

|∇V (P h
i )|) ≥ KI(w) − Ch3/2.

From (4.4), we can deduce that Ph ∈ Λh. In fact, suppose not; then by the
definition of Λh there are two possibilities. Either one of the P h

i is on ∂Γ.
In this case, we have by condition (1.5) (noting that V (P h

i ) < V (0)− μ1 for
some μ1 > 0 if P h

i ∈ ∂Γ)

K∑
i=1

V (P h
i )

p+1
p−1

−N
2 I(w) ≤ KI(w) − μ2
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for some μ2 > 0, which is impossible by (4.4). Or w(P h
k −P h

l
h ) = c0h for some

k 
= l. In this case w(P h
k −P h

l
h ) = c0h and

K∑
i=1

V (P h
i )

p+1
p−1

−N
2 I(w)−(

γ

2
+o(1))

∑
i�=j

w(
P h

i − P h
j

h
)≤KI(w) − (

γ

2
+ o(1))c0h,

which is impossible by (4.4). Hence Ph ∈ Λh, which completes the proof of
Proposition 4.2.
Remark. From the proof of Proposition 4.2 and (4.2) we can obtain

V (P h
i ) − max

P∈Γ
V (P ) = V (P h

i ) − V (P0) = o(1),

w(
P h

i − P h
j

h
) = o(h), ∀i 
= j,

which means that P h
i − P0 = o(1), |P h

i − P h
j |/h ≥ log C

h for some C > 0.

5. Proof of Theorem 1.1. In this section, we apply results in Section
3 and Section 4 to prove Theorem 1.1.
Proof of Theorem 1.1. By Lemma 3.3 and Lemma 3.4, there exists h0

such that for h < h0 we have a C1 map which, to any P ∈ Λh, associates
Φh,P1,...,PK

∈ K⊥
h,P such that

Sh(
K∑

i=1

wPi + Φh,P1,...,PK
) =

∑
k=1,...,K;l=1,...,N

αkl
∂wPk

∂Pk,l
(5.1)

for some constants αkl ∈ RKN . By Proposition 4.2, we have Ph ∈ Λh,
achieving the maximum of the maximization problem in Proposition 4.2.
Let Φ = Φh,Ph and uh =

∑K
i=1 wP h

i
+ Φh,P h

1 ,...,P h
K

. Then we have

DPi,j |Pi=P h
i
Mh(Ph) = 0, i = 1, . . . , K, j = 1, . . . , N.

Hence, we have∫
RN

[∇uh∇
∂(wPi + Φh,P1,...,PK

)
∂Pi,j

|Pi=P h
i

+ V uh
∂(wPi + Φh,P1,...,PK

)
∂Pi,j

|Pi=P h
i

− |uh|p−1uh
∂(wPi + Φh,P1,...,PK

)
∂Pi,j

|Pi=P h
i
] = 0
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for i = 1, . . . , K and j = 1, . . . , N . Therefore, we obtain

∑
k=1,...,K;l=1,...,N

αkl

∫
RN

∂wP h
k

∂Pk,l

∂(wP h
i

+ Φh,P h
1 ,...,P h

K
)

∂P h
i,j

= 0, (5.2)

∀i = 1, . . . , K, j = 1, . . . , N. Since Φh,P h
1 ,...,P h

K
∈ K⊥

h,Ph , we have that

h−N

∫
RN

∂wP h
k

∂P h
k,l

∂Φh,P h
1 ,...,P h

K

∂P h
i,j

= −h−N

∫
RN

∂2wP h
i

∂P h
k,l∂P h

i,j

Φh,P h
1 ,...,P h

K

= ‖
∂2wP h

i

∂P h
k,l∂P h

i,j

‖L2(RN )‖Φh,P h
1 ,...,P h

K
‖L2(RN )

= O(
1
h2

(
∑
i�=j

w
1+σ

2 (
P h

i − P h
j

h
) + h|

K∑
i=1

∇V (P h
i )|)) = o(h−2)

by Lemma 3.3. Note that

h−N

∫
RN

∂wP h
k

∂P h
k,l

∂wP h
i

∂P h
i,j

=

{
h−2

∫
RN ( ∂w

∂yj
)2 + o(h−2) if i = k, j = l

o(h−2) otherwise.

Thus, equation (5.2) becomes a system of homogeneous equations for αkl,
and the matrix of the system is nonsingular since it is diagonally dominant.
So αkl ≡ 0, k = 1, . . . , K, l = 1, . . . , N . Hence, uh =

∑K
i=1 wP h

i
+Φh,P h

1 ,...,P h
K

is a critical point of Jh and uh(x) satisfies (1.2). It remains to prove that
uh > 0.

Multiplying equation (1.2) by u−
h = min(uh, 0) and integrating by parts,

we have ∫
RN

[|∇u−
h (hy)|2 + V (u−

h (hy))2] =
∫

RN

(u−
h (hy))p+1.

By Sobolev’s imbedding theorem we obtain either
∫
RN (u−

h (hy))p+1 ≥ C or
u−

h ≡ 0. By our construction, we have that∫
RN

(u−
h (hy))p+1 = o(1).

Hence u−
h ≡ 0; i.e., uh ≥ 0. It is easy to see that by the Maximum Principle

uh > 0 in RN . Moreover Jh(uh) → KI(w) and uh has only K local maximum



918 kang xiaosong and juncheng wei

points Qh
1 , . . . , Qh

K . By the structure of uh we see that (up to a permutation)
Qh

i − P h
i = o(h). Since P h

i − P0 = o(1), we obtain that Qh
i − P0 = o(1) and

V (Qh
i ) → V (P0) as h → 0. Moreover, w(

|Qh
i −Qh

j |
h ) ≤ 2c0h, which implies

that
|Qh

i −Qh
j |

h ≥ log C
h for i 
= j. This proves Theorem 1.1.

6. Proof of Theorem 1.2. In this section, we prove Theorem 1.2. Let
P0 be a local minimum point of V (x) such that det(∇2V (P0)) 
= 0. Without
loss of generality, we may assume that P0 = 0 and V (P0) = 1. Let K > 1
be an integer.

Suppose Theorem 1.2 is not true. Namely there exists a sequence of
solutions uh such that for h sufficiently small

(i) uh has only K local maximum points Qh
1 , . . . , Qh

K with Qh
i → 0 and

|Qh
i − Qh

j |/h → ∞ as h → 0, ∀i, j = 1, . . . , K, i 
= j, and

(ii) uh ≤ Ce−β
mini=1,...,K |x−Qh

i |
h , uh(Qh

i ) → α > 0 for some α > 0, β > 0,
∀i = 1, . . . , K.

Recall that

ŵQh
i
(x) = wV (Qh

i )(
x − Qh

i

h
), wQh

i
(x) = ŵQh

i
(x)χ(x). (6.1)

To avoid clumsy notations, in this section we use ŵi to denote ŵQh
i

and wi

to denote wQh
i
. Furthermore, we set

x = hy, δh
ij = γw(

Qh
i − Qh

j

h
), i 
= j, δh = max

i�=j
δh
ij , and (6.2)

uh(hy) =
K∑

i=1

wi(hy) + φh(y).

It is easy to see that φh satisfies

Δφh − V φh + p(
K∑

i=1

wi)p−1φh +
K∑

i=1

(V (Qh
i ) − V )wi + (

K∑
i=1

wi)p (6.3)

−
K∑

i=1

wp
i + (

K∑
i=1

wi + φh)p − (
K∑

i=1

wi)p − p(
K∑

i=1

wi)p−1φh

+
K∑

i=1

[Δ(wi − ŵi) − V (Qh
i )(wi − ŵi) + wp

i − (ŵi)p] = 0.
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Then we have

Lemma 6.1. For h sufficiently small, we have∫
RN

(|∇φh|2 + V φ2
h) = O(h2 + δ1+σ

h ), (6.4)

where σ = min(1, p − 1) − δ, δ > 0 is small and δh is defined by (6.2).

From Lemma 6.1, we deduce the following important result on the loca-
tion of the K-bumps.

Lemma 6.2. For h sufficiently small, we have

−h
∂V (Qh

i )
∂xj

+ c
∑
l �=i

δh
il(

Qh
l − Qh

i

|Qh
l − Qh

i |
)j + o(h|Qh

i | +
∑
l �=i

δh
il) = 0, (6.5)

for i = 1, . . . , K, j = 1, . . . , N , where c > 0 is a positive number and bj

means the j-th component of a vector �b ∈ RN .

We postpone the proofs of Lemma 6.1 and Lemma 6.2 until the end of
this section. Let us now use them to prove Theorem 1.2.
Proof of Theorem 1.2. Without loss of generality, suppose |Qh

1 − Qh
2 | =

mini�=j |Qh
i − Qh

j | := dh. So δh
12 = maxi�=j δh

ij := δh.
We first claim that δh = O(h). In fact, suppose not. Consider a subset

Sh of {Qh
1 , . . . , Qh

K} such that Qh
η ∈ Sh if and only if Qh

η = Qh
1 or there exists

Qh
η1

, . . . , Qh
ηl

such that limh→0 |Qh
ηj

− Qh
η1
|/dh = 1, j = 2, . . . , l. It is easy

to see that there is a point, say Qh
i ∈ Sh, and a hyperplane H such that

Qh
i ∈ H, and all the other points of Sh belong to the same halfspace of RN

divided by H. We divide (6.5) by δh (noting that h
δh

→ 0); then we have

c
∑
l �=i

δh
il

δh
12

(
Qh

l − Qh
i

|Qh
l − Qh

i |
) = o(1),

∑
l �=i,Qh

l ∈Sh

δh
il

δh
(

Qh
l − Qh

i

|Qh
l − Qh

i |
) = o(1). (6.6)

But there is l 
= i such that limh→0 δh
il/δh > 0 (since Qh

i ∈ Sh), and all Qh
j ,

j 
= i, lie in the same halfspace of RN divided by H; this is impossible by
(6.6)! So δh = O(h). Next we choose a point Q0 of {Qh

1 , . . . , Qh
K} such

that d(0, Q0) = maxj=1,...,k d(0, Qh
j ) := lh. Without loss of generality we can

suppose Q0 = Qh
1 . Through a rotation, we can suppose Qh

1 = (−lh, 0, . . . , 0);
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i.e., the direction from Qh
1 to 0 is the positive x1-axis. It is easy to check for

other points Qh
j , j 
= 1, (Qh

j − Qh
1)1 > 0.

From (6.5) with i = 1, j = 1, we have

−∂V (Qh
1)

∂x1
+ c

∑
l �=1

δh
l1

h
(

Qh
l − Qh

1

|Qh
l − Qh

1 |
)1 + o(lh +

δh

h
) = 0.

We now claim that

δh

h
= O(lh). (6.7)

If (6.7) holds, then we have

V11(0)lh + c
∑
l �=1

δh
l1

hlh
(

Qh
l − Qh

1

|Qh
l − Qh

1 |
)1lh + o(lh) = 0,

which is impossible since V11(0) + c
∑

l �=1
δh
l1

hlh
( Qh

l −Qh
1

|Qh
l −Qh

1 |
)1 > V11(0) > 0. The-

orem 1.2 is thus proved.
It remains to prove (6.7). If δh

h 
= O(lh), then lh = o( δh
h ), |Qh

l | = o( δh
h ).

As before, there is a point, say Qh
i ∈ Sh, and a hyperplane H such that

Qh
i ∈ H, and all the other points of Sh belong to the same halfspace of RN

divided by H. Going back to (6.5) we obtain

c
∑
l �=i

δh
li

h
(

Qh
l − Qh

i

|Qh
l − Qh

i |
) + o(

δh

h
) = 0. (6.8)

But there exists l 
= i such that limh→0
δh
li

δh
= 1 and for all Qh

l , limh→0 |Qh
l −

Qh
i |/dh = 1; Qh

l −Qh
i are vectors lying on the same halfspace. It is impossible

by (6.8). Hence δh
h = O(lh). The proof is completed.

Finally in this section, we prove Lemma 6.1 and Lemma 6.2. We first
prove Lemma 6.2, assuming that Lemma 6.1 holds.
Proof of Lemma 6.2. We only prove the case for i = 1. The other cases
are similar. Multiplying both sides of (6.3) by ∂w1

∂yj
(here we set hy+Qh

1 = x),
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we have

∫
RN

(Δφh − V φh + p(
K∑

i=1

wi)p−1φh)
∂w1

∂yj
+

∫
RN

(V (Qh
1) − V )w1

∂w1

∂yj

+
∫

RN

∑
i�=1

(V (Qh
i ) − V )wi

∂w1

∂yj
+

∫
RN

[(
K∑

i=1

wi)p −
K∑

i=1

wp
i ]

∂w1

∂yj

+
∫

RN

[(
K∑

i=1

wi + φh)p − (
K∑

i=1

wi)p − p(
K∑

i=1

wi)p−1φh]
∂w1

∂yj

+
∫

RN

K∑
i=1

[Δ(wi − ŵi) − V (Qh
1)(wi − ŵi) + wp

i − (ŵi)p]
∂w1

∂yj

= I1 + I2 + I3 + I4 + I5 + I6 = 0

where the Ii’s, i = 1, . . . , 6 are defined in the last equality.
We now compute each term. First for I1, we have by using the equation

for ∂w1
∂yj

I1 =
∫

RN

(V (Qh
1) − V )φh

∂w1

∂yj
+ p((

K∑
i=1

wi)p−1 − wp−1
1 )

∂w1

∂yj
φh

= O(‖(V (Qh
1) − V )

∂w1

∂yj
‖L2(RN )‖φh‖L2(RN )

+ ‖((
K∑

i=1

wi)p−1 − wp−1
1 )

∂w1

∂yj
‖L2(RN )‖φh‖L2(RN )) = O(h2 +

∑
i�=1

(δh
1i)

1+σ)

since

‖(V (Qh
1) − V )

∂w1

∂yj
‖2

L2(RN ) ≤ Ch2

∫
RN

|y|2(∂w1

∂yj
)2 ≤ Ch2,

‖((
K∑

i=1

wi)p−1 − wp−1
1 )

∂w1

∂yj
‖L2(RN ) ≤ C

∑
i�=1

(δh
1i)

1+σ
2 .

(For the proof of the last inequality, please see the proof of Lemma 3.2.)
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For I2, we obtain

I2 =
∫

RN

(V (Qh
1) − V )w1

∂w1

∂yj
=

∫
RN

(− ∂V

∂xk
(Qh

1)hykw1
∂w1

∂yj
) + O(h2)

= −h
∂V

∂xj
(Qh

1)
∫

RN

yjŵ1
∂ŵ1

∂yj
+ O(h2)

= −h
∂V

∂xj
(Qh

1)V (Qh
1)

2
p−1

−N
2 γ1 + O(h2),

where

γ1 =
∫

RN

yjw
∂w

∂yj
=

∫
RN

yjww
′ yj

|y| =
1
N

∫
RN

ww
′ |y| < 0.

For I3, we have

I3 =
∑
i�=1

∫
RN

(V (Qh
i ) − V )wi

∂w1

∂yj

=
∑
i�=1

∫
RN

(V (Qh
i ) − V (Qh

i + hz))w(z)
∂w1

∂yj
(z +

Qh
i − Qh

1

h
)

=
∑
i�=1

∫
RN

[(V (Qh
i ) − V (Qh

1))w(z)
∂w1

∂yj
(z +

Qh
i − Qh

1

h
)

+ (V (Qh
1) − V )w(z)

∂w1

∂yj
(z +

Qh
i − Qh

1

h
)]

= o(
∑
i�=1

δh
1i) + O(h|Qh

1 |
∫

RN

|z|w(z)|∂w1

∂yj
(z +

Qh
2 − Qh

1

h
)|)

= o(h|Qh
1 |) + o(

∑
i�=1

δh
1i)

since V (Qh
i ) − V (Qh

1) = o(1),
∫
RN w ∂w

∂yj
(z + Qh

i −Qh
1

h ) = O(δh
1i) and

∫
RN

|z|w ∂w

∂yj
(z +

Qh
i − Qh

1

h
) = O(w1−δ(

Qh
1 − Qh

i

h
))

by Lemma 2.1.
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For I4, we set B := {y ∈ RN : |hy −Qh
1 | ≤ (1− δ)mini�=1 |Qh

1−Qh
i |

2 }. On B,
we have∫

RN

((
K∑

i=1

wi)p −
K∑

i=1

wp
i )

∂w1

∂yj
= p

∫
RN

K∑
i�=1

wp−1
1 wi

∂w1

∂yj
+ o(

∑
i�=1

δh
1i)

= p

∫
RN

∑
i�=1

wp−1 ∂w

∂yj
w(y +

Qh
1 − Qh

i

h
) + o(

∑
i�=1

δh
1i)

=
∑
i�=1

w(
Qh

1 − Qh
i

h
)p

∫
RN

wp−1w
′ yj

|y|
w(y + Qh

1−Qh
i

h )

w(Qh
1−Qh

i
h )

+ o(
∑
i�=1

δh
1i)

=
∑
i�=1

δh
1ip

∫
RN

wp−1w
′
∫
|θ|=1

θje
−〈y,

Qh
1−Qh

i
|Qh

1−Qh
i
|
〉
dθ + o(

∑
i�=1

δh
1i)

= γ2

∑
i�=1

δh
1i(

Qh
i − Qh

1

|Qh
i − Qh

1 |
)j + o(

∑
i�=1

δh
1i),

where

γ2 = p

∫
RN

wp−1w
′
∫
|θ|=1

θ1e
−y1dθ = p

∫
RN

wp−1w
′ ∂u∗

0

∂r
< 0

and u∗
0 is the unique solution of the following problem:

Δv − v = 0, v(0) = 1, v > 0, v = v(|y|), y ∈ RN . (6.9)

(Hence ∂u∗
0

∂r > 0. See Lemma 4.7 in [18].) Outside B, we have

∫
Bc

((
K∑

i=1

wi)p −
K∑

i=1

wp
i )

∂w1

∂yj
= O(

∫
Bc

∑
i�=1

wp−1+δ
i w1−δ

1 |∂w1

∂yj
|) = o(

∑
i�=1

δh
1i).

For I5, we have

|I5| ≤ C‖φh‖2
L2(RN ) ≤ C(

∑
i�=1

(δh
1i)

1+σ) = o(
∑
i�=1

δh
1i).

Finally, due to the exponential decay of ŵi − wi, we have

I6 = O(e−
δ
h ) = o(

∑
i�=1

δh
1i).
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Combining the estimates for Ii, i = 1, . . . , 6, we have

−h
∂V

∂xj
(Qh

1)V (Qh
1)

2
p−1

−N
2 γ1 + γ2

∑
i�=1

δh
1i(

Qh
i − Qh

1

|Qh
i − Qh

1 |
)j + o(h|Qh

1 | +
∑
i�=1

δh
1i) = 0

(6.10)

for j = 1, . . . , N , which proves (6.5) for i = 1 with c = γ2

γ1
> 0.

Proof of Lemma 6.1. We follow closely the arguments of the proof of
Lemma A in [25] with slight changes.

Set φ̃h = φh/h̃ where h̃ = h+
∑

j �=i(δ
h
ij)

1+σ
2 . All we need to prove is that

∫
RN

[|∇φ̃h|2 + V (φ̃h)2] = O(1).

To this end, we note that φ̃h satisfies

Δφ̃h − V φ̃h + p(
K∑

i=1

wi)p−1φ̃h +
1
h̃

K∑
i=1

(V (Qh
i ) − V )wi +

1
h̃

[(
K∑

i=1

wi)p −
K∑

i=1

wp
i ]

+
1
h̃

[(
K∑

i=1

wi + hφ̃h)p − (
K∑

i=1

wi)p − p(
K∑

i=1

wi)p−1hφ̃h]

+
1
h̃

K∑
i=1

[Δ(wi − ŵi) − V (Pi)(wi − ŵi) + wp
i − ŵp

i ] = 0 in RN .

Since

|1
h

(V (Qh
i ) − V )wi| ≤ C|y|w(y) ∈ L2(RN ) ∩ L∞(RN ), and

1∑
j �=i(δ

h
ij)

1+σ
2

[(
K∑

i=1

wi)p −
K∑

i=1

wp
i ] ∈ L2(RN ) ∩ L∞(RN )

(see the proof of Lemma 3.2), we have that φ̃h satisfies

Δφ̃h − V φ̃h + p(
K∑

i=1

wi)p−1φ̃h + o(1)φ̃h + Fh = 0 in RN , (6.11)
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where ‖Fh‖L∞(RN ) ≤ C, ‖Fh‖L2(RN ) ≤ C. By elliptic regularity theory, all
we need to prove is that ‖φ̃h‖L∞(RN ) = O(1). (In fact, multiplying (6.11) by
φ̃h and integrating by parts we have

∫
RN

(|∇φ̃h|2 + (V + o(1))φ̃2
h) ≤ C

since Fh ∈ L2(RN ) and (
∑K

i=1 wi)p−1 ∈ L2(RN ).)
Suppose not. Let |φ̃h(yh)| = maxy∈RN |φ̃h(y)|. By the equation (6.11)

for φ̃h (since V (x) satisfies (1.3) and w decays at +∞), it is easy to see

that yh ∈ ∪K
j=1BR(

Qh
j

h ) for some R > 0 independent of h. Without loss of

generality, we can assume that yh ∈ BR(Qh
1

h ). Set ˜̃
φh(y) = φ̃h(y+

Qh
1

h
)

|φ̃h(yh)| . Then

‖˜̃
φh‖H1(RN ) ≤ C, ‖˜̃

φh‖L∞(RN ) ≤ 1. As h → 0, the limit of ˜̃
φh(y) (by taking

a subsequence) exists and is denoted by φ0(y). Moreover ˜̃
φh → φ0(y) in

C1
loc(R

N ), where φ0(y) satisfies

Δφ0 − φ0 + pwp−1φ0 = 0, φ0 ∈ H1(RN ).

It is well known that (see Lemma 6.5 of [18]) φ0(y) =
∑N

j=1 aj
∂w
∂yj

for some
constants aj , j = 1, . . . , N . On the other hand, since

˜̃
φh =

uh − ∑K
i=1 wi

h̃|φ̃h(yh)|
,

we have that

∇˜̃
φh(0) =

0 − 0 − ∑
i�=1 w

′
(Qh

1−Qh
i

h )

h̃|φ̃h(yh)|
=

(γ−1 + o(1))
∑

i�=1 δh
1i

h̃|φ̃h(yh)|

(by (1.8)), and hence ∇˜̃
φh(0) → 0 as h → 0. Since ∇ ∂w

∂yj
(0), j = 1, . . . , N ,

are linearly independent, we have aj = 0, j = 1, . . . , N , and hence φ0(0) ≡ 0.

But ˜̃
φh(ỹh) = 1, where ỹh = yh − Qh

1
h and |ỹh| ≤ R (since yh ∈ BR(Qh

1
h )),

which is a contradiction to the fact that ˜̃
φh(ỹh)−φ0(ỹh) → 0. Lemma 6.1 is

thus proved.
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7. Concluding remarks. In this section, we make some remarks on
possible generalizations of Theorems 1.1 and 1.2.

1. If V has K local maximum points, then we can glue the multiple
peaks together. In fact we can prove the following more general theorem.

Theorem 7.1. Let Pj, j = 1, . . . , K, be a local maximum point of the po-
tential V (x); i.e., there exists an bounded open set Γi such that

Pi ∈ Γi, V (Pi) = max
x∈Γi

V (x) > V (P ),∀P ∈ Γi\{Pi}.

Then for any positive integer K ∈ Z, there exists h0 > 0 such that for any
h < h0 there exists a solution uh of (1.6) with the following properties:

(1) uh has exactly K local maximum points Qh
1 , . . . , Qh

K and Qh
i → Pi,

|Qh
i −Qh

j |
h → ∞, i 
= j, i, j = 1, . . . , K, as h → 0, and

(2) uh(x) ≤ Ce−β
mini=1,...,K |x−Qh

i |
h for some β > 0, C > 0 and uh(Qh

i ) →
w(0), i = 1, . . . , K, as h → 0; i.e., uh concentrates at Qh

1 , . . . , Qh
K .

Note. We can allow Pi = Pj for i 
= j. By taking Γi = Γ, Pi = P0,
i = 1, . . . , K, we obtain Theorem 1.1.

The proof of the above theorem is very similar to that of Theorem
1.1. In fact, we just need to take Λh = {P = (P1, . . . , PK) ∈ Γ1 × · · · ×
ΓK , w( |Pk−Pl|

h ) < c0h, k, l = 1, . . . , K, k 
= l}, where c0 is a small number
and Γi is given in Theorem 7.1.

2. It is possible to generalize Theorem 1.1 to more general nonlinearities.
In particular, Theorem 1.1 still holds for the following problem:

h2Δu + f(x, u) = 0, x ∈ RN , (7.1)

where f(x, u) = −V (x)u + K(x)up − Q(x)uq, where V (x), K(x), Q(x) > 0
and 1 < q < p < (N+2

N−2)+. We note that single-bump solutions with such
nonlinearities have been treated in [24] and [28]. In this case, the role of
V (x) is replaced by the parametrized energy which was introduced in [24].

3. Theorems 1.1 and 7.1 still hold if we replace the domain RN by
any smooth domain (bounded or unbounded) Ω ⊂ RN and if we impose a
Dirichlet condition on the boundary. The proofs are essentially the same.
We omit the details. Theorem 1.2 can also be generalized accordingly.
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