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Abstract. In the first part of this paper a variational characteriza-
tion of parts of the Fuč́ık spectrum for the p-Laplacian in an interval is
given. The proof uses a linking theorem on suitably constructed sets in
W 1,p(0, 1). In the second part, a superlinear equation with Neumann
boundary conditions on an interval is considered, where the nonlinearity
intersects all but the first eigenvalues. It is proved that under certain
conditions this equation is solvable for arbitrary forcing terms. The
proof uses a comparison of the minimax levels of the functional associ-
ated to this equation with suitable minimax values related to the Fuč́ık
spectrum.

1. Introduction

The main theme of this paper is the following superlinear equation with
the p-Laplacian operator:{

−[ψ(u′)]′ = λψ(u) + g(x, u) + h(x) in (0, 1)
u′(0) = u′(1) = 0

(1.1)

where ψ(s) =
{

|s|p−2s s �= 0
0 s = 0 , p > 1,

g ∈ C0([0, 1] × R) , lim
s→−∞

g(x, s)
ψ(s)

= 0, lim
s→+∞

g(x, s)
ψ(s)

= +∞ (H1)

uniformly with respect to x ∈ [0, 1] and h ∈ Lq([0, 1]), with 1/p + 1/q = 1.
In order to study problem (1.1) we will consider also the following Fuč́ık

problem with Neumann boundary conditions in dimension 1:{
−[ψ(u′)]′ = λ+ψ(u+) − λ−ψ(u−) in (0, 1)
u′(0) = u′(1) = 0 , (1.2)
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where u+(x) = max{0, u(x)} and u−(x) = max{0,−u(x)}.
The notion of Fuč́ık spectrum was introduced in [10] and [5] for the linear

operator (that is, the case p = 2), and it was extended to the p-Laplacian
by many authors; it is defined as the set Σ ⊂ R2 of the points (λ+, λ−) for
which there exists a nontrivial solution of problem (1.2).

To know the Fuč́ık spectrum is important in many applications, for exam-
ple in the study of problems with nonlinearities which have the same order
of growth as ψ(s) at both +∞ and −∞, but with different multiplicative
coefficients: if the coefficients correspond to a point (λ+, λ−) which is not
in the Fuč́ık spectrum, then it is possible to guarantee a priori estimates for
the solutions and the PS condition for the associated functional.

If one has also a variational characterization of this spectrum, then other
interesting results can be obtained; cf. [3] for the p-Laplacian and [6, 8, 4, 13]
for analogous results with the Laplacian operator. However, [3] deals only
with the first nontrivial curve of the Fuč́ık spectrum.

In the one-dimensional case the Fuč́ık spectrum for the p-Laplacian may
be exactly calculated (see Section 2.1.1), and it is composed of a sequence
of disjoint curves (we will call them Σk, k = 1, 2, . . . ). Taking advantage of
this fact, we will derive a variational characterization of points lying on one
of the curves Σk with k ≥ 3; in particular, we will prove

Theorem 1.1. Let α+ ≥ α− and (α+, α−) ∈ Σ2; then we can find and
characterize variationally an intersection of the half-line {(α+ + t, α− + rt),
t > 0} with the Fuč́ık spectrum, for each value of r ∈ (0, 1].

The cases α+ ≤ α− and r ∈ [1,+∞) can be done in a similar way.
Then, exploiting the variational characterization of these points on the

Fuč́ık spectrum, we will prove existence results for problem (1.1) when λ
lies between the asymptotes of the second and the third curve of the Fuč́ık
spectrum. The proof uses the variational characterization to make a com-
parison of these minimax levels with those of the functional associated to
problem (1.1), in order to prove the existence of a linking structure for this
last functional.

Some hypotheses on the growth at infinity of the nonlinearity g will be
needed in order to obtain the PS condition for the functional associated to
problem (1.1): defining G(x, s) =

∫ s
0 g(x, ξ)dξ, we ask

∃θ ∈ (0,
1
p
), s0 > 0 s.t. 0 < G(x, s) ≤ θsg(x, s) ∀s > s0 ; (H2)

∃s1 > 0, C0 > 0 s.t. G(x, s) ≤ 1
p
sg(x, s) + C0 ∀s < −s1 . (H3)
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Moreover, for certain “resonant” values of the parameter λ, we will need the
nonresonance condition

∃ρ0 > 0, M0 ∈ R s.t. G(x, s) + h(x)s ≤ M0 a.e. x ∈ [0, 1], ∀s < −ρ0 .
(HR)

The exact statement of the results is this: let {λ− = λ∗
k} be the asymptote

of the curve Σk of the Fuč́ık spectrum for problem (1.2); then we have the
following:

Theorem 1.2. Under hypotheses (H1), (H2), and (H3), if p ≥ 2 and λ ∈
(λ∗

2, λ
∗
3), then there exists a solution of problem (1.1) for all h ∈ Lq(0, 1),

where 1
p + 1

q = 1.

Theorem 1.3. Under hypotheses (H1), (H2), (H3), and (HR), with p ≥ 2,
h ∈ Lq(0, 1) where 1

p + 1
q = 1, if λ = λ∗

k for i = 2 or i = 3, then there exists
a solution of problem (1.1).

Remark 1.4. The hypotheses (H1) to (H3) are satisfied for example by the
function g(x, s) = es; in this case, in order to satisfy also (HR) we will also
need the condition h(x) ≥ 0 almost everywhere.

Another example of a nonlinearity satisfying also (HR) and where there is
some more freedom on h, is when g behaves at −∞ as |s|δ with δ ∈ (0, p−1),
so that h may be chosen arbitrarily in L∞(0, 1).

Theorem 1.2 extends the result obtained in [21], where the existence is
proved for λ ∈ (0, λ∗

2). The result in [21] was derived for the Laplacian op-
erator (a similar result was obtained in [7]) and then extended in a straight-
forward way to the p-Laplacian case.

In [13] we extended the result for the Laplacian to higher values of the
parameter λ by making use of a variational characterization of the Fuč́ık
spectrum of the Laplacian; however, this variational characterization fails
for p �= 2 since it relies on the Hilbert-space structure of W 1,2.

Theorem 1.3 deals with some kind of resonance (as will be clear from the
proofs below); the analog for p = 2 was obtained in [13] for any λ∗

k while,
under different hypotheses, in [7] and [17] the case λ∗

1 and λ∗
2 respectively

were considered.
For what concerns the variational characterization of the Fuč́ık spectrum

for the p-Laplacian we cite [3], where the second curve in any spatial dimen-
sion is characterized.

Another interesting variational characterization of the Fuč́ık spectrum for
the p-Laplacian is given in [15], where some pieces of the spectrum near
the diagonal are characterized. Other characterizations, for the linear case
p = 2, may be found in [8, 6, 20, 13].
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1.1. Description of the paper. If we consider the linear case p = 2, let
Ω be a bounded domain in RN , and denote by 0 ≤ λ1 < λ2 ≤ λ3 ≤ · · · ≤
λk ≤ · · · the eigenvalues of −∆ in W 1,2(Ω) and with (φk, k = 1, 2, . . . )
the corresponding eigenfunctions; then given a point a ∈ (λk, λk+1) and the
functional Ja : W 1,2(Ω) → R,

Ja(u) =
∫

Ω
|∇u|2 − a

∫
Ω

u2 , (1.3)

we have a natural splitting W 1,2(Ω) = V ⊕Z, where V = span{φ1, . . . , φk}.
Taking ∂BV to be the boundary of the unit ball in the L2 norm in V , one

knows that there exists µ > 0 such that

Ja(u) ≤ −µ < 0 for all u ∈ ∂BV , (1.4)
Ja(u) ≥ µ‖u‖2

W 1,2 ≥ 0 for all u ∈ Z , (1.5)

and that the two sets link (for a definition of the concept of linking see for
example [18]). The existence of this structure allows us to characterize the
eigenvalue λk+1 as

λk+1 = a + inf
γ∈Γ

sup
u∈γ(Bk)

Ja(u) , (1.6)

where the family Γ is defined as

Γ = {γ ∈ C0(Bk; ∂BL2) : γ|∂Bk is a homeomorphism onto ∂BV } , (1.7)

BL2 denoting the unit ball in the L2 norm in W 1,2 and Bk = {(x1, . . . , xk) ∈
Rk :

∑k
i=1 x2

i ≤ 1}.
In [13] we derived a deformation of the above structure to obtain a char-

acterization of the Fuč́ık spectrum.
In the case p �= 2 we have no more the Hilbert structure for the space

W 1,p. But, for k = 1, 2, we will build suitable sets to play the same role as
∂BV for the functional

Jα(u) =
∫

Ω
|∇u|p − α+

∫
Ω
(u+)p − α−

∫
Ω
(u−)p , (1.8)

for a suitable (α+, α−) ∈ R2, in order to characterize a point in the Fuč́ık
spectrum on the second curve and then another one above it.

In particular (see Section 3), we will first reformulate in a somewhat dif-
ferent way the variational characterization of the second curve of the Fuč́ık
spectrum of the p-Laplacian obtained in [3] (in this part we can still work in
any spatial dimension with both Neumann or Dirichlet boundary conditions);
then, using this last characterization and restricting to the one-dimensional
Neumann problem, we will obtain (in Section 3.3) the variational character-
ization claimed in Theorem 1.1.
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Finally, having recovered a variational characterization as in [13], we may
apply it to the “ψ-superlinear” problem (1.1) when λ is between the asymp-
totes of Σ2 and Σ3 or coincides with one of them (resonant case): in Section
4, a comparison of the obtained minimax levels with those of the functional
associated to problem (1.1) will allow us to prove the existence of a linking
structure for this last functional, and then to prove Theorems 1.2 and 1.3.

In Section 5 the complete proof of the PS condition for the functional
associated to problem (1.1) is reported. We remark that this proof is the only
point at which we use the hypothesis p ≥ 2 which appears in Theorems 1.2
and 1.3.

2. The p-Laplacian operator

2.1. The eigenvalue and Fuč́ık problems. The “natural” eigenvalue
problem for the p-Laplacian operator is{

−∇ · [ψ(∇u)] = λψ(u) in Ω
Bu = 0 in ∂Ω,

(2.1)

where Bu = 0 represents Neumann or Dirichlet boundary conditions. Ac-
tually the two sides of the equation have the same degree of homogeneity,
and so if ū is a nontrivial solution then so is tū for each t ∈ R. In this
sense we will call in the following “ψ-linear” the rate of growth of ψ and
“ψ-superlinear” (respectively “ψ-sublinear”) the higher (respectively lower)
rates of growth.

Much less is known about this eigenvalue problem than in the case p = 2.
For the Dirichlet problem (but the same proofs may be adapted to the Neu-
mann case) it is known (see [1] and [11]) that there exists a first eigenvalue
λ1, that it is simple and isolated, and that the related eigenfunction φ1 does
not change sign; moreover, this first eigenvalue may be characterized as

λ1 = inf
{∫

Ω
|∇u|p : u ∈ W ; ‖u‖Lp = 1

}
. (2.2)

(Here and in the following we denote by W the space W 1,p(Ω) or W 1,p
0 (Ω),

depending on the boundary conditions under consideration.) Then there
exists a diverging sequence of eigenvalues which may be characterized vari-
ationally (see [15]), but it is not clear in general whether there exist other
eigenvalues or not.

In an analogous way the natural formulation of the Fuč́ık problem is{
−∇ · [ψ(∇u)] = λ+ψ(u+) − λ−ψ(u−) in Ω
Bu = 0 in ∂Ω

. (2.3)
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2.1.1. The one-dimensional Neumann case. The one-dimensional Neumann
case is studied in [9] and [19], where it is shown that both the usual and the
Fuč́ık spectrum have the same qualitative shape as in the linear case: this
is due to the possibility of using as in the linear case the uniqueness of the
solution of the initial-value problem.

In particular, the eigenvalues are all simple and form a discrete and di-
verging sequence 0 = λ1 < λ2 < λ3 < · · · , where the corresponding eigen-
functions (which will be denoted by φk, k = 1, 2, 3, . . . and chosen such that
‖φk‖Lp = 1 and φ1 = const > 0) change sign k−1 times; the Fuč́ık spectrum
is composed of monotone-decreasing curves arising from the diagonal points
(λk, λk) with k = 2, 3, . . . (we will call each of these curves Σk), and by the
two lines {λ+ = λ1} and {λ− = λ1} (which we will call Σ1): here too the cor-
responding nontrivial solutions change sign k − 1 times and may be divided
into the two positive homogeneous families of solutions which are positive
or negative at 0. In particular, the nontrivial solutions corresponding to a
point in the curve Σ2 are composed of a positive half-bump followed by a
negative one and vice versa.

Another property which we will use is that each curve Σk with k ≥ 2 lies
completely in the quadrant λ± > λ∗

k and admits the asymptotes {λ± = λ∗
k},

the values λ∗
k being distinct (and increasing in k).

Remark 2.1. The values λk and λ∗
k may be explicitly written, following [19]

and [12],

λk = ((k − 1)πp)p and λ∗
k = ((k − 1)

πp

2
)p , (2.4)

where πp = 2
p

p√p−1
sin(π/p)π.

2.2. Some useful lemmas. We give the following lemmas, which will be
used repeatedly throughout the proofs; their proof is just an application
of Hölder’s inequality. From now on we will denote by q = p

p−1 the dual
exponent of p.

Lemma 2.2. u ∈ Lp(Ω) implies ψ(u) ∈ Lq(Ω) and ‖ψ(u)‖Lq = ‖u‖p−1
Lp .

Corollary 2.3. For u, v ∈ Lp(Ω), we have ψ(u)v ∈ L1 and we may estimate∣∣∣ ∫
Ω

ψ(u)v
∣∣∣ ≤ ‖u‖p−1

Lp ‖v‖Lp . (2.5)

Moreover,

Lemma 2.4. un → u in Lp(Ω) implies
∫
Ω ψ(un)v →

∫
Ω ψ(u)v for all v ∈ Lp.
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Proof. Since un → u in Lp, up to a subsequence we have convergence
almost everywhere, and we may find a function k ∈ Lp such that |un| ≤ k
almost everywhere, so that |ψ(un)v| ≤ |k|p−1|v|, which is an L1 function
by the previous lemma, and so the dominated-convergence theorem gives∫
Ω ψ(un)v →

∫
Ω ψ(u)v. This procedure may be applied to any subsequence,

and then the result is true also without passing to a subsequence. �

In the course of the following sections we will use several times the fact
that the operator T : W → W ∗ defined as 〈Tu, v〉 =

∫
Ω ψ(∇u)∇v satisfies

the following property S+:

Definition 2.5. The operator T : E → E∗ has the property S+ if

un ⇀ u and lim supn→+∞〈Tun − Tu, un − u〉 ≤ 0 implies un → u.

Remark that the condition lim supn→+∞〈Tun − Tu, un − u〉 ≤ 0 may
be replaced by lim supn→+∞〈Tun, un − u〉 ≤ 0, since by weak convergence
limn→+∞〈Tu, un − u〉 = 0.

For the proof of this property see for example [16].

3. Variational characterization of parts of the Fuč́ık
spectrum of the p-Laplacian

In this section we will obtain the claimed variational characterization of
the Fuč́ık spectrum.

3.1. Some preliminary lemmas. Consider, for a given point (α+, α−) ∈
R2 and r ∈ (0, 1], the functional

Jα(u) =
∫

Ω
|∇u|p − α+

∫
Ω
(u+)p − α−

∫
Ω
(u−)p (3.1)

and the manifold

Qr = {u ∈ W s.t. Vr(u) =
∫

Ω
(u+)p + r(u−)p = 1} . (3.2)

Remark 3.1. Note that the functional (respectively the manifold) are of
class C2 for p > 2, C1 but not C1,1 for p ∈ (1, 2), while for p = 2 they are
C1,1, but not C2 unless α+ = α− (respectively r = 1).

Definition 3.2. For the derivative of the functional Jα restricted to Qr we
will consider the norm ‖J ′

α(u)‖∗ = inft∈R ‖J ′
α(u) − tV ′

r (u)‖W ∗.

Lemma 3.3. For u ∈ Qr we have that 1 ≤
∫
Ω |u|p ≤ 1/r.



706 Eugenio Massa

Proof.

1 =
∫

Ω
(u+)p + r(u−)p ≤

∫
Ω
(u+)p + (u−)p =

∫
Ω
|u|p

≤
(∫

Ω
(u+)p + r(u−)p

)
/r = 1/r. �

In the following we will also need some sort of PS condition: for p < 2
we need a stronger property; actually (see [2]) if Qr is just of class C1,
in order to use a deformation lemma we need to prove the existence of a
converging subsequence for any PS sequence {un} where un ∈ Qδn

r , δn being
any sequence such that δn → 0 and Qδn

r = {u ∈ W s.t. Vr(u) = 1 + δn}.
Lemma 3.4. The functional Jα constrained to Qr satisfies the PS condition.

Proof. We take two sequences δn → 0 and εn → 0+, a sequence {un} ⊆ Qδn
r ,

and a sequence {βn} ⊆ R, such that∣∣∣ ∫
Ω
|∇un|p − α+

∫
Ω
|u+

n |p − α−
∫

Ω
|u−

n |p
∣∣∣ ≤ C (3.3)

∣∣∣ ∫
Ω

ψ(∇un)∇v − α+

∫
Ω

ψ(u+
n )v + α+

∫
Ω

ψ(u−
n )v

+ βn

( ∫
Ω

ψ(u+
n )v − rψ(u−

n )v
)∣∣∣ ≤ εn‖v‖W , ∀v ∈ W . (3.4)

Since {un} ⊆ Qδn
r , it is bounded in Lp, and then by equation (3.3) it is also

bounded in W . Then, up to a subsequence, un converges weakly in W and
strongly in Lp to some u.

The Lp convergence implies that u ∈ Qr. Taking v = un we get that( ∫
Ω
|∇un|p − α+

∫
Ω
|u+

n |p − α−
∫

Ω
|u−

n |p
)

+ (1 + δn)βn → 0. (3.5)

Finally, with v = un − u, we have∫
Ω

ψ(∇un)∇(un − u) − α+

∫
Ω

ψ(u+
n )(un − u) + α−

∫
Ω

ψ(u−
n )(un − u)

−
( ∫

Ω
|∇un|p − α+

∫
Ω
|u+

n |p − α−
∫

Ω
|u−

n |p
)( ∫

Ω
(ψ(u+

n ) − rψ(u−
n ))(un − u)

)
→ 0, (3.6)

where (estimating with equation (2.5)) all terms except the first go to zero,
and then we conclude that un → u strongly in W by the property S+ of the
p-Laplacian. �

Finally, it will be crucial in the following that
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Proposition 3.5. The critical points, at some level c, of Jα constrained
to Qr are nontrivial solutions of the Fuč́ık problem (2.3) with coefficients
(λ+, λ−) = (α+ + c, α− + rc); that is, the criticality of c implies that (α+ +
c, α− + rc) ∈ Σ.

Proof. The criticality of u implies that there exists the Lagrange multiplier
β ∈ R such that, ∀v ∈ W,∫

Ω
ψ(∇u)∇v−α+

∫
Ω

ψ(u+)v+α−
∫

Ω
ψ(u−)v+β

( ∫
Ω

ψ(u+)v−rψ(u−)v
)

= 0.

(3.7)
Testing against u we get β = −c, and so u solves

−∆pu = α+ψ(u+) − α−ψ(u−) + cψ(u+) − crψ(u−)

= (α+ + c)ψ(u+) − (α− + rc)ψ(u−) (3.8)

in Ω, with the considered boundary conditions.
Finally, u is not trivial since it is in Qr. �

3.2. First nontrivial curve. First we will reformulate in a slightly differ-
ent way the variational characterization of the second curve of the Fuč́ık
spectrum of the p-Laplacian, made in [3].

In this part we can still work in any spatial dimension with both Neumann
or Dirichlet boundary conditions. Consider, for a given r ∈ (0, 1],

dλ1,r = inf
δ∈Γλ1,r

sup
u∈δ([0,1])

Jλ1(u) , (3.9)

where

Jλ1(u) =
∫

Ω
|∇u|p − λ1

∫
Ω
|u|p , (3.10)

Γλ1,r = {δ ∈ C0([0, 1];Qr) : δ(0) = φ1 , δ(1) = − φ1
p
√

r
} . (3.11)

In the next two lemmas we prove the existence of a linking structure for
the functional (3.10).

Lemma 3.6. supu∈δ({0;1}) Jλ1(u) ≤ 0, ∀δ ∈ Γλ1,r.

Proof. One needs only to note that Jλ1(φ1) = Jλ1(− φ1
p√r

) = 0. �

Lemma 3.7. +∞ > dλ1,r = infδ∈Γλ1
,r supu∈δ([0,1]) Jλ1(u) > 0.

Proof. It is less than +∞ since each δ([0, 1]) is a compact set.
Proposition 3.5 implies that the only critical points at level 0 on Qr are

z1 = φ1 and z2 = − φ1
p√r

: let d be the distance between them.
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Since Jλ1(u) ≥ 0 in Qr by the variational characterization of λ1, we have
dλ1,r ≥ 0.

Now suppose for the sake of contradiction that dλ1,r = 0; then for any
sequence of positive reals εn → 0 there would exist a sequence {δn} ⊆ Γλ1,r

such that
sup

u∈δn([0,1])
Jλ1(u) < εn , (3.12)

and then also a sequence {un} ⊆ Qr such that

(1a) un ∈ δn([0, 1]), and then Jλ1(un) < εn ,
(2a) ‖un − zi‖W > d/4 for i = 1, 2.

Since infu∈Qr Jλ1(u) = 0 we are under the conditions to apply the Ekeland
variational principle to each un, obtaining a sequence {wn} ⊆ Qr such that

(1b) 0 ≤ Jλ1(wn) ≤ Jλ1(un) < εn ,
(2b) ‖un − wn‖W ≤ √

εn ,
(3b) ‖J ′

λ1
(wn)‖∗ ≤

√
εn .

But then wn would be a PS sequence for Jα constrained to Qr, and so it
would have a subsequence converging to one of the critical points at level 0
(z1 or z2), which is impossible considering properties (2a) and (2b).

We conclude then that dλ1,r > 0. �

Combining the previous two lemmas, the PS condition in Lemma 3.4, and
Proposition 3.5, we can assert by a classical linking theorem (see for example
[18]) that

Theorem 3.8. The level dλ1,r is critical for Jλ1(u) constrained to Qr. That
is, the point (λ1 + dλ1,r, λ1 + rdλ1,r) ∈ Σ.

Moreover, we will see in Remark 3.10 that, in the one-dimensional Neu-
mann case, this is actually the first intersection with the Fuč́ık spectrum of
the half-line {(λ1 + t, λ1 + rt), t > 0}.

As announced before, this is nothing but a different formulation of the
variational characterization in [3]; however, it is in a useful form to be used
in the following.

3.3. Third (or higher) curve for the Neumann problem in one di-
mension. Now we consider the one-dimensional Neumann case: we want
to make one more step in the characterization of the Fuč́ık spectrum.

The idea we are going to apply is to “build” a suitable set homeomorphic
to ∂B2 to be used as ∂BV in equation (1.7) in order to recover (partially) a
variational characterization as in [13].
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3.3.1. Construction of the set Lα,r1. We fix a point (α+, α−) on the curve
Σ2 with α+ ≥ α−.

We define r1 = α−−λ1
α+−λ1

= α−
α+ ; we call uα one of the two solutions in Qr1

of the Fuč́ık problem (1.2) with coefficients (α+, α−), and uα the other one
(namely uα(x) = uα(1 − x)). Then we consider the functional

Jα(u) =
∫ 1

0
|u′|p − α+

∫ 1

0
(u+)p − α−

∫ 1

0
(u−)p . (3.13)

Observe that for u ∈ Qr1 we have

Jα(u) = Jλ1(u) − (α+ − λ1), (3.14)

and so
inf

δ∈Γλ1,r1

sup
u∈δ([0,1])

Jα(u) = dλ1,r1 − (α+ − λ1) ≥ 0 ; (3.15)

actually it is not lower than zero since we chose (α+, α−) ∈ Σ2, and so the
point (λ1 + dλ1,r, λ1 + rdλ1,r) found in Theorem 3.8 has to be (α+, α−) itself
or a point on a higher curve, implying dλ1,r1 ≥ α+ − λ1.

Reasoning in the same way we have also, by Lemma 3.6,

sup
u∈δ({0;1})

Jα(u) = −(α+ − λ1) < 0 . (3.16)

Now we look for a special δ ∈ Γλ1,r1 such that Jα(u)|δ([0,1]) ≤ 0: we will
build the image of this δ as follows: take the path l on Qr1 :︷ ︸︸ ︷

φ1ũ
+
α ∪

︷ ︸︸ ︷
ũ+

α uα ∪
︷ ︸︸ ︷
uα(−ũ−

α ) ∪
︷ ︸︸ ︷
(−ũ−

α )
−φ1

p
√

r1
,

where ũ+
α = u+

α

‖u+
α ‖Lp

, ũ−
α = u−

α
p
√

r1‖u−
α ‖Lp

, and the four arcs are taken projecting

onto Qr1 the segment that joins the two edges (note that these segments
never pass through zero).

In the following lemma we verify that this is indeed what we were looking
for:

Lemma 3.9. supu∈l(Jα(u)) = 0.

Proof. Let us start by observing that the Fuč́ık equation in variational
form, ∫ 1

0
ψ(u′

α)v′ = α+

∫ 1

0
ψ(u+

α )v − α−
∫ 1

0
ψ(u−

α )v,

with test functions u+
α and u−

α , gives∫ 1

0
|(u±

α )′|p = α±
∫ 1

0
(u±

α )p , (3.17)
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that is, Jα(u±
α ) = 0; moreover, the homogeneity of Jα allows us to ignore

the projection on Qr1 in the proof.
Now we look at the four arcs:

•
︷ ︸︸ ︷
φ1ũ

+
α : let v = tφ1+(1−t)u+

α so that v′ = (1−t)(u+
α )′: v is everywhere

nonnegative and then (since [tφ1+(1−t)u+
α ] ≥ (1−t)u+

α everywhere)

Jα(v) = (1 − t)p

∫ 1

0
|(u+

α )′|p − α+

∫ 1

0
[tφ1 + (1 − t)u+

α ]p

≤ (1 − t)pα+

∫ 1

0
(u+

α )p − (1 − t)pα+

∫ 1

0
(u+

α )p = 0 .

•
︷ ︸︸ ︷
(−ũ−

α )(−φ1/ p
√

r1): in the same way: let v = t(−φ1)+(1−t)(−u−
α ) so

that v′ = (1− t)(−u−
α )′: v is everywhere nonpositive and then (since

[tφ1 + (1 − t)u−
α ] ≥ (1 − t)u−

α everywhere) Jα(v) ≤ 0.

•
︷ ︸︸ ︷
ũ+

α uα: here v = tu+
α + (1 − t)uα = u+

α + (1 − t)(−u−
α ): obviously u+

α

and u−
α are nonzero on disjoint sets; then

Jα(v) = Jα(u+
α ) + (1 − t)pJα(u−

α ) = 0 .

•
︷ ︸︸ ︷
−ũ−

α uα: here v = t(−u−
α ) + (1− t)uα = (−u−

α ) + (1− t)(u+
α ), and as

before Jα(v) = Jα(u−
α ) + (1 − t)pJα(u+

α ) = 0. �
Now we consider the linear isometry Y : W → W : u(x) �→ u(1 − x), and

we observe that the functionals Jα and Vr are invariant under this transfor-
mation; that is, Jα(u) = Jα(Y u) and Vr(u) = Vr(Y u) for any u ∈ W .

Moreover, let Fix(Y ) ⊆ W be the set of the fixed points of Y : we observe
that l ∩ Fix(Y ) = {φ1;−φ1/ p

√
r1}.

These observations allow us to define

Lα,r1 = l ∪ Y l , (3.18)

such that Lα,r1 ⊆ Qr1 and is homeomorphic to ∂B2.

Remark 3.10. At this point it is clear that (in the one-dimensional Neu-
mann case) the level dλ1,r defined in (3.9) corresponds to the first intersection
with the Fuč́ık spectrum of the halfline {(λ1 + t, λ1 + rt), t > 0}: it cannot
be lower (if it were it would give a new solution of the Fuč́ık problem that
we know does not exist), and we were able to give an example of a δ ∈ Γλ1,r

where supJα(u) = 0, that is, supJλ1(u) = α+−λ1, and then dλ1,r = α+−λ1,
where (α+, α−) was taken on the second curve.
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3.3.2. Linking structure. Now we define the class

Γα,r1 = {γ ∈ C0(B2;Qr1) : γ|∂B2 is a homeomorphism onto Lα,r1}. (3.19)

We have that

Lemma 3.11. supu∈γ(∂B2) Jα(u) = 0 ∀γ ∈ Γα,r1.

Proof. The results follows from the definition of Lα,r1 in (3.18), the invari-
ance of Jα with respect to the map Y , and Lemma 3.9. �

Moreover,

Lemma 3.12. +∞ > dα,r1 = infγ∈Γα,r1
supu∈γ(B2) Jα(u) > 0.

Proof. It is less than +∞ since each γ(B2) is a compact set.
Proposition 3.5 implies that the only critical points at level 0 on Qr1 are

z1 = uα and z2 = uα: let d̂ be such that Bd̂(uα) and Bd̂(uα) are disjoint and
contain neither φ1 nor − φ1

p
√

r1
.

Lemma 3.11 implies that dα,r1 ≥ 0, so suppose for the sake of contradiction
that dα,r1 = 0: then for any sequence of positive reals εn → 0 there would
exist a sequence {γn} ⊆ Γα,r1 such that

sup
u∈γn(B2)

Jα(u) < εn , (3.20)

and then also a sequence of paths {δn} ⊆ Γλ1,r1 such that
(1a) δn([0, 1]) ⊆ γn(B2), and then 0 ≤ supu∈δn([0,1]) Jα(u) < εn (see equa-

tion (3.15)),
(2a) d(δn([0, 1]), zi) > d̂ for i = 1, 2.
Now we may apply to each δn the minimax principle derived from Eke-

land’s variational principle (see for example in [14]).
Actually (see equations (3.15) and (3.16) and Remark 3.10),

inf
δ∈Γλ1,r1

sup
u∈δ([0,1])

Jα(u) = dλ1,r1 − (α+ − λ1) = 0 , (3.21)

sup
u∈δ({0;1})

Jα(u) = −(α+ − λ1) < 0, (3.22)

and the sequence δn above is minimizing for the value supu∈δ([0,1]) Jα(u) with
δ ∈ Γλ1,r1 .

So we obtain a sequence {wn} ⊆ Qr1 such that
(1b) −εn ≤ Jα(wn) ≤ supu∈δn([0,1]) Jα(u) < εn ,
(2b) d(δn([0, 1]), wn) ≤ √

εn ,
(3b) ‖J ′

α(wn)‖∗ ≤
√

εn .
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But then wn would be a PS sequence for Jα constrained to Qr1 , and so it
would have a subsequence converging to one of the critical points at level 0
(z1 or z2), which is impossible considering properties (2a) and (2b).

We conclude then that dα,r1 > 0. �
3.3.3. Characterization of a point above Σ2. Now, given an r2 ∈ (0, 1] and
P r2

r1
being the radial projection from Qr1 to Qr2 , we define

Γα,r2 = {γ = P r2
r1

◦ γ̃ : γ̃ ∈ Γα,r1}, (3.23)

and we get from the previous two lemmas these corollaries:

Corollary 3.13. supu∈γ(∂B2) Jα(u) ≤ 0 ∀γ ∈ Γα,r2.

Proof. The result of the projection is just multiplying by a positive scalar
the point u, and then the effect on Jα(u) is multiplying by the pth power of
this scalar, which does not change the sign. �
Corollary 3.14. +∞ > infγ∈Γα,r2

supu∈γ(B2) Jα(u) > 0.

Proof. As before the effect of the projection is just multiplying by a number
that (on Qr1) is positive, bounded, and bounded away from zero, and then
the result follows. �

From now on we can proceed as in [13]; that is, we define

dα,r2 = inf
γ∈Γα,r2

sup
u∈γ(B2)

Jα(u) > 0 ; (3.24)

we deduce from Corollaries 3.13 and 3.14 and the PS condition in Lemma
3.4 that

Proposition 3.15. The level dα,r2 > 0 is a critical value for Jα constrained
to Qr2, the critical points associated to it are nontrivial solutions of the Fuč́ık
problem (1.2), and then (α+ + dα,r2 , α

− + r2dα,r2) ∈ Σ.

This proves Theorem 1.1.

Remark 3.16. Observe that we did not prove whether (α+ + dα,r2 , α
− +

r2dα,r2) belongs to Σ3 or to a higher curve; however, we know that it belongs
to a curve Σh with h ≥ 3, since dα,r2 > 0 and (α+, α−) ∈ Σ2.

4. The “ψ-superlinear” problem

Since we reproduced the variational characterization as in [13], we may
apply it to the “ψ-superlinear” problem (1.1) when λ is between the asymp-
totes of Σ2 and Σ3 or (resonant case) coincides with one of them.

We sketch here the basic ideas of the proofs of Theorems 1.2 and 1.3,
which indeed follow closely those in [13].
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The aim is to prove the existence of a nonconstrained critical point of the
functional

F (u) =
1
p

∫ 1

0
|u′|p − λ

p

∫ 1

0
|u|p −

∫ 1

0
G(x, u) −

∫ 1

0
hu , (4.1)

in particular to show that the minimax level

f = inf
γ∗∈ΓR

α,r̄

sup
u∈γ∗(B2)

F (u) , (4.2)

where

ΓR
α,r̄ = {γ∗ ∈ C0(B2;W ) : γ∗|∂B2 is a homeomorphism onto RLα,r̄} , (4.3)

is critical for a suitable R > 0 and arbitrary r̄ ∈ (0, 1], and then corresponds
to a solution of problem (1.1).

To do this one estimates the functional F in terms of the functional Jα of
the previous section, deriving from Corollary 3.13 and Proposition 3.15 the
following two lemmas, which provide a linking structure for the functional F :

Lemma 4.1. ∀C ∈ R we can find R > 0 such that

sup
u∈γ∗(∂B2)

F (u) < C ∀γ∗ ∈ ΓR
α,r̄ . (4.4)

Lemma 4.2. There exists C̃(λ, h, g) such that

sup
u∈γ∗(B2)

F (u) ≥ −C̃(λ, h, g) ∀γ∗ ∈ ΓR
α,r̄ . (4.5)

In Section 5 we will prove (see Lemma 5.1) that under hypotheses (H2)
and (H3) the functional F satisfies the PS condition for p ≥ 2 and any λ > 0,
and then by using Lemma 4.1 with C < −C̃(λ, h, g) and Lemma 4.2, we are
under the conditions to apply a linking theorem that proves the criticality
of the level f defined in (4.2), and then proves also Theorems 1.2 and 1.3.

4.1. Sketch of the proofs. Recall that in the one-dimensional Neumann
case the asymptote of each Σk with k = 2, 3 is at λ− = λ∗

k and that Σk

lies entirely in the half-plane {λ− > λ∗
k}. This structure of Σ implies that,

having fixed λ ∈ (λ∗
2, λ

∗
3], it is always possible to find

• a point (α+, α−) ∈ Σ2 and such that α− < λ,
• a δ > 0 such that α− < λ − δ and (if λ < λ∗

3) also λ + δ < λ∗
3.

Since h ∈ Lq and using hypothesis (H1) we may estimate, with any M ∈ R
and suitable constants C1(δ, h), C2(δ, g), and C3(M, g),∣∣∣ ∫ 1

0
G(x,−u−) + hu

∣∣∣ ≤ δ

p
‖u‖p

Lp + C1(δ, h) + C2(δ, g) , (4.6)
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0
G(x, u+) ≥ M

p
‖u+‖p

Lp − C3(M, g) . (4.7)

Proof of Lemma 4.1. Using the above estimates one obtains (see [13] for
the details) that for u ∈ Lα,r̄ and ρ > 0,

F (ρu)
ρp

≤ 1
p
Jα(u) − λ − δ − α−

p

∫ 1

0
|u|p (4.8)

+
C1(δ, h) + C2(δ, g) + C3(α+ − α−, g)

ρp
,

from which, recalling that Jα(u) ≤ 0 by Corollary 3.13 and
∫ 1
0 |u|p ≥ 1 on

Lα,r̄, one gets the claim since λ − δ − α− > 0 by construction. �

Proof of Lemma 4.2. (See again [13] for the details.) One first fixes a
γ∗ ∈ ΓR

α,r̄: since γ∗(B2) is a compact set in a space of continuous functions,
this allows us to estimate the superlinear side of G as

G(x, s) ≤ 1 +
µγ∗

p
sp for all s ∈ [0,max{|u(x)| : x ∈ [0, 1], u ∈ γ∗(B2)}]

(4.9)
for a suitable µγ∗ > 0 depending on γ∗.

Then (in the hypotheses of Theorem 1.2) defining rγ∗ = λ+δ−α−
λ+δ+µγ∗−α+ and

estimating in terms of Jα and Vrγ∗ (u) =
∫ 1
0 (u+)p + rγ∗

∫ 1
0 (u−)p one gets

sup
u∈γ∗(B2)

F (u) ≥ −C1(δ, h) − C2(δ, g) − 1 (4.10)

+
1
p

sup
u∈γ∗(B2)

[(
rγ∗

Jα(u)
Vrγ∗ (u)

− (λ + δ − α−)
)(Vrγ∗ (u)

rγ∗

)]
(the case in which 0 ∈ γ∗(B2) so that Vrγ∗ (u) becomes null may be treated

easily). But supu∈γ∗(B2) rγ∗
Jα(u)

Vrγ∗ (u) is equivalent to rγ∗ supu∈γ(B2) Jα(u) for

some γ ∈ Γα,rγ∗ (compare equation (3.19) and (4.3)); then using Proposi-
tion 3.15 and Remark 3.16 we obtain

sup
u∈γ∗(B2)

rγ∗
Jα(u)
Vrγ∗

≥ rγ∗dα,rγ∗ > λ∗
3 − α− > λ + δ − α− . (4.11)

This implies that the sup in the right-hand side of (4.10) is nonnegative,
independently from the γ∗ chosen, and hence the lemma is proved.

In the hypotheses of Theorem 1.3, one has a kind of resonance which
creates difficulties for the last estimate above: actually we have no more
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λ∗
3 > λ + δ, and then for Lemma 4.2 we need to impose also the hypothesis

(HR) in order to estimate without need of the δ:∫
G(x, u−) + hu ≤ C4(h, g) +

1
p

∫ 1

0
(u+)p ; (4.12)

then equation (4.10) reads

sup
u∈γ∗(B2)

F (u) (4.13)

≥ −C4(h, g) − 1 +
1
p

sup
u∈γ∗(B2)

[(
rγ∗

Jα(u)
Vrγ∗ (u)

− (λ − α−)
)(Vrγ∗ (u)

rγ∗

)]
with rγ∗ = λ−α−

λ+µγ∗+1−α+ , and as before we may conclude since now we just

need rγ∗dα,rγ∗ > λ∗
3 − α− = λ − α−. �

In the case λ = λ∗
2 we may repeat the same argument choosing (α+, α−) =

(λ1, λ1), [0, 1] in place of B2, and comparing with the variational character-
ization of the first nontrivial curve in Section 3.2.

In particular the critical level will be defined (for R large enough) by

f = inf
δ∗∈ΓR

λ1,r̄

sup
u∈δ∗([0,1])

F (u) , (4.14)

where

Γλ1,r̄ = {δ∗ ∈ C0([0, 1];W ) s.t. δ∗(0) = Rφ1 , δ∗(1) = −R
φ1
p
√

r̄
} . (4.15)

5. Proof of the PS condition

In this section we will prove the PS condition for functional (4.1) with
p ≥ 2. This proof is adapted from that in [8] for the periodic problem on an
interval, with the Laplacian operator.

The exact statement of the result is

Lemma 5.1. For p ≥ 2, under hypotheses (H1), (H2), and (H3) with h ∈
Lq(0, 1), the functional (4.1) satisfies the PS condition for any λ > 0.

We observe that, as in the case p = 2, when λ ≥ λ∗
2 one needs also

hypothesis (H3), which was not needed in [21].
First note that from hypothesis (H1) one can always make the following

estimates: for any ε > 0, s̄ ∈ R, and M ∈ R, there exist CM , Cε ∈ R (of
course depending also on s̄) such that

g(x, s) ≥ Mψ(s) − CM for s > s̄ , (5.1)
|g(x, s)| ≤ εψ(−s) + Cε for s ≤ s̄ . (5.2)
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Let now {un} ⊆ W 1,p(0, 1) be a PS sequence; i.e., there exist T > 0 and
εn → 0+ such that

|F (un)| =
∣∣∣1
p

∫ 1

0
|u′

n|p −
λ

p

∫ 1

0
|un|p −

∫ 1

0
G(x, un) −

∫ 1

0
hun

∣∣∣ ≤ T , (5.3)

∣∣〈F ′(un), v〉
∣∣ =

∣∣∣ ∫ 1

0
ψ(u′

n)v′ − λ

∫ 1

0
ψ(un)v −

∫ 1

0
g(x, un)v −

∫ 1

0
hv

∣∣∣
≤ εn‖v‖W 1,p , ∀v ∈ W 1,p . (5.4)

(1) Suppose un is not bounded; then we can assume ‖un‖W 1,p ≥ 1,
‖un‖W 1,p → +∞, and define zn = un

‖un‖W1,p
, so that zn is a bounded se-

quence in W 1,p and we can select a subsequence such that zn → z0 weakly
in W 1,p and strongly in Lp(0, 1) and C0[0, 1].

(2) Claim: z0 ≤ 0.

Proof of the claim. Considering | 〈F
′(un),z+

0 〉
‖un‖p−1

W1,p

|, we get∫ 1

0

g(x, un)z+
0

‖un‖p−1
W 1,p

(5.5)

≤
∣∣∣ ∫ 1

0
ψ(z′n)(z+

0 )′
∣∣∣ + λ

∣∣∣ ∫ 1

0
ψ(zn)z+

0

∣∣∣ +
∣∣∣ ∫ 1

0

hz+
0

‖un‖p−1
W 1,p

∣∣∣ +
εn‖z+

0 ‖W 1,p

‖un‖p−1
W 1,p

.

Now for any x̄ such that z+
0 (x̄) > 0, we have that un(x̄) > 0 for n big enough,

and then we can use the estimate (5.1) to obtain

g(x̄, un)

‖un‖p−1
W 1,p

≥ Mψ(zn(x̄)) − CM

‖un‖p−1
W 1,p

; (5.6)

by first taking the lim inf and then exploiting the arbitrariness of M we get

lim
n→+∞

g(x̄, un)

‖un‖p−1
W 1,p

= +∞ . (5.7)

Joining equations (5.1) and (5.2) with s̄ = 0 and dividing by ‖un‖p−1
W 1,p we

get
g(x, un)

‖un‖p−1
W 1,p

≥ −εψ(|zn|) −
max{CM ; Cε}

‖un‖p−1
W 1,p

; (5.8)

since zn is uniformly bounded by its C0 convergence and ‖un‖W 1,p ≥ 1, this
implies that the functions g(x,un)

‖un‖p−1

W1,p

are bounded below uniformly so that we
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can use Fatou’s lemma and get from (5.5) and supposing z+
0 �≡ 0

+∞ =
∫ 1

0
lim

n→+∞
g(x, un)z+

0

‖un‖p−1
W 1,p

≤ lim inf
n→+∞

∫ 1

0

g(x, un)z+
0

‖un‖p−1
W 1,p

(5.9)

≤ lim inf
n→+∞

(∣∣∣ ∫ 1

0
ψ(z′n)(z+

0 )′
∣∣∣ + λ

∣∣∣ ∫ 1

0
ψ(zn)z+

0

∣∣∣ +
∣∣∣ ∫ 1

0

hz+
0

‖un‖p−1
W 1,p

∣∣∣
+

εn‖z+
0 ‖W 1,p

‖un‖p−1
W 1,p

)
.

The right-hand side can be estimated since the first two terms are bounded
by (1+λ)‖zn‖p−1

W 1,p‖z+
0 ‖W 1,p ≤ 1+λ and the last two clearly go to zero; then

equation (5.9) gives rise to a contradiction unless z0 ≤ 0. �
(3) Claim: Using hypotheses (H2) and (H3) we obtain a constant A such

that ∫
un>s0

ung(x, un) ≤ A‖un‖W 1,p , (5.10)

at least for n big enough. For p ≥ 2 this implies∫
un>s0

ung(x, un) ≤ A‖un‖p−1
W 1,p . (5.11)

Proof of the claim. Considering first |pF (un) − 〈F ′(un), un〉|, we get∫
un>s0

g(x, un)un − pG(x, un) ≤
∫

un≤s0

pG(x, un) − g(x, un)un (5.12)

+ (p − 1)
∣∣∣ ∫ 1

0
hun

∣∣∣ + pT + εn‖un‖W 1,p .

Then we estimate (using hypothesis (H3) in (5.14) and hypothesis (H2) in
(5.16)):∫

−s1≤un≤s0

pG(x, un) − g(x, un)un ≤ sup
x ∈ [0, 1],
s ∈ [−s1, s0]

(
pG(x, s) − g(x, s)s

)
, (5.13)

∫
un≤−s1

pG(x, un) − g(x, un)un ≤ pC0, (5.14)

∣∣∣ ∫ 1

0
hun

∣∣∣ ≤ ‖h‖Lq‖un‖Lp ≤ ‖h‖Lq‖un‖W 1,p , (5.15)

(1 − pθ)
∫

un>s0

g(x, un)un ≤
∫

un>s0

g(x, un)un − pG(x, un) . (5.16)
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Since (1 − pθ) > 0, joining all estimates from (5.12) to (5.16), we get∫
un>s0

g(x, un)un ≤ A

2
‖un‖W 1,p +

A

2
≤ A‖un‖W 1,p (5.17)

for some constant A. Since we are supposing ‖un‖W 1,p ≥ 1, this implies
(5.11) for p ≥ 2. �

(4) Claim: under hypothesis (H3),

lim
n→+∞

∫ 1

0

|g(x, un)|
‖un‖p−1

W 1,p

= 0 . (5.18)

Proof of the claim. Fix ε > 0 and k such that A
k ≤ ε and k > s0. Estimate

(5.2) shows that∫
un≤k

|g(x, un)|
‖un‖W 1,p

≤
∫ 1

0

ε|un|p−1 + Cε

‖un‖p−1
W 1,p

≤ εC
‖un‖p−1

Lp

‖un‖p−1
W 1,p

+
Cε

‖un‖p−1
W 1,p

, (5.19)

from which there exists n̄ such that∫
un≤k

|g(x, un)|
‖un‖p−1

W 1,p

≤ (C + 1)ε for n > n̄ . (5.20)

Since k > s0 and using estimate (5.11), one has∫
un>k

g(x, un)

‖un‖p−1
W 1,p

≤
∫

un>k

g(x, un)

‖un‖p−1
W 1,p

un

k
≤

∫
un>s0

g(x, un)

‖un‖p−1
W 1,p

un

k
≤ A

k
≤ ε .

(5.21)
Then we conclude that for n > n̄∫ 1

0

|g(x, un)|
‖un‖p−1

W 1,p

≤ (2 + C)ε ; (5.22)

because of the arbitrariness of ε the claim is proved. �

(5) Claim: zn → z0 strongly in W 1,p.

Proof of the claim. Considering | 〈F
′(un),(zn−z0)〉
‖un‖p−1

W1,p

|, we get

∣∣∣ ∫ 1

0
ψ(z′n)(z′n − z′0)

∣∣∣ ≤ λ

∫ 1

0
|ψ(zn)||zn − z0| +

∫ 1

0

|g(x, un)|
‖un‖p−1

W 1,p

|zn − z0|

+
∣∣∣ ∫ 1

0

h(zn − z0)

‖un‖p−1
W 1,p

∣∣∣ +
εn‖zn − z0‖W 1,p

‖un‖p−1
W 1,p

; (5.23)
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but now all the terms on the right go to zero (use equation (5.18) and the
strong convergence of zn in Lp and C0), and then we conclude that zn → z0

strongly in W 1,p by the property S+ of the p-Laplacian. �

(6) Claim: under hypothesis (H3), λ > 0 implies z0 = 0.

Proof of the claim. Consider | 〈F
′(un),v〉

‖un‖p−1

W1,p

|; for any v ∈ W 1,p we get

∣∣∣ ∫ 1

0
ψ(z′n)v′−λ

∫ 1

0
ψ(zn)v

∣∣∣ ≤ ∫ 1

0

|g(x, un)|
‖un‖p−1

W 1,p

|v|+
∣∣∣ ∫ 1

0

hv

‖un‖p−1
W 1,p

∣∣∣+εn‖v‖W 1,p

‖un‖p−1
W 1,p

,

(5.24)
but now the right-hand side goes to zero by equation (5.18), and so, taking
the limit and using Lemma 2.4, we get∫ 1

0
ψ(z′0)v

′ − λ

∫ 1

0
ψ(z0)v = 0 for any v ∈ W 1,p . (5.25)

Finally, v = 1 gives, with λ > 0, that
∫ 1
0 ψ(z0) = 0, but for a nonpositive

function this implies z0 = 0. �

(7) Claim: un is bounded.

Proof of the claim. The result follows since we get the contradiction 1 =
‖zn‖W 1,p → ‖z0‖W 1,p = 0. �

(8) The PS condition follows now with standard calculations from the
boundedness of un.

Remark 5.2. The above proof may easily be adapted to the multidimen-
sional Neumann problem under the hypothesis p > N , which guarantees the
compact inclusion W 1,p(Ω) ⊆ C0(Ω̄).
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for the p-Laplacian, J. Differential Equations, 159 (1999), 212–238.

[4] M. Cuesta and J.-P. Gossez, A variational approach to nonresonance with respect to
the Fučik spectrum, Nonlinear Anal., 19 (1992), no. 5, 487–500.

[5] E.N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential
equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976/77), 283–300.

[6] D.G. de Figueiredo and J.-P. Gossez, On the first curve of the Fučik spectrum of an
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