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Abstract. In this paper we obtain for a generalized Tricomi opera-
tor fundamental solutions entirely supported in the hyperbolic region.
Our method is based upon the notion of hypergeometric distributions
introduced by S. Delache and J. Leray in [5].

1. Introduction

Consider the operator

T = y∆x +
∂2

∂y2
, (1.1)

with ∆x =
∑n

j=1
∂2

∂x2
j
, n ≥ 1, a natural generalization of the classical Tri-

comi operator in R2. In a previous article [2] we obtained via partial Fourier
transform in x explicit expressions for fundamental solutions of T , relative
to points on the hyperplane y = 0. Such a method led us to calculate in-
verse Fourier transforms of Bessel functions which, in turn, revealed the
importance of certain hypergeometric functions (depending on the “space
dimension” n) that are intimately related to the operator T .

In the present article we look for fundamental solutions of T relative to
an arbitrary point (x0, y0), located in the hyperbolic region (y < 0) of the
operator, and which are supported by the “forward” characteristic conoid of
T with vertex at (x0, y0). We follow the method of S. Delache and J. Leray
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in [5] where they introduced hypergeometric distributions, a notion also con-
sidered by I. M. Gelfand and G. E. Shilov in [7].

The plan of this article is the following. In Section 2 we deal with pre-
liminary material that is needed throughout the paper. Hypergeometric
distributions are introduced in Section 3 where we obtain the basic formula
(3.19) which is used in Sections 4 and 5 to obtain fundamental solutions
respectively in the cases n = 1 or n even, and n odd ≥ 3. The latter case
differs from the previous one by the fact that the fundamental solution is
then a sum of two terms, one supported by the “forward” conoid (as in
the cases n = 1 or n even) and another supported by the boundary of the
conoid. In Section 4 we also show how to derive from the methods used in
this paper the results obtained previously by Barros-Neto and Gelfand in [4]
and Barros-Neto and Cardoso in [2]. Finally, in the Appendix we prove or
indicate the proof of results mentioned and utilized in Section 4.

2. Preliminaries

Let T be the operator given by (1.1) and let ∇̇u be the “modified” gradient

∇̇u = 〈yux1 , . . . , yuxn , uy〉, (2.1)

One clearly has T u = div(∇̇u) and, in addition,∫ ∫
D

(uT v − vT u) dV =
∫

∂D
(u∇̇v − v∇̇u) · �n dS (2.2)

for all smooth u and v on the closure of an open bounded domain D with
smooth boundary ∂D.

Suppose y < 0 and set t = 2(−y)3/2/3 > 0. The change of variables

x = x, t = 2(−y)3/2/3 ⇔ x = x, y = −(2/3)−2/3t2/3, (2.3)

whose Jacobian is
∂(x, y)
∂(x, t)

= −(2/3)1/3t−1/3, (2.4)

transforms T into the operator

2(
3t

2
)2/3 Th, (2.5)

where
Th =

1
2
(

∂

∂t2
− ∆x) +

1
6t

∂

∂t
. (2.6)

We call Th the reduced hyperbolic Tricomi operator. Its formal adjoint is

T ∗
h =

1
2
(

∂2

∂t2
− ∆x) − 1

6t

∂

∂t
+

1
6t2

. (2.7)
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It is a matter of verification that

T ∗
h (t1/3u) = t1/3Th(u).

Thus, if u is a solution of Th(u) = 0, then v = t1/3u is a solution of T ∗
h v =

0, and conversely. Moreover, suppose that E(x, t; 0, t0), with t0 �= 0, is a
fundamental solution of Th relative to the point (0, t0), that is,

ThE = δ(x, t − t0),

then (t/t0)1/3E is a fundamental solution of T ∗
h relative to the same point.

We now recall the definition of the distribution χq(s) (see [5, 7, 8]). Let
q ∈ C be such that Re q > −1. The locally integrable function

χq(s) =
sq

Γ(q + 1)
if s > 0, χq(s) = 0 if s ≤ 0 (2.8)

defines a distribution in R that depends analytically on q and it is such that

χq(s) =
d

ds
χq+1(s).

When Re q ≤ −1, and (2.8) is no longer locally integrable, one associates to
χq a distribution as a principal value integral [8] (or regularization in the
sense of [7]). χq extends then to an entire function of q and we have

χq(s) = δ(−q−1)(s) ∀q ∈ Z− (2.9)

(see [7]). Moreover, χq(s) is positive homogeneous of degree q and Euler’s
formula holds

sχq−1(s) = qχq(s). (2.10)

Consider now the function

k(x, t − t0) =

 (t − t0)2 − |x|2 if t − t0 > |x|

0 if t − t0 ≤ |x|,
(2.11)

defined in the whole of Rn+1. Since k(x, t − t0) is positive in the semi-cone
C = {(x, t) ∈ Rn+1 : t−t0 > |x|}, and identically zero outside of C, it follows
that χq(k(x, t− t0)) (which, for simplicity and when no confusion is possible,
we denote by χq(k(·))) is a distribution in Rn+1 which is an entire analytic
function of q ∈ C. In particular, if q is an integer < 0, then

χq(k(·)) = δ(−q−1)((k(·)))
is a distribution concentrated on the boundary of C (see [7]).
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3. Hypergeometric distributions

Our aim is to find fundamental solutions for the Tricomi operator T rel-
ative to an arbitrary point (0, b), b < 0, in Rn+1, that is, a distribution
E(x, y; 0, b) defined in Rn+1 so that T E = δ(x, y − b). In the guise of mo-
tivation, suppose that E(x, y; 0, b) is a locally integrable function. Then in
view of formulas (2.3), (2.4), (2.5), and (2.6), we get

φ(0, b) = 〈T E, φ〉 =
∫

Rn+1

E(x, y; 0, b)T φ dx dy (3.1)

= 2(
3
2
)1/3

∫
Rn+1

t1/3E�(x, t; 0, t0)Thψ(x, t) dx dt.

In the last formula E�(x, t; 0, t0) and ψ(x, t) denote, respectively, E(x, y; 0, b)
and φ in the variables x and t, and we have set t0 = 2(−b)3/2/3. Thus, our
problem reduces to finding fundamental solutions relative to (0, t0) for the
adjoint operator T ∗

h , which according to our remark in Section 1 is equivalent
to finding fundamental solutions for Th relative to the same point.

Th belongs to a class of operators, called Euler–Poisson–Darboux oper-
ators, studied by Delache and Leray in [5], where they obtained explicit
formulas for fundamental solutions of those operators. For the sake of com-
pleteness, we outline Delache and Leray’s method in [5] relative to the re-
duced hyperbolic Tricomi operator Th, or more generally, the operator

Pα =
1
2
(

∂2

∂t2
− ∆x) +

α

t

∂

∂t
, (3.2)

where α ∈ C. Note that Pα remains invariant under the action of the group
that leaves t unchanged and transforms (x1, . . . , xn) by translations. Since
Pα is homogeneous of degree −2 and δ(x, t − t0) is homogeneous of degree
−(n + 1), a fundamental solution Eα of Pα must be homogeneous of degree
1 − n. Monomials of the type

tα−j
0 t−α−jχj+1/2−n/2(k(x, t − t0)),

have the desired homogeneity degree. If we consider the wave operator
�(x,t) = (∂2/∂t2 − ∆x) in Rn+1, it is shown in [5] that

�(x,t)(
1
2
π1/2−n/2χ1/2−n/2(k(x, t))) = δ(x, t), (3.3)

in other words, the distribution π1/2−n/2χ1/2−n/2(k(x, t))/2 is a fundamental
solution of the wave operator.
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As a consequence, it is natural to look for a fundamental solution to Pα

as a formal series

Eα(x, t; 0, t0) = π1/2−n/2(
t0
t

)α
∞∑

j=0

cj(t0t)−jχj+1/2−n/2(k(·)), (3.4)

with a suitable choice of the coefficients cj . By applying Pα to both sides of
(3.4) one obtains, after routine calculations where the two identities

�(x,t)χj+1/2−n/2(k(·)) = 4jχj−1/2−n/2(k(·))
and

∂

∂t
[χj+1/2−n/2(k(·))] = 2(t − t0)χj−1/2−n/2(k(·))

are used, the following result:

PαEα = c0δ(x, t − t0) + π1/2−n/2
∞∑

j=1

{1
2
(j − 1 + α)(j − α)cj−1 + 2jcj}

(3.5)

× tα−j+1
0 t−α−j−1χj−1/2−n/2(k(·)).

If we choose the coefficients cj so that

c0 = 1 and
1
2
(j − 1 + α)(j − α)cj−1 + 2jcj = 0, j ≥ 1, (3.6)

then (3.5) reduces to
PαEα = δ(x, t − t0), (3.7)

that is, Eα is a fundamental solution of Pα. Now recalling the notations

(a)0 = 1, (a)j = a(a + 1) · · · (a + j − 1) =
Γ(a + j)

Γ(a)
, j ≥ 1, (3.8)

it follows from (3.6) that

cj = (−1
4
)j (α)j(1 − α)j

j!
, j ≥ 0. (3.9)

Hence, we may rewrite (3.4) as

Eα(x, t; 0, t0) = π1/2−n/2(
t0
t

)αΦα(x, t), (3.10)

where

Φα(x, t) =
∞∑

j=0

(α)j(1 − α)j

j!
(− 1

4t0t
)jχj+1/2−n/2(k(·)). (3.11)



450 J. Barros-Neto and Fernando Cardoso

This series converges for |k(·)/4t0t| < 1. Φα(x, t) is the hypergeometric distri-
bution introduced by Delache and Leray in [5]. Hypergeometric distributions
were also considered by Gelfand and Shilov in [7].The reason for that name
is, as we will see, because Φα can be represented by a hypergeometric func-
tion. We briefly review, in the Appendix, the definition of hypergeometric
functions and some of their properties.

Clearly Φα depends on the space dimension n and we must consider two
cases.

Case I: n = 1 or n even. We rewrite (3.11) as

Φα(x, t) = χ1/2−n/2(k(·)) +
∞∑

j=1

(α)j(1 − α)j

j!
(− 1

4t0t
)jχj+1/2−n/2(k(·)).

(3.12)
From Euler’s formula (2.10) it follows by induction that

sjχq(s) = (q + 1)jχq+j(s),

for each integer j ≥ 0. Inserting this formula with q = 1/2− n/2 into (3.12)
we obtain

Φα(x, t) = χ1/2−n/2(k(·))
∞∑

j=0

(α)j(1 − α)j

(3/2 − n/2)j j!
(
(t − t0)2 − |x|2

−4t0t
)j (3.13)

= χ1/2−n/2(k(·))F (α, 1 − α,
3
2
− n

2
;
(t − t0)2 − |x|2

−4t0t
).

From now on, F (α, β, γ; ζ) denotes a hypergeometric function (see the Ap-
pendix).

Case II: n odd > 1. Let n = 2m + 1, m ≥ 1. Note that in this case
1/2 − n/2 = −m, a negative integer. We split Φα into two terms:

Φα(x, t) =
m−1∑
j=0

(α)j(1 − α)j

j!
(− 1

4t0t
)jχj−m(k(·)) (3.14)

+
∞∑

j=m

(α)j(1 − α)j

j!
(− 1

4t0t
)jχj−m(k(·)).

Whenever j − m < 0, χj−m(k(·)) = δ(m−j−1)(k(·)) is a distribution con-
centrated on the surface of the semi-cone C. Thus the first term in (3.14)
corresponds to a finite sum of distributions supported by the boundary of
C.
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Recalling that χj(s) = sjχ0(s)/j! and setting j′ = j − m, rewrite the
second term in (3.14) as

S = χ0(k(·))( 1
−4t0t

)m
∞∑

j′=0

(α)j′+m(1 − α)j′+m

(j′ + m)! j′!
(

k(·)
−4t0t

)j′ .

Now (α)j′+m = (α)m(α + m)j′ , (1 − α)j′+m = (1 − α)m(1 − α + m)j′ , and
(j′ + m)! = m!(m + 1)j′ . Therefore,

S = χ0(k(·))cm(
1

−4t0t
)mF (α + m, 1 − α + m, m + 1,

(t − t0)2 − |x|2
−4t0t

),

where cm = (α)m(1 − α)m/m!. Thus, the expression (3.14) for Φα becomes

Φα(x, t) =
m−1∑
j=0

(α)j(1 − α)j

j!
(− 1

4t0t
)jδ(m−j−1)(k(·)) (3.15)

+ χ0(k(·))cm(
1

−4t0t
)mF (α+m, 1−α + m, m + 1,

(t − t0)2 − |x|2
−4t0t

).

Remarks. 1) The support of all fundamental solutions above described
is the closure of the semi-cone C defined at the end of Section 2. In the
case where n is an odd integer > 1, besides the term that contains the
hypergeometric function whose support is the closure of C there are a finite
number of terms whose support is the boundary of C.

2) Formula (3.15) can be viewed as a derivative with respect to k(·) of a
certain hypergeometric distribution. More precisely, consider the hypergeo-
metric distribution χ0(s)F (a, b, 1; rs) where r is a real or complex parameter.
The following formula holds

dm

dsm
[χ0(s)F (a, b, 1; rs)] =

m−1∑
j=0

(a)j(b)j

j!
rjδ(m−j−1)(s) (3.16)

+ χ0(s)cmrmF (a + m, b + m, m + 1; rs).

Indeed, just note that if f(s) is a smooth function defined near s = 0, then
f(s)δ(s) = f(0)δ(s), and whenever c �= 0,−1,−2, · · · one has

d

dz
F (a, b, c; z) =

ab

c
F (a + 1, b + 1, c + 1; z).

Thus, we may rewrite (3.15) as a derivative:

Φα(x, t) =
dm

d(k(·))m
[χ0(k(·))F (α, 1 − α, 1,

k(·)
−4t0t

)]. (3.17)
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Formulas (3.16) and (3.17) are analogous to formulas considered by Gelfand
and Shilov in [7] and involving complex order derivatives of hypergeometric
distributions of the type χ0(s)F (a, b, c; s).

So far we have shown that whenever |k(·)/4t0t| < 1

E1/6(x, t; 0, t0) = π1/2−n/2(
t0
t

)1/6Φ1/6(x, t) (3.18)

is a fundamental solution of Th relative to the point (0, t0). From our remarks
at the end of Section 2, it follows that the distribution

(t/t0)1/3E1/6(x, t; 0, t0) = π1/2−n/2(
t

t0
)1/6Φ1/6(x, t)

is a fundamental solution of T ∗
h relative to the same point. In view of formula

(3.1) we define the distribution E� by

2(
3
2
)1/3t1/3E�(x, t; 0, t0) = π1/2−n/2(

t

t0
)1/6Φ1/6(x, t),

or,

E�(x, t; 0, t0) =
π1/2−n/2

21/331/3
(

1
4t0t

)1/6Φ1/6(x, t), (3.19)

which written in terms of the variables x and y gives us a fundamental solu-
tion of the Tricomi operator T relative to the point (0, b), b < 0. Moreover,
in the next two sections, by using known formulas involving hypergeometric
functions, we will recoup the fundamental solutions described in the papers
[3, 4, 2].

4. Fundamental solutions, n = 1 or n even

We return to formula (3.19) and rewrite Φ1/6, given by (3.13), as

Φ1/6(x, t) = χ1/2−n/2(k(·))F (
5
6
,
1
6
,
3
2
− n

2
;−k(·)

4t0t
) (4.1)

after recalling that F (a, b, c; z) = F (b, a, c; z). Note that χ1/2−n/2(k(·)) is
supported by the cone C. It is well known that

F (a, b, c; z) = (1 − z)−bF (c − a, b, c;
z

z − 1
). (4.2)

If we set z = (t − t0)2 − |x|2/(−4t0t), then

1 − z =
(t + t0)2 − |x|2

4t0t
and

z

z − 1
=

(t − t0)2 − |x|2
(t + t0)2 − |x|2 , (4.3)
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hence from (4.2) we obtain

F (
5
6
,
1
6
,
3
2
− n

2
;−k(·)

4t0t
)

= (
(t + t0)2 − |x|2

4t0t
)−1/6 × F (

2
3
− n

2
,
1
6
,
3
2
− n

2
;
(t − t0)2 − |x|2
(t + t0)2 − |x|2 ), (4.4)

and so we may rewrite E� as

E�(x, t; 0, t0) =
π1/2−n/2

21/331/3
χ1/2−n/2(k(·)) [(t + t0)2 − |x|2]−1/6

× F (
2
3
− n

2
,
1
6
,
3
2
− n

2
;
(t − t0)2 − |x|2
(t + t0)2 − |x|2 ). (4.5)

Since E� is supported by the closure of C, the last factor in formula (4.5) rep-
resents the hypergeometric series because the absolute value of its argument,
in C, is < 1.

If we now set t0 = a and

u = 9(|x|2−a2)+12a(−y)3/2+4y3, v = 9(|x|2−a2)−12a(−y)3/2+4y3, (4.6)

then

(t − t0)2 − |x|2 = −1
9
u and (t + t0)2 − |x|2 = −1

9
v. (4.7)

Define the region

Dn
b,− = {(x, y) ∈ Rn+1 : 9(|x|2 − a2) + 12a(−y)3/2 + 4y3 < 0, y < b} (4.8)

which corresponds to the semi-cone C, and let χDn
b,−

be its characteristic
function. In terms of x and y the distribution (4.5) becomes

E−(x, y; 0, b)=c(n)χDn
b,−

(x, y)(−u)1/2−n/2(−v)−1/6F (
2
3
− n

2
,
1
6
,
3
2
− n

2
;
u

v
),

(4.9)
where

c(n) =
π1/2−n/2

21/331−nΓ(3
2 − n

2 )
. (4.10)

We observe that the distribution E− is real valued because in Dn
b,− both u

and v are < 0. Thus we have proved the following:

Theorem 4.1. E−(x, y; 0, b) is a fundamental solution of T relative to (0, b)
whose support is the closure of the region Dn

b,−.
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Remarks. 1) E− is the unique fundamental solution of T , relative to (0, b)
whose support is D̄n

b,−. Indeed, any other such fundamental solution is of
the form E− + f, with T f = 0 and y ≤ b on supp f. Since the convolution
E− ∗ f is well defined because the map

suppE− × supp f � ((x, y), (x′, y′)) → (x + x′, y + y′)

is proper, we have
f = T E− ∗ f = E− ∗ T f = 0.

2) In [4], when n = 1, E− was obtained by a method different from the one
here described and based upon the existence of the Riemann function for
the reduced hyperbolic operator Th.

If we let b → 0, we obtain a fundamental solution of T relative to the
origin, namely:

Corollary 4.1. The limit, in the sense of distributions, of E−(x, y; 0, b) as
(0, b) → (0, 0) is

F−(x, y) = (4.11)

=


π1/2−n/2

21/331−nΓ(3
2 − n

2 )
F (2

3 − n
2 , 1

6 , 3
2 − n

2 ; 1) |9|x|2 + 4y3| 13−n
2 in Dn

−

0 elsewhere,

a fundamental solution of T relative to the origin whose support is the closure
of the region Dn

− = {(x, y) ∈ Rn+1 : 9|x|2 + 4y3 < 0}.

It is a matter of verification that the fundamental solution given by for-
mula (4.11) coincides with the fundamental solution given by formula (4.2)
in Theorem 4.1 of [2]. The only apparent discrepancy between these two for-
mulas is the multiplying constants. However, one can show that the constant
in (4.11) coincides with the constant

C− =
3nΓ(4/3)

22/3πn/2Γ(4
3 − n

2 )

on page 490 of [2].

An important observation, still in the case n = 1, is that it is possible
to obtain another fundamental solution supported by the closure of D1

b,+,

the complement (in R2) of D̄1
b,−. Indeed, consider, as explained in the Ap-

pendix, F (1/6, 1/6, 1; ζ), the principal branch of the analytic continuation of
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the corresponding hypergeometric series, and define in the whole of R2 the
function

Ẽ(x, y; 0, b) =
(−v)−1/6

21/3
F (

1
6
,
1
6
, 1;

u

v
). (4.12)

We show in the Appendix that Ẽ(x, y; 0, b) is locally integrable in R2, singular
when v = 0, real analytic in R2\(ra ∪ r−a), and a solution of T u = 0 in
the sense of distributions. It then follows that the distribution E− − Ẽ,
identically zero in the region D1

b,−, is also a fundamental solution of T .
Define the distribution

E+(x, y; 0, b) =

 −Ẽ(x, y; 0, b) in D1
b,+

0 elsewhere.
(4.13)

We have

Theorem 4.2. E+ is a fundamental solution of T relative to (0, b) whose
support is the closure of the region D1

b,+.

From this we obtain (see [3])

Corollary 4.2. As (0, b) → (0, 0), a suitable linear combination of funda-
mental solutions of the type E+ converges, in the sense of distributions, to
the fundamental solution

F+(x, y) =


− 1

21/331/2
F (1

6 , 1
6 , 1; 1)(9x2 + 4y3)−1/6 in D+

0 elsewhere,

(4.14)

where D+ = {(x, y) ∈ R2 : 9x2 + 4y3 > 0}.

Remark. It is plausible to expect, in the case of n even, the existence
of fundamental solutions that correspond to E+ given by formula (4.13).
However, if one follows the method used in this paper and derives from (4.9) a
function that corresponds to Ẽ, in formula (4.12), that function is not locally
integrable and it is not clear that it is a solution of T u = 0. This is certainly
a question that should be further investigated. In a forthcoming paper, we
expect to describe, by using hypergeometric distributions, a complete family
of fundamental solutions with poles in the elliptic region of the T .
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5. Fundamental solutions, n odd > 1

Let n = 2m + 1 with m ≥ 1. Again from formula (3.19) we have

E�(x, t; 0, t0) = Am(
1

4t0t
)1/6Φ1/6(x, t), (5.1)

where Am = 1/(21/331/3πm). From formula (3.15) Φ1/6 is given by

Φ1/6(x, t) =
m−1∑
j=0

cj(−
1

4t0t
)jδ(m−j−1)(k(·)) (5.2)

+ χ0(k(·))cm(
1

−4t0t
)mF (m +

5
6
, m +

1
6
, m + 1;

k(·)
−4t0t

),

with

cj =
Γ(j + 5/6)Γ(j + 1/6)
Γ(5/6)Γ(1/6)Γ(j + 1)

, 0 ≤ j ≤ m. (5.3)

In view of (4.2) and (4.3), the hypergeometric function in (5.2) is equal to

(
t + t0)2 − |x|2

4t0t
)−m−1/6F (

1
6
, m +

1
6
, m + 1;

(t − t0)2 − |x|2
(t + t0)2 − |x|2 )

and we may rewrite E�(x, t; 0, t0) as

E�(x, t; 0, t0) = Am

m−1∑
j=0

(−1)jcj(4t0t)−j−1/6δ(m−j−1)(k(·)) (5.4)

+ (−1)mAmcm((t + t0)2 − |x|2)−m− 1
6 F ( 1

6 , m + 1
6 , m + 1,

(t − t0)2 − |x|2
(t + t0)2 − |x|2 )χ0(k(·)).

Note that all terms in the sum contain distributions of the form δ(q)(k(·))
which are supported by the surface of the semi-cone C. However, the support
of the last term in (5.4) is the closure of C.

In [7] Gelfand and Shilov introduced the distribution δ(P ) supported by
the surface S given byP = 0, where P is a smooth function such that ∇P �= 0
on S. In particular, they proved that if a(·) is a nonvanishing function, then

δ(q)(aP ) = a−(q+1)δ(q)(P ). (5.5)

These results extend to our case, where P = k(·) has a singular point at
(0, t0). We have the following

Lemma 5.1. For all 0 ≤ j ≤ m − 1,

(4t0t)−j−1/6δ(m−j−1)(k(·)) = (4t0t)5/6δ(m−j−1)((4t0t)(j+1)/(m−j)k(·)).
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Proof. Indeed,

(4t0t)−j−1/6δ(m−j−1)(k(·)) = (4t0t)5/6(4t0t)−(j+1)δ(m−j−1)(k(·))
= (4t0t)5/6[(4t0t)(j+1)/(m−j)]−(m−j)δ(m−j−1)(k(·))

= (4t0t)5/6δ(m−j−1)((4t0t)(j+1)/(m−j)k(·)),
by virtue of (5.5) and the fact that 4t0t �= 0 in the region t − t0 > |x|. �

As a consequence of this lemma, all terms that contain derivatives of δ in
(5.4) tend to zero, as t0 → 0. By taking limits, it follows that the distribution

E�(x, t; 0, 0) (5.6)

=
(−1)m

21/331/3πm

Γ(m + 5/6)Γ(m + 1/6)
Γ(5/6)Γ(1/6)Γ(m + 1)

F (1
6 , m + 1

6 , m + 1; 1)(t2 − |x|2)−m−1
6

is a fundamental solution (relative to the origin) of Th supported by the
closure of the semi-cone {(x, t) : t > |x|}.

As we did in the previous sections, we rewrite E�(x, t; 0, t0) in terms of the
variables x and y. Formulas (4.6) and (4.7) imply that 4t0t = (v−u)/9 and,
following Gelfand and Shilov’s notations, we replace δ(q)(k(·)) by δ(q)(u(·)),
with the understanding that u(·) now means u(x, y), with y ≤ b. Thus (5.4)
becomes

E−(x, y; 0, b) = Am

m−1∑
j=0

(−1)jcj(
v − u

9
)−j−1/6δ(m−j−1)(u(·)) (5.7)

+ (−1)mAmcm(−v

9
)−m−1/6F (

1
6
, m +

1
6
, m + 1,

u

v
)χDn

b,−
(x, y),

where χDn
b,−

is the characteristic function of the set (4.8).Then the following
result holds

Theorem 5.1. The distribution E−(x, y; 0, b) is a fundamental solution of
T relative to (0, b) supported by the closure of the set Dn

b,−.

Note that in (5.7) all terms inside the summation are supported by the
boundary of Dn

b,− while the last term is supported by the closure of Dn
b,−.

If we let b → 0 we obtain, at the limit, the fundamental solution F−(x, y)
described in our previous paper [2], namely

Theorem 5.2. The distribution

F−(x, y) =


3nΓ(4

3)
22/3πn/2Γ(4

3 − n
2 )

|9|x|2 + 4y3| 13−n
2 in Dn

−

0 elsewhere,

(5.8)
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supported by the closure of the region Dn
− = {(x, y) ∈ Rn+1 : 9|x|2+4y3 < 0},

is a fundamental solution of T .

Proof. Recall that t = 2(−y)3/2/3 and that t2 − |x|2 = 1
9(−9|x|2 − 4y3).

Hence, the right-hand side of (5.6) equals A|9 |x|2 + 4y3|−m−1/6, where

A =
(−1)m32m

21/3πm

Γ(m + 5/6)Γ(m + 1/6)
Γ(5/6)Γ(1/6)Γ(m + 1)

F (
1
6
, m +

1
6
, m + 1; 1). (5.9)

Now the exponent −m − 1/6 equals 1/3 − n/2 because n = 2m + 1. On the
other hand, it is a matter of verification that the constant

3nΓ(4
3)

22/3πn/2Γ(4
3 − n

2 )
(5.10)

(denoted by C− in [2]) which appears in (5.8) is the same as A. �

6. Appendix

We are going to prove that the function Ẽ(x, y; 0, b) defined by formula
(4.12) in Section 4 is locally integrable in R2, singular when v = 0, real ana-
lytic in R2\(ra∪r−a), and a solution of T w = 0 in the sense of distributions.
Recall that ra is the characteristic curve 3(x − a) − 2(−y)3/2 = 0 originat-
ing from (a, 0), and r−a the characteristic curve 3(x + a) + 2(−y)3/2 = 0
originating from (−a, 0).

The power series

F (α, β, γ; ζ) =
∞∑

j=0

(α)j(β)j

(γ)jj!
ζj , (6.1)

where α, β, and γ are complex numbers, γ �= 0,−1,−2, · · · , and (α)j is
given by (3.8), is called the hypergeometric series. The ratio test guarantees
absolute convergence for |ζ| < 1, [10]. If Re(γ − α − β) > 0, then the series
converges for |ζ| ≤ 1 and

F (α, β, γ; 1) =
Γ(γ)Γ(γ − α − β)
Γ(γ − α)Γ(γ − β)

. (6.2)

Barnes’ contour integral defines a single-valued analytic function of ζ in
the region | arg(−ζ)| < π, that is, C minus the positive real axis, which gives
the principal branch of the analytic continuation of the hypergeometric series
F (α, β, γ; ζ). More precisely we quote the following theorem whose proof is
found in [10].
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Theorem 6.1. (Barnes) The integral

1
2πi

∫ i∞

−i∞

Γ(α + s)Γ(β + s)Γ(−s)
Γ(γ + s)

(−ζ)s ds, (6.3)

where the contour of integration is curved (if necessary) to ensure that the
poles of Γ(α + s)Γ(β + s), i.e., s = −α − n,−β − n, n = 0, 1, 2, · · · , lie
on the left of the contour and the poles of Γ(−s) lie on the right of the
contour, defines a single-valued analytic function in the region | arg(−ζ)| <
π. Moreover, in the unit disk |ζ| < 1, it coincides with the hypergeometric
series

Γ(α)Γ(β)
Γ(γ)

F (α, β, γ; ζ).

Following traditional practice we use the notation F (α, β, γ; ζ) to denote
either the hypergeometric series or the principal branch of its analytic con-
tinuation, and call it the hypergeometric function.

Barnes’ integral may also be used to obtain a representation of the hy-
pergeometric function in the form of a power series in ζ−1, convergent when
|ζ| > 1. By choosing a suitable contour of integration one can prove (see
[10]) that if α − β is not an integer or zero, then

F (α, β, γ; ζ) = A(−ζ)−αF (α, 1 − γ + α, 1 − β + α; ζ−1) (6.4)

+ B(−ζ)−βF (β, 1 − γ + β, 1 − α + β; ζ−1),

where A and B are suitable constants and | arg(−ζ)| < π. This formula also
describes the asymptotic behavior of the function F (α, β, γ; ζ) near |ζ| = ∞.
If α − β is an integer or zero, formula (6.4) must be modified because some
of the poles of Γ(α + s)Γ(β + s) are double poles. The reader should find
the expression for F (α, β, γ; ζ) in [6], Chapter II. In the case that interests
us, that is, α = β, that expression is

F (α, α, γ; ζ) = (−ζ)−α[log(−ζ)U(ζ) + V (ζ)], (6.5)

where | arg(−ζ)| < π, and both U(ζ) and V (ζ) are power series in ζ−1

convergent for |ζ| > 1 (see [6] or [4]). We also mention that if Re(γ−α−β) >
0, we have convergence for |ζ| ≥ 1.

From the above results, and in particular from (6.5), it follows that

Ẽ(x, y; 0, b) =
(−v)−1/6

21/3
F (

1
6
,
1
6
, 1;

u

v
),

with u and v defined by (4.6), is locally integrable in R2, singular when
v = 0, and real analytic in R2\(ra ∪ r−a).
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It remains to prove that Ẽ(x, y; 0, b) is a solution to T w = 0 in the sense
of distributions. For this we need several results proved in the paper [3]. In
that paper we showed that the function

E(�, m; �0, m0) = (� − m)−1/6(�0 − m)−1/6F (
1
6
,
1
6
, 1;

(� − �0)(m − m0)
(� − m0)(m − �0

)

is a classical solution of

Thw =
∂2w

∂�∂m
− 1/6

� − m
(
∂w

∂�
− ∂w

∂m
) = 0,

the reduced hyperbolic Tricomi equation. Here � = x + 2
3(−y)3/2, m =

x − 2
3(−y)3/2 are the characteristic coordinates. Except for the constant

1/21/3, Ẽ(x, y; 0, b) is obtained from E(�, m; �0, m0) after replacement of �

and m by their expressions above and by setting �0 = −m0 = 2(−b)3/2/3.

Thus, away from the set {v = 0} = ra∪r−a, Ẽ(x, y; 0, b) is a classical solution
of T w = 0.

To show that T Ẽ = 0, in the sense of distributions, we have to contend
with the fact that Ẽ(x, y; 0, b) has logarithmic singularities along the two
characteristics r−a and ra, or, equivalently, that E(�, m; �0, m0) has logarith-
mic singularities along the lines � = −�0 and m = �0. Since, as we have
remarked, T Ẽ = 0 away from the characteristics r−a and ra,, in order to
prove that T Ẽ = 0 in the sense of distributions, it suffices to prove that

〈Ẽ, T φ〉 =
∫ ∫

R2

ẼT φdx dy = 0 (6.6)

for all φ ∈ C∞
c (R2) whose support intersects at least one of the characteristics

r−a or ra. If suppφ does not intersect either of these characteristics, then
(6.6) is automatically satisfied.

Suppose that suppφ is contained in an open disk D centered, say at (a, 0),
and with radius R. Let 0 < r < R and denote by Dε the set of points of D
at a distance > ε from the characteristic ra. Then, from Green’s formula for
T (see [4], formula (4.5)) one gets∫ ∫

D
ẼT φ dx dy = lim

ε→0

∫ ∫
Dε

ẼT φ dx dy (6.7)

= lim
ε→0

∫
Γε∪γε∪Γ′

ε

Ẽ(yφx dy − φy dx) − φ(yẼx dy − Ẽy dx),

where Γε is the characteristic 3(x−α+ε)−2(−y)3/2 = 0, γε the circumference
centered at α with radius ε, and Γ′

ε the characteristic 3(x−α−ε)−2(−y)3/2 =
0. In order to prove (6.6) we must prove that the last limit in (6.7) is zero.
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Most details of the proof are to be found in Section 4 of the paper [4]. We
just point out that the integrand in (6.7) remains bounded along γε thus,
along this contour, the integral tends to zero with ε. Along both Γε and Γ′

ε

we must take into account the asymptotic behavior of F (1/6, 1/6, 1; ζ) and
its derivative F (7/6, 7/6, 2; ζ), at ζ = ∞, according to (6.5). It turns out
that at the limit, the values of these integrals cancel each other and this
completes the proof.
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