THE CAUCHY PROBLEM FOR QUASILINEAR HYPERBOLIC EQUATIONS WITH NON-ABSOLUTELY CONTINUOUS COEFFICIENTS IN THE TIME VARIABLE

Alessia Ascanelli

Dipartimento di Matematica, Università di Ferrara Via Machiavelli 35, 44100 Ferrara, Italy

(Submitted by: Jean Mawhin)

Abstract. We consider the Cauchy problem

$$\begin{cases}
P(t, x, D^{m-1}u, D_t, D_x)u(t, x) = f(t, x, D^{m-1}u) \\
\partial_t^j u(0, x) = u_j(x), \quad j = 0, ..., m - 1,
\end{cases}$$

in $[0,T]\times\mathbb{R}^n$ for a quasilinear weakly hyperbolic operator

$$P(t, x, D^{m-1}u, D_t, D_x) = D_t^m + \sum_{j=0}^{m-1} \sum_{|\alpha|=m-j} a_{\alpha}^{(j)}(t, x, D^{m-1}u) D_x^{\alpha} D_t^j$$

with coefficients $a_{\alpha}^{(j)}$ having the first time derivative with singular behavior of the type t^{-q} , q > 1, as $t \to 0$.

We show that for $t \leq T_0^*$, T_0^* sufficiently small, given Cauchy data in a Gevrey class G^{σ} there exists a unique solution $u \in C^{m-1}([0,T_0^*];G^{\sigma})$ provided that $\sigma < \frac{qr}{qr-1}$ where r denotes the largest multiplicity of the characteristic roots.

1. Introduction

Let us start by considering the linear Cauchy problem

$$\begin{cases}
P(t, x, D_t, D_x)u(t, x) = f(t, x), & (t, x) \in [0, T] \times \mathbb{R}^n, \\
\partial_t^j u(0, x) = u_j(x), & j = 0, ..., m - 1,
\end{cases}$$
(1.1)

for a weakly hyperbolic operator of order m > 2

$$P = D_t^m + \sum_{j=0}^{m-1} \sum_{|\alpha| \le m-j} a_{\alpha}^{(j)}(t, x) D_x^{\alpha} D_t^j,$$

$$D_t = -i\partial_t$$
, $D_x = -i\nabla_x$, and suppose $a_{\alpha}^{(j)} \in C^1([0,T]; G^{\sigma}(\mathbb{R}^n))$, where $G^{\sigma}(\mathbb{R}^n) = \{f(x) : |\partial^{\alpha} f(x)| \le c_{\alpha} A^{|\alpha|} \alpha!^{\sigma}, \ A > 0, \ \alpha \in \mathbb{Z}_+^n\}$

Accepted for publication: June 2005.

AMS Subject Classifications: 35L80, 35L75, 35L30.

is the Gevrey class of index $\sigma > 1$.

In that case we know that the Cauchy problem (1.1) is well posed in G^{σ} , without any Levi condition on the lower order terms, for every

$$\sigma < \frac{r}{r-1}$$

where r denotes the largest multiplicity of the characteristic roots (see for example [1], [7]). We recall that the Cauchy problem (1.1) is said to be well posed in a space X of functions on \mathbb{R}^n if for every $u_j \in X$, $f \in C([0,T];X)$ it has a unique solution $u \in C^{m-1}([0,T];X)$.

The problem (1.1) has been widely studied also in the case of coefficients which are not regular in time, both as regards the modulus of continuity (starting from [6]) and the singular behavior of the first time derivative of the coefficients (see [5], [3], [4]). In particular in this second situation the case of coefficients satisfying

$$a_{\alpha}^{(j)} \in C^1(]0,T]; B^{\infty}(\mathbb{R}^n)), \quad |\partial_t a_{\alpha}^{(j)}| \leq \frac{c_{\alpha j}}{t^q}, \quad q \geq 1, \ t \in]0,T],$$

for $|\alpha| + j = m$, has been considered. In [4] it has been proved that if the characteristic roots are regular in time, then problem (1.1) is well posed in Gevrey classes of index

$$\sigma < \frac{qr}{qr - 1}.$$

Here our aim is to extend this result also to the case of a quasilinear hyperbolic Cauchy problem:

$$\begin{cases}
P(t, x, D^{m-1}u, D_t, D_x)u(t, x) = f(t, x, D^{m-1}u), & (t, x) \in [0, T] \times \mathbb{R}^n, \\
\partial_t^j u(0, x) = u_j(x), & j = 0, ..., m - 1,
\end{cases}$$
(1.2)

for an operator

$$P = D_t^m + \sum_{j=0}^{m-1} \sum_{|\alpha|=m-j} a_{\alpha}^{(j)}(t, x, D^{m-1}u) D_x^{\alpha} D_t^j,$$
 (1.3)

where $D^{m-1}u=(\partial_{t,x}^{\alpha}u)_{|\alpha|\leq m-1}$ is a vector in \mathbb{R}^l , $l=\sharp\{\alpha: |\alpha|\leq m-1\}$, and the functions $a_{\alpha}^{(j)}$, f are supposed to have a Gevrey behavior with respect to the variables x and $y=D^{m-1}u$, following [2]. Hereafter we will take the Cauchy data $u_j=0,\ j=0,...,m-1$, without any loss of generality.

We can prove also in this case the existence and uniqueness of a local in time solution in Gevrey classes of index

$$1 < \sigma < \sigma_0 = \frac{qr}{qr - 1},\tag{1.4}$$

with a loss of derivatives.

In the case r = 1, m = 2, q = 1, the Cauchy problem (1.2) has already been considered by [9].

Remark 1.1. Notice that in condition (1.4):

- for $q=1, \sigma_0=\frac{r}{r-1}$. This is the bound by [7], [1]; it cannot be improved without assuming any Levi condition on the lower order
- for r=1, $\sigma_0=\frac{q}{q-1}$. This is the bound by [5] for strictly hyperbolic equations, and it is sharp as they proved by means of counterexamples.

It is interesting to notice that in any case the life time T_0^* of the solution is not influenced by the breakdown of $\partial_t a_{\alpha}^{(j)}$ at t=0, but only on the nonlinearity of the problem, as we are going to see later on. If the coefficients are defined also in a left neighborhood of 0, and here they have the same behavior as in the right neighborhood, then the solution can be extended for $t \leq 0$ into a small interval.

2. Main result

We will state our results on Sobolev-Gevrey-type spaces: for $\epsilon > 0, \, \sigma \geq 1$ we denote

$$H^{s,\epsilon,\sigma} = \{ u \in H^s(\mathbb{R}^n) : e^{\epsilon \langle D_x \rangle^{\frac{1}{\sigma}}} u(x) \in H^s(\mathbb{R}^n) \}, \tag{2.1}$$

where $\langle \xi \rangle$ stands for $\sqrt{1+|\xi|^2}$, and $H^s(\mathbb{R}^n)$ is the usual Sobolev space.

The norm is here defined by

$$||u||_{s,\epsilon,\sigma} = ||e^{\epsilon \langle D_x \rangle^{\frac{1}{\sigma}}} u||_s.$$

The space $H^{s,\epsilon,\sigma}$ is a Banach algebra if $s>\frac{n}{2}$, so starting from here we always consider Sobolev spaces of index $s > \frac{n}{2}$. These kinds of spaces are such that $H^{s,\epsilon,\sigma} \subset G^{\sigma}, \epsilon > 0$. We will have to deal for $t \in [0,T]$ with Sobolev-Gevrey functions depending on time; so for $k \in \mathbb{N}$ and for a nonnegative function $\epsilon(t)$ of the form $\epsilon(t) = \epsilon_0 - ct^{\delta}$, $t \in [0, T]$, $c, \epsilon_0 > 0$, we define

$$C^k([0,T];H^{s,\epsilon(t),\sigma})$$

$$= \{ u(t,x) : t \to e^{\epsilon(t)\langle D_x \rangle^{\frac{1}{\sigma}}} \partial_t^j u \in C([0,T]; H^{s-j}), \ j = 0, ..., k \}.$$

In these spaces the norm is

$$||u||_{C^{k}([0,T];H^{s,\epsilon(t),\sigma})} = \sup_{j=0,\dots,k} ||e^{\epsilon(t)\langle D_{x}\rangle^{\frac{1}{\sigma}}} \partial_{t}^{j} u||_{C([0,T];H^{s-j})}.$$

In this paper we will use the pseudodifferential calculus, so following the notation of [10], we introduce for $m \in \mathbb{R}$ the class $S^m = S^m(\mathbb{R}^n \times \mathbb{R}^n)$ which is the space of all symbols $a(x, \xi)$ satisfying

$$|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x,\xi)| \le c_{\alpha\beta} \langle \xi \rangle^{m-|\alpha|}, \tag{2.2}$$

for every $\alpha, \beta \in \mathbb{Z}_+^n$, $x, \xi \in \mathbb{R}^n$; this is the limit space as $\ell \to +\infty$ of the Banach spaces S_ℓ^m that consist of all symbols $a(x, \xi)$ such that

$$|a|_{\ell}^{(m)} = \sup_{x,\xi} \sup_{|\alpha| + |\beta| \le \ell} \frac{|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x,\xi)|}{\langle \xi \rangle^{m - |\alpha|}} < +\infty.$$
 (2.3)

Moreover, we need to introduce the following classes of Gevrey symbols: for $m \in \mathbb{R}$, $\sigma \geq 1$, $\epsilon > 0$ we denote

$$S_{s,\epsilon}^{m,\sigma}(\mathbb{R}^{2n}) = \{ a(x,\xi) : ||\partial_{\xi}^{\alpha} a(\cdot,\xi)||_{s,\epsilon,\sigma} \le c_{\alpha} \langle \xi \rangle^{m-|\alpha|}, \forall \alpha \},$$

while for $m \in \mathbb{R}$, $\sigma, \sigma' \ge 1$, $\epsilon, \epsilon' > 0$ we denote

$$S_{s,\epsilon,s',\epsilon'}^{m,\sigma,\sigma'}(\mathbb{R}^n \times \mathbb{R}^l \times \mathbb{R}^n)$$

$$= \{a(x,y,\xi) : ||\partial_{\xi}^{\alpha} a(\cdot,\cdot,\xi)||_{H^{s,\epsilon,\sigma} \times H^{s'},\epsilon',\sigma'} \le c_{\alpha} \langle \xi \rangle^{m-|\alpha|}, \forall \alpha\},$$

where $H^{s,\epsilon,\sigma} \times H^{s',\epsilon',\sigma'}$ is the tensor product of the spaces $H^{s,\epsilon,\sigma}$ and $H^{s',\epsilon',\sigma'}$.

Now, let us consider the Cauchy problem

$$\begin{cases}
P(t, x, D^{m-1}u, D_t, D_x)u(t, x) = f(t, x, D^{m-1}u), & (t, x) \in [0, T] \times \mathbb{R}^n, \\
\partial_t^j u(0, x) = 0, & j = 0, ..., m - 1,
\end{cases}$$
(2.4)

for the operator (1.3), and assume that the linear operator $P(t, x, y, D_t, D_x)$ depending on the parameter y has coefficients $a_{\alpha}^{(j)}(t, x, y)$ defined on $[0, T] \times \mathbb{R}^n \times Y$, where $Y \subset \mathbb{R}^l$ is a neighborhood of the origin.

Suppose that $P(t, x, y, D_t, D_x)$ is a hyperbolic operator with real characteristic roots $\{\lambda_j(t, x, y, \xi)\}_{j=1,...,m}$ and with principal symbol given by

$$P_m(t, x, y, \tau, \xi) = \prod_{j=1}^{m} (\tau - \lambda_j(t, x, y, \xi)).$$
 (2.5)

The roots can always be collected into $r \geq 1$ groups G_j , j = 1, ..., r, each one with $m_j \geq 1$ elements:

$$\begin{cases}
G_{1} = \{\lambda_{1}, ..., \lambda_{m_{1}}\} \\
G_{2} = \{\lambda_{m_{1}+1}, ..., \lambda_{m_{1}+m_{2}}\} \\
\vdots \\
G_{r} = \{\lambda_{m-m_{r}+1}, ..., \lambda_{m}\} \\
m_{1} \geq m_{2} \geq ... \geq m_{r} \geq 1, \quad m_{1} + ... + m_{r} = m,
\end{cases} (2.6)$$

such that if we take λ_i , $\lambda_{i'}$ in the same group it holds that

$$|\lambda_j(t, x, y, \xi) - \lambda_{j'}(t, x, y, \xi)| \ge c|\xi|, \quad c > 0, j \ne j'. \tag{2.7}$$

Remark 2.1. When $G_1 \supseteq G_2 \supseteq \ldots \supseteq G_r$, we have an operator with roots of constant multiplicity, and r is the largest multiplicity. The particular case of a strictly hyperbolic operator is obtained for r = 1 (so, only one group of separated roots). If it is not possible to separate the roots, we have r = m and $m_j = 1$ for all j.

As to the coefficients, we assume

$$a_{\alpha}^{(j)}(t, x, y) \in B([0, T]; H^{s, \epsilon, \sigma} \times H^{s', \epsilon', \sigma'}),$$
 (2.8)

where, for a space of functions X, B([0,T];X) denotes the space of all functions defined on [0,T] with values in X that are bounded as functions of time.

For the characteristic roots we suppose

$$\begin{cases} \lambda_{j}(t,x,y,\xi) \in C([0,T]; S_{s,\epsilon,s',\epsilon'}^{1,\sigma,\sigma'}) \cap C^{1}(]0,T]; S_{s,\epsilon,s',\epsilon'}^{1,\sigma,\sigma'}), \\ t^{q} \partial_{t} \lambda_{j}(t,x,y,\xi) \in B([0,T]; S_{s,\epsilon,s',\epsilon'}^{1,\sigma,\sigma'}), \\ \end{cases} \qquad (2.9)$$

Remark 2.2. Condition (2.9) is in general stronger than

$$\begin{split} &a_{\alpha}^{(j)}(t,x,y) \in C([0,T];H^{s,\epsilon,\sigma} \times H^{s',\epsilon',\sigma'}) \cap C^1(]0,T];H^{s,\epsilon,\sigma} \times H^{s',\epsilon',\sigma'}), \\ &t^q \partial_t a_{\alpha}^{(j)}(t,x,y) \in B([0,T];H^{s,\epsilon,\sigma} \times H^{s',\epsilon',\sigma'}), \quad j+|\alpha|=m, \end{split}$$

but these conditions become equivalent in the case of characteristic roots of constant multiplicity.

Then we have the main result of this paper:

Theorem 2.3. Let the operator P in (1.3) satisfy all the hypotheses (2.5)–(2.9) and the condition (1.4):

$$1 < \sigma < \frac{qr}{qr - 1}.$$

With

$$\sigma' < \sigma, \tag{2.10}$$

let us take

$$f(t, x, y) \in C([0, T]; H^{s-m+1, \epsilon, \sigma} \times H^{s', \epsilon', \sigma'})$$

$$(2.11)$$

such that

$$f(t, x, 0) \in C([0, T]; H^{s-m+1+\eta, \epsilon, \sigma}),$$
 (2.12)

where

$$\eta = \frac{r-1}{qr},\tag{2.13}$$

and moreover suppose that f(t, x, 0) has compact support.

Then there exists a $T_0^* > 0$ such that if $t \leq T_0^*$, then the Cauchy problem (2.4) has a unique solution $u \in C^m([0,T_0^*];H^{s,\epsilon-w(t),\sigma})$, where

$$w(t) = \frac{\lambda}{\delta} t^{\delta}, \tag{2.14}$$

for a $\delta \in (0,1)$ and a large enough parameter λ .

3. Outline of the proof

Firstly we notice that we can always write

$$f(t, x, D^{m-1}u) = f(t, x, 0) + \sum_{|\alpha| < m-1} b_{\alpha}(t, x, D^{m-1}u) D_{t, x}^{\alpha} u,$$

so without loss of generality we can reduce (2.4) to a new Cauchy problem of the type

$$\begin{cases}
P(t, x, D^{m-1}u, D_t, D_x)u(t, x) = f(t, x), & (t, x) \in [0, T] \times \mathbb{R}^n, \\
\partial_t^j u(0, x) = 0, & j = 0, ..., m - 1,
\end{cases} (3.1)$$

where

$$P = D_t^m + \sum_{j=0}^{m-1} \sum_{|\alpha| \le m-j} a_{\alpha}^{(j)}(t, x, D^{m-1}u) D_x^{\alpha} D_t^j$$

and

$$a_{\alpha}^{(j)}(t, x, y) \in C([0, T]; H^{s, \epsilon, \sigma} \times H^{s', \epsilon', \sigma'}), \ j + |\alpha| \le m.$$

By Corollary 2.3, Theorem 2.11 and Corollary 2.8 in [2] the coefficients of the linear operator $P(t, x, D^{m-1}u, D_t, D_x)$ are in $H^{s,\epsilon-w(t),\sigma}$, with w the function defined in (2.14), provided that (2.10) holds and that t is small enough:

$$t \le T^* = \sqrt[\delta]{\frac{\epsilon(2 - 2^{1/\sigma})^{\delta}}{3\lambda}},\tag{3.2}$$

where T^* is independent of the data. Moreover, the composition operator $D^{m-1}u \to a_{\alpha}^{(j)}(t,x,D^{m-1}u)$ maps balls of $\left(H^{s-m+1,\epsilon-w(t),\sigma}\right)^l$ into balls of $H^{s-m+1,\epsilon-w(t),\sigma}$.

Let us fix $\mu > \frac{n}{2}$, a positive number M to be chosen later on, and consider

$$s = \mu + M + m.$$

Take the function w(t) in (2.14), $\epsilon > 0$, $\sigma \ge 1$ and let $r_1 > r_0 > 0$ be real numbers to be fixed at the end of the proof. With E defined by

$$E = \{ u \in C^{m}([0,T]; H^{\mu+m+M,\epsilon-w(t),\sigma}); \\ ||u||_{C^{m-1}([0,T]; H^{\mu+m+M,\epsilon-w(t),\sigma})} \le r_{0}, ||u||_{C^{m}([0,T]; H^{\mu+m+M,\epsilon-w(t),\sigma})} \le r_{1} \},$$

$$(3.3)$$

given $u \in E$ we consider the linear Cauchy problem for the unknown v:

$$\begin{cases}
P(t, x, D^{m-1}u(t, x), D_t, D_x)v(t, x) = f(t, x), & (t, x) \in [0, T] \times \mathbb{R}^n, \\
\partial_t^j v(0, x) = 0, & j = 0, ..., m - 1.
\end{cases}$$
(3.4)

We want to prove Theorem 2.3 by showing that the map

$$S: E \longrightarrow E u \rightarrow v$$
 (3.5)

defined by (3.4) is well defined and has a fixed point provided that $t \leq T_0^*$, with T_0^* depending only on the data and the operator $P(t, x, y, D_t, D_x)$. So we have to prove the following:

Proposition 3.1. Given $u \in E$, consider problem (3.4) under condition (1.4). Take $f \in C([0,T]; H^{\mu+M+1+\eta,\epsilon,\sigma})$, with η given by (2.13).

Then there are positive constants M, λ , δ , T^* not depending on the data such that if $t \leq T^*$, then problem (3.4) has a unique solution

$$v \in C^m([0,T]; H^{\mu+M+m,\epsilon-w(t),\sigma}).$$

Moreover, we can fix $r_1 > r_0 > 0$ depending on the data and find a T_0 depending on the data such that if $t \leq \min\{T^*, T_0\} = T_0^*$, then the unique solution v belongs to E.

The above result of well posedness in Gevrey-Sobolev spaces is equivalent to the well posedness in the usual Sobolev space of the Cauchy problem for the conjugate operator

$$P_{\Lambda} = e^{\Lambda(t,D_x)} P e^{-\Lambda(t,D_x)}$$

with

$$\Lambda(t, D_x) = (\epsilon - w(t)) \langle D_x \rangle^{\frac{1}{\sigma}}.$$
(3.6)

So we need to recall the following result from [8]:

Proposition 3.2. Let $a(t,x,\xi) \in C^k([0,T]; S^{m,\sigma}_{s,\epsilon-w(t)})$ and $\Lambda = \Lambda(t,D_x)$ as in (3.6). Then $a_{\Lambda}(t,x,\xi) \in C^k([0,T]; S^m)$; moreover, for every positive integer ℓ' there are a positive integer $\ell_0 = \ell_0(\ell',\sigma,n)$, $\ell_0 \geq \ell'$ and a constant $c = c(s,\ell',\sigma,k,n) > 0$ such that

$$|a_{\Lambda}|_{C^{k}([0,T];S^{m}_{\ell'})} \le c|a|_{C^{k}([0,T];S^{m,\sigma}_{s,\epsilon-w(t)})}, \quad \ell \ge \ell_{0}.$$
 (3.7)

The organization of the proof is as follows: we factorize the operator $P(t, x, D^{m-1}u(t, x), D_t, D_x)$ using mollified characteristic roots, we reduce problem (3.4) to an equivalent first-order system by means of such a factorization, then we establish an energy estimate for the system and consequently for (3.4). Finally we choose r_1 , r_0 to make the solution v be an element of E. An application of a usual fixed-point scheme completes the proof of Theorem 2.3.

4. The linear problem

Let us consider $u \in E$ defined in (3.3). The first step in the proof of Proposition 3.1 is to give a factorization of the principal part of the operator $P(t, x, D^{m-1}u, D_t, D_x)$. If we compose (2.9) with $y = D^{m-1}u(t, x)$ and use the results by [2] under condition (2.10) we find that the characteristic roots of $P(t, x, D^{m-1}u, D_t, D_x)$ are

$$\lambda_j(t, x, D^{m-1}u, \xi) \in C\Big([0, T]; S^{1, \sigma}_{\mu + M + 1, \epsilon - w(t)}\Big) \cap C^1\Big([0, T]; S^{1, \sigma}_{\mu + M + 1, \epsilon - w(t)}\Big),$$

such that

$$t^q \partial_t \lambda_j(t,x,D^{m-1}u,\xi) \in B\Big([0,T];S^{1,\sigma}_{\mu+M+1,\epsilon-w(t)}\Big)$$

provided that $T \leq T^*$, T^* given by (3.2). We extend the roots on $(-\infty, 0]$ by setting

$$\lambda_j(t, x, D^{m-1}u(t, x), \xi) = \lambda_j(0, x, 0, \xi)$$

if t < 0, and then we introduce the following mollified roots:

$$\tilde{\lambda}_j(t, x, D^{m-1}u(t, x), \xi) = \int \lambda_j(s, x, D^{m-1}u(s, x), \xi) \cdot \rho((t - s)\langle \xi \rangle) \langle \xi \rangle \ ds,$$

where $\rho \in C_0^{\infty}(\mathbb{R})$, $supp \ \rho \subset \mathbb{R}^+, \ 0 \le \rho \le 1, \ \int \rho = 1$. Obviously

$$\begin{cases}
\tilde{\lambda}_{j} - \lambda_{j} \in C\left([0, T]; S_{\mu+M+1, \epsilon-w(t)}^{1, \sigma}\right), \\
\partial_{t}^{k} \tilde{\lambda}_{j} \in C\left([0, T]; S_{\mu+M+1, \epsilon-w(t)}^{k+1, \sigma}\right), k \in \mathbb{N},
\end{cases}$$
(4.1)

but it is easy to see that, for

$$||u||_{C^m([0,T]:H^{\mu+m+M,\epsilon-w(t),\sigma})} \le r_1,$$

we have

$$\begin{cases}
t^{q} \left(\tilde{\lambda}_{j} - \lambda_{j} \right) \in B \left([0, T]; S_{\mu + M + 1, \epsilon - w(t)}^{0, \sigma} \right), \\
t^{q} \partial_{t}^{k} \tilde{\lambda}_{j} \in B \left([0, T]; S_{\mu + M + 1, \epsilon - w(t)}^{k, \sigma} \right), k \in \mathbb{N},
\end{cases} (4.2)$$

with norms uniformly with respect to $u \in E$. A comparison between (4.1) and (4.2) makes clear that it is possible to decrease the orders of $\tilde{\lambda}_j - \lambda_j$ and $\partial_t^k \tilde{\lambda}_j$, but this causes a worsening in the seminorms of these symbols: they are integrable on [0, T] in (4.1) but not in (4.2). This double behavior of the regularized roots becomes very important in the reduction of problem (3.4) to a first-order system, using the two properties (4.1) and (4.2) in different regions of the phase space.

Let us consider now the operator

$$Q = (D_t - \tilde{\lambda}_m) \cdots (D_t - \tilde{\lambda}_1).$$

By (4.1) and (4.2) one has the following factorization of P:

$$P = Q + R,$$

$$R = \sum_{j=0}^{m-1} R_j(t, x, D^{M_0 + m} u, D_x) \langle D_x \rangle^{m-1-j} D_t^j,$$

where for j = 0, ..., m - 1 we have both

$$R_j \in C([0,T]; S^{1,\sigma}_{\mu+M-M_0,\epsilon-w(t)})$$
 (4.3)

and

$$t^{q}R_{j} \in B([0,T]; S^{0,\sigma}_{\mu+M-M_{0},\epsilon-w(t)}),$$
 (4.4)

and where $D^{M_0+m}u$ denotes the vector $(\partial_t^k \partial_x^\beta u)_{k \leq m, k+|\beta| \leq M_0+m}$, with M_0 a positive integer depending only on $m_j = 1, ..., r$ and on the dimension n.

We want to interpolate between (4.3) and (4.4) in order to have R_j , j = 0, ..., m-1 which globally satisfy the estimate

$$||\partial_{\xi}^{\alpha} R_{j}||_{\mu+M-M_{0},\epsilon-w(t),\sigma} \le \frac{c_{r_{1},\alpha}}{t^{1-\delta}} \langle \xi \rangle^{h-|\alpha|}, \ \forall \alpha, \tag{4.5}$$

for every $\delta \in (0,1)$, with $h = h(\delta) \in (0,1)$. To do that, we fix a $\delta \in (0,1)$ and we introduce a separation in the phase space: we use (4.3) when $t^{1-\delta} \langle \xi \rangle^{\gamma} \leq 1$ and (4.4) when $t^{1-\delta} \langle \xi \rangle^{\gamma} \geq 1$, then we choose γ to find the optimal h in (4.5).

For $t^{1-\delta}\langle\xi\rangle^{\gamma} \leq 1$ we have

$$||\partial_{\xi}^{\alpha} R_{j}||_{\mu+M-M_{0},\epsilon-w(t),\sigma} \leq c_{r_{1},\alpha} \langle \xi \rangle^{1-|\alpha|} \leq \frac{c_{r_{1},\alpha}}{t^{1-\delta}} \langle \xi \rangle^{1-\gamma-|\alpha|},$$

whereas for $t^{1-\delta}\langle \xi \rangle^{\gamma} \geq 1$ we have

$$||\partial_{\xi}^{\alpha} R_{j}||_{\mu+M-M_{0},\epsilon-w(t),\sigma} \leq \frac{c_{r_{1},\alpha}}{t^{q}} \langle \xi \rangle^{-|\alpha|} \leq \frac{c_{r_{1},\alpha}}{t^{1-\delta}} \langle \xi \rangle^{\frac{\gamma(q-1+\delta)}{1-\delta}-|\alpha|}.$$

The best choice of γ is given by $1 - \gamma = \frac{\gamma(q-1+\delta)}{1-\delta}$; that is, $\gamma = \frac{1-\delta}{q}$. So

$$h = 1 - \frac{1 - \delta}{q} = \frac{q - 1 + \delta}{q},$$
 (4.6)

and for every $\delta \in (0,1)$ we have

$$t^{1-\delta}R_j \in B\left([0,T]; S_{\mu+M-M_0,\epsilon-w(t),\sigma}^{h,\sigma}\right),$$

with h given by (4.6).

The second step in our proof is to reduce problem (3.4) to an equivalent one for a first-order system. Let us consider $\rho \in (0,1)$ to be fixed later on and define the vector $Z = (z_0, ..., z_{m-1})^t$ by:

and define the vector
$$Z = (z_0, ..., z_{m-1})$$
 by:
$$\begin{cases}
z_0 = \langle D_x \rangle^{m-r+\rho(r-1)} v \\
z_1 = \langle D_x \rangle^{m-r-1+\rho(r-1)} (D_t - \tilde{\lambda}_1) v \\
\vdots \\
z_{m_1-1} = \langle D_x \rangle^{m-r-m_1+1+\rho(r-1)} (D_t - \tilde{\lambda}_{m_1-1}) \cdots (D_t - \tilde{\lambda}_1) v \\
z_{m_1} = \langle D_x \rangle^{m-r-m_1+1+\rho(r-2)} (D_t - \tilde{\lambda}_{m_1}) \cdots (D_t - \tilde{\lambda}_1) v \\
z_{m_1+1} = \langle D_x \rangle^{m-r-m_1+\rho(r-2)} (D_t - \tilde{\lambda}_{m_1+1}) \cdots (D_t - \tilde{\lambda}_1) v \\
\vdots \\
z_{m_1+m_2-1} = \langle D_x \rangle^{m-r-m_1-m_2+2+\rho(r-2)} (D_t - \tilde{\lambda}_{m_1+m_2-1}) \cdots (D_t - \tilde{\lambda}_1) v \\
\vdots \\
z_{m-m_r-1} = \langle D_x \rangle^{m_r-1+\rho} (D_t - \tilde{\lambda}_{m-m_r-1}) \cdots (D_t - \tilde{\lambda}_1) v \\
z_{m-m_r} = \langle D_x \rangle^{m_r-1} (D_t - \tilde{\lambda}_{m-m_r}) \cdots (D_t - \tilde{\lambda}_1) v \\
\vdots \\
z_{m-m_r+1} = \langle D_x \rangle^{m_r-2} (D_t - \tilde{\lambda}_{m-m_r+1}) \cdots (D_t - \tilde{\lambda}_1) v \\
\vdots \\
z_{m-1} = (D_t - \tilde{\lambda}_{m-1}) \cdots (D_t - \tilde{\lambda}_1) v.
\end{cases}$$
(4.7)

By induction on j=0,...,m-1 we get $D_t^j v$ from (4.7), then we apply ∂_x^β for $|\beta|=m-1-j$ and we find that

$$D^{m-1}v = S(t, x, D^{M_0+m-1}u, D_x)Z, (4.8)$$

where

$$S \in B\Big([0,T]; S^{(r-1)(1-\rho),\sigma}_{\mu+M-M_0,\epsilon-w(t)}\Big).$$

We have

$$\begin{cases} (D_t - \tilde{\lambda}_1)z_0 = \langle D_x \rangle z_1 + a_0 z_0 \\ \vdots \\ (D_t - \tilde{\lambda}_{m_1})z_{m_1 - 1} = \langle D_x \rangle^{\rho} z_{m - 1} + a_{m_1 - 1} z_{m_1 - 1} \\ \vdots \\ (D_t - \tilde{\lambda}_m)z_{m - 1} = f - \sum_{j = 0}^{m - 1} R_j(t, x, D^{m + M_0}u, D_x) \langle D_x \rangle^{m - 1 - j} D_t^j v \end{cases}$$

with a_j of order zero for j = 0, ..., m - 1. Thus, the Cauchy problem (3.4) is equivalent to

$$\begin{cases} (\partial_t - iK + A)Z = F, \\ Z(0, x) = 0, \end{cases}$$

$$\tag{4.9}$$

where $K(t, x, D^{m-1}u, \xi)$ is a block diagonal matrix, with blocks K_j , j = 1, ..., r,

$$K_{j} = \begin{pmatrix} \tilde{\lambda}_{m-(m_{j}+\ldots+m_{r})+1} & \langle D_{x} \rangle & \cdots & 0 \\ 0 & \tilde{\lambda}_{m-(m_{j}+\ldots+m_{r})+2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \langle D_{x} \rangle \\ 0 & \cdots & 0 & \tilde{\lambda}_{m-(m_{j}+\ldots+m_{r})+m_{j}} \end{pmatrix},$$

 $A(t,x,D^{m+M_0}u,\xi)=A_1+A_2$ is such that

$$A_1 = (a_{ik}^{(1)}), \quad a_{ik}^{(1)} = \begin{cases} \langle D_x \rangle^{\rho} & (i,k) = (jr+1,jr) \\ 0 & (i,k) \neq (jr+1,jr), \end{cases}$$
(4.10)

$$t^{1-\delta}A_2 \in B\Big([0,T]; S^{h+(r-1)(1-\rho),\sigma}_{\mu+M-M_0,\epsilon-w(t)}\Big), \tag{4.11}$$

and $F = (0, ..., 0, if)^t$. Here and in the following, M_0 still denotes a possibly large integer, but still depending only on n and m_j , j = 1, ..., r.

We minimize now the order of A looking at (4.10) and (4.11); we have to choose ρ as the solution of the equation $\rho = h + (r-1)(1-\rho)$, so

$$\rho = \frac{h+r-1}{r} = \frac{qr-1+\delta}{qr}.\tag{4.12}$$

Thus, in problem (4.9) the remainder A is such that

$$t^{1-\delta}A \in B\Big([0,T]; S^{\rho,\sigma}_{\mu+M-M_0,\epsilon-w(t)}\Big),$$

for ρ as in (4.12).

Consider now the matrix $M(t, x, D^{m-1}u, D_x)$ that diagonalizes K and the new variable V = MZ. Notice that because of the interpolations done we can consider M, $\partial_t M$, M^{-1} to be all in $B([0,T]; S_{\mu+M-M_0,\epsilon-w(t)}^{h,\sigma})$. Problem (4.9) is equivalent to

$$\begin{cases}
LV = \bar{F}, \\
V(0, x) = 0,
\end{cases}$$
(4.13)

where

$$\begin{cases}
L = \partial_t - i\bar{K} + \bar{A}, \\
\bar{K} = \begin{pmatrix} \tilde{\lambda}_1 & \\ & \ddots & \\ & & \tilde{\lambda}_m \end{pmatrix},
\end{cases} (4.14)$$

and $\bar{A}(t, x, D^{m+M_0}u, \xi)$ satisfies again

$$t^{1-\delta}\bar{A} \in B\Big([0,T]; S^{\rho,\sigma}_{\mu+M-M_0,\epsilon-w(t)}\Big).$$
 (4.15)

It is well known that the assumption $\sigma \leq \frac{1}{\rho}$ is necessary to have existence and uniqueness of a local in time solution $V(t,\cdot)$ of problem (4.13) in a Gevrey space of index σ . We have

$$\sigma \leq \frac{1}{\rho} = \frac{qr}{qr-1+\delta} < \frac{qr}{qr-1},$$

so condition (1.4) appears in a natural way. Moreover, for any choice of σ we have the corresponding choice of $\delta \in (0,1)$:

$$\delta = 1 - \left(1 - \frac{1}{\sigma}\right)qr. \tag{4.16}$$

5. Energy estimates

To give an energy estimate for (4.13) we need to prove the following:

Proposition 5.1. Given $u \in E$, consider problem (4.13) for the operator (4.14) under the hypothesis (4.15) and under condition (1.4). There are positive constants M, λ , T^* (λ the parameter in (2.14)) such that for every $V \in C([0,T]; H^{\mu,\epsilon-w(t),\sigma})$, $T \leq T^*$ we have for all $\mu \geq n/2$ the following energy inequality of strictly hyperbolic type:

$$||V(t)||_{\mu,\epsilon-w(t),\sigma}^{2} \le e^{\tilde{c}_{r_{1}}t} \Big[||V(0)||_{\mu,\epsilon,\sigma}^{2} + \int_{0}^{t} ||\bar{F}(\tau)||_{\mu,\epsilon-w(\tau),\sigma}^{2} d\tau \Big]$$
 (5.1)

 $\text{if } t \leq T \leq T^*.$

Proof. It is sufficient to prove (5.1) only for $\mu = 0$ since $\langle D_x \rangle^{\mu} L \langle D_x \rangle^{-\mu}$ satisfies the same hypotheses as L for every μ . Let us introduce the conjugation of L by

$$L_{\epsilon-w(t)} := e^{(\epsilon-w(t))\langle D_x \rangle^{\frac{1}{\sigma}}} L e^{-(\epsilon-w(t))\langle D_x \rangle^{\frac{1}{\sigma}}}.$$

From Proposition 3.2 we have

$$L_{\epsilon-w(t)} = \partial_t - i\bar{K} + \bar{A}_1 + \lambda t^{\delta-1} \langle D_x \rangle^{\frac{1}{\sigma}},$$

where $\bar{A}_1(t, x, D^{m+M_1}u, \xi)$ is such that

$$t^{1-\delta}\bar{A}_1 \in B\Big([0,T]; S^{1/\sigma,\sigma}_{\mu+M-M_1,\epsilon-w(t)}\Big),$$

and where $M_1 \ge M_0$ depends only on a finite number of derivatives we have to consider to perform all the operations we need.

In this way the estimate (5.1) for the operator L is equivalent to the following estimate for $L_{\epsilon-w(t)}$:

$$||V(t)||_0^2 \le e^{\tilde{c}_{r_1} t} \Big[||V(0)||_0^2 + \int_0^t ||L_{\epsilon - w(\tau)} V(\tau)||_0^2 d\tau \Big], \tag{5.2}$$

 $t \in [0,T]$, for every $V \in C^1([0,T];H^1(\mathbb{R}^n))$.

To prove (5.2), let us consider

$$\frac{d}{dt}||V(t)||_{0}^{2} = 2Re\langle V'(t), V(t)\rangle_{0}$$

$$= 2Re\langle i\bar{K}V, V\rangle_{0} - 2Re\langle \left(\bar{A}_{1} + \frac{\lambda}{t^{1-\delta}}\langle D_{x}\rangle^{\frac{1}{\sigma}}\right)V, V\rangle_{0}$$

$$+ 2Re\langle L_{\epsilon-w(t)}V, V\rangle_{0}.$$

Since \bar{K} is real diagonal and thanks to (3.7) we have

$$|Re\langle i\bar{K}V, V\rangle_{0}| \leq c_{r_{1}}||V||_{0}^{2}, |\langle \bar{A}_{1}V, V\rangle_{0}| \leq \frac{\lambda_{r_{1}}}{t^{1-\delta}}\langle\langle D_{x}\rangle^{\frac{1}{\sigma}}V, V\rangle_{0},$$

provided that we have fixed $M > M_1$ with a larger M_1 depending also on μ . Next we fix the constant

$$\lambda > \lambda_{r_1},\tag{5.3}$$

so that $\bar{A}_1 + \frac{\lambda}{t^{1-\delta}} \langle D_x \rangle^{\frac{1}{\sigma}}$ is a positive operator for t > 0. For such a λ we have:

$$\frac{d}{dt}||V(t)||_0^2 \le \tilde{c}_{r_1}||V||_0^2 + ||L_{\epsilon-w(t)}V||_0^2.$$

Conditions (5.3) and (3.2) together give $t \leq T^*$. An application of Gronwall's inequality immediately gives estimate (5.2).

Now, let us come back to problem (3.4). By Proposition 5.1 and looking at (4.8) (where $(r-1)(1-\rho) = \frac{(r-1)(1-\delta)}{qr} < \eta$) we find for (3.4) a solution

$$v \in C^m([0,T]; H^{\mu+m,\epsilon-w(t),\sigma}).$$

The solution is less regular than $u \in C^m([0,T]; H^{\mu+m+M,\epsilon-w(t),\sigma})$, so it is impossible to use a fixed-point scheme.

To obtain a v as regular as u, let us take derivatives ∂_x^{β} in (3.4) for all $|\beta| \leq M$. For $v^{(\beta)} = \partial_x^{\beta} v$ one obtains the equations:

$$\begin{cases}
Pv^{(\beta)} + [\partial_x^{\beta}, P]v^{(0)} = \partial_x^{\beta} f, & (t, x) \in [0, T] \times \mathbb{R}^n, \\
\partial_t^j v^{(\beta)}(0, x) = 0, & j = 0, ..., m - 1,
\end{cases} |\beta| \le M.$$
(5.4)

Defining the functions $v_k^{(\beta)}$ in the same way as the functions z_k in (4.7), k = 0, ..., m - 1, but using the new function $v^{(\beta)}$ instead of $v, |\beta| \leq M$, we obtain

$$V^{(\beta)} = (v_0^{(\beta)}, \dots, v_{m-1}^{(\beta)})^t, \qquad W = \{V^{(\beta)}; |\beta| \le M\}, \tag{5.5}$$

and reducing problem (5.4) to a first-order system we find

$$\begin{cases}
L_0 W = F_0, \\
W(0, x) = 0,
\end{cases}$$
(5.6)

where

$$L_0 = \partial_t - iK_0 + A_0 + HQ,$$

 $-iK_0 + A_0$ is a block diagonal matrix with all blocks equal to $-i\bar{K} + \bar{A}$ in (4.14), and the term HQW represents the commutators $[\partial_x^{\beta}, P]v$ by means of (4.8): H is a matrix of functions,

$$H(t, x, D^{M+m-1}u) \in C^1([0, T]; H^{\mu+1}),$$

whereas Q is a matrix of pseudodifferential operators of order η ,

$$Q(t,x,D^{M_0+m}u,\xi)\in C\Big([0,T];S^{\eta,\sigma}_{\mu+M-M_0,\epsilon-w(t)}\Big).$$

To have by (5.6) a solution v of (3.4) in $C^m([0,T]; H^{\mu+m+M,\epsilon-w(t),\sigma})$ like u, one has to prove the following:

Proposition 5.2. Given $u \in E$, let us consider the Cauchy problem (5.6) under condition (1.4). There are positive constants λ , T^* such that for every $W \in C([0,T]; H^{\mu,\epsilon-w(t),\sigma})$, $T \leq T^*$, $\mu > n/2$, we have the following estimate of strictly hyperbolic type:

$$||W(t)||_{\mu,\epsilon-w(t),\sigma}^{2} \leq e^{\tilde{c}_{r_{1}}t} \Big[||W(0)||_{\mu,\epsilon,\sigma}^{2} + \int_{0}^{t} ||F_{0}(\tau)||_{\mu,\epsilon-w(\tau),\sigma}^{2} d\tau \Big]$$
 (5.7) if $t < T < T^{*}$.

Proof. In repeating the proof of Proposition 5.1, the only new term to control is HQ. It has to be a bounded operator from $H^{\mu+1/\sigma,\epsilon-w(t),\sigma}$ to $H^{\mu,\epsilon-w(t),\sigma}$ uniformly with respect to $u\in E$ defined in (3.3) and $t\in [0,T]$; but this is true for $t\leq T^*$ (see (3.2)) because $H^{\mu+1/\sigma,\epsilon-w(t),\sigma}$ is a Banach algebra:

$$||HQW||_{\mu+1/\sigma,\epsilon-w(t),\sigma} \leq ||H||_{\mu+1/\sigma,\epsilon-w(t),\sigma} \cdot ||QW||_{\mu+1/\sigma,\epsilon-w(t),\sigma}$$

$$\leq \tilde{\tilde{C}}_{r_1}||W||_{\mu,\epsilon-w(t),\sigma}$$

(we recall that we have fixed $\mu > n/2$ from the beginning, and moreover that $\eta < 1/\sigma$). Now the proof of Proposition 5.2 follows from the one of Proposition 5.1.

6. Construction of a fixed-point scheme

Proof of Proposition 3.1. To complete the proof of Proposition 3.1 using Proposition 5.2, we only have to notice that from (4.8) and (5.5) we have

$$\begin{cases}
D^{m-1}v = \bar{S}(t, x, D^{M+M_0+m}u, D_x)W, \\
\bar{S} \in B\left([0, T]; S_{\mu+M-M_0, \epsilon-w(t)}^{\eta, \sigma}\right).
\end{cases} (6.1)$$

So for the function $v \in C^m([0,T]; H^{\mu+m+M,\epsilon-w(t),\sigma})$ corresponding to W in (5.7) we have the following energy estimate:

$$\sum_{j=0}^{m-1} ||\partial_t^j v(t)||_{\mu+m+M-j,\epsilon-w(t),\sigma}^2 \le e^{\tilde{c}_{r_1} t} \int_0^t ||Pv(\tau)||_{\mu+M+\eta+1,\epsilon-w(\tau),\sigma}^2 d\tau, \tag{6.2}$$

for $t \in [0, T]$, if $t \leq T^*$. From (6.2) it follows that

$$||v||_{C^{m-1}([0,T];H^{\mu+m+M,\epsilon-w(t),\sigma})}^2 \le e^{\tilde{c}_{r_1}t} \cdot t||Pv||_{C^0([0,T];H^{\mu+M+\eta+1,\epsilon-w(t),\sigma})}^2,$$

while from

$$D_t^m v + \sum_{j=0}^{m-1} \sum_{|\alpha| \le m-j} a_{\alpha}^{(j)}(t, x, D^{m-1}u) D_x^{\alpha} D_t^j v = f(t, x),$$

and again by (4.7) and (6.1), we have

$$\begin{aligned} &||v||_{C^{m}([0,T];H^{\mu+m+M,\epsilon-w(t),\sigma})}^{2} \\ &\leq ||f||_{C^{0}([0,T];H^{\mu+M+\eta+1,\epsilon-w(t),\sigma})}^{2} + c_{r_{0}}||v||_{C^{m-1}([0,T];H^{\mu+m+M,\epsilon-w(t),\sigma})}^{2}. \end{aligned}$$

Now, we only have to define r_0 , r_1 , r_0 to make $v \in E$ and complete the proof. So let's fix r_0 and r_1 such that

$$\begin{cases}
 r_0 > ||f||_{C^0([0,T];H^{\mu+M+\eta+1,\epsilon-w(t),\sigma})}, \\
 r_1^2 > ||f||_{C^0([0,T];H^{\mu+M+\eta+1,\epsilon-w(t),\sigma})}^2 + c_{r_0}r_0^2;
\end{cases}$$
(6.3)

then for $t \to 0$ there exists a $T_0 \le 1$ such that if $t \le T_0$ we have

$$||v||_{C^{m-1}([0,T];H^{\mu+m+M,\epsilon-w(t),\sigma})} < r_0,$$

and consequently

$$||v||_{C^{m}([0,T];H^{\mu+m+M,\epsilon-w(t),\sigma})}^{2} \le ||f||_{C^{0}([0,T];H^{\mu+M+\eta+1,\epsilon,\sigma})}^{2} + c_{r_{0}}r_{0}^{2} < r_{1}^{2}.$$

The choice of r_0 and r_1 in (6.3) makes the proof of Proposition 3.1 complete.

Proof of Theorem 2.3. Finally, let us come back to the proof of Theorem 2.3. We know now that the mapping (3.5) is well defined. Consider the sequence:

$$\begin{cases} u^{(0)} = 0 \\ u^{(k+1)} = S(u^{(k)}) & k \in \mathbb{N}. \end{cases}$$
 (6.4)

Since f(t, x, 0) is of compact support, the same is uniformly true for all the u_k 's, because they are solutions of linear hyperbolic problems. So, (6.4)

admits a subsequence converging in the space $C^m([0,T]; H^{\mu+m+M-1,\epsilon,\sigma})$ to a solution u of problem (3.1).

By the usual arguments in the energy method, see [11] for example, inequality (6.2) implies that the solution is unique. Theorem 2.3 is completely proved.

References

- [1] M.D. Bronštein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moskov. Mat. Obshch., 41 (1980), 83–99.
- [2] G. Bourdaud, M. Reissig, and W. Sickel, Hyperbolic equations, function spaces with exponential weights and Nemytskij operators, Ann. Mat. Pura Appl., 182 (2003), 409– 455.
- [3] M. Cicognani, The Cauchy problem for strictly hyperbolic operators with non-absolutely continuous coefficients, Tsukuba J. Math., 27 (2003), 1–12.
- [4] M. Cicognani, Coefficients with unbounded derivatives in hyperbolic equations, Math. Nachr., 276 (2004), 31–46.
- [5] F. Colombini, D. Del Santo, and T. Kinoshita, Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1 (2002), 327–358.
- [6] F. Colombini, E. Jannelli, and S. Spagnolo, Well-posedness in Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 291–312.
- [7] K. Kajitani, Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto Univ., 23 (1983), 599-616.
- [8] K. Kajitani, The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci. Math., 110 (1986), 3–48.
- [9] A. Kubo and M. Reissig, C[∞]-well posedness of the Cauchy problem for quasi-linear hyperbolic equations with coefficients non-Lipschitz in time and smooth in space, Banach Center Publications, 60 (2003), 131–150.
- [10] H. Kumano-Go, "Pseudo-Differential Operators," The MIT Press, Cambridge, Massachusetts, and London, England, 1981.
- [11] M. Taylor, "Pseudo Differential Operators," Lecture Notes in Mathematics, Vol. 416, Springer-Verlag, Berlin, (1974).