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Abstract. We consider the Cauchy problem{
P

(
t, x, Dm−1u, Dt, Dx

)
u(t, x) = f(t, x, Dm−1u)

∂j
t u(0, x) = uj(x), j = 0, ..., m − 1,

in [0, T ] × Rn for a quasilinear weakly hyperbolic operator

P
(
t, x, Dm−1u, Dt, Dx

)
= Dm

t +

m−1∑
j=0

∑
|α|=m−j

a(j)
α (t, x, Dm−1u)Dα

x Dj
t

with coefficients a
(j)
α having the first time derivative with singular be-

havior of the type t−q, q > 1, as t → 0.
We show that for t ≤ T ∗

0 , T ∗
0 sufficiently small, given Cauchy data in

a Gevrey class Gσ there exists a unique solution u ∈ Cm−1([0, T ∗
0 ]; Gσ)

provided that σ < qr
qr−1

where r denotes the largest multiplicity of the

characteristic roots.

1. Introduction

Let us start by considering the linear Cauchy problem{
P

(
t, x, Dt, Dx

)
u(t, x) = f(t, x), (t, x) ∈ [0, T ] × Rn,

∂j
t u(0, x) = uj(x), j = 0, ..., m − 1,

(1.1)

for a weakly hyperbolic operator of order m ≥ 2

P = Dm
t +

m−1∑
j=0

∑
|α|≤m−j

a(j)
α (t, x)Dα

xDj
t ,

Dt = −i∂t, Dx = −i∇x, and suppose a
(j)
α ∈ C1([0, T ];Gσ(Rn)), where

Gσ(Rn) = {f(x) : |∂αf(x)| ≤ cαA|α|α!σ, A > 0, α ∈ Zn
+}
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is the Gevrey class of index σ > 1.
In that case we know that the Cauchy problem (1.1) is well posed in Gσ,

without any Levi condition on the lower order terms, for every

σ <
r

r − 1
,

where r denotes the largest multiplicity of the characteristic roots (see for
example [1], [7]). We recall that the Cauchy problem (1.1) is said to be well
posed in a space X of functions on Rn if for every uj ∈ X, f ∈ C([0, T ];X)
it has a unique solution u ∈ Cm−1([0, T ];X).

The problem (1.1) has been widely studied also in the case of coefficients
which are not regular in time, both as regards the modulus of continuity
(starting from [6]) and the singular behavior of the first time derivative of
the coefficients (see [5], [3], [4]). In particular in this second situation the
case of coefficients satisfying

a(j)
α ∈ C1(]0, T ];B∞(Rn)), |∂ta

(j)
α | ≤ cαj

tq
, q ≥ 1, t ∈]0, T ],

for |α| + j = m, has been considered. In [4] it has been proved that if the
characteristic roots are regular in time, then problem (1.1) is well posed in
Gevrey classes of index

σ <
qr

qr − 1
.

Here our aim is to extend this result also to the case of a quasilinear hyper-
bolic Cauchy problem:{

P
(
t, x, Dm−1u, Dt, Dx

)
u(t, x) = f(t, x, Dm−1u), (t, x) ∈ [0, T ] × Rn,

∂j
t u(0, x) = uj(x), j = 0, ..., m − 1,

(1.2)
for an operator

P = Dm
t +

m−1∑
j=0

∑
|α|=m−j

a(j)
α (t, x, Dm−1u)Dα

xDj
t , (1.3)

where Dm−1u = (∂α
t,xu)|α|≤m−1 is a vector in Rl, l = �{α : |α| ≤ m−1}, and

the functions a
(j)
α , f are supposed to have a Gevrey behavior with respect

to the variables x and y = Dm−1u, following [2]. Hereafter we will take the
Cauchy data uj = 0, j = 0, ..., m − 1, without any loss of generality.
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We can prove also in this case the existence and uniqueness of a local in
time solution in Gevrey classes of index

1 < σ < σ0 =
qr

qr − 1
, (1.4)

with a loss of derivatives.
In the case r = 1, m = 2, q = 1, the Cauchy problem (1.2) has already

been considered by [9].

Remark 1.1. Notice that in condition (1.4):
• for q = 1, σ0 = r

r − 1. This is the bound by [7], [1]; it cannot be
improved without assuming any Levi condition on the lower order
terms;

• for r = 1, σ0 = q
q − 1. This is the bound by [5] for strictly hyperbolic

equations, and it is sharp as they proved by means of counterexam-
ples.

It is interesting to notice that in any case the life time T ∗
0 of the solution

is not influenced by the breakdown of ∂ta
(j)
α at t = 0, but only on the non-

linearity of the problem, as we are going to see later on. If the coefficients
are defined also in a left neighborhood of 0, and here they have the same
behavior as in the right neighborhood, then the solution can be extended for
t ≤ 0 into a small interval.

2. Main result

We will state our results on Sobolev-Gevrey-type spaces: for ε > 0, σ ≥ 1
we denote

Hs,ε,σ = {u ∈ Hs(Rn) : eε〈Dx〉
1
σ u(x) ∈ Hs(Rn)}, (2.1)

where 〈ξ〉 stands for
√

1 + |ξ|2, and Hs(Rn) is the usual Sobolev space.
The norm is here defined by

||u||s,ε,σ = ||eε〈Dx〉
1
σ u||s.

The space Hs,ε,σ is a Banach algebra if s > n
2 , so starting from here we always

consider Sobolev spaces of index s > n
2 . These kinds of spaces are such that

Hs,ε,σ ⊂ Gσ, ε > 0. We will have to deal for t ∈ [0, T ] with Sobolev-Gevrey
functions depending on time; so for k ∈ N and for a nonnegative function
ε(t) of the form ε(t) = ε0 − ctδ, t ∈ [0, T ], c, ε0 > 0, we define

Ck([0, T ];Hs,ε(t),σ)
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= {u(t, x) : t → eε(t)〈Dx〉
1
σ ∂j

t u ∈ C([0, T ];Hs−j), j = 0, ..., k}.
In these spaces the norm is

||u||Ck([0,T ];Hs,ε(t),σ) = sup
j=0,...,k

||eε(t)〈Dx〉
1
σ ∂j

t u||C([0,T ];Hs−j).

In this paper we will use the pseudodifferential calculus, so following the
notation of [10], we introduce for m ∈ R the class Sm = Sm(Rn ×Rn) which
is the space of all symbols a(x, ξ) satisfying

|∂α
ξ ∂β

xa(x, ξ)| ≤ cαβ〈ξ〉m−|α|, (2.2)

for every α, β ∈ Zn
+, x, ξ ∈ Rn; this is the limit space as � → +∞ of the

Banach spaces Sm
� that consist of all symbols a(x, ξ) such that

|a|(m)
� = sup

x,ξ
sup

|α|+|β|≤�

|∂α
ξ ∂β

xa(x, ξ)|
〈ξ〉m−|α| < +∞. (2.3)

Moreover, we need to introduce the following classes of Gevrey symbols: for
m ∈ R, σ ≥ 1, ε > 0 we denote

Sm,σ
s,ε (R2n) = {a(x, ξ) : ||∂α

ξ a(·, ξ)||s,ε,σ ≤ cα〈ξ〉m−|α|,∀α},
while for m ∈ R, σ, σ′ ≥ 1, ε, ε′ > 0 we denote

Sm,σ,σ′

s,ε,s′,ε′(R
n × Rl × Rn)

= {a(x, y, ξ) : ||∂α
ξ a(·, ·, ξ)||Hs,ε,σ×Hs′,ε′,σ′ ≤ cα〈ξ〉m−|α|,∀α},

where Hs,ε,σ×Hs′,ε′,σ′
is the tensor product of the spaces Hs,ε,σ and Hs′,ε′,σ′

.
Now, let us consider the Cauchy problem{

P
(
t, x, Dm−1u, Dt, Dx

)
u(t, x) = f(t, x, Dm−1u), (t, x) ∈ [0, T ] × Rn,

∂j
t u(0, x) = 0, j = 0, ..., m − 1,

(2.4)
for the operator (1.3), and assume that the linear operator P

(
t, x, y, Dt, Dx

)
depending on the parameter y has coefficients a

(j)
α (t, x, y) defined on [0, T ]×

Rn × Y , where Y ⊂ Rl is a neighborhood of the origin.
Suppose that P

(
t, x, y, Dt, Dx

)
is a hyperbolic operator with real charac-

teristic roots {λj(t, x, y, ξ)}j=1,..,m and with principal symbol given by

Pm(t, x, y, τ, ξ) =
m∏

j=1

(τ − λj(t, x, y, ξ)). (2.5)
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The roots can always be collected into r ≥ 1 groups Gj , j = 1, ..., r, each
one with mj ≥ 1 elements:

G1 = {λ1, ..., λm1}
G2 = {λm1+1, ..., λm1+m2}
...
Gr = {λm−mr+1, ..., λm}
m1 ≥ m2 ≥ ... ≥ mr ≥ 1, m1 + ... + mr = m,

(2.6)

such that if we take λj , λj′ in the same group it holds that

|λj(t, x, y, ξ) − λj′(t, x, y, ξ)| ≥ c|ξ|, c > 0, j �= j′. (2.7)

Remark 2.1. When G1 ⊇ G2 ⊇ . . . ⊇ Gr, we have an operator with roots
of constant multiplicity, and r is the largest multiplicity. The particular case
of a strictly hyperbolic operator is obtained for r = 1 (so, only one group of
separated roots). If it is not possible to separate the roots, we have r = m
and mj = 1 for all j.

As to the coefficients, we assume

a(j)
α (t, x, y) ∈ B([0, T ];Hs,ε,σ × Hs′,ε′,σ′

), (2.8)

where, for a space of functions X, B([0, T ];X) denotes the space of all func-
tions defined on [0, T ] with values in X that are bounded as functions of
time.

For the characteristic roots we suppose{
λj(t, x, y, ξ) ∈ C([0, T ];S1,σ,σ′

s,ε,s′,ε′) ∩ C1(]0, T ];S1,σ,σ′

s,ε,s′,ε′),
tq∂tλj(t, x, y, ξ) ∈ B([0, T ];S1,σ,σ′

s,ε,s′,ε′), q > 1.
(2.9)

Remark 2.2. Condition (2.9) is in general stronger than

a
(j)
α (t, x, y) ∈ C([0, T ];Hs,ε,σ × Hs′,ε′,σ′

) ∩ C1(]0, T ];Hs,ε,σ × Hs′,ε′,σ′
),

tq∂ta
(j)
α (t, x, y) ∈ B([0, T ];Hs,ε,σ × Hs′,ε′,σ′

), j + |α| = m,

but these conditions become equivalent in the case of characteristic roots of
constant multiplicity.

Then we have the main result of this paper:

Theorem 2.3. Let the operator P in (1.3) satisfy all the hypotheses (2.5)–
(2.9) and the condition (1.4) :

1 < σ <
qr

qr − 1
.
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With
σ′ < σ, (2.10)

let us take
f(t, x, y) ∈ C([0, T ];Hs−m+1,ε,σ × Hs′,ε′,σ′

) (2.11)
such that

f(t, x, 0) ∈ C([0, T ];Hs−m+1+η,ε,σ), (2.12)
where

η =
r − 1
qr

, (2.13)

and moreover suppose that f(t, x, 0) has compact support.
Then there exists a T ∗

0 > 0 such that if t ≤ T ∗
0 , then the Cauchy problem

(2.4) has a unique solution u ∈ Cm([0, T ∗
0 ];Hs,ε−w(t),σ), where

w(t) =
λ

δ
tδ, (2.14)

for a δ ∈ (0, 1) and a large enough parameter λ.

3. Outline of the proof

Firstly we notice that we can always write

f(t, x, Dm−1u) = f(t, x, 0) +
∑

|α|≤m−1

bα(t, x, Dm−1u)Dα
t,xu,

so without loss of generality we can reduce (2.4) to a new Cauchy problem
of the type{

P
(
t, x, Dm−1u, Dt, Dx

)
u(t, x) = f(t, x), (t, x) ∈ [0, T ] × Rn,

∂j
t u(0, x) = 0, j = 0, ..., m − 1,

(3.1)

where

P = Dm
t +

m−1∑
j=0

∑
|α|≤m−j

a(j)
α (t, x, Dm−1u)Dα

xDj
t

and
a(j)

α (t, x, y) ∈ C([0, T ];Hs,ε,σ × Hs′,ε′,σ′
), j + |α| ≤ m.

By Corollary 2.3, Theorem 2.11 and Corollary 2.8 in [2] the coefficients
of the linear operator P

(
t, x, Dm−1u, Dt, Dx

)
are in Hs,ε−w(t),σ, with w the

function defined in (2.14), provided that (2.10) holds and that t is small
enough:

t ≤ T ∗ =
δ

√
ε(2 − 21/σ)δ

3λ
, (3.2)
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where T ∗ is independent of the data. Moreover, the composition operator
Dm−1u → a

(j)
α (t, x, Dm−1u) maps balls of

(
Hs−m+1,ε−w(t),σ

)l
into balls of

Hs−m+1,ε−w(t),σ.
Let us fix µ > n

2 , a positive number M to be chosen later on, and consider

s = µ + M + m.

Take the function w(t) in (2.14), ε > 0, σ ≥ 1 and let r1 > r0 > 0 be real
numbers to be fixed at the end of the proof. With E defined by

E = {u ∈ Cm([0, T ];Hµ+m+M,ε−w(t),σ);
||u||Cm−1([0,T ];Hµ+m+M,ε−w(t),σ) ≤ r0, ||u||Cm([0,T ];Hµ+m+M,ε−w(t),σ) ≤ r1},

(3.3)
given u ∈ E we consider the linear Cauchy problem for the unknown v:{

P
(
t, x, Dm−1u(t, x), Dt, Dx

)
v(t, x) = f(t, x), (t, x) ∈ [0, T ] × Rn,

∂j
t v(0, x) = 0, j = 0, ..., m − 1.

(3.4)
We want to prove Theorem 2.3 by showing that the map

S : E −→ E
u → v

(3.5)

defined by (3.4) is well defined and has a fixed point provided that t ≤ T ∗
0 ,

with T ∗
0 depending only on the data and the operator P (t, x, y, Dt, Dx).

So we have to prove the following:

Proposition 3.1. Given u ∈ E, consider problem (3.4) under condition
(1.4). Take f ∈ C([0, T ];Hµ+M+1+η,ε,σ), with η given by (2.13).

Then there are positive constants M , λ, δ, T ∗ not depending on the data
such that if t ≤ T ∗, then problem (3.4) has a unique solution

v ∈ Cm([0, T ];Hµ+M+m,ε−w(t),σ).

Moreover, we can fix r1 > r0 > 0 depending on the data and find a T0

depending on the data such that if t ≤ min{T ∗, T0} = T ∗
0 , then the unique

solution v belongs to E.

The above result of well posedness in Gevrey-Sobolev spaces is equivalent
to the well posedness in the usual Sobolev space of the Cauchy problem for
the conjugate operator

PΛ = eΛ(t,Dx)P e−Λ(t,Dx)

with
Λ(t, Dx) = (ε − w(t)) 〈Dx〉

1
σ . (3.6)
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So we need to recall the following result from [8]:

Proposition 3.2. Let a(t, x, ξ) ∈ Ck([0, T ];Sm,σ
s,ε−w(t)) and Λ = Λ(t, Dx)

as in (3.6). Then aΛ(t, x, ξ) ∈ Ck([0, T ];Sm); moreover, for every positive
integer �′ there are a positive integer �0 = �0(�′, σ, n), �0 ≥ �′ and a constant
c = c(s, �′, σ, k, n) > 0 such that

|aΛ|Ck([0,T ];Sm
�′ ) ≤ c|a|Ck([0,T ];Sm,σ

s,ε−w(t)
), � ≥ �0. (3.7)

The organization of the proof is as follows: we factorize the operator
P (t, x, Dm−1u(t, x), Dt, Dx) using mollified characteristic roots, we reduce
problem (3.4) to an equivalent first-order system by means of such a factor-
ization, then we establish an energy estimate for the system and consequently
for (3.4). Finally we choose r1, r0 to make the solution v be an element of E.
An application of a usual fixed-point scheme completes the proof of Theorem
2.3.

4. The linear problem

Let us consider u ∈ E defined in (3.3). The first step in the proof of
Proposition 3.1 is to give a factorization of the principal part of the operator
P

(
t, x, Dm−1u, Dt, Dx

)
. If we compose (2.9) with y = Dm−1u(t, x) and use

the results by [2] under condition (2.10) we find that the characteristic roots
of P

(
t, x, Dm−1u, Dt, Dx

)
are

λj(t, x, Dm−1u, ξ) ∈ C
(
[0, T ];S1,σ

µ+M+1,ε−w(t)

)
∩ C1

(
]0, T ];S1,σ

µ+M+1,ε−w(t)

)
,

such that

tq∂tλj(t, x, Dm−1u, ξ) ∈ B
(
[0, T ];S1,σ

µ+M+1,ε−w(t)

)
provided that T ≤ T ∗, T ∗ given by (3.2). We extend the roots on (−∞, 0]
by setting

λj(t, x, Dm−1u(t, x), ξ) = λj(0, x, 0, ξ)
if t < 0, and then we introduce the following mollified roots:

λ̃j(t, x, Dm−1u(t, x), ξ) =
∫

λj(s, x, Dm−1u(s, x), ξ) · ρ((t − s)〈ξ〉)〈ξ〉 ds,

where ρ ∈ C∞
0 (R), supp ρ ⊂ R+, 0 ≤ ρ ≤ 1,

∫
ρ = 1. Obviously λ̃j − λj ∈ C

(
[0, T ];S1,σ

µ+M+1,ε−w(t)

)
,

∂k
t λ̃j ∈ C

(
[0, T ];Sk+1,σ

µ+M+1,ε−w(t)

)
, k ∈ N,

(4.1)
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but it is easy to see that, for

||u||Cm([0,T ];Hµ+m+M,ε−w(t),σ) ≤ r1,

we have  tq
(
λ̃j − λj

)
∈ B

(
[0, T ];S0,σ

µ+M+1,ε−w(t)

)
,

tq∂k
t λ̃j ∈ B

(
[0, T ];Sk,σ

µ+M+1,ε−w(t)

)
, k ∈ N,

(4.2)

with norms uniformly with respect to u ∈ E. A comparison between (4.1)
and (4.2) makes clear that it is possible to decrease the orders of λ̃j −λj and
∂k

t λ̃j , but this causes a worsening in the seminorms of these symbols: they
are integrable on [0, T ] in (4.1) but not in (4.2). This double behavior of the
regularized roots becomes very important in the reduction of problem (3.4)
to a first-order system, using the two properties (4.1) and (4.2) in different
regions of the phase space.

Let us consider now the operator

Q = (Dt − λ̃m) · · · (Dt − λ̃1).

By (4.1) and (4.2) one has the following factorization of P :

P = Q + R,

R =
m−1∑
j=0

Rj(t, x, DM0+mu, Dx)〈Dx〉m−1−jDj
t ,

where for j = 0, ..., m − 1 we have both

Rj ∈ C
(
[0, T ];S1,σ

µ+M−M0,ε−w(t)

)
(4.3)

and
tqRj ∈ B

(
[0, T ];S0,σ

µ+M−M0,ε−w(t)

)
, (4.4)

and where DM0+mu denotes the vector (∂k
t ∂β

xu)k≤m, k+|β|≤M0+m, with M0 a
positive integer depending only on mj = 1, ..., r and on the dimension n.

We want to interpolate between (4.3) and (4.4) in order to have Rj , j =
0, ..., m − 1 which globally satisfy the estimate

||∂α
ξ Rj ||µ+M−M0,ε−w(t),σ ≤ cr1,α

t1−δ
〈ξ〉h−|α|, ∀α, (4.5)

for every δ ∈ (0, 1), with h = h(δ) ∈ (0, 1). To do that, we fix a δ ∈ (0, 1) and
we introduce a separation in the phase space: we use (4.3) when t1−δ〈ξ〉γ ≤ 1
and (4.4) when t1−δ〈ξ〉γ ≥ 1, then we choose γ to find the optimal h in (4.5).



1174 Alessia Ascanelli

For t1−δ〈ξ〉γ ≤ 1 we have

||∂α
ξ Rj ||µ+M−M0,ε−w(t),σ ≤ cr1,α〈ξ〉1−|α| ≤ cr1,α

t1−δ
〈ξ〉1−γ−|α|,

whereas for t1−δ〈ξ〉γ ≥ 1 we have

||∂α
ξ Rj ||µ+M−M0,ε−w(t),σ ≤ cr1,α

tq
〈ξ〉−|α| ≤ cr1,α

t1−δ
〈ξ〉

γ(q−1+δ)
1−δ

−|α|.

The best choice of γ is given by 1 − γ = γ(q−1+δ)
1−δ ; that is, γ = 1 − δ

q . So

h = 1 − 1 − δ

q
=

q − 1 + δ

q
, (4.6)

and for every δ ∈ (0, 1) we have

t1−δRj ∈ B
(
[0, T ];Sh,σ

µ+M−M0,ε−w(t),σ

)
,

with h given by (4.6).
The second step in our proof is to reduce problem (3.4) to an equivalent

one for a first-order system. Let us consider ρ ∈ (0, 1) to be fixed later on
and define the vector Z = (z0, ..., zm−1)t by:

z0 = 〈Dx〉m−r+ρ(r−1)v

z1 = 〈Dx〉m−r−1+ρ(r−1)(Dt − λ̃1)v
...
zm1−1 = 〈Dx〉m−r−m1+1+ρ(r−1)(Dt − λ̃m1−1) · · · (Dt − λ̃1)v
zm1 = 〈Dx〉m−r−m1+1+ρ(r−2)(Dt − λ̃m1) · · · (Dt − λ̃1)v
zm1+1 = 〈Dx〉m−r−m1+ρ(r−2)(Dt − λ̃m1+1) · · · (Dt − λ̃1)v
...
zm1+m2−1 = 〈Dx〉m−r−m1−m2+2+ρ(r−2)(Dt − λ̃m1+m2−1) · · · (Dt − λ̃1)v
...
zm−mr−1 = 〈Dx〉mr−1+ρ(Dt − λ̃m−mr−1) · · · (Dt − λ̃1)v
zm−mr = 〈Dx〉mr−1(Dt − λ̃m−mr) · · · (Dt − λ̃1)v
zm−mr+1 = 〈Dx〉mr−2(Dt − λ̃m−mr+1) · · · (Dt − λ̃1)v
...
zm−1 = (Dt − λ̃m−1) · · · (Dt − λ̃1)v.

(4.7)
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By induction on j = 0, ..., m − 1 we get Dj
t v from (4.7), then we apply ∂β

x

for |β| = m − 1 − j and we find that

Dm−1v = S(t, x, DM0+m−1u, Dx)Z, (4.8)

where

S ∈ B
(
[0, T ];S(r−1)(1−ρ),σ

µ+M−M0,ε−w(t)

)
.

We have

(Dt − λ̃1)z0 = 〈Dx〉z1 + a0z0
...
(Dt − λ̃m1)zm1−1 = 〈Dx〉ρzm−1 + am1−1zm1−1
...

(Dt − λ̃m)zm−1 = f −
m−1∑
j=0

Rj(t, x, Dm+M0u, Dx)〈Dx〉m−1−jDj
t v

with aj of order zero for j = 0, ..., m− 1. Thus, the Cauchy problem (3.4) is
equivalent to {

(∂t − iK + A)Z = F,
Z(0, x) = 0,

(4.9)

where K(t, x, Dm−1u, ξ) is a block diagonal matrix, with blocks Kj , j =
1, ..., r,

Kj =


λ̃m−(mj+...+mr)+1 〈Dx〉 · · · 0

0 λ̃m−(mj+...+mr)+2
. . .

...
...

. . . . . . 〈Dx〉
0 · · · 0 λ̃m−(mj+...+mr)+mj

 ,

A(t, x, Dm+M0u, ξ) = A1 + A2 is such that

A1 = (a(1)
ik ), a

(1)
ik =

{
〈Dx〉ρ (i, k) = (jr + 1, jr)
0 (i, k) �= (jr + 1, jr), (4.10)

t1−δA2 ∈ B
(
[0, T ];Sh+(r−1)(1−ρ),σ

µ+M−M0,ε−w(t)

)
, (4.11)

and F = (0, ..., 0, if)t. Here and in the following, M0 still denotes a possibly
large integer, but still depending only on n and mj , j = 1, ..., r.
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We minimize now the order of A looking at (4.10) and (4.11); we have to
choose ρ as the solution of the equation ρ = h + (r − 1)(1 − ρ), so

ρ =
h + r − 1

r
=

qr − 1 + δ

qr
. (4.12)

Thus, in problem (4.9) the remainder A is such that

t1−δA ∈ B
(
[0, T ];Sρ,σ

µ+M−M0,ε−w(t)

)
,

for ρ as in (4.12).
Consider now the matrix M(t, x, Dm−1u, Dx) that diagonalizes K and the

new variable V = MZ. Notice that because of the interpolations done we
can consider M , ∂tM , M−1 to be all in B([0, T ];Sh,σ

µ+M−M0,ε−w(t)). Problem
(4.9) is equivalent to {

LV = F̄ ,
V (0, x) = 0,

(4.13)

where 

L = ∂t − iK̄ + Ā,

K̄ =

 λ̃1

. . .
λ̃m

 ,
(4.14)

and Ā(t, x, Dm+M0u, ξ) satisfies again

t1−δĀ ∈ B
(
[0, T ];Sρ,σ

µ+M−M0,ε−w(t)

)
. (4.15)

It is well known that the assumption σ ≤ 1
ρ is necessary to have existence

and uniqueness of a local in time solution V (t, ·) of problem (4.13) in a
Gevrey space of index σ . We have

σ ≤ 1
ρ

=
qr

qr − 1 + δ
<

qr

qr − 1
,

so condition (1.4) appears in a natural way. Moreover, for any choice of σ
we have the corresponding choice of δ ∈ (0, 1):

δ = 1 −
(
1 − 1

σ

)
qr. (4.16)
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5. Energy estimates

To give an energy estimate for (4.13) we need to prove the following:

Proposition 5.1. Given u ∈ E, consider problem (4.13) for the operator
(4.14) under the hypothesis (4.15) and under condition (1.4). There are pos-
itive constants M , λ, T ∗ (λ the parameter in (2.14)) such that for every
V ∈ C([0, T ];Hµ,ε−w(t),σ), T ≤ T ∗ we have for all µ ≥ n/2 the following
energy inequality of strictly hyperbolic type:

||V (t)||2µ,ε−w(t),σ ≤ ec̃r1 t
[
||V (0)||2µ,ε,σ +

∫ t

0
||F̄ (τ)||2µ,ε−w(τ),σ dτ

]
(5.1)

if t ≤ T ≤ T ∗.

Proof. It is sufficient to prove (5.1) only for µ = 0 since 〈Dx〉µL〈Dx〉−µ sat-
isfies the same hypotheses as L for every µ. Let us introduce the conjugation
of L by

Lε−w(t) := e(ε−w(t))〈Dx〉
1
σ Le−(ε−w(t))〈Dx〉

1
σ .

From Proposition 3.2 we have

Lε−w(t) = ∂t − iK̄ + Ā1 + λtδ−1〈Dx〉
1
σ ,

where Ā1(t, x, Dm+M1u, ξ) is such that

t1−δĀ1 ∈ B
(
[0, T ];S1/σ,σ

µ+M−M1,ε−w(t)

)
,

and where M1 ≥ M0 depends only on a finite number of derivatives we have
to consider to perform all the operations we need.

In this way the estimate (5.1) for the operator L is equivalent to the
following estimate for Lε−w(t):

||V (t)||20 ≤ ec̃r1 t
[
||V (0)||20 +

∫ t

0
||Lε−w(τ)V (τ)||20 dτ

]
, (5.2)

t ∈ [0, T ], for every V ∈ C1([0, T ];H1(Rn)).
To prove (5.2), let us consider

d

dt
||V (t)||20 = 2Re〈V ′(t), V (t)〉0

= 2Re〈iK̄V, V 〉0 − 2Re〈
(
Ā1 +

λ

t1−δ
〈Dx〉

1
σ

)
V, V 〉0

+ 2Re〈Lε−w(t)V, V 〉0.
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Since K̄ is real diagonal and thanks to (3.7) we have

|Re〈iK̄V, V 〉0| ≤ cr1 ||V ||20,
|〈Ā1V, V 〉0| ≤ λr1

t1−δ 〈〈Dx〉
1
σ V, V 〉0,

provided that we have fixed M > M1 with a larger M1 depending also on µ.
Next we fix the constant

λ > λr1 , (5.3)

so that Ā1 + λ
t1−δ 〈Dx〉

1
σ is a positive operator for t > 0. For such a λ we

have:
d

dt
||V (t)||20 ≤ c̃r1 ||V ||20 + ||Lε−w(t)V ||20.

Conditions (5.3) and (3.2) together give t ≤ T ∗. An application of Gronwall’s
inequality immediately gives estimate (5.2). �

Now, let us come back to problem (3.4). By Proposition 5.1 and looking
at (4.8) (where (r − 1)(1 − ρ) = (r−1)(1−δ)

qr < η) we find for (3.4) a solution

v ∈ Cm([0, T ];Hµ+m,ε−w(t),σ).

The solution is less regular than u ∈ Cm([0, T ];Hµ+m+M,ε−w(t),σ), so it is
impossible to use a fixed-point scheme.

To obtain a v as regular as u, let us take derivatives ∂β
x in (3.4) for all

|β| ≤ M . For v(β) = ∂β
xv one obtains the equations:{

Pv(β) + [∂β
x , P ]v(0) = ∂β

xf, (t, x) ∈ [0, T ] × Rn,

∂j
t v

(β)(0, x) = 0, j = 0, ..., m − 1,
|β| ≤ M. (5.4)

Defining the functions v
(β)
k in the same way as the functions zk in (4.7),

k = 0, ..., m − 1, but using the new function v(β) instead of v, |β| ≤ M , we
obtain

V (β) = (v(β)
0 , ..., v

(β)
m−1)

t, W = {V (β); |β| ≤ M}, (5.5)

and reducing problem (5.4) to a first-order system we find{
L0W = F0,
W (0, x) = 0,

(5.6)

where
L0 = ∂t − iK0 + A0 + HQ,
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−iK0 + A0 is a block diagonal matrix with all blocks equal to −iK̄ + Ā in
(4.14), and the term HQW represents the commutators [∂β

x , P ]v by means
of (4.8): H is a matrix of functions,

H(t, x, DM+m−1u) ∈ C1([0, T ];Hµ+1),

whereas Q is a matrix of pseudodifferential operators of order η,

Q(t, x, DM0+mu, ξ) ∈ C
(
[0, T ];Sη,σ

µ+M−M0,ε−w(t)

)
.

To have by (5.6) a solution v of (3.4) in Cm([0, T ];Hµ+m+M,ε−w(t),σ) like u,
one has to prove the following:

Proposition 5.2. Given u ∈ E, let us consider the Cauchy problem (5.6)
under condition (1.4). There are positive constants λ, T ∗ such that for every
W ∈ C([0, T ];Hµ,ε−w(t),σ), T ≤ T ∗, µ > n/2, we have the following estimate
of strictly hyperbolic type:

||W (t)||2µ,ε−w(t),σ ≤ ec̃r1 t
[
||W (0)||2µ,ε,σ +

∫ t

0
||F0(τ)||2µ,ε−w(τ),σ dτ

]
(5.7)

if t ≤ T ≤ T ∗.

Proof. In repeating the proof of Proposition 5.1, the only new term to
control is HQ. It has to be a bounded operator from Hµ+1/σ,ε−w(t),σ to
Hµ,ε−w(t),σ uniformly with respect to u ∈ E defined in (3.3) and t ∈ [0, T ];
but this is true for t ≤ T ∗ (see (3.2)) because Hµ+1/σ,ε−w(t),σ is a Banach
algebra:

||HQW ||µ+1/σ,ε−w(t),σ ≤ ||H||µ+1/σ,ε−w(t),σ · ||QW ||µ+1/σ,ε−w(t),σ

≤ ˜̃Cr1 ||W ||µ,ε−w(t),σ

(we recall that we have fixed µ > n/2 from the beginning, and moreover
that η < 1/σ). Now the proof of Proposition 5.2 follows from the one of
Proposition 5.1. �

6. Construction of a fixed-point scheme

Proof of Proposition 3.1. To complete the proof of Proposition 3.1 using
Proposition 5.2, we only have to notice that from (4.8) and (5.5) we have{

Dm−1v = S̄(t, x, DM+M0+mu, Dx)W,

S̄ ∈ B
(
[0, T ];Sη,σ

µ+M−M0,ε−w(t)

)
.

(6.1)
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So for the function v ∈ Cm([0, T ];Hµ+m+M,ε−w(t),σ) corresponding to W in
(5.7) we have the following energy estimate:

m−1∑
j=0

||∂j
t v(t)||2µ+m+M−j,ε−w(t),σ ≤ ec̃r1 t

∫ t

0
||Pv(τ)||2µ+M+η+1,ε−w(τ),σ dτ,

(6.2)
for t ∈ [0, T ], if t ≤ T ∗. From (6.2) it follows that

||v||2
Cm−1([0,T ];Hµ+m+M,ε−w(t),σ)

≤ ec̃r1 t · t||Pv||2
C0([0,T ];Hµ+M+η+1,ε−w(t),σ)

,

while from

Dm
t v +

m−1∑
j=0

∑
|α|≤m−j

a(j)
α (t, x, Dm−1u)Dα

xDj
t v = f(t, x),

and again by (4.7) and (6.1), we have

||v||2
Cm([0,T ];Hµ+m+M,ε−w(t),σ)

≤ ||f ||2
C0([0,T ];Hµ+M+η+1,ε−w(t),σ)

+ cr0 ||v||2Cm−1([0,T ];Hµ+m+M,ε−w(t),σ)
.

Now, we only have to define r0, r1, T0 to make v ∈ E and complete the
proof. So let’s fix r0 and r1 such that{

r0 > ||f ||C0([0,T ];Hµ+M+η+1,ε−w(t),σ),

r2
1 > ||f ||2

C0([0,T ];Hµ+M+η+1,ε−w(t),σ)
+ cr0r

2
0;

(6.3)

then for t → 0 there exists a T0 ≤ 1 such that if t ≤ T0 we have

||v||Cm−1([0,T ];Hµ+m+M,ε−w(t),σ) < r0,

and consequently

||v||2
Cm([0,T ];Hµ+m+M,ε−w(t),σ)

≤ ||f ||2C0([0,T ];Hµ+M+η+1,ε,σ) + cr0r
2
0 < r2

1.

The choice of r0 and r1 in (6.3) makes the proof of Proposition 3.1 complete.
�

Proof of Theorem 2.3. Finally, let us come back to the proof of Theorem
2.3. We know now that the mapping (3.5) is well defined. Consider the
sequence: {

u(0) = 0
u(k+1) = S(u(k)) k ∈ N.

(6.4)

Since f(t, x, 0) is of compact support, the same is uniformly true for all the
uk’s, because they are solutions of linear hyperbolic problems. So, (6.4)
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admits a subsequence converging in the space Cm([0, T ];Hµ+m+M−1,ε,σ) to
a solution u of problem (3.1).

By the usual arguments in the energy method, see [11] for example, in-
equality (6.2) implies that the solution is unique. Theorem 2.3 is completely
proved. �
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