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Abstract. We prove perturbation theorems for sectoriality and R–
sectoriality in Banach spaces, which yield results on perturbation of
generators of analytic semigroups and on perturbation of maximal Lp–
regularity. For a given sectorial or R–sectorial operator A in a Banach
space X we give conditions on intermediate spaces Z and W such that,
for an operator S : Z → W of small norm, the perturbed operator
A + S is again sectorial or R–sectorial, respectively. These conditions
are obtained by factorising the perturbation as S = −BC, where B
acts on an auxiliary Banach space Y and C maps into Y . Our results
extend previous work on perturbations in the scale of fractional domain
spaces associated with A and allow for a greater flexibility in choosing
intermediate spaces for the action of perturbation operators. At the end
we illustrate our results with several examples, in particular with an
application to a “rough” boundary-value problem.

1. Introduction

Perturbation theorems are of fundamental importance in the applications
of semigroup theory to, e.g., partial differential equations, transport equa-
tions, delay equations, population dynamics, or control theory (cf., e.g.,
[2, 10]). In particular, when studying parabolic problems, there is a natural
interest in perturbation results for generators of analytic semigroups and on
maximal Lp-regularity, which in turn can be obtained from more general
results for sectorial and R-sectorial operators.

The standard example of such a perturbation theorem is the following.
Given that −A generates an analytic semigroup, then also −A + S does,
whenever S : D(A) → X is a linear operator that is A–small. A different
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class of admissible perturbations S is obtained by making use of the so-
called extrapolation space R−1 := (X, ‖(1 + A)−1 · ‖)∼ (see Section 2). If
the semigroup generated by −A is bounded analytic, and the operator S :
X → R−1 has sufficiently small norm, then also the semigroup generated by
−(A + S) is bounded analytic. Here by A + S := (A−1+S)X we mean the
part in X of A−1+S, where A−1 is the extrapolated version of A in R−1.

As a kind of intermediate cases to the two examples above, in [17] per-
turbations S : Dθ → Rθ−1 in the scale of fractional domain spaces have
been studied. Here we let θ ∈ (0, 1), Dθ := (D(Aθ), ‖(1 + A)θ · ‖), and
Rθ−1 := (X, ‖(1 + A)θ−1 · ‖)∼ (see end of Section 2). The results in [17]
may be viewed as a Banach space version of the well-known method of form-
bounded perturbations in Hilbert space.

In this paper we will extend the results from [17] to a more general setting,
allowing a greater variety of perturbing operators. Our considerations are
based on a key observation (Lemma 3.3) which was inspired by the study
of feedback in infinite-dimensional linear control systems. This basic idea,
i.e., the underlying representation of the resolvent of the perturbed operator,
is very simple (cf. Section 3). It uses assumptions on the composition of
resolvents of A with two additional operators C and B, which are assumed
to act linearly E → Y and Y → G, respectively. Here Y is an auxiliary
Banach space and E, G are intermediate spaces (without topology) in a grid
of extrapolation spaces associated with A. In linear systems theory, B would
be a control operator and C an observation operator. The perturbation S
is then given as S = −BC (a very simple feedback situation is presented in
Example 7.4). In order to give a precise meaning to the spaces E and G
mentioned above, we prefer to give a detailed presentation (cf. Section 2) of
the extrapolation spaces associated with a sectorial operator (which differs in
some aspects from, e.g., [2, 10]). The general setup for perturbations (Section
3) is a natural analogue of the usual setup for an A–small perturbation S
where A is non-invertible. Of course, the additional assumption 0 ∈ ρ(A)
leads to simplifications, but recent progress has shown the significance of
using scales of homogeneous spaces (e.g., in [18], [14], implicitly already in
[17]). In particular, we introduce homogeneous counterparts Ḋ and Ṙ of
D := D1 and R−1, respectively, and require Ḋ ∩ X ⊂ E ⊂ Ḋ + X and
X ∩ Ṙ ⊂ G ⊂ X + Ṙ. Moreover, we study the case of sectorial operators A
which are injective but not densely defined. This requires a modification in
the above definition of extrapolation spaces.

The main new feature of our work is that the estimates in the hypothesis
of Lemma 3.3 can be characterised by means of real interpolation spaces (cf.
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Section 4). On the one hand, this leads to manageable criteria on pertur-
bations via a detailed study of the intermediate spaces D1 ⊂ Z ⊂ X and
X ⊂ W ⊂ R−1, which we may allow for a norm-small continuous action of
the perturbation operator S : Z → W in order to obtain (R−) sectoriality of
the perturbed operator A + S. These can be checked in concrete situations
(cf. our main results in Section 5). Our study includes real and complex
interpolation spaces for the pairs (Ḋ, X) and (X, Ṙ), but the method also
yields new proofs for the known results mentioned above. On the other
hand, the estimates are preserved for the perturbed operator A + S, and
the characterisations in Section 4 lead to persistence results on certain real
interpolation spaces, e.g., (X, D(A))σ,q = (X, D(A + S))σ,q for all σ ∈ (0, θ)
and q ∈ [1,∞] if the perturbation S acts Dθ → Rθ−1 and θ ∈ (0, 1). These
results are new even for the perturbations studied in [17] and may also serve
as justification of our approach. We remark that all that is known on persis-
tence of fractional domains D(Aσ) = D((A + S)σ) or complex interpolation
spaces [X, D(A)]σ = [X, D((A+S)σ)]σ is much more involved and only valid
under additional assumptions on the operator A (cf. [29], [14]).

We present our main results on perturbation of sectorial operators in
Section 5 (Theorems 5.1, 5.3 and 5.5): If θ ∈ (0, 1) and (Ḋ, X)θ,1 ⊆ Z ⊆
(Ḋ, X)θ,∞, W := (A−1(Z), ‖(A−1)−1 · ‖Z) and the part AZ of A−1 in Z is
sectorial, then sectoriality persists under norm-small perturbations Z → W
(Theorem 5.3). If AZ is densely defined and the perturbation is compact then
a suitable translate of the perturbed operator is sectorial again (Theorem
5.5). In particular, we may take as Z domains of fractional powers, real or
complex interpolation spaces (Remarks 5.6).

Furthermore, we study in this paper perturbation of R–sectorial opera-
tors. In Section 6 we recall the definition of maximal Lp-regularity and the
connection with R-sectoriality. An (almost obvious) modification of our key
observation (Lemma 3.3) leads to an analog for R-sectoriality (Proposition
6.5). It turns out that the R–boundedness assumptions in Proposition 6.5
cannot be characterised by interpolation spaces in a way similar to what is
done in Section 4. This is due to the fact that the role of the space Y is
now more significant (Remark 6.7 and Example 6.13). Nevertheless, we ob-
tain several intermediate spaces Z and W such that, for a given R-sectorial
operator A, a continuous action S : Z → W with small norm leads to R-
sectoriality of (A−1+S)X (Theorems 6.11 and 6.12). In the final Section 7
we present examples that illustrate our results and show how they extend
existing perturbation theorems, e.g., those of [17]. We point out that, for
R–sectoriality, Proposition 6.5 may still be applied in some situations which
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are not covered by Theorems 6.11 and 6.12 (Example 6.13), and we give an
application to “rough” boundary-value problems (Example 7.12).

We conclude this introduction with the following two remarks. First, in
this paper we concentrate on perturbations with small norm in the sense of
‖Bx‖ ≤ η‖Ax‖, η small. This is the interesting case, since perturbations B
satisfying ‖Bx‖ ≤ η‖Ax‖ + b‖x‖, with η being small, also satisfy the first
condition for ν+A in place of A for ν large. Second, it is well known (cf. [7])
that in a reflexive space, compact perturbations may be studied by resorting
to perturbations of small norm. Since our main interest in Section 6 are
UMD spaces (which are reflexive), we do not state a theorem on compact
perturbations for R–sectoriality.
Notation: If X and Y are Banach spaces, we write X ↪→ Y if X ⊂ Y
and the inclusion is continuous. The set of all bounded operators from
X to Y shall be denoted by B(X, Y ), for the norm in B(X, Y ) we write
‖ · ‖X→Y . For a linear operator A on a Banach space X, we denote by D(A)
its domain, by R(A) its range, and by N (A) its kernel. If Z is a subspace
of X, then AZ shall denote the part of A in Z, i.e. A restricted to the set
{x ∈ Z ∩ D(A) : Ax ∈ Z}. The resolvent set of a linear operator A on X is
denoted by �(A) and its spectrum by σ(A).

For 0 < ω ≤ π we denote by Sω := {z = reiϕ : r > 0, |ϕ| < ω} the open
sector of angle 2ω, symmetric about the positive real axis. In addition we
define S0 := (0,∞).

2. Extrapolation Spaces for Sectorial Operators

In this section we construct what is called extrapolation spaces associated
with an injective sectorial operator. The relevance of extrapolation scales in
the study of evolution equations is well known (cf., e.g., [2, 10]). Here, we
recast the frame in order to include homogeneous spaces that we need for
our perturbation results.

Let 0 ≤ ω < π. A (possibly unbounded) operator A on a Banach space
X, is called sectorial of type ω if σ(A) ⊂ Sω and for each ν ∈ (ω, π] one has
an estimate

‖λ(λ + A)−1‖X→X ≤ α (λ ∈ Sπ−ν) (2.1)

for some constant α = α(A, ν) < ∞. The minimum of all such ω ∈ [0, π) is
called the sectoriality angle of A. An operator A which is sectorial of some
type, is simply called a sectorial operator. In the literature, sectorial oper-
ators are sometimes called non-negative, sometimes pseudo-sectorial. One
can consult [20] for elementary properties of sectorial operators. It is well
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known (see [4, Theorem 3.8]) that for a densely defined sectorial operator
one has N (A) ∩ R(A) = 0, whence a densely defined sectorial operator (in
our definition) with dense range is always injective. Moreover, if X is a
reflexive Banach space, then the domain D(A) of a sectorial operator A is
automatically dense in X.

Let A be an injective sectorial operator. Then the operator A−1 with
domain D(A−1) = R(A) is also sectorial (even of the same type), and one
has the formula

λ(λ + A−1)−1 = I − 1
λ

( 1
λ

+ A
)−1

(λ ∈ Sπ−ω).

We can consider the following natural spaces:
• D := D1 := D(A) with norm ‖x‖D := ‖(1 + A)x‖.
• R := R1 := R(A) with norm ‖x‖R := ‖(1 + A−1)x‖.
• D ∩R := D(A)∩R(A) with the norm ‖x‖D∩R = ‖(2 + A + A−1)x‖.
• D2 := D(A2) with the norm ‖x‖D2 = ‖(1 + A)2x‖.
• R2 := R(A2) = D(A−2) with the norm ‖x‖R2 = ‖(1 + A−1)2x‖.

This amounts to the following picture:

X

D

���������
R

���������

D2

��������
D ∩ R

���������

���������

R2

�������

1+A
��������� A ��

Here a downward meeting of two lines means intersection and an upward
meeting of two lines means sum of the spaces. E.g., X = D + R and D =
D2 + (D ∩ R). The operator A + 1 acts as an isometric isomorphism in
the ↗-direction, i.e., D2

A+1→ D
A+1→ X or D ∩ R

A+1→ R. (One can replace
A + 1 by A + λ for each λ > 0, but then the isomorphisms cease to be
isometric.) Furthermore, the operator A acts as an isometric isomorphism
in the →-direction, e.g., D

A→ R or D2
A→ D ∩ R.

We now enlarge this picture by some “extrapolation spaces” embedding
X into a new space X−1. In order to do so, we note that the operator
T := A(1 + A)−2 : X −→ D ∩ R is an isometric isomorphism. Hence, by
abstract nonsense, we can construct a Banach space X−1 and an embedding
ι : X −→ X−1 together with an isometric isomorphism T−1 : X−1 −→ X
making the diagram
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X−1
T−1 ��				 X

X

ι

��

T �� D ∩ R

commute. Without restriction we can assume that X ⊂ X−1 and ι is in fact
the inclusion mapping. This implies that T can be regarded as the restriction
of T−1 to X. Within X−1 we will consider the following spaces:

• D−1 := [T−1]−1(D) with the norm ‖u‖D−1 = ‖T−1u‖D.
• R−1 := [T−1]−1(R) with the norm ‖u‖R−1 = ‖T−1u‖R.

Thus, the triple (X−1, D−1, R−1) is just the “pullback” of (X, D, R) under
T−1. We therefore can define an operator A−1 : D−1 −→ R−1 by

A−1 := [T−1]−1AT−1 : D−1
T−1→ D

A→ R
[T−1]−1

→ R−1.

Since T−1 restricts to T within X and T : X −→ D ∩ R is an isomorphism,
we have X = D−1 ∩ R−1. We thus arrive at the following situation:

X−1

D−1











R−1

���������

T−1

��
X












���������

D

����������
R



D2

��������
D ∩ R

����������


R2

��������

Lemma 2.1. Consider the operator A−1 as an operator in X−1, with D(A−1)
= D−1 and R(A−1) = R−1. Then A−1 is a sectorial operator isomet-
rically similar to A. Since D ⊂ X ⊂ D−1 one can restrict A−1 to D
and obtains A−1

∣∣
D

= A. Moreover, one has T−1 = A−1(1 + A−1)−2 and
(1 + A−1) : X −→ R−1 is an isometric isomorphism.

Proof. The proof is easy. �
We call the space R−1 the first extrapolation space with respect to the

operator A. (Observe that often, e.g. in [10], the first extrapolation space
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is denoted by X−1, and that we reserved this notation for a different space.)
Similarly, D−1 is the first extrapolation space with respect to A−1.

Let us now introduce the following spaces:
• Ḋ := [T−1]−1(D2) with norm ‖u‖Ḋ = ‖T−1u‖D2 .
• Ṙ := [T−1]−1(R2) with norm ‖u‖Ṙ = ‖T−1u‖R2 .

Since D2 ⊂ D and R2 ⊂ R we have Ḋ ⊂ D−1 and Ṙ ⊂ R−1.

Lemma 2.2. The following statements hold:

a) The operators Ḋ
A−1→ X

A−1→ Ṙ are isometric isomorphisms.

b) D ⊂ Ḋ and ‖x‖Ḋ = ‖Ax‖ for x ∈ D.

c) D = Ḋ ∩ X and Ḋ + X = D−1.

Analogous results hold for the triple (R−1, X, Ṙ). Here, R ⊂ Ṙ and
‖x‖Ṙ = ‖A−1x‖ for x ∈ R. Moreover, Ṙ = A−1(X). The spaces Ḋ, Ṙ
are called the homogeneous spaces associated to the operator A. We can
depict the situation as follows:

X−1

D−1











R−1

���������

Ḋ

��������
X












���������

Ṙ

��������

D













���������

R

���������

����������

D2

��������
D ∩ R

����������


R2

��������

T−1

��

A−1+1
��������� A−1 ��

If D(A) is dense in X, then all inclusions in the ↗-direction are dense. If
R(A) is dense, then all inclusions in the ↖-direction are dense.

Within this array of spaces we can define inhomogeneous and homoge-
neous fractional domain spaces. These arise naturally when we consider the
fractional powers [A−1]θ = [T−1]−1AθT−1 of the operator A−1 for 0 < θ < 1.
We obtain the spaces

• Dθ := D(Aθ) with norm ‖u‖Dθ
= ‖(1 + A)θu‖,
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• Rθ := R(Aθ) = D(A−θ) with norm ‖u‖Dθ
= ‖(1 + A−1)θu‖

(inhomogeneous), and
• Ḋθ := [A−1]−θ(X) with norm ‖u‖Ḋθ

= ‖[A−1]θu‖X ,
• Ṙθ := [A−1]θ(X) with norm ‖u‖Ḋθ

= ‖[A−1]−θu‖X

(homogeneous). Note that, e.g., Ḋθ ∩X = Dθ, and that [A−1]θ acts isomet-
rically in the horizontal direction (cf. the picture below).

Finally, we introduce for 0 < θ < 1 the extrapolated fractional domain
spaces

• Rθ−1 := (1+A−1)Dθ with norm
‖u‖Rθ−1

:= ‖(1+A−1)−1u‖Dθ
= ‖(1+A−1)θ−1u‖X ,

• D−θ := (1+A−1
−1)R1−θ with norm

‖u‖D−θ
:= ‖(1+A−1

−1)
−1u‖R1−θ

= ‖(1+A−1
−1)

−θu‖X .
We end up with the following picture.

D−1 R−1

D−θ

��������

Rθ−1

���������

Ḋθ

��������
X

��������

��������
Ṙ1−θ

��������

Dθ

���������

��������
R1−θ

���������

��������

D

���������
R

���������

In the case that A is densely defined, the space Rθ−1 can be obtained
by completing the space X with respect to the norm ‖[1 + A]θ−1u‖X . If A

has dense range, the homogeneous spaces Ḋθ can be obtained by completing
the space D with respect to the homogeneous norm ‖Aθu‖X . This is the
situation considered in [17].

More about extrapolation spaces can be found in [13, Appendix].

3. A Setting for Perturbation

We start with an easy lemma from linear algebra which may be well
known. We omit its elementary proof.
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Lemma 3.1. Let V, W be vector spaces and S : V −→ W , T : W −→ V
linear mappings such that I − ST : W −→ W is invertible. Then also
I − TS : V −→ V is invertible with

(I − TS)−1 = I + T (I − ST )−1S.

Let us now describe the setup of our main lemma. Let A be an injective
sectorial operator on the Banach space X. We choose a constant α ≥ 0 such
that (2.1) holds (for ν = π, to begin with). Assume that we are given a
vector space E (no topology!) with the following properties:

a) D ⊂ E ⊂ D−1, and

b) E is invariant under (λ + A−1)−1 for all λ > 0.

We form the spaces F := A−1E and Ẽ := E + F . By (a), F is intermediate
between R and R−1. We then have E ∩ F ⊂ D−1 ∩ R−1 = X. Moreover,

E
(λ+A−1)−→ E + F = Ẽ and E ∩ F

(λ+A−1)−→ F

are algebraic isomorphisms. We obtain the following diagram:

D−1 Ẽ R−1

E












X














�
�

�
�

�









�
�

�
�

� F

����������

D E ∩ F



����������
R

We use different types of lines for the inclusions in order to indicate that
spaces where different types of lines meet are not necessarily the sum (the
intersection, respectively) of the involved other spaces. This is to say that
it may well be that D = E ∩ X = E ∩ F = X ∩ F = D, X = D−1 ∩ Ẽ = E,
X + F = Ẽ and so on.

Suppose now in addition that we are given a Banach space Y and linear
operators C : E −→ Y, B : Y −→ Ẽ ∩ R−1 such that for some 0 ≤ η < 1 we
have ∥∥C(λ + A−1)−1B

∥∥
Y →Y

≤ η (λ > 0). (3.1)

(Note that B has to map Y to Ẽ in order that C(λ + A−1)−1B : Y → Y

is meaningful.) We will use the abbreviation P̃ := A−1 − BC, which is an
operator defined on D(P̃ ) := E.
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Lemma 3.2. In the situation described above, the operator λ+ P̃ : E −→ Ẽ
is an algebraic isomorphism for each λ > 0, and its inverse is given by

Rλ :=
{
I + (λ + A−1)−1 B [I − C(λ + A−1)−1B]−1 C

}
(λ + A−1)−1. (3.2)

If one in addition has B : Y −→ F and ‖C[A−1]−1B‖Y →Y < 1 then the
operator P̃ : E −→ F is an algebraic isomorphism with inverse

P̃−1 =
{
I + (A−1)−1 B [I − C(A−1)−1B]−1 C

}
(A−1)−1.

Proof. Let us write for short Vλ := C (λ+A−1)−1B. Then, by the standard
Neumann series argument the operator I−Vλ = I−C(λ+A−1)−1B : Y −→
Y is invertible with its inverse satisfying

∥∥(I − Vλ)−1
∥∥

Y →Y
≤ 1

1 − η
. (3.3)

Lemma 3.1 applied to the data V := E, W = Y, S = C, and T = (λ +
A−1)−1B, yields that the operator I−(λ+A−1)−1BC : E −→ E is invertible.
We now write λ+(A−1−BC) = (λ+A−1)(I−(λ+A−1)−1BC). The second
factor is an algebraic isomorphism on E, the first is an algebraic isomorphism
from E to Ẽ, whence the product is an algebraic isomorphism from E onto
Ẽ. The inverse is computed by taking inverses separately and reversing the
order. To compute the inverse of the second factor, we use again Lemma
3.1. This proves the first statement.

The proof of the second statement is quite similar. All we have to do is
to take λ = 0 and F instead of Ẽ in the above considerations. �

We illustrate the whole situation with a picture:
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D−1 Ẽ R−1

Ẽ ∩ R−1

���������

���������

E

C

��

�������������������
X

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

������������













F

����������

D R

Y

B

��

Let us now consider the operator

P := (A−1 − BC)X , D(P ) := {x ∈ X ∩ E : P̃ x ∈ X}
which can be seen as an additive perturbation of the original operator A.
Observe that since B maps into R−1 ∩ Ẽ, the space X is left invariant by
each operator Rλ = (λ + P̃ )−1, λ > 0. Hence, λ + P : D(P ) −→ X is
invertible with (λ + P )−1 = Rλ

∣∣
X

for each λ > 0. We are going to describe
conditions which ensure that P is in fact a sectorial operator on X.

Lemma 3.3. Let A be an injective sectorial operator on the Banach space
X satisfying equation (2.1), and let D(A) ⊂ E ⊂ D−1 be a vector subspace
invariant under the family

(
(λ + A−1)−1

)
λ>0

. Suppose a Banach space Y

and linear mappings C : E −→ Y , B : Y −→ Ẽ ∩ R−1 are given such
that (3.1) holds for some 0 ≤ η < 1. Assume furthermore that there exists
θ ∈ [0, 1] and constants β, γ ≥ 0 such that∥∥λ1−θC(λ + A)−1

∥∥
X→Y

≤ γ and (3.4)∥∥λθ(λ + A−1)−1B
∥∥

Y →X
≤ β (3.5)

for all λ > 0. Then the operator P := (A−1 −BC)
∣∣
X

is a sectorial operator
on X. If A is densely defined, so is P .

Proof. By what we have said above, clearly λ+P is invertible and its inverse
is given by (λ + P )−1 = Rλ

∣∣
X

. To prove sectoriality we have to estimate
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λRλ on X. In order to do this, we use the representation (3.2) and write

λRλ

∣∣
X

= λ(λ+A)−1 +[
λθ(λ+A−1)−1B

] [
I − C(λ+A−1)−1B

]−1
[
λ1−θC(λ+A)−1

]
which yields supλ>0

∥∥λRλ

∥∥
X→X

≤ α + βγ
1−η .

Assume now that A is densely defined. Then the density of D(P ) in X is,
by sectoriality of P and D = X, equivalent to limλ→∞ λRλx = x in X for
each x ∈ D. Choose x ∈ D. In case 0 < θ ≤ 1 we have

λRλx = λ(λ + A)−1x +[
λθ(λ+A−1)−1B

] [
I − C(λ+A−1)−1B

]−1
λ−θ Cλ(λ+A)−1x

Note that λ(λ+A)−1x → x even in D, and that C
∣∣
D

: D −→ Y is bounded,
by (3.4). Hence the second summand tends to 0 in X as λ → ∞ and we are
done. In case θ = 0 a longer argument is needed. In this case one obtains
the inequality ‖Cx‖ ≤ γ‖x‖ for all x ∈ D (see the proof of Proposition 4.5
below). Since D is dense, C has a unique extension to a bounded operator
C̃ : X → Y such that ‖C̃‖X→Y ≤ γ. Next observe that the whole setup and
also the operator P remains unchanged if we replace C by C̃ and E by X. So
we can assume E = X, C = C̃. Then λ+A1−BC : X −→ R−1 is invertible,
its inverse being the operator Rλ given by (3.2). From that formula one can
deduce that ‖λRλ‖R−1→R−1 stays bounded. In fact,

∥∥λ(λ + A−1)−1
∥∥

R−1→X

is bounded for small λ whereas
∥∥(λ + A−1)−1

∥∥
R−1→X

is bounded for large

λ. All this implies just that P̃ := A−1 − BC is a sectorial operator in R−1

with domain X. But then D(P ) = D(P̃ 2) is dense in X = D(P̃ ). �

Lemma 3.4. Let the situation of Lemma 3.3 be given. If A has dense range
and 0 ≤ θ < 1, then also P has dense range. This is also true for θ = 1 if
X is reflexive. If A is invertible, then P is also and its inverse is given by

P−1 = {I + [A−1]−1 B (I − V0)−1 C}A−1.

If B : Y −→ F and ‖C[A−1]−1B‖Y →Y < 1, then P is injective.

Proof. Assume that A has dense range, i.e., R = X, and that 0 ≤ θ < 1.
Since P is sectorial and A has dense range, it suffices to show that λRλAy →
0 as λ ↘ 0 for each y ∈ D(A) (see [20, Proposition 1.1.3]). Given such y we
write

λRλAy = λ(λ + A)−1Ay +



Perturbation, Interpolation, and Maximal Regularity 213[
λθ(λ + A−1)−1B

] [
I − C(λ + A−1)−1B

]−1
λ1−θ C(λ + A)−1Ay.

Now (λ + A)−1Ay is bounded in D and since C : D → Y is bounded we see
that λRλAy → 0 in X as λ → 0.

Let θ = 1 but assume that X is reflexive. (Note that A must be densely
defined in this case.) Take y ∈ Y . By reflexivity of X, the bounded sequence
(n(n + A−1)−1By)n∈N in X must have a subsequence weakly convergent in
X. However, n(n + A−1)−1By → By in R−1, since A is densely defined.
Therefore, By ∈ X. The closed graph theorem now shows that B : Y → X
is bounded. On the other hand, condition (3.4) implies that C : Ḋ −→ Y is
bounded on D (see Corollary 4.8 below). This means that CA−1 : X → Y is
bounded on R, and since R is dense in X, it extends to a bounded operator
from X to Y . Now

C(λ + A−1)−1B = [CA−1] [A(λ + A)−1]B

and by the density of R in X one has A(λ + A)−1By → By in X as λ → 0
for every y ∈ Y . Condition (3.1) now shows that ‖CA−1B‖Y →Y ≤ η < 1.
Applying Lemma 3.1 yields that I −BCA−1 is an invertible operator on X.
However, it is clear that P = (A−1 −BC)

∣∣
X

= A−BC = (I −B[CA−1])A,
and since A has dense range, P must have dense range also.

Now suppose that A is invertible, i.e., D ⊂ E ⊂ X ⊂ F = Ẽ. We first
ensure that (3.1) still holds for λ = 0. Now C[λ + A−1]−1B −C[A−1]−1B =
−λ C(λ + A)−1[A−1]−1B, whence∥∥C(λ + A−1)−1B − C[A−1]−1B

∥∥
Y →Y

≤
λ

∥∥C
∥∥

D→Y

∥∥(λ + A)−1
∥∥

X→D

∥∥[A−1]−1B
∥∥

Y →X
.

However, this goes to zero as λ ↘ 0 since

‖(λ + A)−1‖X→D = ‖A(λ + A)−1‖X→X ≤ α + 1.

Now we can apply Lemma 3.2 to conclude that P̃ : E −→ F is bijective.
Obviously, X is invariant under P̃−1.

Finally, assume that B maps Y to F and ‖C[A−1]−1B‖Y →Y < 1. Then
one can apply again Lemma 3.2 to conclude that P̃ : E −→ F is bijective.
It follows that P is injective. �

Remark 3.5. We do not know whether in the case θ = 1, P always has
dense range provided that A does.

Up to now, we only cared for sectoriality without considering the precise
angle. The next lemma fills this gap.
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Lemma 3.6. Let ω ∈ (0, π] and let A be sectorial of type < ω. Assume in
the situation of Lemma 3.3 that

‖λ(λ + A)−1‖ ≤ α, λ ∈ Sπ−ω, (3.6)
‖C(λ + A−1)−1B‖ ≤ η, λ ∈ Sπ−ω (3.7)

for some 0 ≤ η < 1 and that E is invariant under ((λ + A−1)−1)λ∈Sπ−ω . If
equations (3.4) and (3.5) hold, then there are β′, γ′ only depending on α, β,
and γ such that∥∥λ1−θC(λ + A)−1

∥∥
X→Y

≤ γ′, λ ∈ Sπ−ω and (3.8)∥∥λθ(λ + A−1)−1B
∥∥

Y →X
≤ β′, λ ∈ Sπ−ω. (3.9)

Moreover, the estimates in Corollary 3.8 hold for λ ∈ Sπ−ω with (β′, γ′) in
place of (β, γ). In particular, P is sectorial of type < ω.

Note that ω = π gives back Lemma 3.3, thanks to our definition of S0.

Proof. One can now reduce the statement to Lemma 3.3 in replacing A by
e±(π−ω′)iA for all ω′ ∈ (ω, π]. The only thing left is to prove existence of
β′ and γ′ with (3.8) and (3.9). But this follows easily from the resolvent
identity. Namely,

|λ|1−θ C(λ + A)−1 − |λ|1−θ C(|λ| + A)−1

= |λ|1−θ C(|λ| + A)−1
[
|λ|
λ −1

]
[λ(λ + A)−1]

for λ ∈ Sπ−ω. Hence one can choose γ′ := γ + 2γα. A similar argument
deals with the expression involving the operator B.

So far these considerations imply that e±(π−ω′)iP is sectorial for all ω′ ∈
(ω, π], but with a uniform sectoriality constant. Then a well-known Taylor-
series argument shows that the type of P must even be strictly less than
ω. �
Remark 3.7. In the case ω < π/2, Lemma 3.6 yields that −P generates a
bounded analytic semigroup in X, provided −A does.

We now make sure that the whole setup for A is reproduced for P . Note
that (λ + P )−1 was just the part of the isomorphism Rλ : E−1 −→ E in X.

Corollary 3.8. In the situation of Lemma 3.6 one has the estimates∥∥λ(λ + P )−1
∥∥

X→X
≤ α +

β′γ′

1 − η
,

∥∥C λ1−θ(λ + P )−1
∥∥

X→Y
≤ γ′

1 − η∥∥λθ Rλ B
∥∥

Y →X
≤ β′

1 − η
,

∥∥C Rλ B
∥∥

Y →Y
≤ η

1 − η
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for λ ∈ Sπ−ω.

Proof. Just apply the representation (3.2) and the original estimates. �

4. Characterisation of the Crucial Conditions by Means of

Interpolation Spaces

We are going to characterise the conditions (3.4) and (3.5) in terms of
interpolation spaces. For this we need a result in abstract interpolation
theory from [12].

Proposition 4.1. Let (X, Y ) be any Banach couple. Then the identities

a) (X + Y, Y )θ,p ∩ X = (X, Y )θ,p ∩ X = (X, X ∩ Y )θ,p,

b) (X + Y, Y )θ,p ∩ (X + Y, X)1−θ,p = (X, Y )θ,p, and

c) (X, X ∩ Y )θ,p + (Y, X ∩ Y )1−θ,p = (X, Y )θ,p

hold for all p ∈ [1,∞], θ ∈ [0, 1].

We now turn to the characterisation of the growth conditions as an-
nounced. Let A be any sectorial operator on a Banach space X. On the
space D(A) we will always use the norm ‖x‖D(A) := ‖x‖+ ‖Ax‖. Of course,
in the notation of Section 2 we have D(A) = D with equivalent norms, but
we stick to the notation “D(A)” for the sake of readability. If A is injec-
tive we will occasionally use the space Ḋ as introduced in Section 2. The
following result is mentioned in a special case in [28, Remark 3.3].

Proposition 4.2. Let A be a sectorial operator on the Banach space X, let
B : Y −→ X be a bounded operator, where Y is another Banach space, and
let θ ∈ [0, 1]. Then the equivalences

R(B) ⊂ (X,D(A))θ,∞ ⇐⇒ sup
λ>1

∥∥λθ(λ + A)−1B
∥∥

Y →D(A)
< ∞

⇐⇒ sup
λ>1

∥∥λθ(λ + A)−1B
∥∥

Y →Ḋ
< ∞

hold, with the latter applying only when A is injective. Furthermore, if A is
injective, then also the equivalences

R(B) ⊂ (X,R(A))1−θ,∞ ⇐⇒ sup
0<λ<1

∥∥λθ(λ + A)−1B
∥∥

Y →X
< ∞

⇐⇒ sup
0<λ<1

∥∥λθ(λ + A)−1B
∥∥

Y →D(A)
< ∞

hold true.
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Proof. First we observe that, by the sectoriality of A, the second biim-
plications in both assertions hold trivially. The first assertion now follows
immediately from the (well-known) characterisation

(X,D(A))θ,∞ = {x ∈ X : sup
λ>1

‖λθA(λ + A)−1x‖ < ∞} (4.1)

(see [19]) and the closed graph theorem. In order to prove the second asser-
tion we write μ = 1

λ and obtain

λθ(λ + A)−1 = μ1−θ 1
μ

( 1
μ

+ A
)−1

= μ1−θA−1(μ + A−1)−1.

We use again (4.1) with A replaced by A−1 and the closed graph theorem
to finish the proof. �
Remark 4.3. Given a bounded operator B : Y → R−1, the infimum of
all θ > 0 for which R(B) ⊂ (X, R−1)θ,∞ is equal to the notion of degree of
unboundedness of B defined in [23].

Combining what we know with Proposition 4.1 we obtain the following
result.

Corollary 4.4. Let A be an injective sectorial operator on the Banach space
X, let B : Y −→ X be a bounded operator, where Y is another Banach space,
and let θ ∈ [0, 1]. Then the condition

sup
0<λ<∞

‖λθ(λ + A)−1B‖Y →D(A) < ∞

is equivalent to R(B) ⊂ (D(A),R(A))1−θ,∞.

Proof. Combining both conditions from Proposition 4.2 yields

R(B) ⊂ (X,D(A))θ,∞ ∩ (X,R(A))1−θ,∞.

Now observe that X = D(A) + R(A) and apply b) of Proposition 4.1. �
Let us turn to the “dual” conditions.

Proposition 4.5. Let A be a sectorial operator on the Banach space X, let
C : D(A) −→ Y be a bounded operator, where Y is a second Banach space,
and let θ ∈ [0, 1]. Then the condition

sup
λ>1

‖λ1−θC(λ + A)−1‖X→Y < ∞ (4.2)

is trivially satisfied if θ = 1. For 0 < θ < 1 it is equivalent to the boundedness
of C : (X,D(A))θ,1 −→ Y on the space D. In the case θ = 0 it is equivalent
to the fact that C (defined on D = D(A)) is bounded for the norm ‖ · ‖X .
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Proof. We choose α such that (2.1) holds for ν = π. Let us start with the
case 0 < θ < 1. If C : (X,D(A))θ,1 −→ X is bounded, we can estimate

‖t1−θC(t + A)−1x‖ ≤ ct1−θ‖(t + A)−1x‖(X,D(A))θ,1

≤ ct1−θ‖(t + A)−1x‖ + ct1−θ

∫ ∞

0

∥∥sθA(s + A)−1(t + A)−1x
∥∥ ds

s

≤ ct−θα + c

∫ ∞

0

∥∥sθ−1A1−θ(1 +
1
s
A)−1t−θAθ(1 +

1
t
A)−1x

∥∥ ds

s

= ct−θα + c

∫ ∞

0

∥∥ϕ1/s(A)ψ1/t(A)x
∥∥ ds

s

for x ∈ X, t > 0 and some constant c, where we have used the notation
ϕ(z) := z1−θ/1 + z and ψ(z) := zθ/1 + z. Using the functional calculus via
the Cauchy integral as in [21] one sees that the second summand is uniformly
bounded in t > 0.

Assume now that (4.2) holds, again under the assumption 0 < θ < 1.
We want to show the boundedness of C : (X,D(A))θ,1 −→ Y , and since
D(A) = D(A + 1), we can assume without restriction that A is invertible
and

c′ := sup
t>0

‖t1−θC(t + A)−1‖ < ∞.

From general interpolation theory (see, e.g. [19, Proposition 1.2.12]) we
know that D(A2) is dense in (X,D(A))θ,1. Let τ(z) := z

(1+z)2
and c :=∫ ∞

0 τ(s−1) ds
s > 0. Then the theory of functional calculus yields

x = c−1

∫ ∞

0
τ(s−1A)x

ds

s

for all x ∈ D(A). So, for x ∈ D(A2) this integral converges in D(A), whence

‖Cx‖ ≤ c−1

∫ ∞

0
‖Cτ(s−1A)x‖ ds

s

= c−1

∫ ∞

0
‖C(1 + s−1A)−1s−1A(1 + s−1A)−1x‖ ds

s

= c−1

∫ ∞

0
‖s1−θC(s + A)−1sθA(s + A)−1x‖ ds

s

≤ c′c−1

∫ ∞

0
‖sθA(s + A)−1x‖ ds

s
≤ c′c−1‖x‖(X,D(A))θ,1

for x ∈ D(A2). Since D(A2) is dense in (X,D(A))θ,1, we obtain the desired
result.
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We are left to deal with the cases θ = 0, 1. It is easily seen that condition
(4.2) with θ = 1 is equivalent to ‖C‖D(A)→Y < ∞. So let θ = 0. If C is
bounded for the norm ‖·‖X then clearly (4.2) holds, by sectoriality of A. For
the converse assume ‖λC(λ + A)−1x‖Y ≤ γ‖x‖ for each x ∈ X and λ > 1.
Let x ∈ D(A). Then

‖Cx‖ = ‖λC(λ + A)−1x‖ + ‖C(λ + A)−1Ax‖ ≤ γ‖x‖ +
1
λ
‖Ax‖

for all λ > 1. Letting λ → ∞ yields ‖Cx‖ ≤ γ‖x‖ for all x ∈ D(A). �

Proposition 4.6. Let A be an injective sectorial operator on the Banach
space X, let C : D(A) −→ Y be a bounded operator, where Y is a second
Banach space, and let θ ∈ [0, 1]. Then the condition

sup
0<λ<1

‖λ1−θC(λ + A)−1‖X→Y (4.3)

is trivially satisfied for θ = 0. In case 0 < θ < 1 it is equivalent to the
boundedness of CA−1 : (X,R(A))1−θ,1 −→ Y on R = R(A). In case θ = 1,
it is equivalent to the boundedness of C : Ḋ −→ Y on D = D(A).

Proof. Assume 0 < θ < 1. Writing μ = 1
λ yields λ1−θC(λ + A)−1 =

λ−θCλ(λ + A)−1 = μθC[I − μ(μ + A−1)−1 = μθ[CA−1](μ + A−1)−1. Now
one can apply Proposition 4.5 with A replaced by A−1 and θ replaced by
1 − θ.

Let us look at the remaining choices for θ. The case θ = 0 being easy,
we assume θ = 1. If C : Ḋ −→ Y is bounded, one has ‖C(λ + A)−1x‖Y ≤
‖C‖Ḋ→Y ‖A(λ+A)−1x‖ ≤ ‖C‖Ḋ→Y (α +1), hence (4.3) follows. Conversely,
suppose ‖C(λ + A)−1x‖ ≤ γ‖x‖ for all x ∈ X and all 0 < λ < 1. Then

‖Cx‖ ≤ λ‖C(λ + A)−1x‖ + ‖C(λ + A)−1Ax‖ ≤ λγ‖x‖ + γ‖Ax‖

for x ∈ D(A). Hence, if we let λ → 0 we obtain ‖Cx‖ ≤ γ‖x‖Ḋ. �

Again, we combine the last two propositions with the abstract interpola-
tion result above.

Corollary 4.7. Let A be an injective sectorial operator on the Banach space
X, let C : D(A) −→ Y be a bounded operator, where Y is another Banach
space, and let θ ∈ [0, 1]. Then the condition

sup
0<λ<∞

‖λ1−θC(λ + A)−1‖X→Y < ∞
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is equivalent to the boundedness of⎧⎪⎨⎪⎩
C : X −→ Y, if θ = 0
C : (X, Ḋ)θ,1 −→ Y, if 0 < θ < 1
C : Ḋ −→ Y, if θ = 1

on D = D(A).

Proof. In the cases θ = 0, 1 this is just a combination of Propositions 4.5
and 4.6. Assume 0 < θ < 1. Since A is injective, it induces a topological
isomorphism A : (Ḋ,D(A)) −→ (X,R(A)) of Banach couples. Hence the
boundedness of CA−1 : (X,R(A))1−θ,1 −→ Y is then equivalent to the
boundedness of C : (Ḋ,D(A))1−θ,1 −→ Y . This yields the boundedness of
C : (X,D(A))θ,1 + (Ḋ,D(A))1−θ,1 −→ Y as a characterisation. However,
part c) of Proposition 4.1 applies and we obtain the identity (X,D(A))θ,1 +
(Ḋ,D(A))1−θ,1 = (X, Ḋ)θ,1 which finishes the proof. �

Let us apply the foregoing to the situation described in Section 3. We will
utilise the following auxiliary notation:

(Ḋ, X)•θ,1 :=

⎧⎪⎨⎪⎩
Ḋ if θ = 0
(Ḋ, X)θ,1 if 0 < θ < 1
X if θ = 1.

Corollary 4.8. Let A be an injective sectorial operator on a Banach space
X. Let Y be another Banach space, C : D −→ Y and B : Y −→ R−1 linear
mappings, and θ ∈ [0, 1]. Then we have the following equivalences:

(1) supλ>0 ‖λθ(λ + A−1)−1B‖Y →X < ∞ if, and only if B : Y −→ R−1

is bounded and R(B) ⊂ (X, Ṙ)1−θ,∞.
(2) supλ>0 ‖λ1−θC(λ+A)−1‖X→Y < ∞ is equivalent to the boundedness

of C : (Ḋ, X)•1−θ,1 −→ Y on the space D.

Proof. The second assertion is just Corollary 4.7. For the first, apply Corol-
lary 4.4 to the operator A−1 on the space R−1 with domain X. �

5. Main Theorems

In this section we combine the results from Section 3 with the characteri-
sations obtained in Section 4. This leads to our main results on perturbation
of sectorial operators: Theorems 5.1 and 5.3 cover perturbations for which
a suitable norm is small, and Theorem 5.5 studies compact perturbations.
The latter is an extension of [7, Theorem 1] which covers the case θ = 1.
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At the end (Remarks 5.6) we give some concrete examples of intermediate
spaces to which our results apply.

Theorem 5.1. Let ω ∈ (0, π] and let A be an injective sectorial operator
of type < ω on a Banach space X. Let θ ∈ [0, 1] and let Z, W ↪→ X−1

be Banach spaces with (Ḋ, X)•1−θ,1 ⊂ Z and W ⊂ (X, Ṙ)1−θ,∞. Moreover,
assume that [A−1]−1 : W −→ Z continuously. Assume either one of the
following two conditions.

(1) A−1 restricts to a sectorial operator of type < ω on Z.
(2) A−1 restricts to a sectorial operator of type < ω on W .

Let Y be another Banach space and B : Y → W , C : Z → Y be bounded
operators. Then, if ‖C‖Z→Y ·‖B‖Y →W is sufficiently small, the operator P̃ =
A−1 −BC (defined originally on Z ∩D−1) restricts to an injective sectorial
operator P of type < ω on X. Furthermore, P is densely defined/invertible
if A is. If A has dense range and θ = 1 or X is reflexive, then also P has
dense range.

Proof. Assume Hypothesis (1). We want to apply the main Lemmas 3.3
and 3.6 with E := Z∩D−1. Clearly, D ⊂ E ⊂ D−1. Furthermore, since Z is
invariant under each operator (λ + A−1)−1 by assumption, also E is. Again
by assumption, [A−1]−1 maps W continuously into Z, but since W ⊂ R−1,
actually [A−1]−1(W ) ⊂ E. In particular one has W ⊂ F := A−1(E) ⊂
Ẽ ∩ R−1. Hence we have indeed B : Y −→ Ẽ ∩ R−1 as required. Corollary
4.8 shows that the growth conditions (3.5) and (3.4) are satisfied for certain
constants β, γ. Therefore, we are left to show the estimate (3.7)

‖C(λ + A−1)−1B‖Y →Y ≤ ‖C‖Z→Y ‖A−1(λ + A−1)−1‖Z→Z

· ‖[A−1]−1‖W→Z‖B‖Y →W

for λ ∈ Sπ−ω and since αZ := supλ∈Sπ−ω
‖A−1(λ + A−1)−1‖Z→Z < ∞ by

assumption, we obtain (3.7) for some 0 < η < 1 whenever ε := ‖C‖Z→Y ·
‖B‖Y →W is small. The estimate ‖C[A−1]−1B‖ ≤ ε‖[A−1]−1‖W→Z < 1
shows that also the last statement of Lemma 3.4 is applicable which implies
that the operator P is in fact injective. The remaining statements also follow
from Lemma 3.4.

Assume Hypothesis (2). Since we can replace W by W + R without
changing anything, we can assume R ⊂ W . Define E := [A−1]−1(W ). Then
D ⊂ E ⊂ Z ∩ D−1 ⊂ D−1 as required and F := A−1E = W . Moreover,
E is (λ + A−1)−1-invariant, since W is (by assumption). Again, Corollary
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4.8 shows that the growth conditions (3.5) and (3.4) are satisfied for certain
constants β, γ. The remaining part of the proof is similar as in the first case.

Note that in both cases one has to check that the part of P̃ = A−1 −BC
(defined on Z ∩ D−1) in X is the same as the part of P̃ (defined on E) in
X. �

Remark 5.2. Let us shortly look at the situation when A is invertible. In
this case X−1 = R−1 = Ṙ, D−1 = X = R and Ḋ = D = D ∩ R. Given the
hypotheses of Theorem 5.1 and replacing (now without restriction ) Z by
Z ∩ X we obtain the picture

D(A) 			 (X,D(A))•θ,1
			 Z 			 X 			 W 			

[A−1]−1

��
(X−1, X)θ,∞ 			 X−1

Y

B

������������
C

��������

where the dashed horizontal lines indicate inclusions. The conclusion of
Theorem 5.1 is that A−1 − BC restricts to an invertible sectorial operator
on X.

We recall (cf. Introduction) that in case θ ∈ (0, 1) it is not known if in our
general situation one can hope for persistence of fractional domain spaces
or complex interpolation spaces for the perturbed operator. It is therefore
most remarkable, that certain real interpolation spaces between X and the
homogeneous spaces Ḋ respectively Ṙ (which we will be denoted by Ḋ(A)
and Ṙ(A) for obvious reasons) coincide with those spaces between X and
the homogeneous spaces given with respect to P (that will be denoted by
Ḋ(P ) and Ṙ(P )).

Theorem 5.3. Let ω ∈ (0, π] and let A be an injective sectorial operator of
type < ω on a Banach space X. Let θ ∈ [0, 1] and let Z be a Banach space
with

(Ḋ, X)•1−θ,1 ↪→ Z ↪→ (Ḋ, X)1−θ,∞. (5.1)

Assume further that A−1 restricts to a sectorial operator of type < ω on
Z. Then for each T ∈ B(Z) with sufficiently small norm the operator P̃ :=
A−1(1 − T ) (defined on Z) restricts to an injective sectorial operator P of
type < ω on X. If A is densely defined/invertible, so is P . If A has dense
range and θ = 1 (or X is reflexive) then also P has dense range. Moreover,
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if θ ∈ (0, 1), then

(X, Ḋ(A))σ,q = (X, Ḋ(P ))σ,q and (Ṙ(A), X)τ,q = (Ṙ(P ), X)τ,q

for every σ ∈ (0, θ), τ ∈ (θ, 1) and q ∈ [1,∞].

Proof. For the first assertion choose W = A−1(Z), Y = Z, C = T and
B = A−1 and apply Theorem 5.1.

For the second assertion let θ ∈ (0, 1). In the sequel we make use of
reiteration for real interpolation spaces and refer e.g. to [25, Section 1.10].

First, set C := IdZ , Y := Z and B := −A−1T . Then the assumptions (3.4)
and (3.5) of Lemma 3.3 (and Corollary 3.8) are satisfied by an application
of Corollary 4.8 to equation 5.1. Thus, we obtain the uniform boundedness
of ‖λ1−θ(λ+P )−1‖X→Z , which, again by Corollary 4.8, yields

(X, Ḋ(P ))θ,1 ↪→ Z. (5.2)

Since P̃ (X, Ḋ(P ))θ,1 = (Ṙ(P ), X)θ,1 (cf. Lemma 2.2 (a)) we obtain

(Ṙ(P ), X)θ,1 ↪→ P̃ (Z).

Notice that P̃ (Z) ↪→ W since P̃ (A−1)−1 = A−1(I + T )(A−1)−1 is bounded
from W → W and surjective if ‖T‖ < 1. So,

‖ · ‖W ≤ c‖A−1P̃
−1 · ‖W = ‖P̃−1 · ‖Z .

Summing up, we obtain

(Ṙ(P ), X)θ,1 ↪→ W. (5.3)

Now we set C := −A−1T , Y := W and B := IdW . Observe, that since
(Ṙ(A), X)θ,∞ = A−1(X, Ḋ(A))θ,∞,

(Ṙ(A), X)θ,1 ↪→ W ↪→ (Ṙ(A), X)θ,∞. (5.4)

Additionally, A−1T : (X, Ḋ(A))θ,1 → W . Applying Corollary 4.8 to these
embeddings shows the assumptions (3.4) and (3.5) of Lemma 3.3 (and Corol-
lary 3.8) to hold true. Consequently, ‖λθRλ‖W→X is uniformly bounded, and
Corollary 4.8 gives us

W ↪→ (Ṙ(P ), X)θ,∞. (5.5)

So, P−1(W ) ↪→ (X, Ḋ(P ))θ,∞. But ‖P̃ · ‖W = ‖A−1(Id+T ) · ‖W = ‖(Id+T ) ·
‖Z ≤ c‖ · ‖Z , whence

Z ↪→ (X, Ḋ(P ))θ,∞. (5.6)
Let σ ∈ (0, θ) and q ∈ [1,∞]. Set ν := σ/θ ∈ (0, 1). Then,

(X, Ḋ(P ))σ,q =
(
X, (X, Ḋ(P ))θ,1

)
ν,q

= (X, Z)ν,q
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=
(
X, (X, Ḋ(A))θ,1

)
ν,q

= (X, Ḋ(A))σ,q

by reiteration using (5.1), (5.2) and (5.6). On the other hand, if τ ∈ (θ, 1),
set ν := (τ−θ)/(1−θ) ∈ (0, 1). Then, τ = (1 − ν)θ + ν and therefore

(Ṙ(P ), X)τ,q =
(
(Ṙ(P ), X)θ,∞, X

)
ν,q

= (W, X)ν,q

=
(
(Ṙ(A), X)θ,∞, X

)
ν,q

= (Ṙ(A), X)τ,q

by reiteration using (5.3), (5.4) and (5.5). This finishes the proof. �
Remark 5.4. Assume the hypotheses of the last theorem. If one defines
W := A−1(Z) with the induced norm, then bounded operators S : Z −→ W
correspond to operators [A−1]−1T with T ∈ B(Z). Therefore, Theorem 5.3
has an equivalent formulation as a perturbation result for additive pertur-
bations S : Z → W of the operator A−1.

In the following result we can forget about extrapolation spaces.

Theorem 5.5. Let ω ∈ (0, π] and let A be a sectorial operator of type < ω
on a Banach space X. Let θ ∈ [0, 1] and let Z be a Banach space with

(X,D(A))•θ,1 ⊂ Z ⊂ (X,D(A))θ,∞. (5.7)

Assume that A restricts to a densely defined sectorial operator of type < ω
on Z. Let T : Z −→ Z be a compact operator. Then, for ν > 0 large enough
the operator P := ν + A(1 + T ) with its natural domain D(P ) = {z ∈ Z :
(1+T )z ∈ D(A)} is an invertible, sectorial operator of type < ω on X which
is densely defined if A is.

If θ ∈ (0, 1), then (X, D(A))σ,q = (X, D(P ))σ,q for every σ ∈ (0, θ) and
q ∈ [1,∞].

Proof. We will apply Theorem 5.1 with A replaced by Ã := A + ν where
ν > 0 has to be chosen appropriately. We let W := (ν + A−1)Z (with the
induced norm), Y = Z, C = I, and B := A−1T . Since Ã is sectorial and
invertible, almost all conditions of Theorem 5.1 are satisfied. We only have
to make sure that cν := ‖C‖Z→Y · ‖B‖Y →Z̃ = ‖(ν + A−1)−1A−1T‖Z→Z =
‖A−1(ν + A−1)−1T‖Z→Z is “small enough”. From the proof of Theorem 5.1
we see that this means that cν <

[
(αν + 1)‖(ν + A−1)−1‖W→Z

]−1, where αν

is the sectoriality constant of the operator (ν + A) within Z. This constant
is obviously bounded in ν. But ‖(ν + A−1)−1‖W→Z = 1 by definition. So
we need to know that ‖A(ν + A)−1T‖Z→Z → 0 as ν → ∞. Now, since A

∣∣
Z

is densely defined, A(ν + A)−1 → 0 strongly in Z, whence also uniformly on
compacts. By compactness of T , this implies ‖A(ν + A)−1T‖Z→Z → 0.



224 Bernhard H. Haak, Markus Haase, and Peer C. Kunstmann

Up to now we know that P̃ := A−1(1 + T ), defined on Z, restricts to
an invertible sectorial operator P on X. However, it is easy to see that P
indeed has the domain {x ∈ Z : (1+T )x ∈ D(A)}. The last assertion follows
immediately from Theorem 5.3. �

We conclude this section with a list of spaces Z, to which our Theorems
5.3 and 5.5 may be applied.

Remarks 5.6. 1) If θ = 1 we may take Z = Ḋ in Theorem 5.3 and
Z = D(A) in Theorem 5.5. Then AZ is sectorial and the assertion is
well known (cf. [10, Theorem III.2.10], [7, Theorem 1]). If θ = 0, we
may always take Z = X. Also in this case the assertions are known.

2) If θ ∈ (0, 1), then we may take as Z the homogeneous fractional domain
space Ḋθ (see the end of Section 2) in Theorem 5.3, and we may take
Z := Dθ = D(Aθ) in Theorem 5.5. In case A is densely defined, such
perturbations have been studied in [17] (cf. Remark 17 there). Note
that in both cases AZ is (even isometrically) similar to A and therefore
sectorial of the same type as A.

3) Let θ ∈ (0, 1) and F be an interpolation functor of type θ (cf. [25,
1.2.2]). Then it is well known that Z := F(Ḋ, X) satisfies the assump-
tion of Theorem 5.3 and that Z := F(D(A), X) satisfies the assumption
(5.7) of Theorem 5.5 (cf. [3, 3.9.1]). Sectoriality of AZ in Z is obtained
by interpolation. Examples for interpolation spaces F(X, Y ) with re-
spect to interpolation functors F of type θ ∈ (0, 1) are
• real interpolation spaces (X, Y )θ,q where q ∈ [1,∞] (cf. [25, 1.3.2],

[3, 3.4]),
• complex interpolation spaces [X, Y ]θ (cf. [25, 1.9.2], [3, 4.1]).

If we exclude the case q=∞ in these examples, then AZ is densely
defined in Z if A is densely defined in X.

6. Maximal Regularity

In this section we present perturbation results for maximal Lp-regularity
and for R-sectoriality. Again, the considerations in Section 3 are crucial
but the assumptions on boundedness in norm are replaced by correspond-
ing R-boundedness assumptions (Proposition 6.5). The characterisations of
Section 4, however, have only a partial counterpart for these R-boundedness
conditions (cf. Lemma 6.9). Besides Proposition 6.5, the main results in
this section are Theorems 6.11 and Theorem 6.12.

We briefly survey maximal Lp-regularity and its connection with R-sec-
toriality. Let −A be the generator of a bounded analytic semigroup T (·) on
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a Banach space X. It is well known that the Cauchy problem

x′(t) + Ax(t) = f(t), t ≥ 0, x(0) = 0 (6.1)

has a unique mild solution x ∈ Lp
loc(R+, X) for every f ∈ Lp(R+, X), p ∈

(1,∞). The operator A is said to have maximal Lp–regularity on [0,∞), if
for every f ∈ Lp([0,∞), X), the unique solution x = T ∗ f to (6.1) is almost
everywhere differentiable, has values in D(A) almost everywhere, and there
is a constant C > 0 with

‖x′‖Lp([0,∞),X) + ‖Ax‖Lp([0,∞),X) ≤ C‖f‖Lp([0,∞),X).

In UMD-spaces X, the property of maximal Lp-regularity has been char-
acterised by Weis [27], see Theorem 6.4 below. We first recall some notation:

Definition 6.1. Let X, Y be Banach spaces and T be a set of operators in
B(X, Y ). The set T is called R–bounded if there is a constant C such that
for all T1, . . . , Tm ∈ T and x1, . . . , xm ∈ X(

E

∥∥∥ m∑
n=1

rnTnxn

∥∥∥2

Y

)1/2
≤ C

(
E

∥∥∥ m∑
n=1

rnxn

∥∥∥2

X

)1/2
(6.2)

where (rn) is a sequence of independent symmetric {1,−1}-valued random
variables, e.g., the Rademacher functions rn(t) := sgn sin(2nπt) on [0, 1].
The infimum of all constants C for which (6.2) holds is called the R–bound
of the set T , and is denoted by

[[
T

]]R
X→Y

.

Remarks 6.2. 1) R–boundedness of T in B(X) implies uniform bound-
edness of T in B(X), but the converse holds only in Hilbert spaces.
However, if X has cotype 2 and Y has type 2, then R–boundedness and
boundedness of T in B(X, Y ) are equivalent. These geometric condi-
tions on X and Y cannot be weakened (cf. [1, Prop. 1.13]).

2) Let us introduce the space

Rad(X) := span{
n∑

k=1

rkxk : n ∈ N, x1, . . . , xn ∈ X} ⊂ L2([0, 1], X).

Then R–boundedness of a set T ⊆ B(X, Y ) may be rephrased as follows:
There is a constant C > 0 such that any diagonal operator T̃ ,

T̃ :
n∑

k=1

rkxk �→
n∑

k=1

rkTkxk

where n ∈ N, T1, . . . , Tn ∈ T , is bounded from Rad(X) to Rad(Y ) with
a norm of at most C (see, e.g., [18, Section 2]).
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3) If X = Lp(Ω), p ∈ (1,∞) then by Khintchine’s and Kahane’s inequali-
ties (cf. [8, Chapter 11]) we have(

E

∥∥∥ m∑
j=1

rjfj

∥∥∥q

p

)1/q
∼

∥∥∥( m∑
j=1

|fj |2
)1/2

∥∥∥
p

(6.3)

for all q ∈ [1,∞) which implies that Rad(Lp) is isomorphic to Lp(l2)
via

∑
rjfj �→ (fj), see [18, 2.9]. In particular, the definition of R–

boundedness above does not change when replacing the 2 in (E‖ . . . ‖2)
1
2

by any q ∈ [1,∞).

Definition 6.3. Let ω ∈ [0, π). A sectorial operator A of type ω is called
R–sectorial of type ωR ∈ [ω, π), if for all ν ∈ (ωR, π] the set {λ(λ+A)−1 :
λ ∈ Sπ−ν} ⊂ B(X) is R–bounded.

We refer to [27] and [18] for more details. Now Weis’ characterisation
reads as follows:

Theorem 6.4 ([27, Theorem 4.2]). Let X be a UMD–space and −A the
generator of a bounded analytic semigroup on X. Then A has maximal Lp–
regularity for one (and thus all) p ∈ (1,∞) if and only if A is R–sectorial of
type ωR < π/2.

Consequently, perturbation theorems for R–sectorial operators yield re-
sults on perturbation of maximal Lp–regularity. We now present an R–
sectoriality version of our key lemma (Lemma 3.3 in Section 3) where we
also include the assertions of Lemma 3.4, an analog of Corollary 3.8, and
Lemma 3.6.

Proposition 6.5. Let ω ∈ (0, π], and let A be an injective R-sectorial op-
erator of type < ω on the Banach space X satisfying[[

λ(λ + A)−1 : λ ∈ Sπ−ω

]]R
X→X

≤ αR. (6.4)

Let D(A) ⊂ E ⊂ D−1 be a vector subspace invariant under the family of
operators

(
(λ + A−1)−1

)
λ∈Sπ−ω

. Suppose a Banach space Y and linear map-

pings C : E −→ Y , B : Y −→ Ẽ ∩ R−1 are given such that[[
C(λ+A−1)−1B : λ ∈ Sπ−ω

]]R
Y →Y

≤ ηR < 1. (6.5)

Assume furthermore that there exists θ ∈ [0, 1] and constants βR, γR ≥ 0
such that [[

Cλ1−θ(λ+A)−1 : λ > 0
]]R

X→Y
≤ γR, (6.6)
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λθ(λ+A−1)−1B : λ > 0

]]R
Y →X

≤ βR. (6.7)

Then there are β′
R, γ′

R only depending on βR, γR and αR such that[[
λ1−θC(λ + A)−1 : λ ∈ Sπ−ω

]]R
X→Y

≤ γ′
R, (6.8)[[

λθ(λ + A−1)−1B : λ ∈ Sπ−ω

]]R
Y →X

≤ β′
R, (6.9)

and the operator
P := (A−1 − BC)

∣∣
X

is a sectorial operator and satisfies[[
λ(λ+P )−1 : λ ∈ Sπ−ω

]]R
X→X

≤ αR +
β′

Rγ′
R

1−ηR
. (6.10)

In particular, P is R-sectorial of type < ω. If A is densely defined/invertible,
then P is densely defined/invertible. If A has dense range and θ = 1 (or X is
reflexive), then P has dense range. If B : Y −→ F and ‖C[A−1]−1B‖Y →Y <

1, then P is injective. The estimate (6.8) holds for P and γ′
R

1−ηR
in place of A

and γ′
R, and the estimates (6.9) and (6.5) hold for Rλ,

β′
R

1−ηR
, ηR

1−ηR
in place

of (λ + A−1)−1, β′
R, ηR, where Rλ is as in Lemma 3.2.

Proof. We only have to observe that under our assumptions in the proof of
Lemma 3.3 and Lemma 3.6 the given representations also yield R–bounded-
ness. Recall that the power series expansion of the resolvent allows us to
obtain (6.10) with an angle > π−ω and a larger constant on the right-hand
side. �

An application of Weis’ Theorem 6.4 now yields the following perturba-
tion result for maximal Lp-regularity.

Corollary 6.6. Let X be a UMD–space and A be an injective operator
having maximal Lp-regularity in X. Assume that E, Y , B, and C are as in
Proposition 6.5 where ω ≤ π/2. Then P has maximal regularity in X.

Remark 6.7. For an investigation of conditions (6.6) and (6.7) in the style
of Section 4 we recall Remark 6.2 and Corollary 4.8. Let C : D → Y
and B : Y → R−1 be bounded. If X has cotype 2 and Y has type 2,
then (6.6) holds if and only if C : (Ḋ, X)•1−θ,1 → Y is bounded on D. If,
conversely, Y has cotype 2 and X has type 2 then (6.7) holds if and only
if R(B) ⊆ (X, Ṙ)1−θ,∞. But recall that a Banach space Z with type and
cotype 2 is isomorphic to a Hilbert space (cf. [8, Corollary 12.20]).
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In general, the characterisation of these conditions via interpolation spaces
does not extend to the R–case, as Example 6.13 shows. To find appropriate
spaces Z and W that allow an application of Proposition 6.5, the following
fact shall turn out useful.

Remark 6.8. Let (X, Y ) be an interpolation couple and F an interpolation
functor. If X and Y are B–convex, or, equivalently, if X and Y have nontriv-
ial type, then Rad(X) and Rad(Y ) are complemented in L2([0, 1], X) and
L2([0, 1], Y ), respectively ([8]). By [25, 1.2.4] we thus obtain the equality
F(Rad(X),Rad(Y )) = Rad (F(X, Y )) (cf. [14, Proposition 3.7]). Conse-
quently, if a set T of linear operators is R-bounded in both B(X) and B(Y ),
and if X and Y are B-convex, then T is also R-bounded in F(X, Y ).

In order to be able to use Remark 6.8, we now assume that X is B–convex.
Let A be an injective R–sectorial operator in X. The question is, for which
intermediate spaces Z and W with D ⊆ Z ⊆ Ḋ + X and R ⊆ W ⊆ X + Ṙ
we have [[

λ1−θ(λ+A)−1 : λ > 0
]]R

X→Z
< ∞, (6.11)[[

λθ(λ+A−1)−1 : λ > 0
]]R

W→X
< ∞ (6.12)

and that the restriction AZ of A−1 to Z is R-sectorial in Z.
Let us, for simplicity, restrict to the case W := (A−1(Z), ‖A−1

−1 ·‖Z). Hence
the part of A−1 in W is R-sectorial in W if and only if AZ is R-sectorial in
Z. Moreover, (6.12) holds if and only if[[

λθA(λ+A−1)−1 : λ > 0
]]R

Z→X
< ∞. (6.13)

In the following two lemmas we give three examples of intermediate spaces
Z for which (6.11) and (6.12) hold.

Lemma 6.9. (1) If θ ∈ (0, 1), then for Z := Ḋθ the conditions (6.11)
and (6.13) hold, and the operator AZ is R-sectorial in Z.

(2) Let θ ∈ (0, 1) and Z := [X, Ḋ]θ. Then AZ is R-sectorial in Z.
Moreover, (6.11) and (6.13) hold.

Proof. (a) Use the fact that for any s ∈ (0, 1) the set {λsA1−s(λ+A)−1 :
λ > 0} is R–bounded in B(X) (cf. [17, Lemma 10]). R-sectoriality of AZ is
due to similarity.

(b) R-sectoriality of AZ holds by Remark 6.8. (6.11) can be seen by
Stein interpolation (cf. [14, 18]) and Remark 6.8: choose a dense sequence
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λj in (0,∞) and consider the function z �→ (λ1−z
j (λj + A)−1) where the

operator (xj)j �→ (λ1−z
j (λj + A)−1xj)j acts Rad(X) → Rad(X) for Re z = 0

and Rad(X) → Rad(Ḋ) for Re z = 1. For (6.13) one has to consider the
function z �→ (λz

jA(λj + A)−1), acting Rad(X) → Rad(X) for Re z = 0 and
Rad(Ḋ) → Rad(X) for Re z = 1. �

Of course, Remark 6.8 yields R-sectoriality of AZ in all spaces Z =
F(Ḋ, X) where F is an interpolation functor, in particular in all real in-
terpolation spaces (Ḋ, X)θ,p. However, (6.11) and (6.13) are false, in gen-
eral, as Example 6.13 below shows. These conditions hold only for a certain
real interpolation functor, and only for an even smaller class of spaces X.
Although the argument could be made to work in several other Banach lat-
tices, we restrict to Lp-spaces. Let us emphasise that Example 6.13 also
shows that the index 2 in the assertion of the following lemma is optimal for
real interpolation.

Lemma 6.10. If X = Lp(Ω), p ∈ (1,∞) and θ ∈ (0, 1) then (6.11) and
(6.13) hold for the real interpolation space Z := (X, Ḋ)θ,2.

Proof. Again, we choose a dense sequence (λn) in (0,∞). From the R-
boundedness in B(X) of the set T := {λ(λ+A)−1 : λ ∈ (0,∞)} it follows
readily that S := {(λ+A)−1 : λ ∈ (0,∞)} is R–bounded in B(X, Ḋ). Using
again the R–boundedness of T we obtain the estimate∥∥∥( ∑

j

∣∣∣λj(λj+A)−1fj

∣∣∣2)1/2
∥∥∥

p
≤ M

∥∥∥( ∑
j

∣∣fj

∣∣2)1/2
∥∥∥

p
,

or, equivalently,∥∥(
(λj+A)−1fj

)∥∥
Rad(X)

≤ C
∥∥∥( ∑

j

∣∣ fj

λj

∣∣2)1/2
∥∥∥

p
.

Similarly we obtain an estimate∥∥(
(λj+A)−1fj

)∥∥
Rad(Ḋ)

≤ K
∥∥∥( ∑

j

∣∣fj

∣∣2)1/2
∥∥∥

p

from R-boundedness of S. Now exploiting the fact that Lp is B–convex for
1 < p < ∞ and thus

(
Rad(X),Rad(Ḋ)

)
θ,2

= Rad
(
X, Ḋ

)
θ,2

(cf. Remark
6.8), we obtain the desired estimate∥∥(

(λj+A)−1fj

)∥∥
Rad(X,Ḋ)θ,2

≤ c
∥∥∥( ∑

j

∣∣ fj

λ1−θ
j

∣∣2)1/2
∥∥∥

p
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applying(
Lp(l2(λ−1

j )), Lp(l2)
)
θ,2

= Lp
((

l2(λ−1
j ), l2

)
θ,2

)
= Lp

(
l2(λθ−1

j )
)
,

cf. [25, Theorem 1.18.4, Theorem 1.18.5]. As before, we may use Remark
6.8 to obtain R–sectoriality of AZ in Z = (X, Ḋ)θ,2. �

Proposition 6.5 in connection with Lemma 6.9 yields the main results of
this section.

Theorem 6.11. Let X be a B–convex Banach space, A an injective R–
sectorial operator of type < ω in X. Let θ ∈ (0, 1) and Z := Ḋθ or Z :=
[X, Ḋ]θ.

(1) If T ∈ B(Z) has small norm, then P := A(1 + T ) with natural
domain is a densely defined R–sectorial operator in X of type < ω.

(2) If W := (A−1(Z), ‖(A−1)−1 · ‖Z), i.e. W = Rθ−1 or W = [Ṙ, X]θ
respectively and S : Z → W has small norm then P := (A−1 + S)X

is a densely defined R–sectorial operator in X of type < ω.

When we combine Proposition 6.5 with Lemma 6.10 we obtain the follow-
ing.

Theorem 6.12. Let X = Lp(Ω), p ∈ (1,∞) and A be an R–sectorial op-
erator of type < ω in X and θ ∈ (0, 1). Then the assertions (a) and (b) in
Theorem 6.11 hold for Z := (X, Ḋ)θ,2 and W := (Ṙ, X)θ,2.

We close this section with the example which we already have referred to
several times.

Example 6.13. Let X = L2(R) and A = −Δ. Then D = D(A) = W 2
2 (R)

is a Bessel potential space and Ḋ = Ḣ2
2 (R) is a Riesz potential space. From

now on we drop the R in notation. For θ = 1/2 and q ∈ [1,∞] we obtain
(X, D)1/2,q = B1

2q, an (inhomogeneous) Besov space, and (X, Ḋ)1/2,q = Ḃ1
2q, a

homogeneous Besov space (see [26, 5.1.3]). We now show that {λ1/2(λ+A)−1 :
λ > 0} is not R-bounded in B(L2, Ḃ1

2q) if 1 ≤ q < 2. In fact, for the
arguments we shall give it makes no difference whether we take B1

2q or Ḃ1
2q,

since the support of the Fourier transform of the functions we consider in
the sequel is uniformly bounded away from 0.

We fix q ∈ [1, 2). In order to write out the norm of the Besov space
we fix a C∞-function ψ satisfying ψ(ξ) = 1 for |ξ| ≤ 1 and ψ(ξ) = 0 for
|ξ| ≥ 3/2, and we set ϕ(ξ) := ψ(ξ) − ψ(ξ/2). Then ϕ ∈ C∞ satisfies ϕ(ξ) = 1
for |ξ| ∈ [3/2, 2] and ϕ(ξ) = 0 for |ξ| ∈ [1, 3]. We set ϕj(ξ) := ϕ(2−jξ) for
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ξ ∈ R and j ∈ N0. Observe that ϕj(ξ) = 1 for ξ ∈ [3 · 2j−1, 2j+1] =: Ij for
any j ∈ N0. For a function g ∈ L2 whose Fourier transform ĝ has compact
support supp ĝ ⊂ [3/2,∞) the norm in B1

2q and in Ḃ1
2q is equivalent to

(
∑∞

j=0 2qj
∥∥ξ �→ ϕj(ξ)ĝ

∥∥q

2
)1/q. Note that we used Plancherel’s identity (in

L2) here, and that the sum is actually finite.
The symbol of the operator λ

1/2(λ+A)−1 is λ
1/2(λ+ξ2)−1. We take μk =

λ
1/2
k = 2k and let ρk(ξ) := 2k(4k+ξ2)−1 for k ∈ N0. Finally we define gk ∈ L2

by ĝk := |Ik|−
1/21Ik

for k ∈ N0. We fix n ∈ N and calculate(
E

∥∥∥n−1∑
k=0

εkμk(μ2
k+A)−1gk

∥∥∥q

B1
21

)1/q
∼

(
E

∞∑
j=0

2qj
∥∥∥n−1∑

k=1

εkϕjρkĝk

∥∥∥q

2

)1/q

=
( ∞∑

j=0

E

∥∥∥n−1∑
k=1

εk2jϕjρkĝk

∥∥∥q

2

)1/q
∼

( ∞∑
j=0

( n−1∑
k=0

∥∥2jϕjρkĝk

∥∥2

2

)q/2)1/q
,

where we used the Khintchine-Kahane equivalence (6.3) in the last step.
Observe that by construction ϕj ĝk = δjkĝk which leads to a considerable
simplification of the last term, namely to

∼
( n−1∑

j=0

∥∥∥2jρj ĝj

∥∥∥q

2

)1/q
.

But, substituting ξ = 2jη, we obtain∥∥2jρj ĝj

∥∥2

2
= |Ij |−1

∫
Ij

( 4j

4j + ξ2

)2
dξ = 2

∫ 2

3/2
(1 + η2)−2 dη =: c2 > 0,

which is independent of j ∈ N0. Hence we arrive at(
E

∥∥∥n−1∑
k=0

εkμk(μ2
k+A)−1gk

∥∥∥q

B1
2q

)1/q
∼ n

1/q , n ∈ N.

On the other hand we have(
E

∥∥∥n−1∑
k=0

εkgk

∥∥∥q

2

)1/q
∼

( n−1∑
k=0

∥∥ĝk

∥∥2

2

)1/2
= n

1/2 , n ∈ N.

Letting n → ∞ we see that there is no constant C ∈ (0,∞) satisfying(
E

∥∥∥n−1∑
k=0

εkμk(μ2
k+A)−1gk

∥∥∥q

B1
2q

)1/q
≤ CE

∥∥∥n−1∑
k=0

εkgk

∥∥∥
2
, n ∈ N,
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and R-boundedness of {μk(μ2
k+A)−1 : k ∈ N0} in B(L2, B1

2q) and B(L2, Ḃ1
2q)

fails.

7. Applications and Examples

In this section we illustrate our results. We start with an application to
the case of A = ε−Δ, on X = Lp(Rn) where ε > 0, n ∈ N and 1 < p < ∞
are fixed. Since all function spaces in the first two examples are spaces on
R

n we shall omit R
n in notation temporarily.

Example 7.1. Let A = ε−Δ where ε > 0. Then D(A) is the usual Sobolev
space W 2

p (Rn) which equals the Bessel potential space H2
p (Rn). We have

0 ∈ ρ(A), D=H2
p=Ḋ, R=X=Lp=D−1, and X−1=R−1=Ṙ=H−2

p . For the
domains of the fractional powers we obtain

H2θ
p =

{
Dθ, 0 < θ < 1,

Rθ, −1 < θ < 0.

These spaces coincide with the complex interpolation spaces [X, D]θ = H2θ
p

and [R−1, X]θ = H
2(θ−1)
p for θ ∈ (0, 1). By real interpolation we obtain

Besov spaces: (X, D)θ,q = B2θ
p,q and (R−1, X)θ,q = B

2(θ−1)
p,q for θ ∈ (0, 1)

and q ∈ [1,∞]. This means that we may apply Theorem 5.3 to operators
T : H2θ

p → H2θ
p in the scale of Bessel potential spaces, or via Remark 5.4

to perturbations S : H2θ
p → H

2(θ−1)
p (which are already covered by [17]) but

also to perturbations T : B2θ
p,q → B2θ

p,q and S : B2θ
p,q → B

2(θ−1)
p,q , respectively,

acting in the scale of Besov spaces (which are not covered by [17]). For an
application of Theorem 5.5 we need the fact that AZ is densely defined in Z
which means that we have to exclude the case q = ∞ in the Besov scale (but
instead of B2θ

p,∞ we may use the closure of C∞
c in B2θ

p,∞, which is denoted by
◦
B2θ

p,∞ in [25]).

In the next example the operator A is not invertible.

Example 7.2. Let p ∈ (1,∞) and A = −Δ on Lp(Rn). Again, D(A) = D =
H2

p . The operator A is injective and densely defined, and has dense range,
but 0 ∈ σ(A). We still have R−1 = H−2

p , but now Ḋ = Ḣ2
p and Ṙ = Ḣ−2

p

are homogeneous or Riesz potential spaces. As for the other spaces in our
diagrams, we have

X−1 = {ϕ : F−1(|ξ|2(1 + |ξ|2)−2ϕ̂(ξ)) ∈ Lp} = H−2
p + Ḣ2

p
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D−1 = {ϕ : F−1(|ξ|2(1 + |ξ|2)−1ϕ̂(ξ)) ∈ Lp} = Lp + Ḣ2
p .

For the homogeneous fractional scale we obtain

Ḣ2θ
p =

{
Ḋθ, 0 < θ < 1,

Ṙθ, −1 < θ < 0.

These spaces coincide with the complex interpolation spaces [X, Ḋ]θ = Ḣ2θ
p

and [Ṙ, X]θ = Ḣ
2(θ−1)
p for θ ∈ (0, 1). By real interpolation we obtain ho-

mogeneous Besov spaces: (X, Ḋ)θ,q = Ḃ2θ
p,q and (Ṙ, X)θ,q = Ḃ

2(θ−1)
p,q for

θ ∈ (0, 1) and q ∈ [1,∞]. This means that we may apply Theorem 5.3 (via
Remark 5.4) to perturbations S : Ḣ2θ

p → Ḣ
2(θ−1)
p in the scale of Riesz po-

tential spaces (which are already covered by [17]) but also to perturbations
S : Ḃ2θ

p,q → Ḃ
2(θ−1)
p,q in the scale of homogeneous Besov spaces (which are not

covered by [17]). Mutatis mutandis, the remarks on the case q = ∞ in the
previous example apply also here.

Now we present an example where A is invertible but not densely defined.

Example 7.3. Let Ω ⊂ R
n be a bounded domain with ∂Ω ∈ C2. In X :=

C(Ω), consider A := −Δ with Dirichlet boundary conditions, i.e., take as
domain

D = D(A) = {u ∈ X : u ∈
⋂

1<p<∞
W 2

p,loc(Ω),Δu ∈ X, u|∂Ω = 0}.

Then A is sectorial and invertible, in particular Ḋ = D, but D is not dense
in X. It is well known that, for θ ∈ (0, 1/2), we have

Zθ := (X, D)θ,∞ = {u ∈ C2θ(Ω) : u|∂Ω = 0}.
Now let γ ∈ (0, 1) and g ∈ Cγ(Ω) with small norm. Then the multiplication
operator Tg : f �→ g · f acts Zθ → Zθ with small norm for θ ∈ (0, γ/2). We
conclude by Theorem 5.3 that P := A−1(1 + Tg) with natural domain is
sectorial in X and satisfies, for θ ∈ (0, γ/2),

(X,D(P ))θ,∞ = {u ∈ C2θ(Ω) : u|∂Ω = 0}.
Observe that P is a realisation of −Δ(1 + g), but in general D(P ) = D(A),
thus D(P ) is not accessible.

Example 7.4. Let Ω be a bounded domain in R
n, n ≥ 2, with a smooth

boundary ∂Ω and 0 ∈ Ω (take, e.g., the open unit ball in R
n). We are

interested in controlling a heat equation in Ω via an interior point observation
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at 0 and an autonomous boundary feedback of Neumann type. We consider
the problem in the following form⎧⎨⎩

∂tu(t, x) − Δxu(t, x) = 0, (t, x) ∈ (0,∞) × Ω,
∂
∂ν u(t, x) = u(t, 0)g(x), (t, x) ∈ (0,∞) × ∂Ω,

u(0, x) = u0(x), x ∈ Ω.
(7.1)

Here ν : ∂Ω → R
n denotes the outer normal unit vector, and g is a continuous

function on the boundary. We assume that g is continued inside Ω in a
reasonable way and consider g as a function in C(Ω).

Problem (7.1) is governed by the operator A which is −Δ restricted to the
domain given by ∂

∂ν u|∂Ω = u(0)g. Viewing this operator as a perturbation
of the Neumann Laplacian A0 and denoting the extrapolated version of A0

by A0,−1 we are led to A = (A0,−1 + A0,−1g ⊗ δ0)|X = (A0,−1(I + Tg))|X ,
where Tg := g ⊗ δ0. We discuss realisations in several state spaces X and
shall see that there is a close relation to additional regularity properties of
g we have to require.

If we take X = C(Ω) then δ0 : u �→ u(0) is continuous on X,

D(A0) = {u ∈
⋂

1<p<∞
W 2

p (Ω) : Δu ∈ X,
∂

∂ν
u|∂Ω = 0},

and A0 is a densely defined sectorial operator, but not injective. For any
g ∈ C(Ω) the operator Tg = A0,−1g⊗δ0 acts X → X as a compact operator.
Hence Theorem 5.5 applies, and A generates an analytic semigroup in X.

Now we take X = Lp(Ω) where n/2 < p < ∞. Then D(A0) = {u ∈
W 2

p (Ω) : ∂
∂ν u|∂Ω = 0}, and A0 is a densely defined sectorial operator in

X, but not injective. By [25, Theorem 2.8.1] we see that the Besov space
Z := B

n/p
p,1 (Ω) embeds into C(Ω), and that this space is the largest in the

class of Besov spaces or spaces H2θ
p (Ω), θ ∈ [0, 1], enjoying this property.

It is also the largest space in this class on which δ0 is continuous (cf. [22,
Example 2, page 50]). Hence, for g ∈ Z, the operator Tg : Z → Z is compact.
We note that Z ⊂ H

n/p
p (Ω), the latter being equal to D((1 + A0)n/(2p)) for

n/p < 1 − 1/p, i.e., for p > n + 1 ([24]). Hence, for such p, the space Z =
B

n/p
p,1 (Ω) equals (X, D(A0))n/(2p),1, and Theorem 5.5 shows that A generates

an analytic semigroup.
Observe that the condition g ∈ C(Ω) that was sufficient in the state

space C(Ω) has to be restricted to g ∈ B
n/p
p,1 (Ω) in the state space Lp(Ω),

p > n + 1. We compare this to what can be said by applying the results
from [17]. If γ ∈ (0, 1) and p > n+1

1−γ then D((1+A0)(γ+n/p)/2) = H
γ+n/p
p (Ω),
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and the results from [17] allow us to study the case g ∈ H
γ+n/p
p (Ω). Thus

we would have to impose further restrictions on p and on g depending on
the additional regularity γ > 0 we have to require. In order to point out
the gap we remark that g ∈ H

γ+n/p
p (Ω) implies g|∂Ω ∈ Cγ(∂Ω). Hence it is

clear that perturbation in the scale of fractional domains cannot be applied
if g is not Hölder continuous on ∂Ω, but one can still apply our results if
g|∂Ω ∈ B

(n−1)/p
p,1 (∂Ω).

In the next example we study elliptic operators with coefficients in weak
Lebesgue spaces.

Example 7.5. Let m, j ∈ N with 2m ≥ j, let n > j, and consider A :=
(−Δ)m and b ∈ Ln/j,∞(Rn). Assume that α ∈ N

n
0 is a multi-index of length

|α| = k = 2m − j. We shall give a sense to A + b∂α in Lp(Rn) where
p ∈ (1,∞) and ‖b‖n/j,∞ is small (with smallness depending on p). By
Hölder’s inequality for weak Lebesgue spaces f �→ bf is bounded Lq → Lr,∞

whenever r−1 = q−1 + j/n and r ∈ (1, n/j), q ∈ (n/(n− j),∞). We fix such
r and q for the moment and clearly have that b∂α : Ḣk

q → Lr,∞ is bounded.
We denote by Ḣk

q,∞ the spaces obtained from the scale (Ḣk
q̃ )q̃∈(1,∞) by real

interpolation (·, ·)θ,∞, e.g., Ḣ2m
r,∞ is Ḋ(A) for the realisation of A in the space

Lr,∞.
We let Z := Ḣk

q,∞, W := Lr,∞. We know that A−1 : Lr̃ → Ḣ2m
r̃ and, by

Sobolev embedding, Ḣ2m
r̃ ↪→ Ḣk

q̃ whenever r̃ ∈ (1, n/j) and q̃−1 = r̃−1 − j/n

(recall 2m = k + j). Hence A−1 : Lr̃ → Ḣk
q̃ is bounded for such r̃, q̃. Real

interpolation (·, ·)θ,∞ with a suitable θ ∈ (0, 1) yields that A−1 : Lr,∞ →
Ḣk

q,∞ is bounded. We also obtain by interpolation that A is sectorial in
Lr,∞ = Z and in Ḣk

q,∞ = W . Taking now X = Lp (with p still unspecified)
and θ ∈ (0, 1) we have (X, Ḋ1)θ,1 = (Lp, Ḣ2m

p )θ,1 = Ḃ2mθ
p,1 and (Ṙ1, X)θ,∞ =

(Ḣ−2m
p , Lp)θ,∞ = Ḃ

−2m(1−θ)
p,∞ . All we have to verify in order to apply Theorem

5.1 are, for some θ ∈ (0, 1), the inclusions Ḃ2mθ
p,1 ↪→ Ḣk

q,∞ and Lr,∞ ↪→
Ḃ

−2m(1−θ)
p,∞ . For q−1 − k/n = p−1 − (2mθ)/n we have Ḃ2mθ

p,1 ⊂ Ḣ2mθ
p ⊂

Ḣk
q ⊂ Ḣk

q,∞, which is the first inclusion. By the following lemma the second
inclusion holds for p > r and r−1 = p−1 + 2m(1 − θ)/n. Recall r−1 =
q−1 + j/n, 2m = k + j, and observe that, for p−1 ∈ (q−1, r−1) fixed, both
conditions on θ coincide and imply θ ∈ (0, 1).

We conclude that, choosing r and q appropriately, we can apply Theorem
5.1 in any Lp, p ∈ (1,∞), if ‖b‖n/j,∞ is sufficiently small.
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Lemma 7.6. Let r, p ∈ (1,∞) and s > 0 such that r−1 = p−1 + s/n. Then

Lr,∞(Rn) ↪→ Ḃ−s
p,∞(Rn).

Proof. Let s > 0. For all r̃, p̃ ∈ (1,∞) satisfying r̃−1 = p̃−1+s/n we have by
Sobolev embedding Ḣs

p̃′ ↪→ Lr̃′ , and – a forteriori – Ḃs
p̃′,1 ↪→ Lr̃′ . Dualisation

of these embeddings yields Lr̃ ↪→ Ḃ−s
p̃,∞, and we obtain the assertion from

these embeddings by real interpolation (·, ·)θ,∞ with a suitable θ ∈ (0, 1). �

Remark 7.7. The arguments of Example 7.5 may be adapted to work for
operators on domains. We remark that, for m = 1 on R

n, it was shown
in [15] that a potential V with small norm in Ln/2,∞ gives rise to a form-
bounded perturbation in L2, i.e., multiplication by V acts H1

2 → H−1
2 . The

arguments used there are more involved, and it does not seem to be clear if
they apply in more general situations.

Remark 7.8. Concerning applications of the results in Section 6, the sit-
uation is a bit more complicated. Let X = Lp(Rn) where p ∈ (1,∞) and
let θ ∈ (0, 1). On the one hand, we may apply Theorem 6.11 to perturba-
tions S : H2θ

p → H
2(θ−1)
p of A = ε−Δ (which are already covered by [17])

or Theorem 6.12 to perturbations S : B2θ
p,2 → B

2(θ−1)
p,2 of A = ε−Δ (which

are not covered by [17]). Example 6.13 shows that in general we cannot
take arbitrary perturbations in other Besov spaces. On the other hand,
Proposition 6.5 can be applied to certain perturbations in other scales. As
a concrete illustration of this phenomenon we study perturbations of rank
one, i.e. perturbations that may be factored through Y = C.

Example 7.9. Let p ∈ (1,∞), ε > 0, and consider again A = ε−Δ on
X = Lp(Rn). We fix θ ∈ (0, 1). The smallest space Z admissible in Theorem
5.1 is B2θ

p,1 and the largest space W is B
2(θ−1)
p,∞ . Hence we consider ψ ∈

B−2θ
p′,∞ = (B2θ

p,1)
′ and ϕ ∈ B

2(θ−1)
p,∞ and the perturbation S := ψ ⊗ ϕ : x �→

ψ(x)ϕ. By Theorem 5.5, a translate of the perturbed operator (A−1+S)X

is sectorial if ψ ⊗ ϕ : B2θ
p,q → B

2(θ−1)
p,q and q ∈ [1,∞). By Theorem 6.11,

a translate of this operator is R–sectorial if ψ ⊗ ϕ : H2θ
p → H

2(θ−1)
p , and,

by Theorem 6.12 a translate is R-sectorial if ψ ⊗ ϕ : B2θ
p,2 → B

2(θ−1)
p,2 . Now

S = BC where C = ψ : (X, D)θ,1 → C, x �→ ψ(x) and B =: IdC ⊗ ϕ : C →
(R−1, X)θ,∞. For a direct application of Proposition 6.5 we need the fact that
the sets τψ := {ψλ1−θ(λ+A)−1 : λ > 0} and τϕ := {λθ(λ+A−1)−1ϕ : λ > 0}
are R-bounded subsets of B(X, C) = X ′ = Lp′ and B(C, X) = X = Lp,
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respectively. Clearly, the situation in the case p < 2 is dual to the situation
for p > 2, and we only study the latter.

If p > 2, then by Remark 6.2 the set τϕ is R–bounded if τϕ is bounded,
i.e., if ϕ ∈ (R−1, X)θ,∞ = B

2(θ−1)
p,∞ . R–Boundedness of τψ, however, means( ∑

j

|λ1−θ
j ψ((λj+A)−1fj)|2

)1/2 ≤ C
∥∥∥( ∑

j

|fj |2
)1/2

∥∥∥
p

(7.2)

for all choices of λj > 0, fj ∈ Lp. Since

λ
d

dλ
(ψλ1−θ(λ + A)−1)

= (1 − θ)ψ(λ1−θ(λ + A)−1) − ψ(λ1−θ(λ + A)−1)(λ(λ + A)−1)

and A is R-sectorial, it is by [27, Remark 3.5(a)] sufficient to have (7.2) for
λj = a2j , j ∈ Z, with a constant C independent of a ∈ [1, 2]. In the dual
formulation this means∥∥∥( ∑

j

|αj(a2j)1−θ(a2j+A−1)−1ψ|2
)1/2

∥∥∥
p′
≤ C

( ∑
j

|αj |2
)1/2

(7.3)

for all choices of scalars αj with C independent of a ∈ [1, 2]. In this form,
the condition may be seen to hold if ψ belongs to the Triebel-Lizorkin space
F−2θ

p′,∞ = (F 2θ
p,1)

′ (we refer to [25] for definition and properties of these spaces,
recall that F s

p,2 = Hs
p for p ∈ (1,∞) and s ∈ R).

Now observe that Bs
p,1 ⊂ F s

p,q ⊂ F s
p,∞ ⊂ Bs

p,∞ for all s ∈ R and q ∈ (1,∞).
By the following lemma, the operator A = ε − Δ is R-sectorial in all spaces
F s

p,q, p, q ∈ (1,∞), s ∈ R. It is also densely defined in these spaces. Hence

Proposition 6.5 applies to S = ψ ⊗ ϕ : F 2θ
p,q → F

2(θ−1)
p,q for all q ∈ (1,∞).

Lemma 7.10. Let p, q ∈ (1,∞). Then −Δ is R-sectorial of type 0 in all
spaces F s

p,q, s ∈ R.

Proof. Since F s
p,q → F 0

p,q, f �→ (1 − Δ)s/2f is an isomorphism commuting
with −Δ it is sufficient to study the case s = 0. By f �→

(
ϕj(D)f

)
an

isometrical isomorphism is given from F 0
p,q(R

n) onto a closed subspace of
Lp(Rn, lq). Since ϕj(D) commutes with (λ − Δ)−1 we only have to show
that the set T := {λ(λ − Δ)−1Idlq : λ ∈ Sω} is R–bounded in B(Lp(Rn, lq))
for any ω > (0, π). To this aim we write

λ(λ−Δ)−1(fj) = F−1
(
ξ �→ λ(λ+|ξ|2)−1

(
f̂j(ξ)

))
,
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where F denotes the Fourier transform on Lp(Rn, lq). In other words, Mλ :=
ξ �→ λ(λ+|ξ|2)−1Idlq is the symbol of λ(λ − Δ)−1Idlq . For any multi-index
α ∈ N

n
0 the set {|ξ||α|∂α

ξ λ(λ+|ξ|2)−1 : ξ ∈ R
n\{0}, λ ∈ Sω} is bounded (in

C) whence {|ξ||α|∂α
ξ Mλ(ξ) : ξ ∈ R

n\{0}, λ ∈ Sω} is R–bounded in B(lq).
Now R–boundedness of T in B(Lp(Rn), lq) follows from the R–version of
Mikhlin’s multiplier theorem in [11, Theorem 3.2]. �
Remark 7.11. Mikhlin’s theorem for scalar-valued multipliers on Lp(Rn, lq)
may likewise be used to show that −Δ has a bounded H∞(Sω)–calculus in
Lp(Rn, lq) for any ω > 0.

In Remark 7.8 and Example 7.9 we have D(Aθ) = [X,D(A)]θ for θ ∈ (0, 1),
i.e., both pairs (Z, W ) in Theorem 6.11 coincide. This property is well known
to hold if A has bounded imaginary powers (BIP) in X (cf. [25, Theorem
1.15.3]). However, equality fails in general if A does not have BIP. In concrete
situations this means that fractional domains D(Aθ) may not be accessible,
even if the spaces [X,D(A)]θ, which can be obtained from the domain D(A),
are known. We illustrate this by a “rough” boundary-value problem.

Example 7.12. Fix p ∈ (1,∞). Let Ω ⊂ R
n be a bounded domain with

∂Ω ∈ C∞ (for simplicity) and m ∈ N. Let A :=
∑

|α|≤2m aα(x)∂α + ν

where aα ∈ C(Ω) is an elliptic operator of order 2m and B1, . . . , Bm be
differential operators with C∞-coefficients (for simplicity) on the boundary
of orders 0 ≤ m1 ≤ . . . ≤ mm ≤ 2m− 1 that satisfy the Lopatinskij-Shapiro
(or Agranovich-Vishik) condition of parameter-ellipticity (cf., e.g., [9, page
112] or [6, part II] for the definition). If ν ≥ 0 is sufficiently large then
R–sectoriality of AB := A|D(AB), D(AB) = {u ∈ W 2m

p (Ω) : Bju = 0, j =
1, . . . , m} in X = Lp(Ω) was shown in [6], whereas the results in [5] imply
that AB has BIP if aα ∈ Cγ(Ω) for some γ > 0 and all |α| = 2m. Hence, if
the coefficients aα, |α| = 2m, are not Hölder-continuous then Theorem 6.11
still covers perturbations in the complex interpolation scale, but it is not
clear if the results in [17] on perturbations in the domain scale of fractional
powers of AB can be applied to such perturbations. Observe that we have

[Lp(Ω), D(AB)]θ =

{u ∈ H2mθ
p (Ω) : Bju = 0 for all j such that 2mθ > mj + 1/p }

for θ ∈ (0, 1) (see [24]).
We give a concrete example: Let m = 1 and m1 = 1 which means that we

have an oblique derivative problem for a second-order operator. For θ = 1/2
we obtain [Lp(Ω),D(AB)]1/2 = H1

p (Ω) = W 1
p (Ω). If the coefficients of A are
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merely bounded and uniformly continuous and T : W 1
p (Ω) → W 1

p (Ω) is an
operator of small norm, then a suitable translate of (AB)−1(1 + T ) is again
R-sectorial and has maximal Lq–regularity for all q ∈ (1,∞).
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