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Abstract
In this paper we study spectral estimates for perturbations of the Landau Hamiltonian by a

pseudo-differential operator with non-smooth Weyl symbol in a modulation space. We obtain
an upper bound for the counting function of the eigenvalues in a spectral gap.

1. Introduction

1. Introduction1.1. Perturbed Landau Hamiltonian.
1.1. Perturbed Landau Hamiltonian. We recall first some classical results. Let H0 be

the self-adjoint realization in L2(R2) of the second order partial differential operator(
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initially defined on (R2); this operator is usually called Landau Hamiltonian. The spectrum
of H0 consists of eigenvalues Λq := 2q + 1 of infinite multiplicity, the Landau levels (see
4.1).

Let V = Opw(b) be a bounded selfadjoint pseudo-differential operator (ΨDO). Under the
general assumption that VH−1

0 is a compact operator, the Kato-Rellich theorem and the Weyl
perturbation theorem imply that the operator H0 − V is selfadjoint and that

σess(H0 − V) = σess(H0) = σ(H0) .

Hence the discrete spectrum of H0 − V consists of eigenvalues of finite multiplicity; these
eigenvalues can accumulate only to the Landau levels.

Suppose furthermore that the operator V is non-negative. Fix q ≥ 1 and let E′ be a fixed
real number in the gap (Λq−1,Λq) and E a positive real number such that Λq−1 < E′ <
Λq − E < Λq. Denote by N(E′,Λq − E; H0 − V) the number of eigenvalues of the perturbed
operator H0 − V lying in the open interval (E′,Λq − E); for brevity we set

(1.1) Nq(E) := N(E′,Λq − E; H0 − V).

Similarly for q = 0, we put N0(E) = N(−∞,Λ0 − E; H0 − V). The behaviour of the function
Nq has been extensively studied under various assumptions on the perturbation V . The
most precise results have been obtained when V is a local smooth potential with derivatives
decaying polynomially or exponentially (see [13],[15]). Recently one of the main results
proved in [4] concerns the case where the Weyl symbol of V is smooth and belongs to

2020 Mathematics Subject Classification. 47G30, 35P15.



778 J. Barbe

a Hörmander-Shubin class Γm
ρ (R4) of negative order. The authors obtain Weyl’s law type

asymptotics when E ↓ 0+.

1.2. Main results.
1.2. Main results. The aim of this paper is to investigate the behaviour of the function Nq

defined in (1.1) when the perturbation V is a boundedΨDO. In particular we are interested in
perturbation by an integral operator whose kernel is square-integrable. It is then convenient
to consider the scale of Sobolev-Shubin classes Qs(R4) (see 2.5) for s ≥ 0 as spaces of
symbols or kernels. These classes are particular cases of weighted modulation spaces.

Denote by Pq, q ∈ Z+, the spectral projection of H0 corresponding to the eigenvalue Λq.
A common feature of the papers cited above is the important fact that the spectral properties
of the eigenvalues of H0 − V accumulating near the Landau level Λq is governed (in a sense
which will be stated more precisely, see section 5) by the compact operator PqV Pq; this
operator is called the effective Hamiltonian associated with the Landau level Λq.

Assume V is a ΨDO with Weyl symbol b ∈ L2(R4). Evidently Pq V Pq is a Hilbert-
Schmidt operator. But this property is not sharp. Our first result proves that, under additional
assumptions on the symbol of V , the effective Hamiltonian belongs to a Schatten class Sp

with p ≤ 2. Let us denote by L2
s(R4) the L2-space with weight ws(z, w) =

(
1 + |z|2 + |w|2

)s/2

and by 2 the partial Fourier transform on L2(R2d) (see precise definition in subsection 1.4).

Theorem 1.1. Let b ∈ L2
s(R4) (s ≥ 0). Suppose furthermore that 2b ∈ L2

s(R4). Then the
effective Hamiltonian Pq V Pq belongs to the Schatten class Sp(L2(R2)) for p > 2/(s + 1). In
particular it is a trace-class operator for s > 1.

The second result concerns an upper bound for the counting function Nq defined in (1.1).

Theorem 1.2. We suppose that b satisfies the same assumptions as in Theorem 1.1 and
that furthermore V ≥ 0. Then

(1.2) Nq(E) = O(E−
2

s+1 ) (E ↓ 0+) .

For these two results we use earlier results concerning eigenvalues of ΨDO with symbol
in Sobolev-Shubin classes (see [11]).

The paper is organized as follows. Section 2 contains the backgrounds of phase space
analysis. We list here some important properties of the Fourier-Wigner and Wigner trans-
forms. Section 3 is devoted to some results of phase space analysis needed in the following
section. In Section 4 we apply the results proved in Section 3 to the Landau Hamiltonian
and its perturbations. We define in particular the effective Hamiltonian which is the princi-
pal object of our work. Section 5 contains the proof of the main theorem on the number of
bound states in a gap of the essential spectrum.

1.3. Comments.
1.3. Comments. The technics used in [13] and [4] cannot be used here because there is

no symbolic calculus with symbols in Sobolev-Shubin classes. Instead we must use phase-
space analysis technics (see Section 3). Similarly the precise asymptotics for ΨDO’s with
negative order smooth symbols in Hörmander-Shubin classes proved in [5] and used in [13]
and [4] cannot be used. Instead we use the results for eigenvalues of ΨDO with symbol in
Sobolev-Shubin classes in [11].

Moreover it can be noted that the operator H0 is unitary equivalent to the operator L
selfadjoint realization of the partial differential operator
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This operator is called twisted Laplacian and plays a major role in harmonic analysis on the
Heisenberg group. The spectral analysis of the operators L and H0 is easily performed with
the special Hermite functions (see Section 2.4 for the definitions).

1.4. Notations.
1.4. Notations. For f , g ∈ L2(Rd), ( f , g) denotes the standard scalar product in L2(Rd); it

is linear in the first argument.
The standard symplectic form on R2d is defined by σ(x, ξ; y, η) := ξ.y − x.η. Let J be the

linear map on R2d defined by J(x, ξ) := (ξ,−x); J is a symplectic map and σ(x, ξ; y, η) =
J(x, ξ).(y, η) where u.v denote the standard scalar product on Rd. For z = (x, ξ) ∈ R2d we set
z := (x,−ξ).

Let us recall some standard notations in spectral theory. For a bounded operator T
on a Hilbert space with range R(T ) := T (H), rank T is the dimension of R(T ), N(T ) is
the kernel of T , i.e. {x ∈ H : T x = 0}, ‖T‖ is the standard norm on (H) and T ∗ is
the adjoint of T . Let A be a selfadjoint operator acting in a Hilbert space H. The sets
ρ(A), σ(A), σess(A), σdisc(A) are respectively the resolvent set, the spectrum, the essential
spectrum and the discrete spectrum of A. For Ω ∈ B(R), the Borel σ-algebra on R, EΩ(A) is
the spectral projection corresponding to the Borel set Ω. If Ω is a relatively compact Borel
subset inside an open gap of the essential spectrum of A, then rank EΩ(A) is the (finite)
number of eigenvalues, counted with multiplicity, of A lying in Ω. Let T be a compact self-
adjoint operator in H, λ+j (T ) be the positive eigenvalues of T , arranged in descending order,
counting multiplicity. For s > 0 we set

n+(s, T ) := card { j ∈ Z+ : λ+j (T ) > s} .
For any compact operator T we define the singular values of T by

s j(T ) := λ+j (T ∗T )1/2, j ≥ 1 .

For p ≥ 1 the compact operator T belongs to the Schatten class Sp(H) if

‖T‖p :=

⎛⎜⎜⎜⎜⎜⎜⎝
+∞∑
j=1

s j(T )p

⎞⎟⎟⎟⎟⎟⎟⎠
1/p

is finite.
For f belonging to the Schwartz class S(Rd), the Fourier transform of f , denoted by  f

or f̂ , is defined by

 ( f )(ξ) = (2π)−
d
2

∫
e−iξ.x f (x) dx .

The partial Fourier transforms are defined respectively by

1F(ξ, y) := (2π)−
d
2

∫
e−iξ.xF(x, y)dx

and

2F(x, η) := (2π)−
d
2

∫
e−iη.yF(x, y)dy
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for F in the Schwartz class S(R2d); 1 and 2 are the inverse partial Fourier transforms.
For a complex-valued function f defined on Rd, we put f ∗(x) := f (−x).

2. Fourier-Wigner transform

2. Fourier-Wigner transform2.1. Basic properties.
2.1. Basic properties. Let R be the Schrödinger representation of the Heisenberg group

defined by

R(z, t) = eitρ(z)

with

ρ(z). f (y) := e
i
2 x.ξeix.y f (y + ξ), z = (x, ξ) ∈ R2d, y ∈ Rd, f ∈ L2(Rd) .

The composition law for the projective representation ρ is the following:

(2.1) ρ(z1) ◦ ρ(z2) = e
i
2σ(z1,z2)ρ(z1 + z2), z1, z2 ∈ R2d .

It follows that

(2.2) ρ(z)∗ = ρ(z)−1 = ρ(−z) .

If f , g ∈ L2(Rd) we define the Fourier-Wigner transform V( f , g) by

V( f , g)(z) := (2π)−
d
2 (ρ(z) f , g), z ∈ R2d .

Proposition 2.1. (i) For all f , g ∈ L2(Rd) we have

V( f , g)(x, ξ) = (2π)−
d
2

∫
eix.y f

(
y +

1
2
ξ

)
g

(
y − 1

2
ξ

)
dy .

(ii) Let UL be the mixing operator defined on L2(R2d) by

ULF(x, ξ) := F
(
x +

1
2
ξ, x − 1

2
ξ
)
.

Then, for all f , g ∈ L2(Rd) we have

V( f , g) = 1UL( f ⊗ ḡ) .

(iii) (The Moyal identity) For all f1, f2, g1, g2 ∈ L2(Rd), we have

(V( f1, g1),V( f2, g2)) = ( f1, f2)(g1, g2) .

(iv)

V(g, f ) = V( f , g)∗ f , g ∈ L2(Rd) .

Furthermore if the functions f and g are real-valued, if z = (x, ξ) ∈ R2d and z̄ = (x,−ξ),
then

V(g, f )(z) = V( f , g)(z̄) .

Proof. (i) [17] p.10; (ii) follows from (i); (iii) is a consequence of (ii) since UL and 1 are
unitary operators.
We prove now (iv): by definition and (2.2), we have
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V( f , g)(−z) = (2π)−
d
2 (ρ(−z) f , g) = (2π)−

d
2 ( f , ρ(z)g),

hence

V( f , g)(−z) = (2π)−
d
2 (ρ(z)g, f ) = V(g, f )(z),

which proves the first part of (iv). Furthermore

V( f , g)(−z) = (2π)−
d
2 (ρ(−z) f , g) = (2π)−

d
2

∫
ρ(−z) f g dy .

A straightforward verification proves that for all z ∈ R2d and f ∈ L2(Rd) we have ρ(z) f =
ρ(−z̄) f̄ . Consequently

V( f , g)(−z) = (2π)−
d
2

∫
ρ(z̄) f̄ (y) g(y)dy .

If furthermore f and g are real-valued, then

V( f , g)(−z) = (2π)−
d
2

∫
ρ(z̄) f (y) ḡ(y)dy

= (2π)−
d
2 (ρ(z̄) f , g))

= V( f , g)(z̄) . �

By easy computations taking into account (2.1), we obtain the following

Lemma 2.1. For all f , g ∈ L2(Rd) and for all z1, z2 ∈ R2d we have

V(ρ(z1) f , ρ(z2)g)(z) = e
i
2σ(z1,z2)eiσ(z, 1

2 (z1+z2))V( f , g)(z + (z1 − z2)) .

From this lemma we deduce the following result which is similar to formula (14.34) in
[9].

Proposition 2.2.

V(V( f , g),V(φ1, φ2))(z, ζ) = V( f , φ1)
(
Jz +

1
2
ζ

)
V(g, φ1)

(
Jz − 1

2
ζ

)
.

Proof. By definition of the Fourier-Wigner transform we have

V(V( f , g),V(φ1, φ2))(z, ζ) := (2π)−d (ρ(z, ζ).V( f , g),V(φ1, φ2))L2(R2d)

= (2π)−de
i
2 z.ζ

∫
V( f , g)(w + ζ)e−iz.wV

(
φ1, φ2

)
(w)dw .

As particular cases of Lemma 2.1 we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V( f , g)(w + ζ) = V

(
ρ
(

1
2ζ

)
f , ρ

(
− 1

2ζ
)
g
)

(w)

e−iz.wV(φ1, φ2)(w) = V(ρ(−Jz)φ1, ρ(−Jz)φ2)(w)

By use of the Moyal identity, we deduce

V(V( f , g),V(φ1, φ2))(z, ζ) = (2π)−de
i
2 z.ζ

(
ρ

(
1
2
ζ

)
f , ρ (−Jz) .φ1

) (
ρ

(
−1

2
ζ

)
g, ρ(−Jz).φ2

)
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= (2π)−de
i
2 z.ζ

(
ρ(Jz)ρ

(
1
2
ζ

)
f , φ1

) (
ρ(Jz)ρ

(
−1

2
ζ

)
g, φ2

)
and by a new application of (2.1) and a simplification of the complex exponents, we obtain
the announced equality. �
We define the Wigner transform of f , g ∈ L2(Rd) by:

W( f , g)(x, ξ) := (2π)−
d
2

∫
e−iξ.y f

(
x +

1
2
y

)
g

(
x − 1

2
y

)
dy .

Proposition 2.3. For all f , g ∈ L2(Rd), we have

W( f , g) = 2UL( f ⊗ ḡ) =  (V( f , g)) .

Proof. For the first equality, see [9]. The second equality results of Proposition 2.1 since
 = 21. �

Proposition 2.4.

W(V( f , g),V(φ1, φ2))(z, ζ) = W( f , φ1)
(
ζ +

1
2

Jz
)

W(g, φ2)
(
ζ − 1

2
Jz

)
Proof. By the last proposition we get

W(V( f , g),V(φ1, φ2))(z, ζ) = (2π)−2d
∫

e−i(z,ζ).(v,w)V(V( f , g),V(φ1, φ2))(v, w)dvdw

= (2π)−2d
∫

e−i(z.v+ζ.w)V( f , φ1)
(
Jv +

1
2
w

)
V(g, φ1)

(
Jv − 1

2
w

)
dvdw .

We consider the change of variables defined by⎧⎪⎪⎨⎪⎪⎩ Jv + 1
2w = v′

Jv − 1
2w = w′

Then

z.v + ζ.w =
(
ζ +

1
2

Jz
)
.v′ +

( − ζ + 1
2

Jz
)
.w′.

We deduce that

W(V( f , g),V(φ1, φ2))(z, ζ) =

(2π)−d
∫

e−i(ζ+ 1
2 Jz).v′V( f , φ1)(v′)dv′ (2π)−d

∫
ei(ζ− 1

2 Jz).w′V(g, φ2)(w′)dw′

= W( f , φ1)
(
ζ +

1
2

Jz
)

W(g, φ2)
(
ζ − 1

2
Jz

)
. �
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2.2. Weyl transform.
2.2. Weyl transform. We summarize the main properties of the Weyl quantization we

will use. We omit certain proofs for classical results (see [17]).

Theorem 2.1. There exists a unique bounded operator W : L2(R2d) �→ (L2(Rd)) with
the following properties :
(i) Denoting W(a) = Opw(a), then for all a ∈ L2(R2d), for all f , g ∈ L2(Rd) we have

(Opw(a) f , g) = (2π)−d
∫

â(z) V( f , g)(z)dz

and

‖Opw(a)‖ ≤ (2π)−
d
2 ‖a‖ .

(ii) Furthermore

(Opw(a) f , g) = (2π)−
d
2

∫
a(z) W( f , g)(z)dz = (2π)−

d
2 (a,W(g, f ))

and

(Opw(̂a) f , g) = (2π)−
d
2 (a,V(g, f ))

(iii) For all a ∈ L2(R2d) the operator Opw(a) is a Hilbert-Schmidt operator. Let k be the
kernel of this operator; then

a = (2π)
d
2 2UL k .

In particular

‖Opw(a)‖S2 = ‖k‖L2 = (2π)−
d
2 ‖a‖L2 .

Remark Let φ, ψ ∈ L2(Rd) and f ∈ L2(Rd). We put

Πψ,φ f := ( f , φ)ψ .

Then Πψ,φ = Sk = Opw(a) with a = W(ψ, φ) and k = ψ ⊗ φ̄.

The following proposition will be particularly useful in the next section.

Proposition 2.5. Let a ∈ L2(R2d) and f , g ∈ L2(Rd). Then

V(Opw(a) f , g) = (2π)
d
2 Opw(̃a).V( f , g)

where ã(x, ξ) := a
(
ξ + 1

2 Jx
)
.

Proof. The subspace generated by the Fourier-Wigner transforms V(φ, ψ) when φ, ψ ∈
L2(Rd) is dense in L2(R2d). Thus it suffices to prove that for all φ, ψ ∈ L2(Rd)(

V(Opw(a) f , g),V(φ, ψ)
)
= (2π)

d
2
(
Opw(̃a).V( f , g),V(φ, ψ)

)
.

By Theorem 2.1 (ii), Proposition 2.4 and a linear change of variables, we obtain(
Opw(̃a).V( f , g),V(φ, ψ)

)
= (2π)−d (̃a,W(V(φ, ψ),V( f , g)))

= (2π)−d
�

a
(
ξ +

1
2

Jx
)
W(φ, f )

(
ξ +

1
2

Jx
)
W(ψ, g)

(
ξ − 1

2
Jx

)
dxdξ
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= (2π)−d
�

a(u)W(φ, f )(u)W(ψ, g)(v)dudv = (2π)−d(a,W(φ, f ))
∫

W(ψ, g)(v)dv .

But ∫
W(ψ, g)(v)dv =

∫
1(v)W(ψ, g)(v)dv = (ψ, g) = (g, ψ) .

Therefore by Proposition 2.1(ii) and the Moyal identity we get(
Opw(̃a)V( f , g),V(φ, ψ)

)
= (2π)−d(a,W(φ, f ))(g, ψ)

= (2π)−
d
2 (Opw(a) f , φ)(g, ψ)

=
(
(2π)−

d
2 V

(
Opw(a) f , g),V(φ, ψ)

))
. �

2.3. Twisted convolution.
2.3. Twisted convolution. Let F and G be measurable functions defined on R2d.We de-

fine the twisted convolution F ∗
σ

G of F and G by

(F ∗
σ

G)(z) :=
∫

F(z − w)G(w)e
i
2σ(z,w)dw, z ∈ R2d(2.3)

=

∫
F(w)G(z − w)e−

i
2σ(z,w)dw(2.4)

whenever the function of w in the integral is integrable. The notation F�G is also used. The
following property is classical ([6]).

Proposition 2.6. If F,G ∈ L2(R2d), then so is F ∗
σ

G and

‖F ∗
σ

G‖L2(R2d) ≤ ‖F‖L2(R2d) ‖G‖L2(R2d) .

Before stating the next proposition we must recall some classical notations. Let
ω : R2d → (0,∞) be a submultiplicative weight defined on R2d, which means that for all
z, w ∈ R2d

ω(z + w) ≤ ω(z)ω(w) .

Let s ∈ R; the standard weight ωs is defined on R2d by

ωs(x, ξ) = ωs(z) = (1 + |z|)s

is submultiplicative for s ≥ 0.
A weight v is said to be ω-moderate if for all z ∈ R2d

v(z + w) ≤ Cv(z)ω(w) .

We frequently use the weight vs defined by

vs(z) := (1 + |z|2)s/2 .

Let 1 ≤ p, q ≤ +∞. The weighted mixed Lebesgue space Lp,q
ω (R2d) is the set of all

measurable functions F for which

‖F‖Lp,q
ω (R2d) :=

⎛⎜⎜⎜⎜⎜⎝
∫ (∫

|F(x, ξ)|pω(x, ξ)pdx
)q/p

dξ

⎞⎟⎟⎟⎟⎟⎠
1/q

.



Spectral Bounds of Hamiltonians 785

is finite. We note Lp
ω in the case where p = q.

The following property is known ([9]); we recall it for further explicit references.

Proposition 2.7. Let p satisfying 1 ≤ p < +∞, v a submultiplicative weight and ω a v-
moderate weight. Let F ∈ Lp

ω(R2d), G ∈ L1
v (R2d) and z, w ∈ Rd. Denote by Tz the translation

operator defined by TzF(w) := F(w − z) for F ∈ L2(Rd). Then
(i) Tz(F) ∈ Lp

ω(R2d) and

‖Tz(F)‖Lp
ω(R2d) ≤ Cv(z)‖F‖Lp

ω(R2d) .

(ii) The function F ∗G belongs to Lp
ω(R2d) and

‖F ∗G‖Lp
ω(R2d) ≤ C‖F‖Lp

ω(R2d)‖G‖L1
v (R2d) .

(iii) The same result is true when convolution is replaced by twisted convolution in (ii): the
function F ∗

σ
G belongs to Lp

ω(R2d) and

‖F ∗
σ

G‖Lp
ω(R2d) ≤ C‖F‖Lp

ω(R2d)‖G‖L1
v (R2d) .

Proof. (i) Since the weight ω is v-moderate∫
|Tz(F)|pω(w)pdw =

∫
|F(w − z)|pω(w)pdw

≤
∫
|F(w)|pω(z + w)pdw

≤ Cpv(z)p
∫
|F(w)|pω(w)pdw .

(ii) Since Lp
ω(R2d) is invariant by translation, we can define a vector-valued map

φ : R2d �→ Lp
ω(R2d) by setting

φ(w) := Tw(F)G(w) .

An application of (i) yields to the following inequality

‖φ(w)‖Lp
ω(R2d) ≤ C‖F‖Lp

ω(R2d)|G(w)|v(w) .

Hence the function φ is Bochner integrable and∥∥∥∥ ∫
φ(w)dw

∥∥∥∥
Lp
ω(R2d)

≤
∫
‖φ(w)‖Lp

ω(R2d)dw ≤ C‖F‖Lp
ω(R2d)‖G‖L1

v (R2d) .

Since the convolution can be rewrited as the Bochner integral

F ∗G =
∫

φ(w)dw

we obtain (ii).
(iii) For all z, w ∈ R2d we have

|(F ∗
σ

G)(z)| ≤ (|F| ∗ |G|)(z) .

Again with (ii) we obtain that F ∗
σ

G ∈ Lp
ω(R2d) and

‖F ∗
σ

G‖Lp
ω(R2d) ≤ ‖|F|∗|G|‖Lp

ω(R2d)
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which proves (iii). �

By use of the twisted convolution, we get a result similar to Proposition 2.5.

Proposition 2.8. Let a ∈ L2(Rd) and f , g ∈ L2(Rd). Then

V(Opw(̂a) f , g) = (2π)−d a ∗
σ

V( f , g) .

Proof. By Proposition 2.1 (ii), we have

V(Opw(̂a) f , g)(z) = (2π)−
d
2 (ρ(z)Opw(̂a) f , g)

= (2π)−
d
2 (Opw(̂a) f , ρ(−z)g)

= (2π)−d(a,V(ρ(−z)g, f )) .

But by Lemma 2.1

V(ρ(−z)g, f )(w) = e−
i
2σ(w,z)V(g, f )(w − z) = e

i
2σ(z,w)V( f , g)(z − w),

therefore

V(Opw(̂a) f , g) = (2π)−d
∫

a(w)e−
i
2σ(z,w)V( f , g)(z − w)dw = (2π)−da ∗

σ
V( f , g) . �

2.4. Special Hermite functions.
2.4. Special Hermite functions. Let en be the Hermite function of order n defined by

en(x) = π−
1
4 2−

n
2 (n!)−

1
2 Hn(x)e−

x2
2

where Hn is the Hermite polynomial of order n.
We define the special Hermite functions by setting

ei, j := V(ei, e j)

for i, j ∈ Z+.

Proposition 2.9. (i) The system (ei, j)i, j is an orthonormal basis of L2(R2).
(ii) Let be q ∈ N. Then we have

eq,q(z) = (2π)−
1
2 Lq

(
1
2
|z|2

)
e−

1
4 |z|2

where Lq is the Laguerre polynomial of degree q and order 0.
(iii) For all z ∈ R2 and j, k ∈ Z+

ek, j(z) = e j,k(z̄) .

Proof. For (i) and (ii), see [17] and (iii) results of Proposition 2.1 (iv). �

2.5. Modulation spaces.
2.5. Modulation spaces. As explained in the introduction, we will be concerned with

pseudo-differential operators with symbols in modulation spaces rather than in Hörmander-
Shubin classes. We state the definitions and results we need in the following.

First at all, we recall the definition of the Short Time Fourier Transform (STFT). Let
g ∈ S(Rd) \ {0}. For f ∈ L2(Rd) we define the STFT Vg f by
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Vg f (x, ξ) := (2π)−d/2
∫

f (t)g(t − x)e−it.ξdt .

The modulation space Mp,q
ω (Rd) is the set of all tempered distributions f ∈ 

′(Rd) for
which the short-time Fourier transform Vg f ∈ Lp,q

ω (R2d). This space equipped with the norm

‖ f ‖Mp,q
ω (Rd) :=

⎛⎜⎜⎜⎜⎜⎝
∫ (∫

|Vg f (x, ξ)|pω(x, ξ)pdx
)q/p

dξ

⎞⎟⎟⎟⎟⎟⎠
1/q

is a Banach space. We note Lp
ω, resp. Mp

ω, in the case where p = q. The definition of
Mp,q
ω (Rd) is independent of the choice of the window g ∈ S(Rd) \ {0} and the norms cor-

responding to different choices of the window are equivalent. In particular we will use the
following spaces

L2,2
vs

(R2d), M2,2
vs

(Rd), L1,1
ωs

(R2d)

abbreviated respectively by L2
s , M2

s and L1
s (the weights vs and ωs are defined in section 2.3).

Lemma 2.2. f ∈ M2
s if and only if V( f , g) ∈ L2

s and for all f ∈ M2
s we have

‖ f ‖M2
s
= ‖V( f , g)‖L2

s
.

Proof. The Fourier-Wigner V( f , g) and the STFT Vg f are connected by the relation

V( f , g)(x, ξ) = e−ix.ξVg f (ξ,−x) .

Furthermore vs(ξ,−x) = vs(x, ξ); then by using the (symplectic) change of variables (x, ξ) �→
(ξ,−x) we obtain

‖ f ‖2M2
s
= ‖Vg f ‖2L2

s
=

�
|Vg f (ξ,−x)|2vs(ξ,−x)2dxdξ

=

�
|Vg f (x, ξ)|2vs(x, ξ)2dxdξ = ‖V( f , g)‖2L2

s
. �

It happens that the modulation space M2
s (Rd) coincide with the Sobolev-Shubin space

Qs(Rd) initially defined in [16] as a Sobolev space corresponding to pseudo-differential
calculus with symbols in Hörmander-Shubin classes (see the remark below). This space is
defined for s ≥ 0 by

Qs(Rd) := { f ∈ L2(Rd) : Opaw
ψ0

(vs) f ∈ L2(Rd)}
where Opaw

ψ0
(vs) is the Anti-Wick operator with symbol vs and Gaussian window defined by

ψ0(x) := π−d/4 exp
(
− |x|

2

2

)
.

Lemma 2.3 (2, lemma 2.3). For all s ≥ 0 M2
s (Rd) coincide with Qs(Rd) and the norms

are equivalent.

Combining the two preceding lemma, we obtain immediatly the following result.

Proposition 2.10. Let f ∈ L2(Rd) and s ≥ 0. Then f ∈ Qs(Rd) if and only if V( f , g) ∈
L2

s(R2d). Furthermore, there exists Cs > 0 such that for all f ∈ Qs(Rd)
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C−1
s ‖V( f , g)‖L2

s
≤ ‖ f ‖Qs(Rd) ≤ Cs‖V( f , g)‖L2

s
.

Remark For s = m ∈ Z+, the Sobolev-Shubin space is defined by

Qm(Rd) = {u ∈  ′(Rd); xαDβu ∈ L2(Rd), |α| + |β| ≤ m} .
Another explicit characterization of M2

s (Rd) is (see [9], [11])

M2
s (Rd) = L2

s(Rd) ∩ Hs(Rd) .

3. Some results of phase-space analysis

3. Some results of phase-space analysis
Let U be an isometry from a Hilbert space H1 into an other H2; denote by G its range

G := U(H1). It is well known that G is a closed subspace of H2 and that, if P is the
orthogonal projection on G, then U∗U = IH1 and UU∗ = P.

Let g ∈ S(Rd) satisfying ‖g‖2 = 1. For f ∈ L2(Rd) define g( f ) := V( f , g).

Proposition 3.1. The map g is an isometry from L2(Rd) on a closed subspace of L2(R2d)
and if Pg is the orthogonal projection on this closed subspace, then 

∗
gg = IL2(Rd) and

g
∗
g = Pg.

Proof. g is an isometry by the Moyal identity (Proposition 2.1 (iii)) and the assumption
on g. We apply then the result above to the isometry U = g. �

The following results are inspired by [7] and [8] Chapter 18; the isometry g plays the
role of the windowed wavepacket transform Wφ in [8] p. 299.

Proposition 3.2. Let be F ∈ L2(R2d) and g ∈ L2(Rd). Then


∗
g (F) = (2π)

d
2 Opw(F).g .

Proof. Let h ∈ L2(Rd). By (ii) of Theorem 2.1 and Proposition 2.3 we get

(Opw(F).g, h) = (2π)−
d
2 (F,W(h, g)) = (2π)−

d
2 (F,V(h, g)) .

On the other hand

(∗g (F), h) = (F,g(h)) = (F,V(h, g)) . �

Corollary 3.1. Under the same assumption on F and g, we have 
∗
g (F) = Sk g where Sk

is the Hilbert-Schmidt operator with kernel

k(x, y) := (2π)−
d
2 1F

(
1
2

(x + y), x − y)
)
.

Proof. We apply Theorem 2.1 (iii) :

Opw(F) = Sk

with

k = (2π)−
d
2 U−1

L 2(F) = (2π)−
d
2 U−1

L (1(F))

and



Spectral Bounds of Hamiltonians 789

U−1
L (1(F))(x, y) = 1F

(
1
2

(x + y), x − y)
)
. �

We deduce in particular

Corollary 3.2. Under the same assumptions as in Corollary 3.1 we have

(2π)−
d
2

∫
F

(
1
2

(x + y), x − y
)
g(y)dy = 

∗
g (1F)(x) (a.e. in Rd) .

Proposition 3.3. Let be F ∈ L2
s(R2d) and g ∈ (Rd). Then 

∗
g (F) belongs to Qs(Rd) and

there is Cs > 0 such that

‖∗g (F)‖Qs(Rd) ≤ (2π)−
d
2 Cs‖V(g, g)‖L1

s
‖F‖L2

s
.

Proof. Put f := 
∗
g (F) ∈ L2(Rd). Applying Proposition 3.2 and Proposition 2.8, we

obtain

g( f ) = g(∗g (F)) = (2π)
d
2 g(Opw(F).g) = (2π)

d
2 V(Opw(F).g, g)

= (2π)−
d
2 F ∗

σ
V(g, g) .

And now we conclude from Proposition 2.7 (iii) that g( f ) ∈ L2
s(R2d) and

‖g( f )‖L2
s
≤ (2π)−

d
2 ‖V(g, g)‖L1

s
‖F‖L2

s
,

or equivalently by Proposition 2.10 that f ∈ Qs(Rd) and

‖ f ‖Qs(Rd) ≤ Cs‖g( f )‖L2
s
≤ (2π)−

d
2 Cs‖V(g, g)‖L1

s
‖F‖L2

s
. �

The next result is a consequence of Proposition 2.5; we use the same notations.

Proposition 3.4. We suppose that the symbol a is real-valued and therefore that the oper-
ator Opw(a) is self-adjoint. The operators Opw(a) and Opw(̃a) have the same eigenvalues. If
f is an eigenfunction of Opw(a) corresponding to the eigenvalue λ, then for all g ∈ S(Rd) the
function F := g( f ) is an eigenfunction of Opw(̃a) corresponding to the same eigenvalue.

Proof. By Proposition 2.5 we have

(3.1) g ◦ Opw(a) = Opw(̃a) ◦ g .
Let λ be an eigenvalue of Opw(a), let f be in L2(R) \ {0} such that Opw(a) f = λ f and
F := g( f ). We have Opw(̃a).F = λF, and since ‖F‖ = ‖ f ‖ > 0 we deduce that λ is an
eigenvalue of Opw(̃a) and F is an eigenfunction of Opw(̃a).

Let now λ be an eigenvalue of Opw(̃a)) and let F � 0 ∈ L2(Rd) be an eigenfunction.
Taking adjoint operators in (3.1), it results that ∗g ◦Opw(̃a) = Opw(a)◦∗g . Since Opw(̃a)F =
λF, we get that Opw(a)∗gF = λ∗gF for all g ∈ L2(Rd). Suppose that ∗gF = 0 for all
g ∈ L2(Rd); then F ∈ N(∗g ) = R(g)⊥, hence (F,V( f , g)) = 0 for all f , g ∈ L2(Rd); in
particular (F,V(e j, ek)) = (F, e j,k) = 0. Since (e j,k) is an orthonormal basis of L2(Rd), we
deduce that F = 0 which is not possible. Therefore there exists g ∈ L2(Rd) such that ∗g (F)
is not the null function and this proves that λ is an eigenvalue of Opw(a) and that F is a
corresponding eigenfunction. �
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4. Pseudo-differential perturbation: the Hilbert-Schmidt case

4. Pseudo-differential perturbation: the Hilbert-Schmidt case
We will now apply the results proved in the previous section to the Landau Hamiltonian

perturbed by a Hilbert-Schmidt ΨDO operator.

4.1. The Landau Hamiltonian.
4.1. The Landau Hamiltonian. We suppose d = 1 and a(q, p) = q2 + p2 for (q, p) ∈

R2. The DO Opw(a), initially defined on S(R), is essentially self-adjoint and its unique
realization as unbounded operator on L2(R) is the harmonic oscillator h0. It is well known
that σ(h0) = {2q+ 1; q ∈ N}, h0(eq) = (2q+ 1)eq and Ker(h0 − (2q+ 1)I) = Vect (eq), where
eq is the Hermite function of order q.

With the notations of section 3, the symbol ã associated to a is defined by ã(x, ξ) =
a(ξ + 1

2 Jx); more precisely here

ã(x1, x2, ξ1, ξ2) = a
(
ξ1 +

1
2

x2, ξ2 − 1
2

x1

)
=

(
ξ1 +

1
2

x2

)2

+

(
ξ2 − 1

2
x1

)2

.

Therefore

Opw(̃a) =
(
1
i
∂

∂x
+

1
2
y

)2

+

(
1
i
∂

∂y
− 1

2
x
)2

.

We deduce from Proposition (3.4) that

σ(H0) = σ(h0) = {2q + 1; q ∈ N} .
Let E0

q be the eigenspace of H0 corresponding to the eigenvalue Λq = 2q + 1:

E0
q := Ker(H0 − ΛqI) .

We know again from Proposition 3.4 that, since eq is an eigenfunction of h0 with respect to
the eigenvalue Λq, then e j(eq) = eq, j is an eigenfunction of H0 for the same eigenvalue:

H0 eq, j = (2q + 1)eq, j, j = 0, 1, . . . .

Proposition 4.1. Let q ∈ Z+ be fixed and let Vect({eq, j; j ∈ Z+}) be the subspace of
L2(R2) spanned by the special Hermite functions eq, j for j ∈ Z+. Then

E0
q = Vect({eq, j; j ∈ Z+}) .

Proof. It is sufficient to prove the inclusion E0
q ⊆ Vect({eq, j; j ∈ N}). Let be F ∈ E0

q; we
have ∗g ◦H0 = h0 ◦∗g and H0F = (2q+1)F, from which we deduce (2q+1)∗gF = h0

∗
gF,

thereby 
∗
gF ∈ Ker(h0 − (2q + 1)I) = Vect (eq). In particular ∗e j

F ∈ Vect (eq). But for all
k ∈ N

(∗e j
F, ek) = (F,V(ek, e j)) = (F, ek, j) .

Since 
∗
e j

(F) ∈ Vect (eq), we deduce that (F, ek, j) = 0 for k � q and then

F =
∑

k

∑
j

(F, ek, j)ek, j =
∑

j

(F, ek, j)ek, j

which proves that F ∈ Vect({eq, j; j ∈ N}). �

Next we wish to express E0
q with eq and factorise Pq the orthogonal projection on E0

q.
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Recall that R(eq) = Vect({e j,q; j ∈ N}) := Eq. Let be U the unitary involutive operator
defined on L2(R2) by

U F(z) := F(z̄), F ∈ L2(R2), z ∈ R2

or equivalently U F(x1, x2) = F(x1,−x2).
By Proposition 2.1, for all j, k ∈ Z+ we have e j,k(z̄) = ek, j(z) or U(e j,q) = eq, j. We deduce

that U(Eq) = E0
q. Let Pq be the orthogonal projection on Eq; we have Pq = eq

∗
eq

; therefore
UPqU∗ = Pq. Define now

(4.1) Veq := U eq .

Then

(4.2) Pq = VeqV
∗
eq
.

4.2. Hilbert-Schmidt perturbation.
4.2. Hilbert-Schmidt perturbation. Let be b ∈ L2(R4) a real-valued symbol and V :=

Opw(b) the ΨDO with Weyl symbol b. Since b is square-integrable, V is an Hilbert-Schmidt
operator. Hence the operators VH−1

0 and

Tq := Pq V Pq

are also Hilbert-Schmidt operators on L2(R2). The last operator is the effective Hamiltonian
corresponding to the perturbed operator H0 −V and to the Landau level Λq as we will see in
the next section.

Our first goal is to show that the operator Tq has the same spectrum as a ΨDO operator
Sq on L2(R) easier to study. We can first give an abstract result.

Proposition 4.2. Let U : H1 �→ H2 be an isometry, S = S∗ ∈ (H1) and T = T ∗ ∈ (H2).
We suppose that

T := U S U∗ .

Then the operators S and T have the same non-zero eigenvalues; more precisely for all λ � 0
and for all u ∈ H1, u is an eigenvector of S corresponding to the eigenvalue λ iff Uu is an
eigenvector of T corresponding to the same eigenvalue.

Proof. Let be u ∈ H1 \ {0} and λ � 0 such that Su = λu. We set v := Uu :

Tv = (U S U∗)Uu = USu = λUu = λv

and since v and u have the same norm, then v is non null, and λ is an eigenvalue and v an
eigenvecteur of T .

Conversely, suppose Tv = λv with λ and v non null and let be u := U∗v. Then, composing
on the left hand side by U∗, we obtain that Su = λu. Furthermore, if u = 0, then T v =
(US)(u) = 0 and since T v = λv, we deduce λv = 0, hence v = 0 since λ � 0, which
contradicts the assumption v � 0. �

We will apply this result to our problem by considering the operator

Sq := V∗eq
V Veq .

The operator Tq defined above can be rewrited since
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Tq = PqVPq = VeqV
∗
eq

V VeqV
∗
eq
= VeqSqV

∗
eq
.

Furthermore Veq = Ueq is also an isometry. Applying the latest proposition, we obtain that
the operators Sq and Tq have the same non-zero eigenvalues.

We will now prove that the operator Sq is a ΨDO and determine its Weyl-symbol. By
definition of Sq and by Theorem 2.1 (ii) we have

(Sq f , g) =
1

2π

�
b(x, y; ξ, η)W(V( f , eq),V(g, eq))(x,−y; ξ,−η)dxdydξdη .

By Proposition (2.4) we get

W(V( f , eq),V(g, eq))(x,−y, ξ,−η) = W( f , g)
(
ξ− 1

2
y,−η− 1

2
x
)

W(eq, eq)
(
ξ+

1
2
y,−η+ 1

2
x
)
.

Making use of a change of variables, we deduce

(Sq f , g) =

1
2π

� [�
b(ξ − η, x − y, 1

2
(x + y),−1

2
(ξ + η))W(eq, eq)(x, ξ)dxdξ

]
W( f , g)(y, η)dydη

therefore Sq is a ΨDO with Weyl symbol γq defined by

(4.3) γq(y, η) = (2π)−
1
2

�
b
(
ξ − η, x − y, 1

2
(x + y),−1

2
(ξ + η)

)
W(eq, eq)(x, ξ)dxdξ.

Let us define F ∈ L2(R4) by

(4.4) F(u1, u2, v1, v2) := b(−v2,−v1, u1,−u2)

We put w = (x, ξ) et z = (y, η). Then we have

F
(
1
2

(z + w), z − w
)
= F

(
1
2

(x + y),
1
2

(ξ + η),−(x − y),−(ξ − η)
)

= b
(
ξ − η, x − y, 1

2
(x + y),−1

2
(ξ + η)

)
,

hence by (4.3)

γq(z) = (2π)−
1
2

�
F

(
1
2

(z + w), z − w
)

W(eq, eq)(w)dw

and by Corollary 3.2

γq = 
∗
W(eq,eq)(1F) .

If we set Λ(u1, u2, v1, v2) := (−v2,−v1,−u1, u2), we obtain easily

γq = 
∗
W(eq,eq)(2b ◦ Λ) .

Suppose now that 2b ∈ L2
s(R4). The function space L2

s(R4) is invariant by linear change of
variables; thus 2b ◦ Λ is also in L2

s(R4). According to Proposition 3.3 we deduce that

(4.5) γq = 
∗
W(eq,eq)(2b ◦ Λ)
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belongs to Qs(R2). We have therefore prove the following result.

Proposition 4.3. Let b ∈ L2
s(R4). Suppose that 2b belongs to L2

s(R4). Then Sq =

Opw(γq) with γq, defined by (4.5), belonging to Qs(R2).

We can now achieve the proof of Theorem 1.1. We recall first the following result about
Schatten class properties for ΨDO with symbols in Shubin-Sobolev classes obtained by C.
Heil in [11]. Let s ≥ 0 be given and let a ∈ L2(R2). Define the operator L := Opw(a). By
Theorem 2.1 we know that L is a Hilbert-Schmidt operator; let s j(L) be the singular values
of L, arranged in descending order, counting multiplicity.

Proposition 4.4. If the symbol a lies in Qs(R2), then

s j(L) = O
(

j−
s+1
2

)
.

Consequently L ∈ Sp(L2(R)) for p > 2/(s + 1). In particular L is trace-class if s > 1.

From this result we deduce that, with the same hypothesis as in Proposition 4.3, the
singular values of Sq = Op(γq) verify

s j(Sq) = O
(

j−
s+1
2

)
.

Therefore we obtain the same estimates for the operator Tq since the two operators Sq and
Tq have the same non-zero eigenvalues by Proposition 4.2.

5. Proof of Theorem 1.2

5. Proof of Theorem 1.25.1. Reduction to an effective Hamiltonian.
5.1. Reduction to an effective Hamiltonian. The first aim of this section is to prove

that the operator Tq = Pq V Pq is the effective Hamiltonian for estimating the number of
eigenvalues of the perturbed Landau Hamiltonian near the Landau level Λq. We follow [15]
but some modifications must be precised.

We recall the classical Weyl inequality ([2], chap. 9).

Lemma 5.1. Let T1 and T2 be linear self-adjoint compact operators in a Hilbert space.
Then for each s1 > 0 and s2 > 0

n+(s1 + s2, T1 + T2) ≤ n+(s1, T1) + n+(s2, T2)

holds true.

Let H0 and V be as in Section 1 and letΛq be a fixed Landau level, Pq be the corresponding
spectral projection and Qq := I − Pq. For λ ∈ ρ(H0) we set

T (λ) := V1/2(H0 − λ)−1V1/2 .

This operator is selfadjoint and compact.

Proposition 5.1. Assume that the interval [λ1, λ2], λ1 < λ2 belongs to the gap (Λq−1,Λq),
then

rank E[λ1,λ2)(H0 − V) = n+(1, T (λ2)) − n+(1, T (λ1)) .

For the proof of this result, we refer to [14, Sections 1 and 3], and to the earlier article [1,
Proposition 1.6].
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Lemma 5.2. Let E′, E be positive real numbers satisfying Λq−1 < E′ < 2q and
0 < E < 1. Then

N(E′,Λq − E; H0 − V) = n+
(
1,V

1
2 (H0 − Λq + E)−1V

1
2

)
+ O(1), E ↓ 0+ .

Proof. With these assumptions, the interval [E′,Λq −E] is included in the gap (Λq−1,Λq).
Therefore we can apply Proposition 5.1 :

rank E[E′,Λq−E)(H0 − V) = n+(1, T (Λq − E)) − n+(1, T (E′))

or equivalently with the notations of section 1 :

N(E′,Λq − E; H0 − V) = n+(1, T (Λq − E)) − n+(1, T (E′)) − dim[Ker(H0 − V − E′)] .

But the last two terms in the right-hand side are independent of E. �

For brevity, we set

Tq(E) := T (Λq − E) = V
1
2 (H0 − Λq + E)−1V

1
2 .

We then write Tq(E) = T1,q(E) + Tq,2(E) with⎧⎪⎨⎪⎩ T1,q(E) := V
1
2 (H0 − Λq + E)−1PqV

1
2

T2,q(E) := V
1
2 (H0 − Λq + E)−1QqV

1
2 .

First we remark that

(H0 − Λq + E)−1Pq =

+∞∑
l=0

(Λl − Λq + E)−1PlPq = E−1Pq,

and so

T1,q(E) = E−1V
1
2PqV

1
2 .

The operator T1,q(E) is compact, selfadjoint and positive. The operator T2,q(E) can be rewrit-
ten as

T2,q(E) =
∑
l�q

(Λl − Λq + E)−1V
1
2 PlV

1
2 .

Proposition 5.2. For all s > 0 we have

n+(s, T2,q(E)) ≤ 4Λ2
qs−2‖V 1

2 H−1
0 V

1
2 ‖2S2

.

Proof. The operator T2,q(E) is compact, selfadjoint but not positive. We are led to define⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
T+2,q(E) :=

∑
l>q

(Λl − Λq + E)−1V
1
2PlV

1
2

T−2,q(E) := −
∑
l<q

(Λl − Λq + E)−1V
1
2PlV

1
2 .

Since 0 < E < 1, we have Λl − Λq + E < −1 if l < q, and Λl − Λq + E > 2 if l > q.
Consequently the operators T+2,q(E) and T−2,q(E) are selfadjoint and positive and

T2,q(E) = T+2,q(E) − T−2,q(E) .
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By straightforward inequalities we get

0 < (Λl − Λq + E)−1 ≤ Λq+1Λ
−1
l , l > q .

Thereby it follows that

(T+2,q(E)u, u) ≤ Λq+1

∑
l>q

Λ−1
l

(
V

1
2 PlV

1
2 u, u

)
≤ Λq+1

⎛⎜⎜⎜⎜⎜⎜⎝(V 1
2
(∑

l�q

Λ−1
l Pl

)
V

1
2
)
u, u

⎞⎟⎟⎟⎟⎟⎟⎠
≤ Λq+1

(
(V

1
2 H−1

0 V
1
2 )u, u

)
.

Similarly we have

(T−2,q(E)u, u) ≤ Λq−1

(
(V

1
2 H−1

0 V
1
2 )u, u

)
.

By assumption the operator V is a Hilbert-Schmidt operator. Since the operators V
1
2 H−1

0 V
1
2

and H−
1
2

0 VH−
1
2

0 have the same non-zero eigenvalues, we deduce that V
1
2 H−1

0 V
1
2 is a Hilbert-

Schmidt operator. As a consequence of the preceding inequalities, we obtain that T+2,q(E)
and T−2,q(E) are Hilbert-Schmidt operators and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

‖T+2,q(E)‖S2 ≤ Λq+1‖V 1
2 H−1

0 V
1
2 ‖S2

‖T−2,q(E)‖S2 ≤ Λq−1‖V 1
2 H−1

0 V
1
2 ‖S2 .

Since T2,q(E) = T+2,q(E) − T−2,q(E), it follows that T2,q(E) ∈ S2 and

‖T2,q(E)‖S2 ≤ (Λq−1 + Λq+1)‖V 1
2 H−1

0 V
1
2 ‖S2 ≤ 2Λq‖V 1

2 H−1
0 V

1
2 ‖S2 ,

and

n+(s, T2,q(E)) ≤ 4Λ2
qs−2‖V 1

2 H−1
0 V

1
2 ‖2S2

. �

5.2. End of the proof of Theorem 1.2.
5.2. End of the proof of Theorem 1.2. For 0 < ε < 1 we deduce from the Weyl inequal-

ity that

n+(1, Tq(E)) ≤ n+(1 − ε, T1,q(E)) + n+(ε, T2,q(E)) .

For the first term of the right-hand side, we have

n+(1 − ε, T1,q(E)) = n+(1 − ε, E−1V
1
2PqV

1
2 ) = n+((1 − ε)E, PqVPq) .

But by Proposition 4.4

λ j(PqVPq) = O
(

j−
s+1
2

)
or equivalently there is Cq > 0 independent of ε and E such that

n+((1 − ε)E, PqVPq) ≤ Cq(1 − ε)−
2

s+1 E−
2

s+1 .

For the second term of the right-hand side, we have by Proposition 5.2

n+(ε, T2,q(E)) ≤ 4Λ2
qε
−2‖V 1

2 H−1
0 V

1
2 ‖2S2

.

Finally we deduce from the preceding inequalities that
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E
2

s+1 n+(1, Tq(E)) ≤ Cq(1 − ε)−
2

s+1 + 4Λ2
qε
−2E

2
s+1 ‖V 1

2 H−1
0 V

1
2 ‖2S2

.

Consequently

lim sup
E→0+

E
2

s+1 n+(1, Tq(E)) ≤ Cq(1 − ε)−
2

s+1 ,

and letting ε tend to 0+ we deduce

n+(1, Tq(E)) ≤ CqE−
2

s+1

or equivalently

N(E′,Λq − E; H0 − V) ≤ CqE−
2

s+1 .
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