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Abstract
Following Getzler’s idea from the geometric viewpoint as to symbol calculus on a spin man-
ifold, we introduce a new symbol calculus of H-pseudodifferential operators on a contact Rie-
mannian manifold with contact distribution H. An explicit formula for the top grading part of
the symbol of the composite of H-differential operators is presented.

0. Introduction

On a spin manifold, Getzler [7] introduced a new symbol calculus of pseudodifferential
operators by unifying two kinds of ideas: that of Widom ([14], [15]) about symbol calculus
on Riemannian manifold and that of Alvarez-Gaumé ([1]) who used the Clifford variables
to propose a suitable filtration of symbol space. Getzler’s symbol calculus simplifies the
calculation of the principal part, or the top grading part (cf. [4], (2.10)), of the composite of
symbols ([7, Theorems 2.7 and 3.5]) and consequently provides a remarkably short proof of
the Atiyah-Singer index theorem for the Dirac operator ([7, §3], [8], [1]).

In this paper, on a contact Riemannian manifold with contact distribution H, following
Getzler’s idea we will introduce a similar symbol calculus of H-pseudodifferential operators,
which will turn out to be an effective tool for understanding the contact Riemannian struc-
ture from the viewpoint of calculus. The manifold possesses a canonical Spin® structure, the
Clifford variables associated with which provide similarly a filtration of symbol space, so
that Getzler’s idea can be applicable. The main result in this paper is Theorem 3.5, which
expressly offers an explicit formula for the top grading part of the composite of polynomial
symbols, that is, the symbols of H-differential operators. In the spin manifold case its coun-
terpart is [7, Theorem 2.7], which was certified by using the Campbell-Hausdorff formula.
To prove Theorem 3.5, we will employ not the CH formula but the formula (1.1), which
gives an explicit expression of the connection coefficients of the hermitian Tanno connec-
tion. The CH formula is so daunting that Benameur-Heitsch [4], who applied Getzler’s idea
to the case of foliated spin manifold, used Atiyah-Bott-Patodi’s formula [2, Proposition 3.7]
for the proof of [4, Theorem 4.6] which is a foliation version of [7, Theorem 2.7]. Their idea
certainly led us to the application of (1.1), but the proof itself of the formula (3.10), which
is an essential part of Theorem 3.5, does not follow their strategy in [4, §4]. Our approach
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in this paper is quite straightforward and may be applied also to Getzler’s case ([7]) and
Benameur-Heitsch’s case ([4]).

We want to comment briefly on an extension of Theorem 3.5 to general symbols. In the
spin manifold case, a composition formula for general symbols was derived almost auto-
matically from the one for polynomial symbols and Widom’s formula ([14], [15]). It will be
then natural to expect that, in the contact Riemannian manifold case, so can be a composi-
tion formula for general symbols from Theorem 3.5 and Beals-Greiner’s formula ([3]). But
the situation is not so simple and it seems to be difficult at present to extend Theorem 3.5
directly to the case of general symbol. In §4, using Beals-Greiner’s formula we give another
proof of Theorem 3.5, the method of which will be natural but may not work in the case
of general symbol. The study of this paper started with a desire to investigate the Toeplitz
operator (e.g. [9]), which is a pseudodifferential operator of degree 0, from the viewpoint of
Getzler’s symbol calculus, and even more effort toward the case of general symbols will be
needed.

1. Preliminaries: contact Riemannian manifold and the canonical Spin® structure

Let M = (M, €°, ey, J,g) be a (2n + 1)-dimensional contact Riemannian manifold. Here
¢ is a contact 1-form and ey is the unique vector field satisfying eg] e’ = V%) = 1,
eolde® = de’(ey, ) = 0, and (J, g) is a pair of (1, 1)-tensor field and Riemannian metric
satisfying g(eo, X) = €*(X), (X, JY) = —de’(X,Y) := =X (e"(Y)) - Y(e°(X)) + °([X, Y]) and
J?X = =X + e"(X)e(. Referring to [10], [11] and [12], we will briefly review some basic
properties of the hermitian Tanno connection and the canonical Spin® structure on M, which
are tools crucial for our study.

We set H = kere®, H, = {X € CH | JX = i\/—_lX} (CH := H ® C). Without the
assumption that J is integrable (i.e., [I'(H;),I'(H;)] € I'(H,)), we will equip M with the
hermitian Tanno connection #V ([10]), which is known to be appropriate for the study of

such a manifold and is characterized by the following conditions:

W =0, fvg=0, *Vi=0,
o TOVYZ,W)=0 (Ze H,, WeCTM),

where T'(*V) is the torsion tensor and 7, : CTM = Cey ® H, @ H. — H, is the natural
projection (cf. [10, Lemma 1.1], [12, §2]). We know that it coincides with the Tanaka-
Webster connection ([6, §1.2]) provided that J is integrable. Near each point P € M, we

always take a local unitary frame e$ = (eg, e?, .. ,ef,eg, cee, ejg) of CTM (eg = e, eg =

E € H_, g(eg, e’g) =0gp, | < @,B < n) which is ﬁV—parallel along all the ttV—geodesics from

P. Its dual frame is denoted by €. = (¢, e, ..., e, ek, ..., ") (hence, 2 = ¢°). We assume
C o €c cr€c C C

that the Greek indices a, §3, . . . vary from 1 to n, so that
gze%@e%+2(eg®eg+eg®eg)
and the connection ¥V can be expressed as

Weg =0, *Ve§ = Z ¢S - V),
nVeg = Z eg -w(ﬁV)‘:’, w(ﬁV)g = —w(ﬁV)i.
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The associated orthonormal frames e, = (eg, e, - - ,ea,), e® = (€%, e, - -+, e*") with respect
to the underlying Riemannian metric are given by
C C 17 a
eg + e el + el .
€q = s €nsa = Jeg, e’ = s et =—Je".

V2 : V2
Certainly these frames are also #V-parallel along the ¥V-geodesics from P. We denote the
#V-exponential map from P by exp = expp : TpM — M, and, as coordinates near P, we
always adopt the associated #V-normal coordinates x = "(x0, X1 ..., X2,) With 0/0x; = e; at
0 =P. Then [10, (2.2)] says that there is a Taylor expansion

© O F(*V)2(/0x,8/0x),)
ﬁ a N — - A A ! !
(L) w(*V)0/ox) = ; @ > xjeexg, Ox, O, 0),

where F(*V) is the curvature 2-form of ¥V. Further, if we set

(1.2) €e = (0/0x4) - Ve, €° =(dx,)-0* (i.e.,ej = X vxj0/0xy, etc.),

then the matrix-valued functions v., v* are also expanded explicitly: Let us set zo = xo,
Za = (Yo + iXura)/ V2, 26 = Zq» 0/020 = 8/0x0, 8]0z0 = (0/0xq — i0]0%ns0)/ N2, 0/0z5 =
0/0z, and (0/0z.) = (0/0zp, . ..,0/0z,,0/0z7, . ..,0/0zz). Then, in [10, (2.4)] we expressed
accurately the Taylor expansions of the complex ones V,, V* defined by e5 = (9/0z.) - V.,
e = (dz.) - V°. For later use, we will record here the beginnings of that of V,, instead of
that of v,:

1 Z‘i Zﬁj

0, ﬁ)—[tghzentry 0, B)-thzentry
f‘yoy _77&0[? _%:WB
_| Xz 20 + ) 7255 2
(13) Ve = (a,O)—?h e%try En 2 (a,B)-th eﬁtry2 + O(IZI )’
77(’10 _ZYO/? _?a B
Ly W0t NGy E,
(@, 0)-th entry (@, B)-th entry

where we set ﬁyﬁ = g(T(ﬁV)(eg, eg), e£)(0), etc.
Next, referring to [12, §2], let us recall that the hermitian vector bundle (H, g|y, J|g)
yields the canonical Spin® structure over M with spinor bundle

8= AWT*M = {we N"CT*M | X]w =0 (X € Reg U H, )}
accompanied with the Clifford action of CI/(T*M) given by
(1.4) edo= (=", efio=V2elA, elo=-V2elvV,

where we set eg vV = egj. Obviously the spinor metric coincides with the canonical one on

the right hand side, i.e., g* = g, and [12, Proposition 2.4] says that so does the spinor
connection, that is,

VSR WV ) = Y V) el ALV

Hence the curvature 2-form F(V¥) = F(AV/4) is expressed as

(1.5) FAVAN VX, Y) = Z FOV(X.Y) el AL V.
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2. Intrinsic symbol spaces S;I", SC3; and H-pseudodifferential operators
Let us take a hermitian vector bundle (E, g*) over M with connection V¥ and set
F=§QE=AT"M®E
with canonically defined metric and connection (g©, V). In this section, we will introduce

two kinds of End(F)-valued symbol spaces and associated H-pseudodifferential operators.
We set

Fi = FI(M; End(F)) = {f € C™(x"End(F)\(0)) | (B, AT) = 2" f(B, T)},
where 7 : T*M — M is the projection and AT denotes the Heisenberg dilation
T"M=R®@H" 5T =(T°, T") > AT := (2>T°, AT").
By using the V¥ -parallel transport along the #V-geodesic from P’ to P
2.1) To, = Tor(P,P') : Fp — Fp,
the bundle F is trivialized on a neighborhood Up of P as

(2.2) Fl, = UpxFs, f(®)eo P, TEfE)).

Up

Together with the trivialization

(2.3)  T'Up = Up X TiM = (Up x R (x,07)), e*(x)-0 < (x,e°(0)-0) = (x,0),

it induces naturally a local expression of g € C*(n*End(F)), which we denote by
q%)(x,0) € End(Fp).

The parallel transports for TM, T*M, etc., are similarly defined and denoted also by ’Ig:

therefore, Tef pme’(x) = ¢°(0).

Let us define now one of the intrinsic symbol spaces, following the ideas due to Beals-
Greiner ([3]) and Widom ([14], [15]), as

Sy = Sp(M;End(F))
= {q € C”(7#*End(F)) ‘ there exist g, € T’,f’ (k < m) such that,

foreachP, g ~ Z qr at P}.

k<m

Here “q ~ i< qx at P”” means that, for all multi-indices A, B and for all N > 0,
(24) 040847 = Siomnal )0, 00| < cann el PN (el = 1)
(I = {lorol? + o1 1o}, 1Bly := 2By + ¥51 Bj = By + |B).

where capy = capy(P) > 0 are bounded functions. Further we set S;7 = U, S, S~ =
(m S as usual.

Lemma 2.1. The symbol space S}; coincides with the one given by Beals-Greiner [3,
§10].
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Proof. It will suffice to show that (2.4) holds not only for (0, o) but also for any (y, o). At
the point P(y) := expp(e.(0) - y), let us check the relation between the frame (9/9x,, 8/00)
induced from the coordinates (x, o) centered at P, and the frame (9/dw,,d/0n.) induced
from the ones (w, ) centered at P(y). We have

(25)  P(x) = P)(®) = expa(ealt) - w) - w = w(y, 1) = O(x - y)),
e0)-n = T4, e T (0)- ) 2 =y, x.0) = aly.x) - o, aly.y) = E

Since Ve’ = 0, etc., obviously we have

~ 1 (k=0),
a(y. 0™ ="a(y,x), aly, ok = ay, Vo = { 0 Ek S 1;
so that
— (=0,
0 811)]' 0 aajka 7 0 0 3770
N2 ——aule 77—, S = 0
axi (9x,~ awj s Oxi 87], aO’j Zaﬁ a— (l > 1)
izl J

Consequently, for example we have

axl (Pe) Zq(Pe) (y’o_)_z aw/a (P(y)e) Z (P(J)L))(O )

k>m—N k>m—N
daje Bl).et EW)e))
$ 3 a4 - T o
Jil>1 ! k>m—N

which satisfies such a condition as (2.4). Here the local expression g®®<) is given by the

trivialization centered at P(y) with by- -parallel frame e PI?%)() *(y). m|

By further consideration we notice that the estimate at (2.5) is refined into
(2.6) w="0"(x—y) +O0(x—yP), x=y+v.yw+O0(w).

Next, let us introduce a class of pseudodifferential operators on M and associated intrinsic
symbols. We adopt another trivialization

7))  T'Us=Upx Ty = Up xR™! (x,6)), dxe(x)-& o (x,dx.(0) - &) = (x,6),
which gives another local expression of ¢ € C*(7*End(F)):

(%, &) = 5 (x,8) = ¢ (x, o (x, ) € Fr,

hence, ¢(P,£) := (0,€) = ¢“7(0,0(0,8) = ¢©7(0,¢).
By (1.2) we know that the transition rule (cf. (2.7), (2.3)) between & and o = o(x, &) is
(2.8) (dx)(x)-€=e"(0) - o(x,8) 1 0(x,8) = v'(0)7'¢ = (0.

For a symbol p € S}; and a smooth bump function ¢ on M X M which is supported in a
small neighborhood of the diagonal set and is equal to 1 on a still smaller one, we define the
H-pseudodifterential operator
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o(p) = &°(p) : T(F) - I(F)

as follows: For u € I'(F), at each P € M we set

1 : 1 —~
(B(p)u)(P) = f e p(0, &) p(x) dxdé = ——— f p(0,) u=(£) dé,
Ts (2m) T:M>¢

(2m)2n+l MXT:M3(x8)
itz 1= (TeM 5 x > (P, exp(x)) Ty u(exp(x)) € Fz),

where ﬁ;p is the Fourier transform of up. The set of such operators is denoted by Op S}}. By
referring to [3, §10], it is certain that Op S, consists of operators with C*-kernels and,
if we define the operator by using another bump function i, we have #%(p) = ¢/(p) (mod
Op S;™).

For an operator P : ['(F) — I'(F), according to Widom’s idea ([14], [15]), its intrinsic
symbol ¢(P) € C*(T*M, n*End(F)) is now defined by

S(P)E, £z = P(M 3 exp(x) - €9 6B, exp(0) T Vi )|

with up € Fp. Then obviously we have
(2.9) §(0(p)) = p (mod S;*),0(s(0(p))) = 8(p) (mod Op S;),
0
N < Op Sy | Op Sy™.

In a way similar to the idea of Getzler ([7]) (and Alvarez-Gaumé ([1])), let us define here
another symbol space SC7;. By (1.4), we know that there are the identifications
c 0,% Ak ~ Y A * * * *
End($) = End(A, T M).= CZ(H) = /\.CH < N'CT*M,
e]l <>€]2<>"' (_)e]l /\612/\"‘
B (1<j2<)
eco _ V2. e - ec
Go = i a
elo ~ —\V2-elv el
End(F) = End(A)T*"M ® E) = A*CH® ® End(E).

For example, referring to (1.5), we have

A 1 a «
FOVX,Y) = —5 Y FOVRXL Y et o
1 3 3 1
=3 Z FEVEX V) el A = 5F(“V; AYX, ),

FOVEYX,Y) = FOVY X, Y) + F(VEYX, Y) = %F(”V; AN(X,Y) + F(VEXX, Y).

We set

2n
(2.10) SC = SC"(M;End(F)) = Z S"k(M; AFH* ® End(E)))
k=0

2n
= Z Sk N CX(T"M, 7" (A*H* @ End(E))),
k=0

the element of which is said to have grading m (according to the naming in [4]). For
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p € SCy, the H-pseudodifferential operator 8(p) € Op SCy; is defined by regarding p as an
element of S} via the canonical identification

Sy o SCy
Z Snk s Z S"kK(M; A"H* @ End(E)) = SC™,
so that (2.9) holds also for SC’;, etc.

3. A formula for the composition of polynomial intrinsic symbols € PC ;

In this section, we will focus on the space of polynomial intrinsic symbols, that is, the
space of intrinsic symbols associated with H-differential operators,

PCY ={p e SCY | p(P,¢é) is a polynomial in &},
and study the composition
(3.1 PCy X PCy — PCy, (p,q) = pogq:=sB(p)ooq).

As was mentioned in Introduction, Getzler [7, Theorem 2.7] (and Block-Fox [5, Theorem
2.1]) derived an explicit expression of such a composition on a spin manifold by means of the
Campbell-Hausdorff formula, and so did Benameur-Heitsch [4, Theorem 4.6] on a foliated
spin manifold but by means of Atiyah-Bott-Patodi’s formula [2, Proposition 3.7]. Stimulated
by the latter method, the author tries to examine the composition in the contact Riemannian
case by using the following formula (cf. (1.1)): Let (u;, u», . ..) be alocal frame of F which is
V¥ _parallel along all the ﬁV—geodesics from P and let us set Vi'u;, = 3 a)(VF)g(c')/(')xj) uj, ®
dx;. Then, at x = 0, the connection coeflicients are expanded as

0" F(V)(0/0x;,0/0x;,)
0)

0xj, -+ - Oxj,

i B - ¢
(3.2) w(VF)iz(a/an) T ; m Z Xjym o Xje

Let us start with calculating symbols of some H-differential operators.

Lemma3.l. ForX=X+X" =Y Xje; eT(TM =Reg®H), £ =&y +én = 3, Ee/(P) €
oM = Re'(P) ® H, we have

S(VRIP, ) = (iXe, &) = (XE, &)+ (X0, &) := ) iX;(B) & + iXo(P) &o.
e e

>
grading 1 grading 2 /21

Proof. We have ¢(P, x) = 1 near x = 0, so that we may ignore the bump function ¢. Since

_ d _ d
(3 X (0.0] = 2| (e epX).6) = 7] (X8 = (Xed)
and obviously V(7 ug)| _, = 0, we have
(VOB Euz = V(e P O Tug)

= X(i(exp™ (x), )| _, - ue + Vi(Tiuz)| _, = (iXe.€) - us,

that is, the lemma is valid. O
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Proposition 3.2. We have

(3.4) S(VRV(P, &) = GXE, én) iYE &y + F(*‘V N, YEh

grading 2
+ (XD, &) (iYD, &0y + GXE, €m) (iYD, &0) + (XD, &o) (iVE, &)

grading 4 grading 3

1 1
+ ZF(”V; AXS, YH) + ZF(‘*V; M YD)

grading 2

1
+iXp(Yoexp ™ (x), én)) + iXp(Yolexp ™' (x), &) + EF(VEXXP, Yz)

grading 1 grading 2 W
and
(3.5) XY exp™ (0,600) = 2 e, v = £ o, v,

where we know de® =iy ec A e% => e A",
Proof. We have

= (I(VRViexp™ (1.£) €79 Tup
+i(Vi(exp™! (0,6) i(Vy(exp™ (0),)) P OO T
+i(Viexp™ (x),£) P OV(T )
+i(Viexp™ (0, ) € IV (T )
4 ilexp” I(X)’§>V§V§(7EP’X”P))|X:O
= iV, Viexp™ (0).€) up + (X EXIY. E)up + ViV (Tue)|
and, by (3.2), (2.1) and (2.2), we have
(3.6) VEVI(Tun)| | = VEVIT( Y an®u®)|
= > an®)(VEViu, )|

D a@®VE( D (VL0 0x)dxs Vi, 0)|
i1,J
1 4
Z aiz(P){ =3 X(xj, )F(VF)i.;(@/(?xj, 8/6xj1)(0)}dxj(y) u;,(0)
i1, J,J1
1 .
=5 2. @ @FVLYX)0) 1, ?)
11,12,]

=5 D GEFELEX0) 0, © )

ll lZ]
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_ _%F(VF)(Y, X)up = %F(VF)(X, Y)us
They imply
S(VxVPI(E, )
= (iX, ENQY, &) + iF(ﬂV; NX,Y) + iXp(Y(exp™ (x),€)) + %F (VOX, Y).

Considering the gradings of the terms, thus we obtain (3.4). Next, (2.6) says

1 _d .
Xp(Y(exp™' (1), €)) = ELO(Yx(exp @.8|__ )
d
= o Tl (e 0 Xe) sVt O = 2| i)Y )

d
= <—| U.(Z‘X]p) Yp + dl| OYexp(tXp)’ §>

Hence, by (1.3), we have
. _ d
(3.7) iXE (Y exp™ (0. 60) = (] oaeXE) - ¥, &)

= % Z {X6(B)Y5(P) — X5(P)Y,1.5(P)}éo = i—‘z.deo(xp, Ye).

Thus we obtain (3.5). O
Set
aio. _ . 2§O 0
(3.8) F(EV,AN) = F(PV; A) + = de
l

Then Proposition 3.2 yields
Corollary 3.3. Denoting the grading of g(VF )P, &) by myx, we have

(3.9) (s(V3) 0 (V). &) = (iXp, ) (iYp, &) + f(”V N)(Xp, Yp)

+ (terms Ofgradmg < my + my).
This will suggest a formula for general polynomial symbols.

Definition 3.4. For p, g € PCy;, we set

F¢

F(V; A)(ag ag,)p(P LNGP,E)
= F(V; A0/ 0x;, 0/ 9x,)(P) é:pol) DN g 0 4®.8)

ij
=D FOVYA9/0x1.0/0x)(®) et ®) AL BIA

i,j apf

L o
1deo(a/ax,,a/ax,)(P)} 5 P g

Ivs o 1,1 j ,

e ;ﬁ(—4 7 (v A)(% O,,—g, ) PEOAGEE
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Note that the summation in the last line is actually finite and the action of F (ﬁV; /\)(%, %)
may lower the grading (cf. [13, Proposition 1.2(2)]).

The formula (3.9) then becomes

((VE) 0 G(VEN(B, £) = e ¥ ZEVNE) (V) B, £) A o(VE )P, £) oo
+ (terms of grading < my + my)

and the general one is given as follows.

Theorem 3.5. There exists a series of bilinear differential operators

ay: PCy X PCy — PCy, (k=0,1,2,...)

such that
(3.10) a(PC PCI) C PCR™ ., pog= > ap.q),
k=0

_Lzdyay L D ,
ay(p.q)(B,&) = & 17 CTVET) p(B,£) A g(P.E), .

In the proof certainly we will adopt Benameur-Heitsch’s idea ([4]) to use the formulas
(3.2) and (1.1), but the proof itself does not follow their strategy in [4, §4], which seems
to have some difficulty in being applied to our case. Our approach in this section is quite
straightforward and may be applied also to Getzler’s case ([7]) and Benameur-Heitsch’s case
([4D.

Now, for p € PCy, the associated H-differential operator 6(p) can be written as a finite
sum of operators such as hV)'; ---V)";N (h € T'(End(F)), Xi,...,Xy € I'(TM)), so that the
proof of Theorem 3.5 is reduced to the study of

(3.11) s(hVg Vy, -+ V§Nh’V§; V§é oo VQN,)(P, é).
Accordingly, first let us prove the following:
Proposition 3.6. For vector fields Xy, X», ..., Xy, we have

(3.12) S(VE V- Vi (B, &)
N-2k

k
= 3 Y [ o® [ | 3765 mx, x,)@)
b=1

0<2k<N a=1
+ (terms of grading < ), my,),

{nlﬁ‘“,nN—Q.k,il""5ik9jl"“’jk} = {1""’N}’
ny <--- <ny-2;,

J1<:<Jks Bp<Jp

where the subscript letters in the second line run in all the letters in the big parentheses.

Proof. On and after, = means that the top grading parts of both sides coincide. Since (3.3)
and (3.5) say

[ -1 . — .
X;e @0 09| = Xi(iexpT (1).6)| = (iXip.£).
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X, X, elexp )

x=0
= Xz(iexpfl(x),f)L:OXl (iexpfl(x), & - + X0 X, (iexpfl(x), §)|x:0

= (iXop, EXiX 1 p, &) + %deo(XZ,P,Xl,P),
XXXy €OV O] = (X, )X, £)iX 2,6)
+ XaXo(iexp™ (0. 6)| _(iX1.8) + (X2, OXs X Gexp™ (0,8
+ XX (iexp™ (0. 6)| _ (X5, + XsXoXiGiexp™ (0,6)|
= (iX3p, EXiXop, EXiX 1 p, &) + (in,Paf>%deO(X3,P7X2,P)
) S . £0 . o
+ <1X2,P,§>2—l.d€ (X3p, X1p) + (lX3,P,§>2—l.d€ (X2, X1p),
inductively we know

X\ Xy - - - X, el (08

x=0
m—2k

k
- ; Z ]_][ (iX,,, E)(P) - H %deo(xiwij)ﬂp)-

{n]""9nm—2k9i]"“9ik’jl”"’jk}:{1"“’m}’
ny < < Nyok,

J1 << Jk ip<Jp

Hence, referring also to (3.6), we have

. ~1
g(v§l V§2 e V§N)(P, Eup = V; V)F(2 . V§N(e’<e"p (x),§>7?quP)

x=0

= Z Z X X oo X, (ei<exp*1(x),§>)| V§ V}I; . ‘V§ (’prup)| T
- 1442 N-2¢ 0 X' X 5y 0

{rla-”arN—2€asls---7s25}:{17---’N}’
ry < - <ry-e, 81 << Sy

N-2k-2t
=> > 1] @xw.0m
k.l a=1 . k @

{
1
2ide°(xi,,,X,-,,><P> | ZF(ﬁV; N (Xir, X ) (P
b=1 c=1

{I’ll,‘..,I’lN,zk,zg,l'l,...,ik,jl,...,jk,i’l,...,l'z,,jll,...,j}}
={1,...,N},
ny < -+ <NN-2k-2¢
Jr < <jk @b < Jp,
Jy<o<lJp i<l
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N=2k
= Z Z 1_[ <ana’§>(P) l_I ‘g(#v /\)( lh’ij)(]Pl)]P’-
0<2k<N
grading = 3 my;
{1y s ANk By e e s bk 1o ooy Jib = {1, ..., N},
ny <o <NN-2k
Ji <<k I <]b
That is, we get the formula (3.12). 0

Let us prove Theorem 3.5.
Proof of Theorem 3.5. The top grading part of (3.11) is obviously equal to that of
h(®) AW (B) A (Vi Vi, - Vi, Vi Vg, Vg,)(]?, é).

Hence, it suffices to examine (3.11) with 4 = 2" = 1, and Proposition 3.6 implies that its top
grading part is equal to that of

N-2k—C —2k'—

> ]—[ (iX,,,E)(P) ]_[ <zX,; LE)(P)
k&' €
l@lM%J@@
c=1 4 ‘
k kK 1
f] (VMK X)) [ | 7 CV: MK L X )(E)
b=1 b'=1

grading = 3} my; + > mx;/
{I’l],...,l’lN_Zk_g,ml,...,Mg,il,...,ik,jl,...,jk}={1,...,N},
ny <-- <NN-2k—(5
Ji <+ <Je 1< b
e Wy [, ool floe s ) = 1, N,
ny <o <Ny o My <o <my,
7 <---<j;{,, i, < J,

{n

1 S P N—2k N' =2k’
kk’fﬁ - 4 F(°V; A)(em,em)af o€ Z L:II(zXna,f)(P) l_:[ Xy, £)(E) g=¢

k K
l # . lo“ti . ’
E 77 OV m (X, ,b><P>l1:[1 77 OV X )(E)

L zév. A (L,-2
— o 17 VNG g )g(V§] "'V§N)(P’§) A G(V§; "'V§;,,)

Thus we obtain the formula (3.10). By observing the above calculation, the other parts of
the theorem will be obvious now. |
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4. The Beals-Greiner formula and Theorem 3.5

Following Beals-Greiner’s study ([3, (14.22)]), we know that the composition (3.1) can
be written as

1 ; . .
D Pod®H= oy fT e pED0, & + 1) g5 (x, o (x, €)) dxd.

MXTEM>(x,m)

This is, in fact, a kind of oscillatory integral (cf. [3, (12.17)—(12.19)]) as in the case of
classical symbol calculus, and the equality means accurately that the both sides are equal
modulo SC;°. Originally this is a formula for p,g € S;7, by which Beals-Greiner studied
the asymptotic expansion of poq in S} ([3, Theorems 14.1, 14.7 and 14.17]). In this section,
returning to the formula (4.1) (for SC};), we want to propose another proof of Proposition
3.6, hence, of Theorem 3.5.

As was mentioned in Introduction, in the spin manifold case (Getzler [7], Block-Fox
[5], Benameur-Heitsch [4]) a composition formula for general symbols was derived almost
automatically from the one for polynomial symbols and Widom’s formula ([14], [15]). It
will be thus natural to expect that, in the contact Riemannian manifold case, so can be
a composition formula for general intrinsic symbols € SCj; from Theorem 3.5 and Beals-
Greiner’s formula ([3]). But the situation is not so simple. In [3], each term of the asymptotic
expansion of the composite is expressed as an integral formula. For polynomial symbols
each integral one can be changed into polynomial formula as we do in the bellow, but so
cannot be for general symbols. Consequently it seems to be difficult at present to extend
Theorem 3.5 to the case of general intrinsic symbol.

First, let us prove Corollary 3.3 by using the formula (4.1). SetY = ' Yje; = >\ V;0/0x;,
Then (2.8) implies

SVHEMI(x,8) = ) iV + (VN )(X)(),
SVNED 0, 0) = ) iV o + w(VHX)@) = ) V(9o + w(V)(X)(0).
Hence, we have
(S(V5) o S(VDI(E, )
— Gt | €TI0, + T () d

1

= —(271-)2n+1 fe—i<x,n>g(V§)(P,e')(0, é‘)g‘(vg)(ﬂm,e')(x, O'(x, é;)) dxdf]

1 . .
St | € RO (V) . )

= S(VDE0.6) (V) 0,00,0) + ) iX 0Dy, s (V)™ e, o )|
= (X, E0) (O0) + Y X ODy, s (VDT o)

and, referring to (3.2), (1.3), (3.7) and (3.8), we have

(42) Ds (Vo 0)|

= DoV )|+ D 0ns (VNS00 _ Dot d)|

+
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={ D 0. (Y00 & - %F(VF)(B/(?XJ, V)O)f + > Yi(0) (31,0)(0)E;
= D0 (YO & + D Yi(0) (B:,0,)(0); - %F(Vﬁ(a/axf, Y)(0),
(4.3) D120} > Yi(0) (@00 (0)é0 - %F(Vﬁ(a/axe, Y)(0)}

1
= igo Z X(00u)(0) Yi(0) + S F (V)(X, Y)(0)

. |
- % 2 1 X05(0) V5(0) = X5(0) V(O] + 5 F(V/)(X. )(0)

_& 04X, Vi) + F(VF)(X Y)(0)

= lJ‘(’iV; N(X, Y)(0) + —F(VE)(X, Y)(0).
Thus we know that the top grading part of (g(V )o g(VF )(P, &) is equal to that of
X, 6)(0) (Y, £)0) + Zy(ﬁv; MX, Y)(0).

That is, Corollary 3.3 was proved.
Next, let us prove Proposition 3.6. We assume that the formula (3.12) holds and investi-

gate g'(V; V)’;z VF V;N l)(0 &). Set Y = Xy41. Then the formula (4.1) yields

S(VE Vi - VE VE )(0,8) = (s(Vk Vi, - Vi) 0 6(VI)O0,)

1
— —i(x,m) FgF F \®.e®) F\®P.e®)
- (271’)2’”'1 fe Hn g(vxl VXZ e VXN) (09 f + n)g(vy) ¢ (xs O-(xs 5)) dan
N-2k k

= Z Z l_[ (X, & + D) l_[ %JOZ(W; N(Xi,» Xj,)(0,& + Dy,)

0<2k<N a=1 b=1
ST o8|

N-2k N-2k

=> ]_[<zxn pE) Z (X2 €)X 2, DS 0 08|

k
1
| ] 779 00X X,)0,40)
b=

i 4
N-2k
= > | [¢Xae.8)
! N-2k
me &7 (X5, EXiYe, ) + 7 J(ﬁv M) X2, Y)(B))
1
1 ] 720V DX X5,00,40)
b=1 4
N+1-2k
= > D H (X, 2, §>]_[ 27V N (X, X;,)(0, ).
0<2k<N+1

Here the second = comes from the fact that
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grading= 2

fe—z(x,n) % de’ (X, 2, Xj,2) s(V3) E(x, o (x, €)) dop

1
(271')2'“'1

1 .
= 574" (X2, Xj,p) Dy (V) 0, )|

is of grading < 2 + my, and the third = is implied by (4.2) and (4.3). Inductively Proposition
3.6 is ascertained and, hence, we may remark that Theorem 3.5 is proved also by using the
formula (4.1).
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