DYNAMICAL NUMBER OF BASE-POINTS OF NON BASE-WANDERING JONQUIĖRES TWISTS

Julie DÉSERTI

(Received January 31, 2022, revised November 7, 2022)

Abstract

We give some properties of the dynamical number of base-points of birational self-maps of the complex projective plane.

In particular we give a formula to determine the dynamical number of base-points of non base-wandering Jonquières twists.

1. Introduction

The plane Cremona group $\operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ is the group of birational maps of the complex projective plane $\mathbb{P}_{\mathbb{C}}^{2}$. It is isomorphic to the group of \mathbb{C}-algebra automorphisms of $\mathbb{C}(X, Y)$, the function field of $\mathbb{P}_{\mathbb{C}}^{2}$. Using a system of homogeneous coordinates $(x: y: z)$ a birational map $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ can be written as

$$
(x: y: z) \rightarrow\left(P_{0}(x, y, z): P_{1}(x, y, z): P_{2}(x, y, z)\right)
$$

where P_{0}, P_{1} and P_{2} are homogeneous polynomials of the same degree without common factor. This degree does not depend on the system of homogeneous coordinates. We call it the degree of f and denote it by $\operatorname{deg}(f)$. Geometrically it is the degree of the pull-back by f of a general projective line. Birational maps of degree 1 are homographies and form the group $\operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)=\operatorname{PGL}(3, \mathbb{C})$ of automorphisms of the projective plane.

\diamond Four types of elements.

The elements $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ can be classified into exactly one of the four following types according to the growth of the sequence $\left(\operatorname{deg}\left(f^{k}\right)\right)_{k \in \mathbb{N}}($ see $[8,4])$:
(1) The sequence $\left(\operatorname{deg}\left(f^{k}\right)\right)_{k \in \mathbb{N}}$ is bounded, f is either of finite order or conjugate to an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$; we say that f is an elliptic element.
(2) The sequence $\left(\operatorname{deg}\left(f^{k}\right)\right)_{k \in \mathbb{N}}$ grows linearly, f preserves a unique pencil of rational curves and f is not conjugate to an automorphism of any rational projective surface; we call f a Jonquières twist.
(3) The sequence $\left(\operatorname{deg}\left(f^{k}\right)\right)_{k \in \mathbb{N}}$ grows quadratically, f is conjugate to an automorphism of a rational projective surface preserving a unique elliptic fibration; we call f a Halphen twist.
(4) The sequence $\left(\operatorname{deg}\left(f^{k}\right)\right)_{k \in \mathbb{N}}$ grows exponentially and we say that f is hyperbolic.
\diamond The Jonquières group.
Let us fix an affine chart of $\mathbb{P}_{\mathbb{C}}^{2}$ with coordinates (x, y). The Jonquières group J is
the subgroup of the Cremona group of all maps of the form

$$
\begin{equation*}
(x, y) \rightarrow\left(\frac{A(y) x+B(y)}{C(y) x+D(y)}, \frac{a y+b}{c y+d}\right), \tag{1.1}
\end{equation*}
$$

where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PGL}(2, \mathbb{C})$ and $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{PGL}(2, \mathbb{C}(y))$. The group J is the group of all birational maps of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ permuting the fibers of the projection onto the second factor; it is isomorphic to the semi-direct product $\operatorname{PGL}(2, \mathbb{C}(y)) \rtimes \operatorname{PGL}(2, \mathbb{C})$.

We can check with (1.1) that if f belongs to J , then $\left(\operatorname{deg}\left(f^{k}\right)\right)_{k \in \mathbb{N}}$ grows at most linearly; elements of J are either elliptic or Jonquières twists. Let us denote by \mathcal{J} the set of Jonquières twist:

$$
\mathcal{J}=\left\{f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right) \mid f \text { Jonquières twist }\right\} .
$$

A Jonquières twist is called a base-wandering Jonquières twist if its action on the basis of the rational fibration has infinite order. Let us denote by J_{0} the normal subgroup of J that preserves fiberwise the rational fibration, that is the subgroup of those maps of the form

$$
(x, y) \cdots\left(\frac{A(y) x+B(y)}{C(y) x+D(y)}, y\right) .
$$

The group J_{0} is isomorphic to $\operatorname{PGL}\left(2, \mathbb{C}(y)\right.$). The group J_{0} has three maximal (for the inclusion) uncountable abelian subgroups

$$
\mathbf{J}_{a}=\{(x+a(y), y) \mid a \in \mathbb{C}(y)\}, \quad \mathbf{J}_{m}=\left\{(b(y) x, y) \mid b \in \mathbb{C}(y)^{*}\right\}
$$

and

$$
\mathbf{J}_{F}=\left\{(x, y), \left.\left(\frac{c(y) x+F(y)}{x+c(y)}, y\right) \right\rvert\, c \in \mathbb{C}[y]\right\},
$$

where F denotes an element of $\mathbb{C}[y]$ that is not a square ([7]).
Let us associate to $f=\left(\frac{A(y) x+B(y)}{C(y) x+D(y)}, y\right) \in \mathrm{J}_{0}$ the matrix $M_{f}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$. The Baum Bott index of f is $\mathrm{BB}(f)=\frac{\left(\operatorname{Tr}\left(M_{f}\right)\right)^{2}}{\operatorname{det}\left(M_{f}\right)}$ (by analogy with the Baum Bott index of a foliation) which is well defined in PGL and is invariant by conjugation. This invariant BB indicates the degree growth:

Proposition 1.1 ([5]). Let f be a Jonquières twist that preserves fiberwise the rational fibration. The rational function $\mathrm{BB}(f)$ is constant if and only if f is an elliptic element.

A direct consequence is the following:
Corollary 1.2. Let f be a non-base wandering Jonquières twist; the rational function $\mathrm{BB}(f)$ is constant if and only if f is an elliptic element.

Every $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ admits a resolution

where π_{1}, π_{2} are sequences of blow-ups. The resolution is minimal if and only if no (-1)-curve of S are contracted by both π_{1} and π_{2}. Assume that the resolution is minimal; the base-points of f are the points blown-up by π_{1}, which can be points of S or infinitely near points. If f belongs to J, then f has one base-point p_{0} of multiplicity $d-1$ and $2 d-2$ base-points $p_{1}, p_{2}, \ldots, p_{2 d-2}$ of multiplicity 1 . Similarly the map f^{-1} has one base-point q_{0} of multiplicity $d-1$ and $2 d-2$ base-points q_{1}, q_{2}, $\ldots, q_{2 d-2}$ of multiplicity 1 . Let us denote by f_{\sharp} the action of f on the Picard-Manin space of $\mathbb{P}_{\mathbb{C}}^{2}$, by $\mathbf{e}_{m} \in \mathrm{NS}(S)$ the Néron-Severi class of the total transform of m under π_{j} (for $1 \leq j \leq 2$), and by ℓ the class of a line in $\mathbb{P}_{\mathbb{C}}^{2}$. The action of f on ℓ and the classes $\left(\mathbf{e}_{p_{j}}\right)_{0 \leq j \leq 2 d-2}$ is given by:

$$
\left\{\begin{array}{l}
f_{\sharp}(\ell)=d \ell-(d-1) \mathbf{e}_{q_{0}}-\sum_{i=1}^{2 d-2} \mathbf{e}_{q_{i}}, \\
f_{\sharp}\left(\mathbf{e}_{p_{0}}\right)=(d-1) \ell-(d-2) \mathbf{e}_{q_{0}}-\sum_{i=1}^{2 d-2} \mathbf{e}_{q_{i}}, \\
f_{\sharp}\left(\mathbf{e}_{p_{i}}\right)=\ell-\mathbf{e}_{q_{0}}-\mathbf{e}_{q_{i}} \quad \forall 1 \leq i \leq 2 d-2 .
\end{array}\right.
$$

\diamond Dynamical degree.

Given a birational self-map $f: S \rightarrow S$ of a complex projective surface, its dynamical degree $\lambda(f)$ is a positive real number that measures the complexity of the dynamics of f. Indeed $\log (\lambda(f))$ provides an upper bound for the topological entropy of f and is equal to it under natural assumptions (see [3, 9]). The dynamical degree is invariant under conjugacy; as shown in [2] precise knowledge on $\lambda(f)$ provides useful information on the conjugacy class of f. By definition a Pisot number is an algebraic integer $\lambda \in] 1,+\infty$ [whose other Galois conjugates lie in the open unit disk; Pisot numbers include integers $d \geq 2$ as well as reciprocal quadratic integers $\lambda>1$. A Salem number is an algebraic integer $\lambda \in] 1,+\infty[$ whose other Galois conjugates are in the closed unit disk, with at least one on the boundary. Diller and Favre proved the following statement:

Theorem 1.3 ([8]). Let f be a birational self-map of a complex projective surface.

If $\lambda(f)$ is different from 1 , then $\lambda(f)$ is a Pisot number or a Salem number.
One of the goal of [2] is the study of the structure of the set of all dynamical degrees $\lambda(f)$ where f runs over the group of birational maps $\operatorname{Bir}(S)$ and S over the collection of all projective surfaces. In particular they get:

Theorem 1.4 ([2]). Let Λ be the set of all dynamical degrees of birational maps of complex projective surfaces. Then
$\diamond \Lambda$ is a well ordered subset of \mathbb{R}_{+};
\diamond if λ is an element of Λ, there is a real number $\varepsilon>0$ such that $] \lambda, \lambda+\varepsilon]$ does
not intersect Λ;
\diamond there is a non-empty interval $\left.] \lambda_{G}, \lambda_{G}+\varepsilon\right]$, with $\varepsilon>0$, on the right of the golden mean that contains infinitely many Pisot and Salem numbers, but does not contain any dynamical degree.
\diamond Dynamical number of base-points ([4]).
If S is a projective smooth surface, every $f \in \operatorname{Bir}(S)$ admits a resolution

where π_{1}, π_{2} are sequences of blow-ups. The resolution is minimal if and only if no (-1)-curve of Z are contracted by both π_{1} and π_{2}. Assume that the resolution is minimal; the base-points of f are the points blown-up by π_{1}, which can be points of S or infinitely near points. We denote by $\mathfrak{b}(f)$ the number of such points, which is also equal to the difference of the ranks of the $\operatorname{Picard} \operatorname{group} \operatorname{Pic}(Z)$ of Z and the Picard group $\operatorname{Pic}(S)$ of S, and thus equal to $\mathfrak{b}\left(f^{-1}\right)$.

Let us define the dynamical number of base-points of f by

$$
\mu(f)=\lim _{k \rightarrow+\infty} \frac{\mathfrak{b}\left(f^{k}\right)}{k}
$$

Since $\mathfrak{b}(f \circ \varphi) \leq \mathfrak{b}(f)+\mathfrak{b}(\varphi)$ for any $f, \varphi \in \operatorname{Bir}(S)$ we see that $\mu(f)$ is a non-negative real number. Moreover, $\mathfrak{b}\left(f^{-1}\right)$ and $\mathfrak{b}(f)$ being equal we get $\mu\left(f^{k}\right)=|k \mu(f)|$ for any $k \in \mathbb{Z}$. Furthermore, the dynamical number of base-points is an invariant of conjugation: if $\psi: S \rightarrow Z$ is a birational map between smooth projective surfaces and if f belongs to $\operatorname{Bir}(S)$, then $\mu(f)=\mu\left(\psi \circ f \circ \psi^{-1}\right)$. In particular if f is conjugate to an automorphism of a smooth projective surface, then $\mu(f)=0$. The converse holds, i.e. $f \in \operatorname{Bir}(S)$ is conjugate to an automorphism of a smooth projective surface if and only if $\mu(f)=0$ ([4, Proposition 3.5]). This follows from the geometric interpretation of μ we will recall now. If $f \in \operatorname{Bir}(S)$ is a birational map, a (possibly infinitely near) base-point p of f is a persistent base-point of f if there exists an integer N such that p is a base-point of f^{k} for any $k \geq N$ but is not a base-point of f^{-k} for any $k \geq N$. We put an equivalence relation on the set of points that belongs to S or are infinitely near: take a minimal resolution of f

where π_{1}, π_{2} are sequences of blow-ups; the point p is equivalent to q if there exists an integer k such that $\left(\pi_{2} \circ \pi_{1}^{-1}\right)^{k}(p)=q$. Denote by v the number of equivalence classes of persistent base-points of f; then the set

$$
\left\{\mathfrak{b}\left(f^{k}\right)-v k \mid k \geq 0\right\} \subset \mathbb{Z}
$$

is bounded. In particular, $\mu(f)$ is an integer, equal to v (see [4, Proposition 3.4]).

This gives a bound for $\mu(f)$; indeed, if $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ is a map whose base-points have multiplicities $m_{1} \geq m_{2} \geq \ldots \geq m_{r}$ then (see for instance [1, §2.5] and [1, Corollary 2.6.7])

$$
\left\{\begin{array}{l}
\sum_{i=1}^{r} m_{i}=3(\operatorname{deg}(f)-1) \\
\sum_{i=1}^{r} m_{i}^{2}=\operatorname{deg}(f)^{2}-1 \\
m_{1}+m_{2}+m_{3} \geq \operatorname{deg}(f)+1
\end{array}\right.
$$

in particular, $r \leq 2 \operatorname{deg}(f)-1$ so $v \leq 2 \operatorname{deg}(f)-1$ and $\mu(f) \leq 2 \operatorname{deg}(f)-1$.
If $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ is a Jonquières twist, then there exists an integer $a \in \mathbb{N}$ such that

$$
\lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}=a^{2} \frac{\mu(f)}{2}
$$

moreover, a is the degree of the curves of the unique pencil of rational curves invariant by f (see [4, Proposition 4.5]). In particular, $a=1$ if and only if f preserves a pencil of lines. On the one hand $\left\{\mu(f) \mid f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)\right\} \subseteq \mathbb{N}$ and on the other hand if f belongs to \mathcal{J}, then $\mu(f)>0$; as a result

$$
\{\mu(f) \mid f \in \mathcal{J}\} \subseteq \mathbb{N} \backslash\{0\}
$$

Let us recall that if $f_{\alpha, \beta}=\left(\frac{\alpha x+y}{x+1}, \beta y\right)$ then $\mu\left(f_{\alpha, \beta}\right)=1$. Indeed, by induction one can prove that $f_{\alpha, \beta}^{2 n}=\left(\frac{P_{n}(x, y)}{Q_{n}(x, y)}, \beta^{2 n} y\right)$ with

$$
P_{n}(x, y)=\sum_{0 \leq i+j \leq n+1} a_{i j} x^{i} y^{j}, \quad Q_{n}(x, y)=\sum_{0 \leq i+j \leq n} b_{i j} x^{i} y^{j},
$$

and $a_{i j} \geq 0, b_{i j} \geq 0$ for any $n \geq 0$, so that $\operatorname{deg} f_{\alpha, \beta}^{2 n}=n+1$ for any $n \geq 0$; we conclude using the fact that $\mu(f)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}$. Furthermore, $\mu\left(f_{\alpha, \beta}^{k}\right)=\left|k \mu\left(f_{\alpha, \beta}\right)\right|=|k|$ for any $k \in \mathbb{Z}$. Hence

$$
\{\mu(f) \mid f \in \mathcal{J}\}=\mathbb{N} \backslash\{0\}
$$

and

$$
\left\{\mu(f) \mid f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)\right\}=\mathbb{N}
$$

As we have seen if f belongs to \mathcal{J}, then $\mu(f)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}$. Can we express $\mu(f)$ in a simpliest way? We will see that if f is a non base-wandering Jonquières twist, the answer is yes.

\diamond Results.

The dynamical number of base-points of birational self maps of the complex projective plane satisfies the following properties:

Theorem A. 1. If f is a birational self-map from $\mathbb{P}_{\mathbb{C}}^{2}$ into itself, then its dynamical number of base-points is bounded: if $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$, then $\mu(f) \leq 2 \operatorname{deg}(f)-1$.
2. We can precise the set of all dynamical numbers of base-points of birational
maps of $\mathbb{P}_{\mathbb{C}}^{2}\left(\right.$ resp. of Jonquières maps of $\left.\mathbb{P}_{\mathbb{C}}^{2}\right)$:

$$
\left\{\mu(f) \mid f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)\right\}=\mathbb{N} \quad \text { and } \quad\{\mu(f) \mid f \in \mathcal{J}\}=\mathbb{N} \backslash\{0\}
$$

3. There exist sequences $\left(f_{n}\right)_{n}$ of birational self-maps of $\mathbb{P}_{\mathbb{C}}^{2}$ such that
$\diamond \mu\left(f_{n}\right)>0$ for any $n \in \mathbb{N}$;
$\diamond \mu\left(\lim _{n \rightarrow+\infty} f_{n}\right)=0$.
4. There exist sequences $\left(f_{n}\right)_{n}$ of birational self-maps of $\mathbb{P}_{\mathbb{C}}^{2}$ such that
$\diamond \mu\left(f_{n}\right)=0$ for any $n \in \mathbb{N}$;
$\diamond \mu\left(\lim _{n \rightarrow+\infty} f_{n}\right)>0$.
Let us now give a formula to determine the dynamical number of base-points of Jonquières twists that preserves fiberwise the fibration.

Theorem B. Let $f=\left(\frac{A(y) x+B(y)}{C(y) x+D(y)}, y\right)$ be a Jonquières twist that preserves fiberwise the fibration, and let M_{f} be its associated matrix. Denote by $\operatorname{Tr}\left(M_{f}\right)$ the trace M_{f}, by χ_{f} the characteristic polynomial of M_{f}, and by Δ_{f} the discriminant of χ_{f}. Then exactly one of the following holds:

1. If χ_{f} has two distinct roots in $\mathbb{C}[y]$, then f is conjugate to $g=\left(\frac{\operatorname{Tr}\left(M_{f}\right)+\delta_{f}}{\operatorname{Tr}\left(M_{f}\right)-\delta_{f}} x, y\right)$, where $\delta_{f}^{2}=\Delta_{f}$, and

$$
\mu(f)=\mu(g)=2(\operatorname{deg}(g)-1)
$$

2. If χ_{f} has no root in $\mathbb{C}[y]$, set

$$
\Omega_{f}=\operatorname{gcd}\left(\frac{\operatorname{Tr}\left(M_{f}\right)}{2},\left(\frac{\operatorname{Tr}\left(M_{f}\right)}{2}\right)^{2}-\operatorname{det}\left(M_{f}\right)\right)
$$

and let us define P_{f} and S_{f} as

$$
\frac{\operatorname{Tr}\left(M_{f}\right)}{2}=P_{f} \Omega_{f}, \quad\left(\frac{\operatorname{Tr}\left(M_{f}\right)}{2}\right)^{2}-\operatorname{det}\left(M_{f}\right)=S_{f} \Omega_{f}
$$

2.a. If $\operatorname{gcd}\left(\Omega_{f}, S_{f}\right)=1$, then
\diamond if $\operatorname{deg}\left(S_{f}\right) \leq \operatorname{deg}\left(\Omega_{f}\right)+2 \operatorname{deg}\left(P_{f}\right)$, then $\mu(f)=\operatorname{deg}\left(\Omega_{f}\right)+2 \operatorname{deg}\left(P_{f}\right)$;
\diamond otherwise $\mu(f)=\operatorname{deg}\left(S_{f}\right)$.
2.b. If $S_{f}=\Omega_{f}^{p} T_{f}$ with $p \geq 1$ and $\operatorname{gcd}\left(T_{f}, \Omega_{f}\right)=1$, then
\diamond if $\operatorname{deg}\left(S_{f}\right) \leq \operatorname{deg}\left(\Omega_{f}\right)+2 \operatorname{deg}\left(P_{f}\right)$, then $\mu(f)=2 \operatorname{deg}\left(P_{f}\right)$;
\diamond otherwise $\mu(f)=\operatorname{deg}\left(S_{f}\right)-\operatorname{deg}\left(\Omega_{f}\right)$.
2.c. If $\Omega_{f}=S_{f}^{p} T_{f}$ with $p \geq 1$ and $\operatorname{gcd}\left(T_{f}, S_{f}\right)=1$, then $\mu(f)=2 \operatorname{deg}\left(P_{f}\right)+$ $\operatorname{deg}\left(\Omega_{f}\right)-\operatorname{deg}\left(S_{f}\right)$.

As a consequence we are able to determine the dynamical number of base-points of non base-wandering Jonquières twists:

Corollary C. Let $f=\left(f_{1}, f_{2}\right)$ be a non base-wandering Jonquières twist. If ℓ is the order of f_{2}, then $\mu(f)=\frac{\mu\left(f^{\ell}\right)}{\ell}$ where $\mu\left(f^{\ell}\right)$ is given by Theorem B .

Combining the inequalities obtained in Theorem A and Theorem B we get the following statement (we use the notations introduced in Theorem B):

Corollary D. Let f be a Jonquières twist that preserves fiberwise the fibration. Assume that χ_{f} has two distinct roots in $\mathbb{C}[y]$.

Then there exists a conjugate g of f such that g belongs to J_{m} and $\operatorname{deg}(g) \leq$ $\operatorname{deg}(f)$. For instance $g=\left(\frac{\operatorname{Tr}\left(M_{f}\right)+\delta_{f}}{\operatorname{Tr}\left(M_{f}\right)-\delta_{f}} x, y\right)$ suits.

2. Dynamical number of base-points of Jonquières twists

In this section we will prove Theorem B.
Let f be an element of J_{0}; write f as $\left(\frac{A(y) x+B(y)}{C(y) x+D(y)}, y\right)$ with $A, B, C, D \in \mathbb{C}[y]$. The characteristic polynomial of $M_{f}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ is $\chi_{f}(X)=X^{2}-\operatorname{Tr}\left(M_{f}\right) X+\operatorname{det}\left(M_{f}\right)$. There are three possibilities:
(1) χ_{f} has one root of multiplicity 2 in $\mathbb{C}[y]$;
(2) χ_{f} has two distinct roots in $\mathbb{C}[y]$;
(3) χ_{f} has no root in $\mathbb{C}[y]$.

Let us consider these three possibilities.
(1) If χ_{f} has one root of multiplicity 2 in $\mathbb{C}[y]$, then f is conjugate to the elliptic birational map $(x+a(y), y)$ of \mathbf{J}_{a}. In particular f does not belong to \mathcal{J}.
(2) Assume that χ_{f} has two distinct roots. The discriminant of χ_{f} is

$$
\Delta_{f}=\left(\operatorname{Tr}\left(M_{f}\right)\right)^{2}-4 \operatorname{det}\left(M_{f}\right)=\delta_{f}^{2}
$$

and the roots of χ_{f} are

$$
\frac{\operatorname{Tr}\left(M_{f}\right)+\delta_{f}}{2} \quad \text { and } \quad \frac{\operatorname{Tr}\left(M_{f}\right)-\delta_{f}}{2}
$$

Furthermore, M_{f} is conjugate to $\left(\begin{array}{cc}\frac{\operatorname{Tr}\left(M_{f}\right)+\delta_{f}}{2} & 0 \\ 0 & \frac{\operatorname{Tr}\left(M_{f}\right)-\delta_{f}}{2}\end{array}\right)$, i.e. f is conjugate to $g=$ $(a(y) x, y) \in \mathrm{J}_{m}$ with $a(y)=\frac{\operatorname{Tr}\left(M_{f}\right)+\delta_{f}}{\operatorname{Tr}\left(M_{f}\right)-\delta_{f}}$. Let us first express $\mu(g)$ thanks to $\operatorname{deg}(g)$. Remark that $g^{k}=\left(a(y)^{k} x, y\right)$. Write $a(y)^{j}$ as $\frac{P_{j}(y)}{Q_{j}(y)}$ where $P_{j}, Q_{j} \in \mathbb{C}[y], \operatorname{gcd}\left(P_{j}, Q_{j}\right)=1$, then $\operatorname{deg}\left(g^{j}\right)=\max \left(\operatorname{deg}\left(P_{j}\right), \operatorname{deg}\left(Q_{j}\right)\right)+1$. $\operatorname{But} \operatorname{deg}\left(P_{j}\right)=j \operatorname{deg}(P)$ and $\operatorname{deg}\left(Q_{j}\right)=$ $j \operatorname{deg}(Q)$ so

$$
\operatorname{deg}\left(g^{k}\right)=\max \left(k \operatorname{deg}\left(P_{f}\right), k \operatorname{deg}\left(Q_{1}\right)\right)+1=k \underbrace{\max \left(\operatorname{deg}\left(P_{f}\right), \operatorname{deg}\left(Q_{1}\right)\right)}_{\operatorname{deg}(g)-1}+1
$$

As a consequence $\operatorname{deg}\left(g^{k}\right)=k \operatorname{deg}(g)-k+1$. According to $\mu(g)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(g^{k}\right)}{k}$, we get

$$
\mu(g)=2 \lim _{k \rightarrow+\infty}\left(\operatorname{deg}(g)-1+\frac{1}{k}\right)=2(\operatorname{deg}(g)-1)
$$

Let us now express $\mu(f)$ thanks to f. Since f and g are conjugate $\mu(f)=\mu(g)$, hence $\mu(f)=2(\operatorname{deg}(g)-1)$. But $g=\left(\frac{\operatorname{Tr}\left(M_{f}\right)+\delta_{f}}{\operatorname{Tr}\left(M_{f}\right)-\delta_{f}} x, y\right)$; in particular

$$
\operatorname{deg}(g) \leq 1+\max \left(\operatorname{deg}\left(\operatorname{Tr}\left(M_{f}\right)+\delta_{f}\right), \operatorname{deg}\left(\operatorname{Tr}\left(M_{f}\right)-\delta_{f}\right)\right),
$$

and $\mu(f) \leq 2 \max \left(\operatorname{deg}\left(\operatorname{Tr}\left(M_{f}\right)+\delta_{f}\right), \operatorname{deg}\left(\operatorname{Tr}\left(M_{f}\right)-\delta_{f}\right)\right)$.
(3) Suppose that χ_{f} has no root in $\mathbb{C}[y]$. This means that $\left(\operatorname{Tr}\left(M_{f}\right)\right)^{2}-4 \operatorname{det}\left(M_{f}\right)$ is not a square in $\mathbb{C}[y]$ (hence $B C \neq 0$). Note that

$$
\left(\begin{array}{cc}
C & \frac{D-A}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
C & \frac{D-A}{2} \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{\operatorname{Tr}\left(M_{f}\right)}{2} & \left(\frac{\operatorname{Tr}\left(M_{f}\right)}{2}\right)^{2}-\operatorname{det}\left(M_{f}\right) \\
1 & \frac{\operatorname{Tr}\left(M_{f}\right)}{2}
\end{array}\right)
$$

In other words f is conjugate to

$$
g=\left(\frac{\frac{\operatorname{Tr}\left(M_{f}\right)}{2} x+\left(\frac{\operatorname{Tr}\left(M_{f}\right)}{2}\right)^{2}-\operatorname{det}\left(M_{f}\right)}{x+\frac{\operatorname{Tr}\left(M_{f}\right)}{2}}, y\right) \in \mathbf{J}_{\frac{\operatorname{Tr}\left(M_{f}\right)}{2}} .
$$

Set $P(y)=\frac{\operatorname{Tr}\left(M_{f}\right)}{2} \in \mathbb{C}[y]$ and $F(y)=\left(\frac{\operatorname{Tr}\left(M_{f}\right)}{2}\right)^{2}-\operatorname{det}\left(M_{f}\right) \in \mathbb{C}[y]$, i.e. f is conjugate to $g=\left(\frac{P(y) x+F(y)}{x+P(y)}, y\right)$ with $P, F \in \mathbb{C}[y]$. Denote by d_{P} (resp. d_{F}) the degree of P (resp. $F)$. Remark that $\operatorname{deg}(g)=\max \left(d_{P}+1, d_{F}, 2\right)$.

Let us now express $\operatorname{deg}\left(g^{k}\right)$. Consider $M_{g}=\left(\begin{array}{cc}P & F \\ 1 & P\end{array}\right)$ and set

$$
Q=\left(\begin{array}{cc}
\sqrt{F} & -\sqrt{F} \\
1 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
P+\sqrt{F} & 0 \\
0 & P-\sqrt{F}
\end{array}\right)
$$

Then $M_{g}^{k}=Q D^{k} Q^{-1}$, hence

$$
M_{g}^{k}=\left(\begin{array}{cc}
\sqrt{F} \frac{(P+\sqrt{F})^{k}+(P-\sqrt{F})^{k}}{(P+\sqrt{F})^{k}-(P-\sqrt{F})^{k}} & F \\
1 & \sqrt{F} \frac{(P+\sqrt{F})^{k}+(P-\sqrt{F})^{k}}{(P+\sqrt{F})^{k}-(P-\sqrt{F})^{k}}
\end{array}\right) .
$$

Let us set

$$
\Upsilon_{k}=\sqrt{F} \frac{(P+\sqrt{F})^{k}+(P-\sqrt{F})^{k}}{(P+\sqrt{F})^{k}-(P-\sqrt{F})^{k}}
$$

and let us denote by D_{k} (resp. N_{k}) the denominator (resp. numerator) of Υ_{k}.
Lemma 2.1. Let $\Omega_{f}=\operatorname{gcd}(P, F)$ and write P (resp. F) as $\Omega_{f} P_{f}$ (resp. $\Omega_{f} S_{f}$). Assume $\operatorname{gcd}\left(S_{f}, \Omega_{f}\right)=1$. Then
\diamond if $d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}$, then $\mu(g)=d_{\Omega_{f}}+2 d_{P_{f}}$;
\diamond otherwise $\mu(g)=d_{S_{f}}$.
Proof. (a) Assume k even, write k as 2ℓ. A straightforward computation yields to

$$
\Upsilon_{2 \ell}=\frac{\sum_{j=0}^{\ell}\binom{2 \ell}{2 j} \Omega_{f}^{\ell-j} P_{f}^{2(\ell-j)} S_{f}^{j}}{P_{f} \sum_{j=0}^{\ell-1}\binom{2 \ell}{2 j+1} \Omega_{f}^{\ell-1-j} P_{f}^{2(\ell-1-j)} S_{f}^{j}} .
$$

Recall that $\operatorname{gcd}\left(\Omega_{f}, S_{f}\right)=1$ by assumption and $\operatorname{gcd}\left(\Omega_{f}, P_{f}\right)=1$ by construction. On the one hand

$$
\operatorname{deg}\left(N_{2 \ell}\right)=\left\{\begin{array}{l}
\ell\left(d_{\Omega_{f}}+2 d_{P_{f}}\right) \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}} \\
\ell d_{S_{f}} \text { otherwise }
\end{array}\right.
$$

On the other hand

$$
\operatorname{deg}\left(D_{2 \ell}\right)=\left\{\begin{array}{l}
d_{P_{f}}+(\ell-1)\left(d_{\Omega_{f}}+2 d_{P_{f}}\right) \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\
d_{P_{f}}+(\ell-1) d_{S_{f}} \quad \text { otherwise. }
\end{array}\right.
$$

Finally
$\operatorname{deg}\left(g^{2 \ell}\right)=\left\{\begin{array}{l}\max \left(\ell\left(d_{\Omega_{f}}+2 d_{P_{f}}\right)+1, d_{S_{f}}+\ell d_{\Omega_{f}}+(2 \ell-1) d_{P_{f}},(\ell-1) d_{\Omega_{f}}+(2 \ell-1) d_{P_{f}}+2\right) \\ \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\ \max \left(\ell d_{S_{f}}+1, d_{\Omega_{f}}+d_{P_{f}}+\ell d_{S_{f}}, d_{P_{f}}+(\ell-1) d_{S_{f}}+2\right) \\ \text { otherwise. }\end{array}\right.$
(b) Suppose k odd, write k as $2 \ell+1$. A straightforward computation yields to

$$
\Upsilon_{2 \ell+1}=P_{f} \Omega_{f} \frac{\sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j} \Omega_{f}^{\ell-j} P_{f}^{2(\ell-j)} S_{f}^{j}}{\sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j+1} \Omega_{f}^{\ell-j} P_{f}^{2(\ell-j)} S_{f}^{j}}
$$

Let us recall that $\operatorname{gcd}\left(\Omega_{f}, S_{f}\right)=1$ by assumption and $\operatorname{gcd}\left(\Omega_{f}, P_{f}\right)=1$ by construction.
On the one hand

$$
\operatorname{deg}\left(N_{2 \ell+1}\right)=\left\{\begin{array}{l}
\ell\left(d_{\Omega_{f}}+2 d_{P_{f}}\right)+d_{\Omega_{f}}+d_{P_{f}} \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\
\ell d_{S_{f}}+d_{P_{f}}+d_{\Omega_{f}} \quad \text { otherwise. }
\end{array}\right.
$$

On the other hand

$$
\operatorname{deg}\left(D_{2 \ell+1}\right)=\left\{\begin{array}{l}
\ell\left(d_{\Omega_{f}}+2 d_{P_{f}}\right) \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\
\ell d_{S_{f}} \text { otherwise. }
\end{array}\right.
$$

Finally

$$
\operatorname{deg}\left(g^{2 \ell+1}\right)=\left\{\begin{array}{cc}
\max \left((\ell+1) d_{\Omega_{f}}+(2 \ell+1) d_{P_{f}}+1,(\ell+1) d_{\Omega_{f}}+2 \ell d_{P_{f}}+d_{S_{f}}, \ell\left(d_{\Omega_{f}}+2 d_{P_{f}}\right)+2\right) \\
\text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}} \\
\max \left(\ell d_{S_{f}}+d_{P_{f}}+d_{\Omega_{f}}+1,(\ell+1) d_{S_{f}}+d_{\Omega_{f}}, \ell d_{S_{f}}+2\right) & \text { otherwise }
\end{array}\right.
$$

We conclude with the equality $\mu(g)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(g^{k}\right)}{k}$.
Lemma 2.2. Let $\Omega_{f}=\operatorname{gcd}(P, F)$ and write P (resp. F) as $\Omega_{f} P_{f}$ (resp. $\Omega_{f} S_{f}$).
Suppose that $S_{f}=\Omega_{f}^{p} T_{f}$ with $p \geq 1$ and $\operatorname{gcd}\left(T_{f}, \Omega_{f}\right)=1$. Then
\diamond if $d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}$, then $\mu(g)=2 d_{P_{f}}$;
\diamond otherwise $\mu(g)=d_{S_{f}}-d_{\Omega_{f}}$.
Proof. (a) Assume k even, write k as 2ℓ. We get

$$
\Upsilon_{2 \ell}=\frac{\sum_{j=0}^{\ell}\binom{2 \ell}{2 j} \Omega_{f}^{\ell-j} P_{f}^{2(\ell-j)} S_{f}^{j}}{P_{f} \sum_{j=0}^{\ell-1}\binom{2 \ell}{2 j+1} \Omega_{f}^{\ell-1-j} P_{f}^{2(\ell-1-j)} S_{f}^{j}}=\frac{\Omega_{f} \sum_{j=0}^{\ell}\binom{2 \ell}{2 j} \Omega_{f}^{(p-1) j} P_{f}^{2(\ell-j)} T_{f}^{j}}{P_{f} \sum_{j=0}^{\ell-1}\binom{2 \ell}{2 j+1} \Omega_{f}^{(p-1) j} P_{f}^{2(\ell-1-j)} T_{f}^{j}} .
$$

Recall that $\operatorname{gcd}\left(\Omega_{f}, T_{f}\right)=1$ and that $d_{S_{f}}=p d_{\Omega_{f}}+d_{T_{f}}$, i.e. $d_{T_{f}}=d_{S_{f}}-p d_{\Omega_{f}}$. On the one hand

$$
\operatorname{deg}\left(N_{2 \ell}\right)=\left\{\begin{array}{l}
2 \ell d_{P_{f}}+d_{\Omega_{f}} \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}} \\
\ell d_{S_{f}}+(1-\ell) d_{\Omega_{f}} \text { otherwise }
\end{array}\right.
$$

On the other hand

$$
\operatorname{deg}\left(D_{2 \ell}\right)=\left\{\begin{array}{l}
(2 \ell-1) d_{P_{f}} \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}} \\
(\ell-1)\left(d_{S_{f}}-d_{\Omega_{f}}\right)+d_{P_{f}} \quad \text { otherwise }
\end{array}\right.
$$

Finally
$\operatorname{deg}\left(g^{2 \ell}\right)=\left\{\begin{array}{l}\max \left(2 \ell d_{P_{f}}+d_{\Omega_{f}}+1,(2 \ell-1) d_{P_{f}}+d_{\Omega_{f}}+d_{S_{f}},(2 \ell-1) d_{P_{f}}+1\right) \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\ \max \left(\ell d_{S_{f}}-(\ell-1) d_{\Omega_{f}}+1, \ell d_{S_{f}}+(2-\ell) d_{\Omega_{f}}+d_{P_{f}},(\ell-1)\left(d_{S_{f}}-d_{\Omega_{f}}\right)+d_{P_{f}}+1\right) \\ \text { otherwise. }\end{array}\right.$
(b) Suppose k odd, write k as $2 \ell+1$. We get

$$
\Upsilon_{2 \ell+1}=\frac{P_{f} \Omega_{f} \sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j} \Omega_{f}^{\ell-j} P_{f}^{2(\ell-j)} S_{f}^{j}}{\sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j+1} \Omega_{f}^{\ell-j} P_{f}^{2(\ell-j)} S_{f}^{j}}=\frac{P_{f} \Omega_{f} \sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j} \Omega_{f}^{(p-1) j} P_{f}^{2(\ell-j)} T_{f}^{j}}{\sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j+1} \Omega_{f}^{(p-1) j} P_{f}^{2(\ell-j)} T_{f}^{j}}
$$

On the one hand

$$
\operatorname{deg}\left(N_{2 \ell+1}\right)=\left\{\begin{array}{l}
(2 \ell+1) d_{P_{f}}+d_{\Omega_{f}} \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\
\ell d_{S_{f}}-(\ell-1) d_{\Omega_{f}}+d_{P_{f}} \quad \text { otherwise } .
\end{array}\right.
$$

On the other hand

$$
\operatorname{deg}\left(D_{2 \ell+1}\right)=\left\{\begin{array}{l}
2 \ell d_{P_{f}} \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\
\ell d_{S_{f}}-\ell d_{\Omega_{f}} \text { otherwise } .
\end{array}\right.
$$

Finally
$\operatorname{deg}\left(g^{2 \ell+1}\right)=\left\{\begin{array}{l}\max \left((2 \ell+1) d_{P_{f}}+d_{\Omega_{f}}+1,2 \ell d_{P_{f}}+d_{\Omega_{f}}+d_{S_{f}}, 2 \ell d_{P_{f}}+1\right) \quad \text { if } d_{S_{f}} \leq d_{\Omega_{f}}+2 d_{P_{f}}, \\ \max \left(\ell d_{S_{f}}-(\ell-1) d_{\Omega_{f}}+d_{P_{f}}+1,(\ell+1) d_{S_{f}}-(\ell-1) d_{\Omega_{f}}, \ell d_{S_{f}}-\ell d_{\Omega_{f}}+1\right) \\ \text { otherwise. }\end{array}\right.$
We conclude with the equality $\mu(g)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(g^{k}\right)}{k}$.

Lemma 2.3. Let $\Omega_{f}=\operatorname{gcd}(P, F)$ and write P (resp. F) as $\Omega_{f} P_{f}$ (resp. $\Omega_{f} S_{f}$). Suppose that $\Omega_{f}=S_{f}^{p} T_{f}$ with $p \geq 1$ and $\operatorname{gcd}\left(T_{f}, S_{f}\right)=1$. Then

$$
\mu(g)=2 d_{P_{f}}+d_{\Omega_{f}}-d_{S_{f}} .
$$

Proof. (a) Assume k even, write k as 2ℓ. We obtain

$$
\Upsilon_{2 \ell}=\frac{\sum_{j=0}^{\ell}\binom{2 \ell}{2 j} \Omega_{f}^{\ell-j} P_{f}^{2(\ell-j)} S_{f}^{j}}{P_{f} \sum_{j=0}^{\ell-1}\binom{2 \ell}{2 j+1} \Omega_{f}^{\ell-1-j} P_{f}^{2(\ell-1-j)} S_{f}^{j}}=\frac{S_{f} \sum_{j=0}^{\ell}\binom{2 \ell}{2 j} S_{f}^{j(p-1)} P_{f}^{2 j} T_{f}^{j}}{P_{f} \sum_{j=0}^{\ell-1}\binom{2 \ell}{2 j+1} S_{f}^{j(p-1)} P_{f}^{2 j} T_{f}^{j}}
$$

Recall that $\operatorname{gcd}\left(S_{f}, T_{f}\right)=1$; one has

$$
\operatorname{deg}\left(N_{2 \ell}\right)=(p \ell-\ell+1) d_{S_{f}}+2 \ell d_{P_{f}}+\ell d_{T_{f}},
$$

and

$$
\operatorname{deg}\left(D_{2 \ell}\right)=(\ell-1)(p-1) d_{S_{f}}+(2 \ell-1) d_{P_{f}}+(\ell-1) d_{T_{f}} .
$$

Finally

$$
\begin{aligned}
& \operatorname{deg}\left(g^{2 \ell}\right)=\max \left((p \ell-\ell+1) d_{S_{f}}+2 \ell d_{P_{f}}+\ell d_{T_{f}}+1,\right. \\
&(\ell(p-1)+2) d_{S_{f}}+(2 \ell-1) d_{P_{f}}+\ell d_{T_{f}}, \\
&\left.(\ell-1)(p-1) d_{S_{f}}+(2 \ell-1) d_{P_{f}}+(\ell-1) d_{T_{f}}+2\right) .
\end{aligned}
$$

(b) Suppose k odd, write k as $2 \ell+1$. We get

$$
\Upsilon_{2 \ell+1}=\frac{\sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j} P^{2 \ell+1-2 j} F^{j}}{\sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j+1} P^{2 \ell-2 j} F^{j}}=\frac{S_{f}^{p} T_{f} P_{f} \sum_{j=0}^{\ell}\binom{2 \ell+1}{2(\ell-j)} S_{f}^{j(p-1)} T_{f}^{j} P_{f}^{2 j}}{\sum_{j=0}^{\ell}\binom{2 \ell+1}{2 j} S_{f}^{j(p-1)} T_{f}^{j} P_{f}^{2 j}} .
$$

On the one hand

$$
\operatorname{deg}\left(N_{2 \ell+1}\right)=(p+\ell(p-1)) d_{S_{f}}+(\ell+1) d_{T_{f}}+(2 \ell+1) d_{P_{f}}
$$

and on the other hand

$$
\operatorname{deg}\left(D_{2 \ell+1}\right)=2 \ell d_{P_{f}}+\ell d_{T_{f}}+\ell(p-1) d_{S_{f}} .
$$

Finally

$$
\begin{gathered}
\operatorname{deg}\left(g^{2 \ell+1}\right)=\max \left((p+\ell(p-1)) d_{S_{f}}+(\ell+1) d_{T_{f}}+(2 \ell+1) d_{P_{f}}+1,\right. \\
(p+1+\ell(p-1)) d_{S_{f}}+2 \ell d_{P_{f}}+(\ell+1) d_{T_{f}} \\
\left.2 \ell d_{P_{f}}+\ell d_{T_{f}}+\ell(p-1) d_{S_{f}}+2\right) .
\end{gathered}
$$

We conclude with the equality $\mu(g)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(g^{k}\right)}{k}$.

3. Examples

In this section we will give examples that illustrate Theorem B; more precisely §3.1 (resp. §3.2) illustrates Theorem B.1. (resp. Theorem B.2.)

3.1. Examples that illustrate Theorem B.1.

3.1.1. First example. Consider the birational map of \mathbf{J} given in the affine chart $x=1$ by $f=(y,(1-y) y z)$. The matrix associated to f is

$$
M_{f}=\left(\begin{array}{cc}
(1-y) y & 0 \\
0 & 1
\end{array}\right)
$$

and the Baum Bott index $\mathrm{BB}(f)$ of f is $\frac{((1-y) y+1)^{2}}{(1-y) y}$; in particular f belongs to \mathcal{J} (Proposition 1.1). The characteristic polynomial of M_{f} is

$$
\chi_{f}(X)=(X-(1-y) y)(X-1) .
$$

According to Theorem B.1. one has $\mu(f)=4 \leq 2 \max (\operatorname{deg}(2), \operatorname{deg}(2(1-y) y)=4$.
We can see it another way: [5] asserts that $\operatorname{deg}\left(f^{k}\right)=k \operatorname{deg}(f)-k+1=3 k-k+1=2 k+1$. Consequently $\mu(f)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}=2 \lim _{k \rightarrow+\infty} \frac{2 k+1}{k}=4$.

A third way to see this is to look at the configuration of the exceptional divisors. For any $k \geq 1$ one has $f^{k}=\left(x^{2 k+1}: x^{2 k} y:(x-y)^{k} y^{k} z\right)$. The configuration of the exceptional divisors of f^{k} is

where
\diamond two curves are related by an edge if their intersection is positive;
\diamond the self-intersections correspond to the shape of the vertices;
\diamond the point means self-intersection -1 , the rectangle means self-intersection $-2 k$.
In particular the number of base-points of f^{k} is $2 k+2 k+1=4 k+1$ and

$$
\mu(f)=\lim _{k \rightarrow+\infty} \frac{\# \mathrm{~b}\left(f^{k}\right)}{k}=4
$$

3.1.2. Second example. Consider the birational map of \mathbf{J} given in the affine chart $z=1$ by $f=(x, x y+x(x-1))$. The matrix associated to f is

$$
M_{f}=\left(\begin{array}{cc}
x & x(x-1) \\
0 & 1
\end{array}\right)
$$

according to Proposition 1.1 the map f is a Jonquières twist (indeed $\mathrm{BB}(f)=\frac{(1+x)^{2}}{x} \in$ $\mathbb{C}(x) \backslash \mathbb{C})$. The characteristic polynomial of M_{f} is $\chi_{f}(X)=(X-x)(X-1)$. And f is conjugate to $g=(x, x y)$. According to Theorem B. 1 one has

$$
\mu(f)=\mu(g)=2(\operatorname{deg}(g)-1)=2 \leq 2 \max (\operatorname{deg}(2), \operatorname{deg}(2(1-y) y)=2 .
$$

We can see it another way: for any $k \geq 1$ one has $f^{k}=\left(x, x^{k} y+x^{k+1}-x\right)$ and thus
$\operatorname{deg}\left(f^{k}\right)=k+1$. As a result $\mu(f)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}=2 \times 1=2$.

3.2. Examples that illustrate Theorem B.2.

3.2.1. First example. Consider the map of J given in the affine chart $y=1$ by

$$
f=\left(x, \frac{x(1-x z)}{z}\right)
$$

The matrix associated to f is

$$
M_{f}=\left(\begin{array}{cc}
-x^{2} & x \\
1 & 0
\end{array}\right)
$$

the Baum Bott index $\mathrm{BB}(f)$ of f is $-x^{3}$ and f belongs to \mathcal{J} (Proposition 1.1).
Theorem B.2.a asserts that $\mu(f)=3$. We can see it another way: a computation gives $\operatorname{deg}\left(f^{2 k}\right)=3 k+1$ and $\operatorname{deg}\left(f^{2 k+1}\right)=3(k+1)$ for any $k \geq 0$. Since $\mu(f)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}$ one gets $\mu(f)=3$.
3.2.2. Second example. Consider the map f of \mathbf{J} associated to the matrix

$$
M_{f}=\left(\begin{array}{cc}
y & 2 y^{8} \\
y & 1
\end{array}\right)
$$

The Baum Bott index $\mathrm{BB}(f)$ of f is $\frac{(y+1)^{2}}{y\left(1-2 y^{8}\right)}$ and f belongs to \mathcal{J} (Proposition 1.1). Theorem B.2.a asserts that $\mu(f)=9$. We can see it another way: a computation gives $\operatorname{deg}\left(f^{2 k}\right)=9 k+1$ and $\operatorname{deg}\left(f^{2 k+1}\right)=9 k+8$ for any $k \geq 0$. Since $2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}=\mu(f)$ one gets $\mu(f)=9$.
3.2.3. Third example. Let us consider the Jonquières map of $\mathbb{P}_{\mathbb{C}}^{2}$ given in the affine chart $z=1$ by

$$
f=\left(\frac{y(y+2) x+y^{5}}{x+y(y+2)}, y\right)
$$

The matrix associated to f is

$$
M_{f}=\left(\begin{array}{cc}
y(y+2) & y^{5} \\
1 & y(y+2)
\end{array}\right)
$$

and the Baum Bott index $\mathrm{BB}(f)$ of f is $\frac{4(y+2)^{2}}{(y+2)^{2}-y^{5}}$. In particular f is a Jonquières twist (Proposition 1.1).

According to Theorem B.2.b one has $\mu(f)=3$. An other way to see that is to compute $\operatorname{deg} f^{k}$ for any k : for any $\ell \geq 1$ one has

$$
\operatorname{deg}\left(f^{2 \ell}\right)=3(\ell+1), \quad \operatorname{deg}\left(f^{2 \ell+1}\right)=3 \ell+5
$$

Then we find again $\mu(f)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}=3$.
3.2.4. Fourth example. Consider the map f of \mathbf{J} associated to the matrix

$$
M_{f}=\left(\begin{array}{cc}
y(y+2)^{8} & y^{5} \\
1 & y(y+2)^{8}
\end{array}\right)
$$

The Baum Bott index $\mathrm{BB}(f)$ of f is $\frac{4(y+2)^{16}}{(y+2)^{16}-y^{3}}$ and f belongs to \mathcal{J} (Proposition 1.1). According to Theorem B.2.b one has $\mu(f)=16$. An other way to see that is to compute $\operatorname{deg} f^{k}$ for any k : for any $k \geq 1$ one has $\operatorname{deg} f^{k}=8 k+2$. Then we find again $\mu(f)=2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}=$ $2 \times 8=16$.
3.2.5. Fifth example. Let us consider the Jonquières map of $\mathbb{P}_{\mathbb{C}}^{2}$ given in the affine chart $z=1$ by

$$
f=\left(\frac{y(y+1)(y+2) x+y^{2}}{(y+2) x+y(y+1)(y+2)}, y\right)
$$

The matrix associated to f is

$$
M_{f}=\left(\begin{array}{cc}
y(y+1)(y+2) & y^{2} \\
y+2 & y(y+1)(y+2)
\end{array}\right)
$$

and the Baum-Bott index $\mathrm{BB}(f)$ of f is $\frac{4(y+1)^{2}(y+2)}{(y+1)^{2}(y+2)-1}$; in particular f is a Jonquières twist (Proposition 1.1).

Theorem B.2.c asserts that $\mu(f)=3$. An other way to see that is to compute $\operatorname{deg} f^{k}$ for any k : for any $k \geq 1$

$$
\operatorname{deg}\left(f^{2 k}\right)=3 k+2, \quad \operatorname{deg}\left(f^{2 k+1}\right)=3 k+4
$$

so $2 \lim _{k \rightarrow+\infty} \frac{\operatorname{deg}\left(f^{k}\right)}{k}=3$ and we find again $\mu(f)=3$.

3.3. Families.

3.3.1. First family. Let us consider the family $\left(f_{t}\right)_{t}$ of elements of \mathbf{J} given by $f_{t}=$ $\left(x+t, y \frac{x}{x+1}\right)$. A straightforward computation yields to

$$
f_{t}^{n}=\left(x+n t, y \frac{x}{x+1} \frac{x+t}{x+t+1} \ldots \frac{x+(n-1) t}{x+(n-1) t+1}\right) .
$$

The birational map f_{t} belongs to \mathcal{J} if some multiple of t is equal to 1 , and to $\mathbf{J} \backslash \mathcal{J}$ otherwise. Furthermore,
\diamond if no multiple of t is equal to 1 , then $\mu\left(f_{t}\right)=2\left(\right.$ because $\left.\lim _{k \rightarrow+\infty} \frac{\operatorname{deg} f_{t}^{k}}{k}=1\right)$;
\diamond otherwise $\mu\left(f_{t}\right)=0$.
3.3.2. Second family, illustration of Theorem A.3. Let us recall a result of [6]: let f be any element of $\mathrm{PGL}_{3}(\mathbb{C})$, or any elliptic element of $\operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ of infinite order; then f is a limit of pairwise conjugate loxodromic elements (resp. Jonquières twists) in the Cremona group. Hence there exist families $\left(f_{n}\right)_{n}$ of birational self-maps of the complex projective plane such that

$$
\diamond \mu\left(f_{n}\right)>0 \text { for any } n \in \mathbb{N}
$$

$$
\diamond \mu\left(\lim _{n \rightarrow+\infty} f_{n}\right)=0
$$

3.3.3. Third family, illustration of Theorem A.4. Let us recall a construction given in [6]. Consider a pencil of cubic curves with nine distinct base points p_{i} in $\mathbb{P}_{\mathbb{C}}^{2}$. Given a point m in $\mathbb{P}_{\mathbb{C}}^{2}$, draw the line $\left(p_{1} m\right)$ and denote by m^{\prime} the third intersection point of this line with the cubic of our pencil that contains m : the map $m \mapsto \sigma_{1}(m)=m^{\prime}$ is a birational involution. Replacing p_{1} by p_{2}, we get a second involution and, for a very general pencil, $\sigma_{1} \circ \sigma_{2}$ is a Halphen twist that preserves our cubic pencil. At the opposite range, consider the degenerate cubic pencil, the members of which are the union of a line through the origin and the circle $C=\left\{x^{2}+y^{2}=z^{2}\right\}$. Choose $p_{1}=(1: 0: 1)$ and $p_{2}=(0: 1: 1)$ as our distinguished base points. Then, $\sigma_{1} \circ \sigma_{2}$ is a Jonquières twist preserving the pencil of lines through the origin; if the plane is parameterized by $(s, t) \mapsto(s t, t)$, this Jonquières twist is conjugate to $(s, t) \mapsto\left(s, \frac{(s-1) t+1}{\left(s^{2}+1\right) t+s-1}\right)$. Now, if we consider a family of general cubic pencils converging towards this degenerate pencil, we obtain a sequence of Halphen twists converging to a Jonquières twist. So there exists a sequence $\left(f_{n}\right)_{n}$ of birational self-maps of $\mathbb{P}_{\mathbb{C}}^{2}$ whose limit is also a birational self-map of $\mathbb{P}_{\mathbb{C}}^{2}$ and such that
$\diamond \mu\left(f_{n}\right)=0$ for any $n \in \mathbb{N} ;$
$\diamond \mu\left(\lim _{n \rightarrow+\infty} f_{n}\right)>0$.

References

[1] M. Alberich-Carramiñana: Geometry of the Plane Cremona Maps, Lecture Notes in Math. 1769, SpringerVerlag, Berlin, 2002.
[2] J. Blanc and S. Cantat: Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc. 29 (2016), 415-471.
[3] E. Bedford and J. Diller: Energy and invariant measures for birational surface maps, Duke Math. J. 128 (2005), 331-368.
[4] J. Blanc and J. Déserti: Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), 507-533.
[5] D. Cerveau and J. Déserti: Centralisateurs dans le groupe de Jonquières, Michigan Math. J. 61 (2012), 763-783.
[6] S. Cantat, J. Déserti and J. Xie: Three chapters on Cremona groups, Indiana Univ. Math. J. 70 (2021), 2011-2064.
[7] J. Déserti: Sur les automorphismes du groupe de Cremona, Compos. Math. 142 (2006), 1459-1478.
[8] J. Diller and C. Favre: Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), 11351169.
[9] T.-C. Dinh and N. Sibony: Une borne supérieure pour l'entropie topologique d'une application rationnelle, Ann. of Math. (2) 161 (2005), 1637-1644.

Institut Denis Poisson
Université d'Orléans
Route de Chartres, 45067 Orléans Cedex 2
France
e-mail: deserti@math.cnrs.fr

