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Abstract
A quandle is an algebraic system which excels at describing limited symmetries of a space.

We introduce the concept of Schläfli quandles which are defined relating to chosen rotational
symmetries of regular tessellations. On the other hand, quandles have a good chemistry with
knot theory. Associated with a knot we have its knot quandle. We show that the knot quandle
of the m-twist-spun trefoil is a central extension of the Schläfli quandle related to the regular
tessellation {3,m} in the sense of the Schläfli symbol if m ≥ 3.

1. Introduction

1. Introduction
Although all symmetries of a space form a group, its subset which consists of particular

symmetries does not in general. For instance, the reflective symmetries of a regular polygon
which fix at least one vertex of the polygon do not form a group by themselves. On the other
hand, they form a quandle which is an algebraic system. This quandle is called a dihedral
quandle. Various kinds of specified symmetries form quandles. For example, the (2π/3)-
rotations of a regular tetrahedron about axes passing through its center and the vertices form
the tetrahedral quandle. We also have hexahedral, octahedral, dodecahedral, and icosahedral
quandles in the same manner.

Regular polyhedra are identified with regular tessellations of the 2-dimensional spherical
space S2. Two copies of a regular polygon also tessellate S2 regularly. In this view, each of
dihedral and polyhedral quandles is considered as a quandle consisting of the rotations of S2

about the vertices of a regular tessellation by the same angle which preserve the tessellation
setwise. In a similar way, we may have quandles related to regular tessellations of spherical,
Euclidean, and hyperbolic spaces. Since those tessellations are characterized by Schläfli
symbols, we call them Schläfli quandles1. In this paper, we focus on Schläfli quandles
related to regular tessellations {3,m} (m ≥ 2), {3, 3, 4}, {3, 4, 3} and {3, 3, 5} in the sense
of Schläfli symbols. Since the latter three tessellations are respectively identified with 16-,
24-, and 600-cells, we call correspondent Schläfli quandles 16-, 24-, and 600-cell quandles
respectively.

Quandles also have a good chemistry with knot theory. Associated with a knot, we have
its knot quandle in a similar way to its knot group. In this paper, we focus on the knot
quandle of the m-twist-spun trefoil. Here, the m-twist-spun trefoil is a typical 2-knot, i.e.,
a 2-sphere embedded in the standard 4-sphere smoothly and locally flatly. We see that the
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1The author has called a Schläfli quandle a mosaic quandle in early version of this paper [6].
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16-, 24-, or 600-cell quandle is respectively isomorphic to the knot quandle of the 3-, 4-, or
5-twist-spun trefoil (Theorem 6.1). It is known by Clark et al. [2] with computer calculations
that the knot quandle of the 3- or 4-twist-spun trefoil is a central extension of the Schläfli
quandle related to {3, 3} or {3, 4} respectively, in terms of this paper. We show that this
relationship between the knot quandle of the m-twist-spun trefoil and the Schläfli quandle
related to {3,m} is lasting forever, i.e., the knot quandle of the m-twist-spun trefoil is a central
extension of the Schläfli quandle related to {3,m} if m ≥ 3 (Theorem 6.3).

2. Quandle

2. Quandle
In this section, we recall some notions about quandles briefly. We refer the reader to [7]

for more details.
A quandle is a non-empty set X equipped with a binary operation ∗ : X×X → X satisfying

the following axioms:
(Q1) For each x ∈ X, x ∗ x = x
(Q2) For each x ∈ X, the map ∗ x : X → X (w �→ w ∗ x) is bijective
(Q3) For each x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)
Let us see a few examples of quandles. Consider a set X which consists of the vertices

of a regular n-gon P in R2 (n ≥ 3). For each v ∈ X, let lv be the line passing through the
center of P and v. Then for each v, w ∈ X we have v ∗ w ∈ X which is the image of v by the
reflection through lw. It is easy to check that ∗ satisfies the axioms of a quandle. We call this
quandle the dihedral quandle of order n.

Similarly, let X be a set consisting of the vertices of a regular polyhedron P in R3 and
lv the line passing through the center of P and v ∈ X. Suppose that θ is π/2 if P is an
octahedron, 2π/5 if P is an icosahedron, otherwise 2π/3. Then for each v, w ∈ X we have
v ∗ w ∈ X which is the image of v by the θ-rotation about lw (counterclockwise when we
see the center from w). It is routine to see that ∗ satisfies the axioms of a quandle. We call
this quandle the tetrahedral, hexahedral, octahedral, dodecahedral, or icosahedral quandle
respectively, if P is a tetrahedron, hexahedron, octahedron, dodecahedron, or icosahedron.

The notions of homomorphism, epimorphism, isomorphism and automorphism are ap-
propriately defined for quandles. Suppose that X is a quandle. Axioms (Q2) and (Q3) assert
that for each x ∈ X the map ∗ x is an automorphism of X. Those automorphisms ∗ x (x ∈ X)
generate the inner automorphism group Inn(X) of X which is a subgroup of the automor-
phism group of X. We call an element of Inn(X) an inner automorphism of X. We call X to
be connected if Inn(X) acts transitively on X.

3. Schläfli quandle

3. Schläfli quandle
In this section, we introduce the concept of Schläfli quandles. Then we concretely con-

struct Schläfli quandles related to regular tessellations {3,m} (m ≥ 2), {3, 3, 4}, {3, 4, 3} and
{3, 3, 5} in the sense of Schläfli symbols.

Consider a regular tessellation T of a spherical, Euclidean, or hyperbolic space B. Let V
be the set consisting of vertices of T . For each v ∈ V choose a rotation rv of B which fixes v
and preserves T setwise. If we have

(1) rrw(v) = rw ◦ rv ◦ r−1
w



Central Extension of Schläfli Quandle 599

for each v, w ∈ V , consider the set {(v, rv) | v ∈ V} and define its binary operation ∗ by
(v, rv) ∗ (w, rw) = (rw(v), rrw(v)). It is easy to see that ∗ satisfies the axioms of a quandle. We
call this quandle a Schläfli quandle related to T .

Let us consider some concrete Schläfli quandles. We first focus on the regular tessellation
{3,m} (m ≥ 2). We note that {3,m} tessellates S2 if 2 ≤ m ≤ 5, the Euclidean plane if m = 6,
otherwise the hyperbolic plane (see Figure 1). For each vertex v of {3,m}, let rv be the
rotation about v by the angle 2π/m. Then the condition (1) is obviously satisfied for each
vertices v, w of {3,m}. We thus have a Schläfli quandle related to {3,m}. We note that the
Schläfli quandles related to {3, 2}, {3, 3}, {3, 4} and {3, 5} are obviously isomorphic to the
dihedral quandle of order 3, tetrahedral, octahedral and icosahedral quandles respectively.

Fig.1. Regular tessellations {3, 3}, {3, 6} and {3, 8}, for example

Remark 3.1. Regular tessellations {3,m} converge to the Farey tessellation {3,∞} as m
goes to infinity. We thus have a Schläfli quandle related to {3,∞} as the “limit” of the Schläfli
quandles {3,m}. Considering a famous relationship between {3,∞} and the mapping class
group of a torus, it is routine to see that the Schläfli quandle related to {3,∞} is isomorphic
to the Dehn quandle of a torus (see [8], for example, for a Dehn quandle). It is known by
Niebrzydowski and Przytycki [8] that the Dehn quandle of a torus (i.e., the Schläfli quandle
related to {3,∞}) is isomorphic to the knot quandle of the trefoil. In contrast with the fact,
we will see that the knot quandle of the m-twist-spun trefoil is a central extension of the
Schläfli quandle related to {3,m} if m ≥ 3 (Theorem 6.3). We note that the knot quandle of
the 2-twist-spun trefoil is isomorphic to the Schläfli quandle related to {3, 2} (Remark 6.2).

We next focus on regular tessellations {3, 3, 4}, {3, 4, 3} and {3, 3, 5} of the
3-dimensional spherical space S3. In the remaining, we identify S3 with the unit sphere in
R

4. We may assume that sets of the vertices of {3, 3, 4}, {3, 4, 3} and {3, 3, 5} are respectively

V{3,3,4} = {±e1,±e2,±e3,±e4},
V{3,4,3} = {± ei ± e j | 1 ≤ i < j ≤ 4},

V{3,3,5} = {±e1,±e2,±e3,±e4} ∪
{

1
2

(± e1 ± e2 ± e3 ± e4)
}

∪
{

1
2

(
± φ eσ(1) ± eσ(2) ± φ−1eσ(3)

) ∣∣∣∣∣ σ ∈ A4

}
.

Here, ei ∈ R4 denotes the column vector whose j-th entry is δi j, φ the golden ratio
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√

5
)
/2, and A4 the alternating group on {1, 2, 3, 4}. Associated with v ∈ VS (S ∈

{{3, 3, 4}, {3, 4, 3}, {3, 3, 5}}), we define the 4 × 4 matrix Rv as follows:

� S = {3, 3, 4}

R±e1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , R±e2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 −1 0
0 1 0 0
0 0 0 −1
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±e3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 −1
1 0 0 0
0 0 1 0
0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , R±e4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

� S = {3, 4, 3}

R±(e1+e2) = R±(e1−e2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±(e3+e4) = R±(e3−e4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±(e1+e3) = R±(e2+e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −1 1 1
1 1 −1 1
1 1 1 −1
−1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±(e1−e3) = R±(e2−e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −1 −1 −1
1 1 1 −1
−1 −1 1 −1
1 −1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±(e1+e4) = R±(e2−e3) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±(e2+e3) = R±(e1−e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −1 1 −1
1 1 1 1
−1 1 1 −1
−1 −1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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� S = {3, 3, 5}
R±e1 = R± 1

2 (φe1+e2+φ−1e3) = R± 1
2 (φe1−e2−φ−1e3)

= R± 1
2 (φ−1e1+φe2+e3) = R± 1

2 (φ−1e1−φe2−e3) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0 0
0 1 φ −φ−1

0 φ −φ−1 1
0 φ−1 −1 −φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±e2 = R± 1
2 (e1+φe2+φ−1e4) = R± 1

2 (e1−φe2+φ−1e4)

= R± 1
2 (φe1+φ−1e2+e4) = R± 1

2 (φe1−φ−1e2+e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 φ−1 φ

0 2 0 0
−φ−1 0 −φ 1
φ 0 −1 −φ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±e3 = R± 1
2 (e1+φ−1e3−φe4) = R± 1

2 (e1−φ−1e3−φe4)

= R± 1
2 (φ−1e1+φe3−e4) = R± 1

2 (φ−1e1−φe3−e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−φ−1 1 0 −φ
−1 −φ 0 −φ−1

0 0 2 0
−φ φ−1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R±e4 = R± 1
2 (e2−φe3+φ−1e4) = R± 1

2 (e2−φe3−φ−1e4)

= R± 1
2 (φ−1e2−e3+φe4) = R± 1

2 (φ−1e2−e3−φe4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−φ 1 φ−1 0
−1 −φ−1 −φ 0
−φ−1 −φ 1 0

0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R± 1
2 (e1+e2−e3+e4) = R± 1

2 (e1−φ−1e3+φe4) = R± 1
2 (φe2−φ−1e3−e4)

= R± 1
2 (φ−1e1+φe2−e3) = R± 1

2 (φ−1e1−e2+φe4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−φ−1 1 0 φ

0 1 −φ −φ−1

−φ −1 −φ−1 0
1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R± 1
2 (e1−e2−e3−e4) = R± 1

2 (e1+φ−1e2+φe3) = R± 1
2 (φe1−φ−1e2−e4)

= R± 1
2 (e2+φe3+φ−1e4) = R± 1

2 (φe1+e3−φ−1e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 φ−1 −φ
−1 −φ−1 φ 0
1 1 1 1
−1 φ 0 −φ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R± 1
2 (e1−e2+e3−e4) = R± 1

2 (e1−φ−1e2+φe3) = R± 1
2 (φ−1e2+e3+φe4)

= R± 1
2 (φ−1e1+φe3+e4) = R± 1

2 (φ−1e1−e2−φe4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−φ−1 0 φ −1
−φ −φ−1 0 1
1 −1 1 1
0 φ φ−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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R± 1
2 (e1−e2−e3+e4) = R± 1

2 (e1+φe2−φ−1e4) = R± 1
2 (φe1−e3+φ−1e4)

= R± 1
2 (φe1+e2−φ−1e3) = R± 1

2 (φe2+φ−1e3−e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 −1 1
φ−1 1 0 −φ
−φ 1 −φ−1 0
0 −1 −φ −φ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R± 1
2 (e1+e2−e3−e4) = R± 1

2 (e1+φ−1e2−φe3) = R± 1
2 (φ−1e2+e3−φe4)

= R± 1
2 (φ−1e1+e2−φe4) = R± 1

2 (φ−1e1−φe3+e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−φ−1 φ −1 0

0 −φ−1 −1 −φ
−φ 0 1 −φ−1

−1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R± 1
2 (e1+e2+e3+e4) = R± 1

2 (e1−φe2−φ−1e4) = R± 1
2 (φe1+e3+φ−1e4)

= R± 1
2 (φe2+φ−1e3+e4) = R± 1

2 (φe1−e2+φ−1e3) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −φ−1 φ 0
−1 1 1 1
1 0 −φ−1 φ

1 φ 0 −φ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R± 1
2 (e1−e2+e3+e4) = R± 1

2 (e1+φ−1e3+φe4) = R± 1
2 (φe2−φ−1e3+e4)

= R± 1
2 (φ−1e1+e2+φe4) = R± 1

2 (φ−1e1−φe2+e3) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−φ−1 0 φ 1
−1 1 −1 1
0 −φ −φ−1 1
φ φ−1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

R± 1
2 (e1+e2+e3−e4) = R± 1

2 (e1−φ−1e2−φe3) = R± 1
2 (φe1+φ−1e2−e4)

= R± 1
2 (e2+φe3−φ−1e4) = R± 1

2 (φe1−e3−φ−1e4) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 −1 −1
0 −φ−1 1 −φ
−φ−1 φ 1 0
−φ 0 −1 −φ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

For each v ∈ VS, let rv : R4 → R4 be the linear transformation sending x to Rvx. We note
that rv is respectively a (2π/3)-, (π/2)-, or (2π/5)-rotation about a plane in which v and the
origin of R4 lie, if S is {3, 3, 4}, {3, 4, 3} or {3, 3, 5}. It is routine to check that the condition
(1) is satisfied for each v, w ∈ VS. We thus have Schläfli quandles related to {3, 3, 4}, {3, 4, 3}
and {3, 3, 5}. We call them 16-, 24-, and 600-cell quandles respectively, since convex hulls
of V{3,3,4}, V{3,4,3} and V{3,3,5} in R4 are respectively known as 16-, 24-, and 600-cells.

Remark 3.2. 16- and 24-cell quandles are referred in GAP package Rig [12] as
SmallQuandle(8, 1) and SmallQuandle(24, 2) respectively. We note that they had no ge-
ometrical explanations before this.

Remark 3.3. Reflections of a metric space form a quandle under suitable conditions, too.
This quandle is called a Coxeter quandle (see [4] for example).
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4. Presentation of a quandle

4. Presentation of a quandle
As well as groups, we have presentations of quandles. Since we will utilize them for our

arguments, we briefly recall some notions about presentations of quandles in this section.
We refer the reader to [7] for more details.

Let S be a non-empty set, F(S) the free group on S, and FQ(S) the union of the conjugacy
classes of F(S) each of which contains an element of S. It is easy to see that the binary
operation ∗ on FQ(S) given by

(g−1sg) ∗ (h−1th) = (gh−1th)−1s(gh−1th) (s, t ∈ S, g, h ∈ F(S))

satisfies the axioms of a quandle. We call this quandle the free quandle on S.
For a given subset R of FQ(S)×FQ(S), we consider to enlarge R by repeating the follow-

ing moves:
(a) For each x ∈ FQ(S), add (x, x) in R
(b) For each (x, y) ∈ R, add (y, x) in R
(c) For each (x, y), (y, z) ∈ R, add (x, z) in R
(d) For each (x, y) ∈ R and s ∈ S, add (x ∗ s, y ∗ s) and (x ∗−1 s, y ∗−1 s) in R
(e) For each (x, y) ∈ R and z ∈ FQ(S), add (z ∗ x, z ∗ y) and (z ∗−1 x, z ∗−1 y) in R

Here, x ∗i y denotes the element (∗ y)i(x) for each i ∈ Z. A consequence of R is an element
of an expanded R by a finite sequence of the above moves. Let x ∼R y denote that (x, y) is
a consequence of R. Then ∼R is obviously an equivalence relation on FQ(S). The quotient
FQ(S)/∼R inherits ∗ from FQ(S), and ∗ on FQ(S)/∼R still satisfies the axioms of a quandle.

A quandle X is said to have a presentation 〈S |R〉 if X is isomorphic to the quandle
FQ(S)/∼R. A presentation 〈S |R〉 is said to be finite if both S and R are finite sets. We refer to
an element of S and R as a generator and a relation of 〈S |R〉 respectively. We write a conse-
quence x ∼R y as x = y and abbreviate a finite presentation 〈{s1, s2, . . . , sn} | {r1, r2, . . . , rm}〉
as 〈s1, s2, . . . , sn | r1, r2, . . . , rm〉 in the remaining. Fenn and Rourke [4] essentially showed
the following theorem which is similar to the Tietze’s theorem for group presentations. We
will refer to the moves (T1), (T2) and their inverses as Tietze moves.

Theorem 4.1. Assume that a quandle has two distinct finite presentations. Then the
presentations are related to each other by a finite sequence of the following moves or their
inverses:

(T1) Choose a consequence of the set of relations, and then add it to the set of relations
(T2) Choose an element x of the free quandle on the set of generators, and then introduce

a new generator s in the set of generators and the new relation s = x in the set of
relations

Suppose that S is a set and X a quandle. A map f : S→ X naturally induces a homomor-
phism f� : FQ(S)→ X. Further f induces a well-defined homomorphism f∗ : FQ(S)/∼R →
X if we have f�(x) = f�(y) for each relation x = y in R. We note that both f� and f∗ are
surjective if the image of f generates X.
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5. Knot quandle of the twist-spun trefoil

5. Knot quandle of the twist-spun trefoil
In this section, we review the twist-spun trefoil and its knot quandle rapidly. We refer the

reader [7] for more details.
Consider the oriented knotted arc k, depicted in the left-hand side of Figure 2, which is

properly embedded in the upper half space R3
+. Choose a 3-ball B in R3

+ so that B wholly
contains the knotted part of k (see the left-hand side of Figure 2). We assume that k intersects
with ∂B only at the north and south poles of B. Suppose that m is a positive integer. Spin R3

+

360 degrees in R4 along ∂R3
+, and simultaneously rotate B 360m degrees along the axis of

B passing through the north and south poles. Then the locus of k yields an oriented 2-knot
after the one point compactification of R4. We call this 2-knot the m-twist-spun trefoil. In
the remaining, we let τm31 denote the m-twist-spun trefoil.

Fig.2. An oriented knotted arc k called the long trefoil and a 3-ball B which
wholly contains the knotted part of k (left), and a diagram of k (right)

It is known by Zeeman [13] that τm31 is a fibered 2-knot (see [9], for example, for fibered-
ness of a knot). Therefore, in light of Corollary 3.2 of [5], the knot quandle of τm31 is defined
as follows, although it is different from the usual way. Let Gm be the fundamental group of
a fiber of τm31, and ϕ the monodromy of τm31 (which is an automorphism of Gm). Then
the knot quandle of the m-twist-spun trefoil is defined to be Gm equipped with the binary
operation ∗ given by x ∗ y = ϕ(xy−1)y. In the remaining, we let Qm denote the knot quandle
of τm31, although Qm coincides with Gm as sets. We will count Gm as a group and Qm as a
quandle.

We here study about Gm and ϕ for subsequent arguments. Since a fiber of τm31 has the
surgery description depicted in Figure 3, we have the presentation

〈γ1, γ2, . . . , γm | γ1 = γ2γm, γ2 = γ3γ1, . . . , γm−1 = γmγm−2, γm = γ1γm−1〉
of Gm (see [9], for example, for a surgery description of a 3-manifold). Here, γi is the loop
depicted in Figure 3. It is easy to see that ϕ maps γi to γi+1 (1 ≤ i ≤ m− 1) and γm to γ1. Let
δ be the loop depicted in Figure 3. Since

δ = γ2γ
−1
1 γ
−1
2 γ1 = · · · = γmγ

−1
m−1γ

−1
m γm−1 = γ1γ

−1
m γ
−1
1 γm,

ϕ(δ) and δ are the same element in Gm. We note that δ � 1 if and only if m ≥ 3. It is routine
to check that we have
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(((δi ∗ε γ1) ∗ε 1) ∗ε 1) ∗ε γ1 = δ
i+ε,(2)

γ ∗ε δi = γ ∗ε δ j,(3)

g(δi) = δig(1)(4)

for each i, j ∈ Z, ε ∈ {±1}, γ ∈ Gm, and g ∈ Inn(Qm).

Fig. 3. A surgery description of a fiber of τm31 (thick lines) and typical
elements of Gm (thin lines)

Since k has the diagram depicted in the right-hand side of Figure 2, it is known by Satoh
[11] that Qm has presentations

〈a, b, c, d | a ∗ c = b, b ∗ d = c, c ∗ b = d, b ∗m a = b, c ∗m a = c〉
= 〈a, b, c | a ∗ c = b, (b ∗ c) ∗ b = c, b ∗m a = b, c ∗m a = c〉
= 〈a, c | (a ∗ c) ∗ a = c, c ∗m a = c〉.(5)

Here, equalities of presentations mean being related to each other by Tietze moves. Since
Qm is generated by the set {a, c} and c is equal to (a ∗ c) ∗ a, Qm is obviously connected.
Studying works [5] and [11], we know that

(6) a = 1, b = γm, c = γ1, d = δ.

6. Relationships between Schläfli quandles and knot quandles

6. Relationships between Schläfli quandles and knot quandles
In this section, we study some relationships between Schläfli quandles and knot quandles

of twist-spun trefoils. We start with showing the following theorem:

Theorem 6.1. The 16-, 24-, or 600-cell quandle is respectively isomorphic to the knot
quandle of the 3-, 4-, or 5-twist-spun trefoil.

Proof. Choose adjacent vertices v, w of the regular tessellation {3, 3, 4}, {3, 4, 3} or {3, 3, 5}
as follows:

(v, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(e1, e2) if {3, 3, 4},
(e1 + e2, e2 + e4) if {3, 4, 3},(
e1,−1

2

(
φ−1e1 + φ e3 − e4

))
if {3, 3, 5}.

Let X be the 16-, 24-, or 600-cell quandle, and m respectively equal to 3, 4, or 5. Then it is
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routine to check that the set {(v, rv), (w, rw)} generates X and we have

((v, rv) ∗ (w, rw)) ∗ (v, rv) = (w, rw), (w, rw) ∗m (v, rv) = (w, rw).

We thus have the epimorphism f∗ : Qm → X which sends a and c to (v, rv) and (w, rw) respec-
tively. It is known that the cardinality of Gm (i.e., of Qm) is equal to 8, 24, or 120 respectively
(see Section 10.D of [9] for example). Since this number is equal to the cardinality of X, f∗
is not only an epimorphism but an isomorphism. �

Remark 6.2. Since τ131 is equivalent to the trivial 2-knot [13], Q1 is the quandle of order
1. Rourke and Sanderson [10] pointed out that Q2 is isomorphic to the dihedral quandle of
order 3 (i.e., the Schläfli quandle related to {3, 2}). In light of Theorem 4.1 of [5], we know
that the cardinality of Qm is infinite if m ≥ 6.

We next make discussion on a central extension. Let X̃ and X be quandles and A a non-
trivial abelian group. Suppose that A acts on X̃ from the left. Then X̃ is said to be a central
extension of X if there is an epimorphism p : X̃ → X satisfying the following conditions [3]:

(E0) For each w̃, x̃, ỹ ∈ X̃, p(x̃) = p(̃y) implies w̃ ∗ x̃ = w̃ ∗ ỹ
(E1) For each x̃, ỹ ∈ X̃ and α ∈ A, (αx̃) ∗ ỹ = α(x̃ ∗ ỹ) and x̃ ∗ (αỹ) = x̃ ∗ ỹ
(E2) For each x ∈ X, A acts on the fiber p−1(x) freely and transitively

A central extension is also called an abelian extension (see [1] for example). As well as
groups, central extensions of a quandle are closely related to the second cohomology group
of the quandle [1, 3].

Recall that tetrahedral and octahedral quandles are respectively the Schläfli quandles re-
lated to {3, 3} and {3, 4}. It is known by Clark et al. [2] with computer calculations that
SmallQuandle(8, 1) and SmallQuandle(24, 2) are central extensions of tetrahedral and oc-
tahedral quandles respectively. Thus, in light of Remark 3.2 and Theorem 6.1, we know that
Qm is a central extension of the Schläfli quandle related to {3,m} if m is equal to 3 or 4. This
relationship between Qm and the Schläfli quandle related to {3,m} is lasting as follows:

Theorem 6.3. The knot quandle of the m-twist-spun trefoil is a central extension of the
Schläfli quandle related to {3,m} if m ≥ 3.

To show the theorem, we first prepare the following lemma:

Lemma 6.4. The Schläfli quandle related to {3,m} (m ≥ 2) has the presentation

(7) 〈v, w | (v ∗ w) ∗ v = w, (w ∗ v) ∗ w = v, w ∗m v = w〉.
Proof. Choose adjacent vertices v, w of the regular tessellation {3,m}. Then it is easy to

see that we have

((v, rv) ∗ (w, rw)) ∗ (v, rv) = (w, rw),

((w, rw) ∗ (v, rv)) ∗ (w, rw) = (v, rv),

(w, rw) ∗m (v, rv) = (w, rw)

on the Schläfli quandle related to {3,m}. We thus have a homomorphism f from the quandle
X having the presentation (7) to the Schläfli quandle related to {3,m} sending v and w to
(v, rv) and (w, rw) respectively. We note that f maps each element of X to a vertex of {3,m}.
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On the other hand, the triple (v, w, w ∗ v) ∈ X3 forms a triangle as depicted in Figure 4 (a),
because we have the second relation and

v ∗ (w ∗ v) = (v ∗ w) ∗ v = w.
Further, since ∗i v is an automorphism of X for each i ∈ Z, the triple

(v ∗i v, w ∗i v, (w ∗ v) ∗i v) = (v, w ∗i v, w ∗i+1 v)

also forms a triangle. We note that (v, w∗iv, w∗i+1v) and (v, w∗ jv, w∗ j+1v) are the same if i ≡ j
(mod m), since we have the third relation. Furthermore w, w ∗ v, . . . , w ∗m−1 v are mutually
distinct, because their images by f are so. We thus have m triangles (v, w ∗i v, w ∗i+1 v)
(0 ≤ i ≤ m − 1) around v as depicted in Figure 4 (b). We here mention that we have

v ∗ (w ∗i v) = (v ∗i−1 v) ∗ (w ∗i v) = ((v ∗ w) ∗ v) ∗i−1 v = w ∗i−1 v,

(w ∗i+1 v) ∗ (w ∗i v) = ((w ∗ v) ∗ w) ∗i v = v ∗i v = v

for each i ∈ Z.

Fig.4. Some elements of X form triangles

The quandle X is obviously connected, because X is generated by the set {v, w} and w is
equal to (v ∗w) ∗ v. Thus each element of X is written as g(v) with some g ∈ Inn(X). We also
have m triangles (g(v), g(w ∗i v), g(w ∗i+1 v)) (0 ≤ i ≤ m − 1) around g(v). Consider the inner
automorphism gi = (∗ g(w ∗i+1 v)) ◦ g of X. Since we have

(gi(v), gi(w ∗i+1 v), gi(w ∗i+2 v))

= (g(v ∗ (w ∗i+1 v)), g((w ∗i+1 v) ∗ (w ∗i+1 v)), g((w ∗i+2 v) ∗ (w ∗i+1 v)))

= (g(w ∗i v), g(w ∗i+1 v), g(v))

and

(gi(v), gi(w ∗i+2 v), gi(w ∗i+3 v))

= (g(v ∗ (w ∗i+1 v)), g((w ∗i+2 v) ∗ (w ∗i+1 v)), g((w ∗i+3 v) ∗ (w ∗i+1 v)))

= (g(w ∗i v), g(v), g(((w ∗i+1 v) ∗ (v ∗ (w ∗i+1 v))) ∗ (v ∗ (w ∗i+1 v))))
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= (g(w ∗i v), g(v), g(((w ∗i+1 v) ∗ (w ∗i v)) ∗ (w ∗i v)))

= (g(w ∗i v), g(v), g(v ∗ (w ∗i v)))

= (g(w ∗i v), g(v), g(w ∗i−1 v))

for each i (0 ≤ i ≤ m − 1), the adjacent vertices gi(v) = g(w ∗i v) and g(v) share the adjacent
triangles (gi(v), gi(w ∗i+1 v), gi(w ∗i+2 v)) ∼ (g(v), g(w ∗i v), g(w ∗i+1 v)) and (gi(v), gi(w ∗i+2

v), gi(w ∗i+3 v)) ∼ (g(v), g(w ∗i−1 v), g(w ∗i v)). Here, ∼ means that the triples are related
to each other by a cyclic permutation. Thus this arrangement of triangles can be locally
identified with {3,m} as depicted in Figure 5. We will see in the next paragraph that this
arrangement of triangles totally coincides with {3,m} showing the following claim is true
for each g ∈ Inn(X):

(♣) The m triangles (g(v), g(w∗i v), g(w∗i+1 v)) (0 ≤ i ≤ m−1) belong to the arrangement
T of triangles to which the triangle (v, w, w ∗ v) belongs.

Since each element of X plays as a vertex of the arrangement of triangles uniquely, this
conformableness makes f to be bijective. Therefore X is isomorphic to the Schläfli quandle
related to {3,m}.

We first remark that each inner automorphism g of X may be written as

g = (∗εn un) ◦ · · · ◦ (∗ε2 u2) ◦ (∗ε1 u1)

with some n ≥ 0, εi ∈ {±1}, and ui ∈ {v, w}. We already see that (♣) is true if n = 0. Assume
that (♣) is true for any g with n ≤ l (l ≥ 0). Let g be an inner automorphism of X with n = l,
and

g′ = g ◦ (∗ε u)

with some ε ∈ {±1} and u ∈ {v, w}. If u = v, since we have

g′(v) = g(v ∗ε v) = g(v),
g′(w ∗−ε v) = g((w ∗−ε v) ∗ε v) = g(w),

g′(w ∗−ε+1 v) = g((w ∗−ε+1 v) ∗ε v) = g(w ∗ v),
we know that the triangle (g′(v), g′(w ∗−ε v), g′(w ∗−ε+1 v)) = (g(v), g(w), g(w ∗ v)) belongs
to T by the assumption. Since the triangle is a member of the m triangles (g′(v), g′(w ∗i

v), g′(w ∗i+1 v)) (0 ≤ i ≤ m − 1), the other m − 1 triangles also belong to T . Otherwise (i.e.,
u = w), since we have

g′(w ∗ε v) = g((w ∗ε v) ∗ε w) = g(v),

g′(w) = g(w ∗ε w) = g(w),

g′(v) = g′(w ∗−ε (w ∗ε v)) = g′(w) ∗−ε g′(w ∗ε v) = g(w) ∗−ε g(v) = g(w ∗−ε v),
we know that the triangle (g′(v), g′(w), g′(w ∗ v)) ∼ (g(v), g(w ∗−1 v), g(w)) or (g′(v), g′(w ∗−1

v), g′(w)) ∼ (g(v), g(w), g(w ∗ v)) belongs to T by the assumption, if ε is respectively equal
to +1 or −1 (remark that both (w ∗−1 v) ∗−1 w = v and w ∗−1 (w ∗ v) = v are obtained from the
first relation). Since the triangle is a member of the m triangles (g′(v), g′(w ∗i v), g′(w ∗i+1 v))
(0 ≤ i ≤ m − 1), the other m − 1 triangles also belong to T . Thus (♣) is true for any g with
n = l + 1. �
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Fig.5. A part of the arrangement of triangles (in the case m = 6)

It is routine to check that the presentation (7) is related to the presentation

(8) 〈v, w | (v ∗ w) ∗ v = w, (((v ∗ w) ∗ v) ∗ v) ∗ w = v, w ∗m v = w〉
by Tietze moves.

We next see a property of Inn(Qm). Define the inner automorphism ĝ of Qm by

ĝ = (∗ c) ◦ (∗ a) ◦ (∗ a) ◦ (∗ c).

Let g be an inner automorphism of Qm. Since Qm is generated by the set {a, c}, g may be
written as

g = (∗εn en) ◦ · · · ◦ (∗ε2 e2) ◦ (∗ε1 e1)

with some n ≥ 0, εi ∈ {±1}, and ei ∈ {a, c}. Suppose g′ is an inner automorphism of Qm

obtained from g by replacing some ei = a to ĝε(a) (ε ∈ {±1}). Then, in light of equalities (2),
(3) and (6), g and g′ are the same inner automorphism (remark that ĝ−1 = (∗−1 c) ◦ (∗−1 a) ◦
(∗−1 a) ◦ (∗−1 c) and δ0 = 1).
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We now prove Theorem 6.3.

Proof of Theorem 6.3. Let X be the Schläfli quandle related to {3,m} (m ≥ 2). Since Qm

and X respectively have the presentations (5) and (8), we have the epimorphism p : Qm → X
sending a and c to v and w respectively. We note that p maps ĝi(a) to v for each i ∈ Z.

Let x be an element of X and x̃, x̃′ elements of p−1(x). Since Qm is connected, x̃ is written
as g(a) with some g ∈ Inn(Qm). Then, in light of the above property of Inn(Qm), x̃′ should
be written as g(̂gi(a)) with some i ∈ Z. Further, in light of equalities (2), (4) and (6), we have
g(̂gi(a)) = δig(a). We thus have x̃′ = δi x̃.

Let A = 〈δ〉 be the abelian subgroup of Gm. Then A surely acts on Gm (i.e., on Qm) from
the left. Obviously p satisfies conditions (E0) and (E2). Further it is routine to see that p
also satisfies the condition (E1). Since A is non-trivial if m ≥ 3, we obtain the claim. �

We conclude the paper with a question. Suppose that A is the above one. Since both of
cardinalities of Qm and the Schläfli quandle related to {3,m} are finite if m is equal to 3, 4,
or 5, we know that the order of A is respectively 2, 4, or 10. On the other hand, both of
cardinalities of Qm and the Schläfli quandle related to {3,m} are infinite if m ≥ 6. What is
the order of A if m ≥ 6?
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