
Lambert, J. and Rabelo, L.
Osaka J. Math.
59 (2022), 853–880

INTEGRAL HOMOLOGY OF REAL ISOTROPIC AND ODD
ORTHOGONAL GRASSMANNIANS

Jordan LAMBERT and Lonardo RABELO

(Received August 31, 2020, revised August 5, 2021)

Abstract
We obtain a combinatorial expression for the boundary map coefficients of real isotropic and

odd orthogonal Grassmannians. It provides a natural generalization of the known formulas for
Lagrangian and maximal isotropic Grassmannians. The results derive from the classification
of Schubert cells into four types of covering pairs when identified with signed k-Grassmannian
permutations. Our formulas show that the coefficients depend on the changed positions for each
permutation pair type. We apply this to obtain an orientability criterion and compute the first
and second homology groups for these Grassmannians. Furthermore, we exhibit an apparent
symmetry of the boundary map coefficients.

1. Introduction

1. Introduction
Let G be the odd orthogonal group SO(n, n + 1) or the symplectic group Sp(n,R) with

Lie algebra g given by so(n, n + 1) or sp(n,R), respectively. We denote the root system by
Σ = {a0, a1 = ε2 − ε1 , . . . , an−1 = εn − εn−1} such that a0 = ε1 for type B and a0 = 2ε1 for
type C. The Grassmannians are the minimal flag manifolds G/P(k), 0 ≤ k ≤ n − 1, where
P(k) is the parabolic subgroup corresponding to the maximal proper subset (k) = Σ − {ak}.
If G = SO(n, n + 1) then the odd orthogonal Grassmannian OG(n − k, 2n + 1) is the set
of (n − k)-dimensional isotropic subspaces in the vector space V = R2n+1 equipped with a
nondegenerate symmetric bilinear form. If G = Sp(n,R) then the isotropic Grassmannian
IG(n − k, 2n) is the set of (n − k)-dimensional isotropic subspaces in the symplectic vector
space V = R2n.

The Schubert cells provide a cellular structure of these Grassmannians via Bruhat de-
composition. In addition, the minimal representatives 

(k)
n of the Weyl group modulo the

subgroup generated by reflections in (k) parametrize such Schubert cells. We use a per-
mutation model to identify cells with the set of signed k-Grassmannians permutations, i.e.,
signed permutations of the form w = u1 · · · uk |λr · · · λ1 v1 · · · vn−k−r, where 0 � r � n − k,
0 < u1 < · · · < uk, 0 < λ1 < · · · < λr and 0 < v1 < · · · < vn−k−r. This approach has been
employed in related problems of Schubert calculus of such Grassmannians (see Pragacz-
Ratajski [11], Buch-Kresch-Tamvakis [2] and Ikeda-Matsumura [6]). Our setting is based
on the paper by both authors [9] where the covering pairs w, w′ ∈ (k)

n , i.e., those satisfying
w′ ≤ w in the Bruhat-Chevalley order with �(w) = �(w′) + 1, are classified into four types
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(B1, B2, B3 and B4). We associate with each permutation w ∈ (k)
n a double partition (α, λ)

for which we have the corresponding half-shifted Young diagram (HSYD).
The cellular homology appears after computing the boundary map coefficients. In this

paper, we provide an explicit formula for the coefficients of those real Grassmannians, gen-
eralizing the second author’s results in [12] for the Lagrangian and maximal isotropic Grass-
mannians. This contributes to the study of the topology of real flag manifolds in comparison
with the complex ones which have torsion-free homology groups. Our formulas are com-
patible with Burghelea-Hangan-Moscovici-Verona [3] which gave the first results about the
topology of real flag manifolds in the 1970s.

San Martin and the second author have found in [13] that the set Πw = Π+∩wΠ− contains
the data required to determine these coefficients. The inspiration for our approach came from
Ikeda-Naruse [7] and Graham-Kreiman [5] where Πw appears as the shifted Young diagrams
in the context of the maximal isotropic Grassmannians. These ideas were generalized here
for odd orthogonal and isotropic Grassmannians through the half-shifted Young diagram
associated with double partition (α, λ) of w. We characterize Πw as a set of inversions of w
and assign to each inversion a single box in its half-shifted Young diagram (cf. Sections 2.3
and 3.1).

Once the inversion set Πw is known and the covering pairs w, w′ are described, it remains
to compute σ(w)−σ(w′), where σ(w) is the sum over the roots ofΠw. Since this is a multiple
κ(w, w′) of a unique root, the boundary map coefficient c(w, w′) is either 0 or ±2 depending
on the parity of κ(w, w′). It is worth pointing out that our Theorem 3.10 implies that c(w, w′)
is determined by a well-defined triple (P,T,Q) composed of altered entries in permutations
w and w′. Besides its simplicity, it represents a new interpretation of these coefficients as
presented in Theorem 3.12, which relates κ with the height of a given root.

As a direct consequence of our formulas, we obtain an orientability criterion (see Propo-
sition 3.13). Furthermore, we remark that the incidence graph, whose vertices are the per-
mutations of 

(k)
n and the edges correspond to the coefficients between them, admits an

apparent symmetry (see Figure 8 and Proposition 3.14). We finish by computing the 1st
and 2nd homology groups of isotropic and odd orthogonal Grassmannians (see Section 3.5).
This provides a combinatorial parallel to the results of Patrão-San Martin-Santos-Seco [10]
concerning the orientability and the results of del Barco-San Martin [4] regarding the second
de Rham cohomology group.

The article is organized as follows. Section 2 describes the isotropic and odd orthogonal
Grassmannian, some properties of covering relations, and the half-shifted Young diagrams.
In Section 3, we outline the boundary maps of odd orthogonal and isotropic Grassmannian
and the inversion sets of such Grassmannians. We also state the main result, state and prove
the results about orientability and symmetry. Section 4 is devoted to proving the main result.
We conclude with Section 5 where we provide some perspectives for future work.

2. Isotropic and odd orthogonal Grassmannians

2. Isotropic and odd orthogonal Grassmannians
For n,m ∈ Z, where n � m, denote the set [n,m] = {n, n + 1, . . . ,m}. For n ∈ N, denote

[n] = [1, n].
Let G be a non-compact split semi-simple Lie group. Denote by Π the set of roots related

to the Lie algebra g, Π± the set of positive and negative roots. Fix a simple root system
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Σ ⊂ Π. Let P be the corresponding minimal parabolic subgroup with Lie algebra p. We call
F = G/P the maximal flag manifold of G. The Weyl group  of G is the group generated
by simple reflections si = sai through simple roots ai ∈ Σ. The length �(w) of w ∈  is the
number of simple reflections in any reduced decomposition of w. There is a partial order in
the Weyl group called the Bruhat-Chevalley order: we say that w1 � w2 if given a reduced
decomposition w2 = s j1 · · · s jr then w1 = s ji1 · · · s jik for some 1 � i1 � · · · � ir � r. It is
known that  has a maximum element w0, which is an involution, i.e., w2

0 = 1.
A subset of simple roots Θ ⊂ Σ is associated with a parabolic subgroup PΘ in G, which

contains P. The corresponding homogeneous space FΘ = G/PΘ is called a partial flag
manifold of G. The subgroup Θ is the subgroup of the Weyl group  generated by
the reflections with respect to the roots α ∈ Θ. We also define the subset Θ of  by

Θ = {w ∈ : �(wsa) = �(w) + 1 , ∀a ∈ Θ}. Since there exists a unique element wΘ ∈Θ

of minimal length in each coset wΘ, Θ is called the subset of minimal representatives of
the cosets of Θ in  .

The Bruhat decomposition presents the flag manifolds as disjoint union FΘ =
∐
w∈Θ N ·

wbΘ where N is the nilpotent subgroup in the Iwasawa decomposition of G. A Schubert
variety is the closure of a Bruhat cell, i.e., w = cl(N · wbΘ). The choice of a minimal repre-
sentative w ∈ Θ gives dim(w) = �(w) since we are in a split case. The Bruhat-Chevalley
order defines an order between the Schubert varieties by w1 ⊂ w2 if, and only if, w1 � w2.

First, consider the symplectic group Sp(n,R) with Lie algebra sp(n,R) of type C. The
root system of type C is realized as a set of vectors Π = {±εi ± ε j : 1 � i < j � n} ∪
{±2εi : 1 � i � n} in the Euclidean space Rn = ⊕n

i=1Rεi. Denote the (positive) simple roots
by a0 = 2ε1 and ai = εi+1 − εi for 1 � i < n. Then, the set of all positive roots is Π+ =
{ε j ± εi : 1 � i < j � n} ∪ {2εi : 1 � i � n}. Given k ∈ [0, n − 1], the minimal flag manifold
IG(n − k, 2n) = Sp(n,R)/P(k), for (k) = Σ − {ak}, is called an isotropic Grassmannian since
it parametrizes (n − k)-dimensional isotropic subspaces of a real 2n-dimensional symplectic
vector space.

Now, consider the orthogonal group SO(n, n + 1) with Lie algebra so(n, n + 1) of type
B. The root system of type B is realized as a set of vectors Π = {±εi ± ε j : 1 � i < j �
n} ∪ {±εi : 1 � i � n} in the Euclidean space Rn = ⊕n

i=1Rεi. Denote the (positive) simple
roots by a0 = ε1 and ai = εi+1 − εi for 1 � i < n. Then, the set of all positive roots is
Π+ = {ε j ± εi : 1 � i < j � n} ∪ {εi : 1 � i � n}. Given k ∈ [0, n − 1], the minimal
flag manifold OG(n − k, 2n + 1) = SO(n, n + 1)/P(k), for (k) = Σ − {ak}, is called an odd
orthogonal Grassmannian since it parametrizes (n − k)-dimensional isotropic subspaces of
a real (2n + 1)-dimensional vector space equipped with a nondegenerate symmetric bilinear
form.

2.1. Permutation model.
2.1. Permutation model. For both types of Grassmannians, we denote si = sai , for i ∈

[0, n − 1], the simple reflection given by the simple root ai. The Weyl group n for the root
systems Bn and Cn, also called the hyperoctahedral group, is the semidirect product Sn �Z

n
2.

We also realize it as the set of permutations with a sign (plus or minus) attached to each
entry. Write these elements as barred permutations, where the bar denotes a negative sign
and n < · · · < 1 < 1 < · · · < n as usual. Then, a permutation w ∈ n, usually denoted in
one-line notation w = w(1) w(2) · · ·w(n), satisfies the relation w(i) = w(i). With respect to
this realization, the length of w ∈n is given by the following formula ([1], Equation (8.3))
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(1) �(w) = inv(w(1), . . . , w(n)) −
∑

{ j∈[n] : w( j)<0}
w( j)

where inv(w(1), . . . , w(n)) = #{(i, j) : 1 ≤ i < j ≤ n, w(i) > w( j)}.
The simple reflections s0, . . . , sn−1 act on the right of a permutation w in n by

w(1) w(2) · · ·w(n) · s0 = w(1) w(2) · · ·w(n);

w(1) · · ·w(i)w(i + 1) · · ·w(n) · si = w(1) · · ·w(i + 1)w(i) · · ·w(n) , 1 � i < n.

The hyperoctahedral group n is also the Coxeter group of type B generated by si and
subject to the relations: (i) s2

i = 1, for i ≥ 0; (ii) s0s1s0s1 = s1s0s1s0; (iii) si+1sisi+1 =

sisi+1si, for i ∈ [n − 1]; (iv) sis j = s jsi, for |i − j| � 2.
As defined above, for (k) = Σ − {ak}, the corresponding subgroup (k) is generated by

si, with i � k. Notice that (k) � k × Sn−k, where k is the subgroup generated by
{s0, s1, . . . , sk}. Define by 

(k)
n ⊂ n the set of minimal length coset representatives of

n/(k), which parametrizes the Schubert varieties in IG(n − k, 2n) and OG(n − k, 2n + 1).
This indexing set  (k)

n can be identified by a set of signed permutations of the form

(2) w = wu,λ = u1 · · · uk |λr · · · λ1 v1 · · · vn−k−r

where 0 � r � n − k and

0 < u1 < · · · < uk , ui = w(i), for i ∈ [k];

0 < λ1 < · · · < λr , λi = w(k + r − i + 1), for i ∈ [r];(3)

0 < v1 < · · · < vn−k−r , vi = w(k + r + i), for i ∈ [n − k − r].

They are called signed k-Grassmannian permutations. The longest element wk
0 ∈  (k)

n is
the k-Grassmannian permutation given by

(4) wk
0 = 1 2 · · · k|n n − 1 · · · k + 1.

2.2. Bruhat order and covering relations.
2.2. Bruhat order and covering relations. We recall some results of [9] about the

Bruhat-Chevalley order of  (k)
n in the permutation model. Let w, w′ ∈ n with w′ � w

and �(w) = �(w′) + 1. We say that it is a covering relation where w covers w′. By [9],
there is a classification of pairs w, w′ where w covers w′ in 

(k)
n . Suppose that w and w′ are

permutations in 
(k)
n according to Equation (2).

We say that w, w′ is a pair of type B1 if they are written as follows:

w = · · · | · · · 1 · · · and w′ = · · · | · · · 1 · · · .
In other words, if w is such that λ1 = 1, then w′ is obtained from w by removing the negative
sign from 1.

We say that w, w′ is a pair of type B2 if they are written as follows:

w = · · · | · · · a · · · (a − 1) · · · and w′ = · · · | · · · a − 1 · · · a · · · ,
where a > 0. In other words, there are t ∈ [r] and q ∈ [n − k − r] such that λt = a and
vq = a − 1, and w′ is obtained from w by switching vq and λt.

We say that w, w′ is a pair of type B3 if they are written as follows:

w = · · · a · · · | · · · (a − x) · · · and w′ = · · · (a − x) · · · | · · · a · · · ,
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where a > x > 0. In other words, there are p ∈ [k] and q ∈ [n − k − r] such that up = a and
vq = a − x. The permutation w′ is obtained from w by switching up and vq.

Finally, we say that w, w′ is a pair of type B4 if they are written as follows:

w = · · · (a − x) · · · | · · · a · · · and w′ = · · · a · · · | · · · a − x · · · ,
where a > x > 0. In other words, there are p ∈ [k] and t ∈ [r] such that up = a − x and
λt = a. The permutation w′ is obtained from w by switching up and λt.

We will denote the type of a pair by Type(w, w′). For each type of pair w, w′, also consider
the integers P = P(w, w′), T = T (w, w′), and Q = Q(w, w′) which correspond to the positions
where w changes when compared to w′. They can be represented as a right action in the
complete notation as follows:

(5)

(B1) w = w′ · (T,T );
(B2) w = w′ · (T ,Q)(Q,T );
(B3) w = w′ · (P,Q)(P,Q);
(B4) w = w′ · (P,T )(T , P).

Precisely, the integers P, T , and Q are given by Table 1.

Table 1. Integers P, T , and Q for a pair w, w′

Type(w, w′) P T Q

B1 w−1(1) = k + r
B2 w−1(λt) = k + r − t + 1 w−1(vq) = k + r + q
B3 w−1(up) = p w−1(vq) = k + r + q
B4 w−1(up) = p w−1(λt) = k + r − t + 1

There is a straight relationship between types of pairs and covering relations.

Theorem 2.1 ([9], Theorem 5). Let w, w′ ∈ 
(k)
n . Then w covers w′ if, and only if,

Type(w, w′) is B1, B2, B3 or B4.

Remark 2.2. In Ikeda [6] (Lemmas 3.1 and 3.2) there is a description of the covering
relation with respect to the weak Bruhat order. The above result refines it to the strong
Bruhat order. For another approach of the covering relation in terms of k-strict partitions we
refer to Tamvakis-Wilson [14].

Example 1. Consider w = 2 6|7 5 1 3 4 where n = 7 and k = 2. Theorem 2.1 guarantees
that there are five permutations covered by w:

(B1) w = 2 6|7 5 1 3 4 , w′1 = 2 6|7 5 1 3 4 and T = 5;

(B2) w = 2 6|7 5 1 3 4 , w′2 = 2 6|7 4 1 3 5 and (T,Q) = (4, 7);

(B3) w = 2 6|7 5 1 3 4 , w′3 = 2 4|7 5 1 3 6 and (P,Q) = (2, 7);

(B4) w = 2 6|7 5 1 3 4 , w′4 = 2 7|6 5 1 3 4 and (P,T ) = (2, 3);

(B4) w = 2 6|7 5 1 3 4 , w′5 = 5 6|7 2 1 3 4 and (P,T ) = (1, 4).
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2.3. Double partitions and half-shifted Young diagrams.
2.3. Double partitions and half-shifted Young diagrams. In this section, we will un-

derstand how a k-Grassmannian permutation gives rise to a double partition. In this way,
there is a bijection between the set of all double partitions and 

(k)
n . Moreover, we will

show how each double partition may be represented by a half-shifted Young diagram.
Given n, k integers such that 0 � k < n, we say that Λ = (α, λ) is a double partition when

α = (0 � α1 ≤ · · · ≤ αk � n − k) is a partition and λ = (0 < λ1 < · · · < λr � n) is a strict
partition (if k = 0 then α is represented as an empty set; an empty λ is represented by r = 0).

We define the Young diagram associated to the partition α by

(6) α = {(i, j) ∈ Z2 : 1 ≤ i ≤ k , 1 ≤ j ≤ αi}
and the shifted Young diagram associated to the strict partition λ by

(7) λ = {(i, j) ∈ Z2 : 1 ≤ i ≤ r , i ≤ j ≤ i − 1 + λr+1−i}.
We can insert the diagram α into a k× (n− k) rectangle while the shifted Young diagram

λ fits inside a stair shaped triangle with n rows. Let us denote by k,n the set of all
partitions whose respective Young diagrams are inside a k × (n − k) rectangle and by n

the set of all strict partitions whose respective shifted Young diagrams are inside a stair
shaped diagram of length n. We denote by (k, n) the set of the pairs (α, λ) with α ∈ k,n

and λ ∈ n with the property �(λ) ≤ α1, i.e.,

0 ≤ α1 ≤ · · · ≤ αk ≤ n − k ;

0 < λ1 < · · · < λr � n ;(8)

�(λ) ≤ α1.

Notice in this definition that the strict partition λ is empty when α1 = 0.
A half-shifted Young Diagram (HSYD) of the double partition Λ = (α, λ) ∈ (k, n) is

obtained by the juxtaposition of the diagrams α and λ such that α is above λ. We
say that α is the top diagram and that λ is the bottom diagram. We refer to the rows and
columns of the top (bottom) diagram as the top (bottom) rows and top (bottom) columns,
respectively. The condition α1 ≥ �(λ) is equivalent to say that the number of bottom rows is
at most the number of fulfilled top columns. Figure 1 shows the HSYD for the pair α = (3, 5)
and λ = (1, 5, 7).

Fig.1. A model of a HSYD obtained as a juxtaposition of the diagrams α
and λ.

Now, given a k-Grassmannian permutation in one-line notation as in (2), let us define its
corresponding pair of double partitions α and λ. The strict partition is given by the negative
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part of w, i.e., λ = (λr > · · · > λ1 > 0). The partition α is defined by αi = ui − i + di, for
i ∈ [k], where di = #{λ j | λ j > ui}. As shown in Equation (2.10) of [9],

(9) αi = n − k − μi,

where μi = μi(w) = #{v j | v j > ui}, for i ∈ [k]. Since μi can be written as μi = n−k− r−#{v j |
v j < ui}, it follows that

(10) αi = r + #{v j | v j < ui}
and α satisfies n − k ≥ αk ≥ αk−1 ≥ · · · ≥ α1 ≥ 0.

The partition α counts the number of inversions of the first k entries of w while the strict
partition λ the number of remaining inversions given by the negative entries of w. Hence,
given w ∈ (k)

n , the length �(w) of w is the sum of entries of the pair (α, λ), i.e., �(w) = |α|+|λ|.
Lemma 2.3 ([11], Lemma 1.2). There is a bijection between 

(k)
n and (k, n).

Given a partition α = (0 � α1 ≤ · · · ≤ αk � n − k), the conjugate partition α∗ of α is the
partition defined by α∗i = #{α j : α j � i}, for all i ∈ [n− k] satisfying k � α∗1 ≥ · · · ≥ α∗n−k � 0.
In other word, the conjugate α∗ is given by the number of boxes in each column of the Young
diagram α of α.

If we denote μ∗i = #{uj : uj > vi} for i ∈ [n − k − r], then we have an explicit formula for
α∗.

Lemma 2.4. The conjugate partition is given by

(11) α∗i =
{

k if 1 � i � r;
μ∗i−r if r + 1 � i � n − k.

Proof. Suppose that 1 � i � r. We clearly have α∗i = k since α j � r for every j. Now,
suppose that r + 1 ≤ i ≤ n − k. By (10), #{vl : vl < uj} = α j − r for 1 � j � k, which is
equivalent to v1 < v2 < · · · < vα j−r < uj. Hence, α j � i if, and only if, vi−r < uj. We conclude
that α∗i = #{α j : α j ≥ i } = #{uj : vi−r < uj} = μ∗i−r. �

We now present an adaptation of a method introduced by [2] which provides the bijection
in Lemma 2.3. We can label each bottom column as follows: given t ∈ [n], the t-th bottom
column is

• h-related if there exists i ∈ [k] such that t = αi + i;
• v-related if there exists j ∈ [n − k] such that t = k + j − α∗j . If such j exists then it

must be unique.
There is a geometric interpretation in the HSYD: choose some bottom column and draw

a 45-degree northwest line from the center of the first box in this column. If the line hits the
last box in a top row, then the bottom column is h-related. Otherwise, it is v-related.

For instance, consider the permutation w = 2 6|7 5 1 3 4 in Example 1. Figure 2 exhibits
the corresponding double partition α = (3, 5) and λ = (1, 5, 7) for w as well how the h-related
columns are in bijection with top rows and how the v-related columns are in bijection with
top columns.1 These bijections are established in the next proposition.

1The terms h-related (short for “horizontally” related) and v-related (short for “vertically” related) were mo-
tivated by the bijection with the rows and column, resp.



860 J. Lambert and L. Rabelo

Fig. 2. On the left, we represent the h-related columns for α = (3, 5) and
λ = (1, 5, 7). On the right, we represent the v-related columns. The vacant
length of a bottom column is the number of dots in the respective column.

Proposition 2.5.
(i) There is a bijection between h-related columns and top rows;

(ii) There is a bijection between v-related columns and top columns;
(iii) Any bottom column is either h-related or v-related.

Proof. For statement (i), suppose that there are two rows i < i′ related to the same h-
related column, i.e., αi + i = αi′ + i′. Then, 0 < i′ − i = αi − αi′ � 0, which is impossible.
Hence, different top rows are related to different h-related columns. Similarly, we have
statement (ii).

For statement (iii), suppose that the t-th bottom column is, simultaneously, h-related and
v-related. Then, there are i and j such that t = αi + i = k + j − α∗j , i.e., αi − j = k − i − α∗j . If
αi � j then α∗j � k− i and α∗j = #{l : αl � j} � k− i+1, a contradiction. On the other hand, if
αi < j then α∗j > k − i and α∗j = #{l : αl � j} < k − i, also a contradiction. Hence, no bottom
column can be, simultaneously, h-related and v-related. Since the number of h-related and
v-related bottom columns is respectively k and n − k, a bottom column is either h-related or
v-related. �

The vacant length of a bottom column is the number of empty boxes below the boxes of
λ in the staircase n × n shape. Explicitly, the vacant length of the j-th bottom column is
j − #{i : λi + i > j}.

We may recover the permutation associated with such diagram by taking the vacant length
of the h-related and v-related bottom columns. Namely, the permutation element for Λ =
(α, λ) is defined by wu,λ in the equation (2), where 0 < u1 < · · · < uk are the vacant length
of the h-related columns, and 0 < v1 < · · · < vn−k−�(λ) are the vacant length of the v-related
columns. For instance, Figure 2 presents the vacant length as the number of dots in the
respective h-related and v-related columns for α = (3, 5) and λ = (1, 5, 7).

2.4. HSYD’s and covering types.
2.4. HSYD’s and covering types. We now present how the diagrams illustrate covering

relations.
We recall the following proposition about the covering relation of double partitions.

Proposition 2.6 ([9], Proposition 4.2). Let w, w′ ∈ 
(k)
n . Denote by Λ = (α, λ) and

Λ′ = (α′, λ′) the double partitions of w and w′, respectively. Then,
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(i) Type(w, w′) = B1 if, and only if, for any i ∈ [k] and j ∈ [r − 1] we have α′i = αi and
λ′j = λ j+1;

(ii) Type(w, w′) = B2 if, and only if, for any i ∈ [k] and j ∈ [r] we have

α′i = αi and λ′j =
{
λ j − 1 if j = t
λ j if j � t

,

for some t ∈ [r];
(iii) Type(w, w′) = B3 if, and only if, for any i ∈ [k] and j ∈ [r] we have

α′i =
{
αi − 1 if i = p
αi if i � p

and λ′j = λ j,

for some p ∈ [k];
(iv) Type(w, w′) = B4 if, and only if, for any i ∈ [k] and j ∈ [r] we have

α′i =
{
αi + x − 1 if i = p
αi if i � p

and λ′j =
{
λ j − x if j = t
λ j if j � t

,

for some p ∈ [k] and t ∈ [r].

Remark 2.7. By Proposition 2.6, the covering relations in (k, n) are the same as the
covering relations for k,n and n, except in the case of a pair of type B4 when x � 1.
This is exactly the step from the weak to strong Bruhat order. It also reflects the non-fully
commutativeness of the k-Grassmannian permutations when k � 0.

The results of Proposition 2.6 may be understood as a process of removing boxes of the
HSYD. There are two types of boxes that can be removed: corners and middle boxes.

A corner is a box of the diagram that produces a new diagram when it is removed. By
Proposition 2.6, we see that:

• if Type(w, w′) = B1, then the diagram of Λ′ is obtained by removing a corner in the
diagonal of the bottom diagram;
• if Type(w, w′) = B2, then the diagram of Λ′ is obtained from the diagram of Λ by

removing a corner of the bottom diagram that belongs to a v-related column;
• if Type(w, w′) = B3, then the diagram of Λ′ is obtained from the diagram of Λ by

removing a corner of the top diagram.
A middle (bottom) box is a box (which is not a corner) of the bottom diagram that pro-

duces a new diagram when it is removed, followed by a displacement of boxes at its right.
A middle box is neither a corner nor a diagonal. It lies in an h-related column and all boxes
to the right of it lie in a v-related column. If Type(w, w′) = B4, by Proposition 2.6, the dia-
gram of Λ′ is obtained from the diagram of Λ by removing a box of the bottom diagram that
belongs to an h-related column which is either a corner or a middle box, respectively, when
x = 1 or x � 1. Notice that if x � 1 then we move all the (x − 1) boxes at the right of the
removed box in the bottom diagram to the top diagram.

In Example 1, the permutation w = 2 6|7 5 1 3 4 covers five different elements in 
(k)
7 .

Figure 3 illustrates these covering pairs in terms of removing corners or middle boxes.

Remark 2.8. There is an easy way to get a reduced decomposition of a permutation wΛ
from the HSYD. Fill in the HSYD as described below:
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Fig. 3. The five covering pairs of w = 2 6|7 5 1 3 4 obtained by removing
boxes in its HSYD according to the type of the pair.

• In the top diagram, assign a simple reflection consecutively to each box of the Young
diagram from left to right and upwards, starting from s1 in the bottom leftmost box;
• In the bottom diagram, assign a simple reflection consecutively to each box of the

strict Young diagram from left to right, starting from s0 in leftmost box of each
bottom row.

A reduced decomposition of wΛ is the word obtained by reading each row in the dia-
gram from right to left and rows from the bottom to top. This is called the row-reading of
wΛ. Such decomposition is due to [11] and follows both the constructions given in [7] for
Grassmannians of type A (Section 4.2) and for maximal isotropic Grassmannians of type B
(Section 7).

For instance, in Figure 4, the row-reading of w = 2 6|7 5 1 3 4 is w(3,5;1,5,7) = s0 ·s4s3s2s1s0 ·
s6s5s4s3s2s1s0 · s3s2s1 · s6s5s4s3s2. We have that w covers w′ = 5 6|7 2 1 3 4. In Figure 4,
the row-reading of w′ is w′(5,5;1,2,7) = s0 · s1s0 · s6s5s4s3s2s1s0 · s5s4s3s2s1 · s6s5s4s3s2. The
reduced decomposition of w′ by the Bruhat-Chevalley order is w(3,5;1,5,7)

′ = s0 · s4s3 ŝ2s1s0 ·
s6s5s4s3s2s1s0 · s3s2s1 · s6s5s4s3s2, i.e., a s2 is deleted from the row-reading of w reflecting
the fact that Λ′ is obtained from Λ by removing a middle box. Notice that both reduced
decompositions w(3,5;1,5,7)

′ and w′(5,5;1,2,7) are equivalent with respect to the Coxeter relations.

Fig.4. Row-reading of w = 2 6|7 5 1 3 4 on the left and row-reading of w′ =
5 6|7 2 1 3 4 on the right.

3. Boundary map and integral homology

3. Boundary map and integral homology
In the previous section, we presented the permutation model together with some combi-

natorial properties of the Weyl group of type B. In this section, we go into the details of
computing the homology groups.

We now summarize the main results of [13]. Let G be either an odd orthogonal or a
symplectic group. The flag manifold F(k) with respect to the set (k) = Σ−{ak} is, respectively,
the isotropic Grassmannian IG(n−k, 2n) or the odd orthogonal Grassmannian OG(n−k, 2n+
1).

The Bruhat decomposition F(k) =
∐
w∈ (k)

n
N · wb(k) provides a CW-complex structure for

F(k) where the cells are the Schubert varieties w = cl(N ·wb(k)). This induces a cellular chain
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complex (, ∂) as follows: Let  be the Z-module freely generated by w, for every element
w of the set of minimal representatives  (k)

n . The boundary map ∂ :  →  is defined by

(12) ∂w =
∑
w′�w

c(w, w′)w′ ,

where the coefficient c(w, w′) ∈ Z satisfies:
• If dimw − dimw′ � 1 then c(w, w′) = 0;
• If dimw − dimw′ = 1 then c(w, w′) = deg

(
φw,w′ : S�(w) → S�(w

′)
)

is degree of a
certain map φw,w′ between spheres.

This cellular chain complex provides the cellular homology groups Hm(F(k),Z), m � 0.
Then, the cellular homology can be obtained once we get an explicit formula for c(w, w′).

In general, by [13] Theorem 2.2, c(w, w′) is either 0 or ±2, since it is the sum of the
degrees of two sphere homeomorphisms of degree ±1.

We may go further and provide a formula to compute c(w, w′). For w ∈ 
(k)
n , define

Πw = Π
+ ∩ wΠ−, the set of positive roots sent to negative roots by w−1. Let σ(w) be the sum

of roots in Πw, i.e.,

σ(w) =
∑
β∈Πw
β.

Proposition 3.1 ([13], Proposition 2.7). Let γ be the unique root (not necessarily simple)
such that w = sγw′. Then

(13) σ(w) − σ(w′) = κ · γ
for some integer κ = κ(w, w′).

Theorem 3.2 ([13], Theorem 2.8, [8], Theorem 1.1.4). Suppose that w covers w′. Then
the coefficient c(w, w′) is given as follows:

c(w, w′) = ±(1 + (−1)κ) =
{

0 if κ is odd;
±2 if κ is even.

The signs on c(w, w′) can be chosen so that ∂2 = 0 and the homology of (, ∂) is the integral
homology of F(k).

Remark 3.3. The formula for c(w, w′) obtained in [13] offers a choice of the signs defined
in terms of the reduced decompositions for the Weyl group elements.

We use Theorem 3.2 to compute the boundary coefficients of the isotropic and odd or-
thogonal Grassmannians. This process will provide us both κ and γ. Our main strategy is
based on a bijective correspondence between the roots of Πw with the half-shifted Young
diagram of w as follows.

3.1. Inversions.
3.1. Inversions. In this section, the HSYD’s are used to describe Πw as the union of two

distinguished sets given by the top and bottom diagrams of w parametrizing the inversions
of the corresponding partitions α and λ respectively. For each w ∈ (k)

n , we define

Inv+(w) = {(i, j) ∈ [n]2 | i < j and w(i) > w( j)};(14)

Inv−(w) = {(i, j) ∈ [n]2 | i � j and − w(i) > w( j)}.(15)
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It follows that |Inv+(w)| + |Inv−(w)| = |α| + |λ| = �(w) by the equation (1) .
Recall that the root system of type C is realized in the Euclidean space Rn = ⊕n

i=1Rεi as a
set of vectors Π = {±εi ± ε j : 1 � i < j � n} ∪ {±2εi : 1 � i � n} and the root system of type
B is realized as a set of vectors Π = {±εi ± ε j : 1 � i < j � n} ∪ {±εi : 1 � i � n}. Denote by
ε−i = −εi.

If w = si1 · · · si� is a reduced decomposition of w then it is known that |Πw| = �(w) and
Πw = {ai1 , si1 (ai2 ), si1 si2 (ai3 ), . . . , si1 · · · si�−1 (ai�)}. Consider β+i, j and β−i, j defined, resp., for
inversions (i, j) in Inv+(w) and Inv−(w) as follows.

• For (i, j) ∈ Inv+(w),

β+i, j(w) = εw(i) − εw( j);

• For (i, j) ∈ Inv−(w),

β−i, j(w) =
{ −εw(i) − εw( j) if type C;

2−δi j (−εw(i) − εw( j)) if type B;

where δi j is the Kronecker delta.
Let us denote β+ = {β+i, j : (i, j) ∈ Inv+(w)} and β− = {β−i, j : (i, j) ∈ Inv−(w)}.
Proposition 3.4. Let w ∈ (k)

n . Then,

(i) β+i, j is a positive root in Πw for every (i, j) ∈ Inv+(w);
(ii) β−i, j is a positive root in Πw for every (i, j) ∈ Inv−(w);

(iii) Πw is the disjoint union of β+ and β−.

Proof. For (i, j) ∈ Inv+(w) with i < j, the root εi−ε j is a negative root, whereas w(εi−ε j) =
εw(i) − εw( j) = β

+
i, j is a positive root. Then, β+i, j ∈ Πw. For (i, j) ∈ Inv−(w) such that G is either

the symplectic group (type C) with i � j or the odd orthogonal group (type B) with i < j,
the root −εi − ε j is a negative root, whereas w(−εi − ε j) = −εw(i) − εw( j) = β

−
i, j is a positive

root. Then, β−i, j ∈ Πw. For (i, i) ∈ Inv−(w) such that G an odd orthogonal group (type B), the
root −εi is a negative root, whereas w(−εi) = −εw(i) =

1
2 (−εw(i) − εw(i)) = β−i, j is a positive

root. Then, β−i, j ∈ Πw.
Since |Πw| = |Inv+(w)| + |Inv−(w)| and, furthermore, all roots β+ and β− are different to

each other, the sets Πw and β+ ∪ β− coincide. �

Proposition 3.5. Given w ∈ 
(k)
n , we have that Inv+(w) = {(i, j) : i ∈ [k] and j ∈ [k +

1, k + αi]}.
Proof. Recall that w ∈ (k)

n is given by w = u1 · · · uk |λr · · · λ1 v1 · · · vn−k−r and it satisfies
(3).

Consider I1 = {(i, j) : i ∈ [k] and j ∈ [k+1, k+αi]}. Since |I1| = ∑k
i=1 |αi| = |α| = |Inv+(w)|,

we only need to prove that I1 ⊂ Inv+(w). Suppose that (i, j) ∈ I1. Since αi � r, we can split
in two cases: if j ∈ [k+1, k+r] then w(i) = ui and w( j) = λk+r−i+1, which clearly implies that
w(i) > w( j); if j ∈ [k+r+1, k+αi] then, by (10), we conclude that 1 � j−k−r � #{vl : vl < ui},
i.e., w( j) = v j−k−r < ui = w(i). �

The description of Inv−(w) is based on a relationship between w and its corresponding
Lagrangian permutation w̃ through a “translation” map.
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Let w ∈ 
(k)
n be a permutation in the form (2). Define w̃ ∈ 

(0)
n by w̃ = λr · · · λ1 ṽ1 · · ·

ṽn−r, where 0 < ṽ1 < · · · < ṽn−r is the reordering of the entries u’s and v’s of w. The next
lemma allows us to keep track the position of the w(i)’s after this process. Indeed, if w(i) = j
then w−1( j) = i, so that the position of the value j in the permutation w is equal to w−1( j).

Lemma 3.6. Let w ∈  (k)
n . The position of the entry w(i), for i ∈ [n], in the Lagrangian

permutation w̃ ∈ (0)
n is given by the formula

w̃−1(w(i)) =
{

i + αi if 1 � i � k;
i − α∗i−k if k + 1 � i � n.

Proof. If 1 � i � k then, by (10), w̃−1(w(i)) = i+r+#{v j : v j < ui} = i+αi. If k+1 � i � k+r
then, by Lemma 2.4, we have w̃−1(w(i)) = i − k = i − α∗i−k. If k + r + 1 � i � n then, by
Lemma 2.4, we have w̃−1(w(i)) = i − #{uj : uj > vi−k−r} = i − μ∗i−k−r = i − α∗i−k. �

Proposition 3.7. Given w ∈  (k)
n and w̃ the respective Lagrangian permutation in 

(0)
n ,

we have that Inv−(w̃) = {(i, j) : i ∈ [r] and j ∈ [i, i − 1 + λr−i+1]}.
Proof. Consider I2 = {(i, j) : i ∈ [r] and j ∈ [i, i − 1 + λr−i+1]}. Observe that λl � l for

every l ∈ [r] because λ is a strict partition. Then, i − 1 + λr−i+1 � r. Since |I2| = ∑r
i=1 |λi| =

�(w̃) = |Inv−(w̃)|, we only need to prove that I2 ⊂ Inv−(w̃). Suppose that (i, j) ∈ I2 with i � j.
If j ∈ [r] then w(i) = λr−i+1 and w( j) = λr− j+1 so that −w(i) > w( j). If j ∈ [r+1, i−1+λr−i+1]
then w( j) = ṽ j−r � ṽλr−i+1−(r−i+1). Since ṽλl−l < λl for every l ∈ [r], we conclude that w( j)
< λr−i+1 = −w(i). �

Finally, a description of Inv−(w̃) is quite enough for us since there is a bijection between
Inv−(w) and Inv−(w̃), as shown in the next lemma.

Lemma 3.8. Given w ∈ (k)
n , then (i, j) ∈ Inv−(w) if, and only if, (i0, j0) ∈ Inv−(w̃), where

w(i) = w̃(i0) and w( j) = w̃( j0). Moreover, β−i, j(w) = β−i0, j0 (w̃).

Proof. It follows directly from the definition of inversions in Inv−(w) and by Lemma 3.6.
�

In general, the desired correspondence between the Πw and the HSYD of w according to
the results above is done as follows:

• Top diagram: for each (i, j) ∈ Inv+(w) with i ∈ [k] and j ∈ [k + 1, k + αi], we place
the root β+i, j ∈ Πw at the position (i, j − k) in the corresponding top diagram α;
• Bottom diagram: for each (i, j) ∈ Inv−(w̃) with i ∈ [r] and j ∈ [r+1, r+λi], we place

the root β−i, j ∈ Πw at the position (i, j) in the corresponding bottom diagram λ.

Figure 5 illustrates this procedure for w = 2 6|7 5 1 3 4 ∈ OG(5, 15).

Remark 3.9. Propositions 3.4, 3.5, 3.7 and Lemma 3.8 generalize Lemma 10 of [7] in
types B and C for any type of Grassmannian beyond the maximal ones. Notice that in
Figure 5 we have both the top and bottom diagrams.

3.2. Results.
3.2. Results. The integral homology groups Hm(F(k),Z), m � 0, can be computed after we

determine the coefficients of the boundary map according to the formula given in Theorem
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Fig.5. The roots of Πw inside the HSYD of w = 2 6|7 5 1 3 4 ∈ OG(5, 15).

3.2 and make a choice of signs. We provide an explicit expression of κ for each type of
covering pairs along with a interpretation into the HSYD.

Recall that P, T , and Q are the positions changed in w and w′ as in the equation (5).

Theorem 3.10. Let w, w′ be in 
(k)
n such that w covers w′. Then, κ as in the equation (13)

depends on the type of the pair w, w′ as follows:

• For IG(n − k, 2n):

κ(w, w′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
T if type(w, w′) = B1;

T + Q if type(w, w′) = B2;
Q − P if type(w, w′) = B3;
P + T if type(w, w′) = B4;

• For OG(n − k, 2n + 1):

κ(w, w′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2T − 1 if type(w, w′) = B1;

T + Q − 1 if type(w, w′) = B2;
Q − P if type(w, w′) = B3;

P + T − 1 if type(w, w′) = B4.

Remark 3.11. The coefficients for the classical real Grassmannians Gr(k, n) – those of
type A – occurs as a particular case when w, w′ is of type B3. The Schubert varieties are
parametrized by permutations of the symmetric group with a descent at k-th position. They
correspond to the partitions α and poset k,n of the Young diagrams. Theorem 3.10 shows
that if w, w′ is a covering pair and w = w′ · (P,Q) then κ(w, w′) = Q − P.

The proof will be postponed to Section 4 (Propositions 4.1, 4.4, 4.5 and 4.6).
We may also visualize κ for each covering pair through the HSYD. We start by filling in

each diagram of w and w′ with the corresponding inversions of Πw and Πw′ , remembering
that the diagram of w′ is obtained from the diagram of w by removing either a corner or
a middle box (cf. Section 2.4). The distinction between these diagrams may be displayed
inside the diagram of w as follows:

• fill in the removed box (r.b.) with 1;
• do not fill the boxes if the corresponding roots of Πw and Πw′ are the same;
• fill in with either ±1 or 2 (as it will be clarified below) if the corresponding roots of
Πw and Πw′ are different.

The computations in Section 4 will show that κ(w, w′) is given as the sum of such numbers
in the diagram. According to the changes in the permutations, the difference between the
roots occurs along specific rows and columns depending on the type of the pair.
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• If type(w, w′) = B1 then we fill in the column above the r.b. in the diagonal of the
bottom diagram according to Figure 6a;
• If type(w, w′) = B2 then the r.b. belongs to a v-related column in the bottom diagram.

We fill in the hook defined by the diagonal box contained in the row of the r.b., and
the column above the r.b. in the bottom diagram together with its related top column
according to Figure 6b;
• If type(w, w′) = B3 then the r.b. belongs to the top diagram. We fill in the boxes to

the left and above the r.b. according to Figure 6c;
• If type(w, w′) = B4 then the r.b. belongs to an h-related column in the bottom dia-

gram. We fill in the hook defined by the diagonal box contained in the row of the
r.b., and the column above the r.b. in the bottom diagram together with its related
top row according to Figure 6d.

Fig.6. Filling in the diagrams for each type of pair.

Example 2. Let w = 2 6|7 5 1 3 4 ∈ OG(5, 15), where n = 7, k = 2. There are five covering
pairs w, w′i , i = 1, . . . , 5, according to Example 1. We can compute κ of each pair w, w′i as
follows:

(B1) w, w′1 : T = 5 and κ = 2T − 1 = 9;

(B2) w, w′2 : (T,Q) = (4, 7) and κ = T + Q − 1 = 10;

(B3) w, w′3 : (P,Q) = (2, 7) and κ = Q − P = 5;

(B4) w, w′4 : (P,T ) = (2, 3) and κ = P + T − 1 = 4;

(B4) w, w′5 : (P,T ) = (1, 4) and κ = P + T − 1 = 4.

Therefore, by Theorem 3.10, ∂2 6|7 5 1 3 4 = ±22 6|7 4 1 3 5 ± 22 7|6 5 1 3 4 ± 25 6|7 2 1 3 4.
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Fig.7. The sum of the number in each diagram gives the value of κ(w, w′i ).

The comparison between the formulas for κ(w, w′) and the description of the covering
relations by the right action has revealed a hidden phenomenon that will be generalized in a
forthcoming paper.

Let us define the coroot of a root δ ∈ Π by δ∨ =
2δ
〈δ, δ〉 . The set of coroots Π∗ is also a

root system which is called the dual root system. In particular, the root systems of types B
and C are dual to each other.

If δ ∈ Π is given in terms of the system Σ of simple roots as δ =
∑
ξ∈Σ dξξ, the height of

the root δ is the sum ht(δ) =
∑
ξ∈Σ dξ.

Theorem 3.12. Let w, w′ be in 
(k)
n such that w covers w′ and δ be the root for which

w = w′ · sδ. Then

κ(w, w′) = ht(δ∨).

Proof. Recall that the simple roots of type B are defined by a0 = ε1 and ai = εi+1 − εi for
1 � i < n. The positive roots Π+ of type B are given by ε j ( j ≥ 1), εi − ε j (i > j) and εi + ε j

(i > j). The height of the corresponding roots and coroots are given by

ht(ε j) = j, for j � 1;

ht(εi − ε j) = i − j, for i > j;

ht(εi + ε j) = i + j, for i > j.

Now, recall that the simple roots of type C are defined by a0 = 2ε1 and ai = εi+1 − εi for
1 � i < n. The positive roots Π+ of type C are given by 2ε j ( j ≥ 1), εi − ε j (i > j) and εi + ε j

(i > j). The height of the corresponding roots and coroots are given by

ht(2ε j) = 2 j − 1, for j � 1;

ht(εi − ε j) = i − j, for i > j;

ht(εi + ε j) = i + j − 1, for i > j.

Furthermore, both root systems are dual to each other.
• For the type B root ε j, its coroot is the type C root 2ε j;
• For the type B root εi ± ε j, its coroot is the type C root εi ± ε j.

Considering w = w′ · sδ, the equation (5), and Theorem 3.10, we have the following:
• For type C:

– If Type(w, w′) = B1 then δ = 2εT and κ(w, w′) = T = ht(δ∨);
– If Type(w, w′) = B2 then δ = εQ + εT and κ(w, w′) = T + Q = ht(δ∨);
– If Type(w, w′) = B3 then δ = εQ − εP and κ(w, w′) = Q − P = ht(δ∨);
– If Type(w, w′) = B4 then δ = εT + εP and κ(w, w′) = P + T = ht(δ∨);

• For type B:
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– If Type(w, w′) = B1 then δ = εT and κ(w, w′) = 2T − 1 = ht(δ∨);
– If Type(w, w′) = B2 then δ = εQ + εT and κ(w, w′) = T + Q − 1 = ht(δ∨);
– If Type(w, w′) = B3 then δ = εQ − εP and κ(w, w′) = Q − P = ht(δ∨);
– If Type(w, w′) = B4 then δ = εT + εP and κ(w, w′) = P + T − 1 = ht(δ∨).

�

3.3. Orientability.
3.3. Orientability. We provide a general criteria of orientability.

Proposition 3.13.
(i) IG(n − k, 2n) is orientable if, and only if, n − k is odd;

(ii) OG(n, 2n + 1) is orientable for every n;
(iii) OG(n − k, 2n + 1) is orientable if, and only if, k > 0 and n − k is even.

Proof. Consider the Schubert variety wk
0

where wk
0 ∈ 

(k)
n is the longest element given

by (4). Being orientable is equivalent to ∂wk
0
= 0.

If k = 0 then the only possible choice is wk
0 = |n n − 1 · · · 1 and w′ = |n n − 1 · · · 1, which

is a pair of type B1. In this case, T = n and P = Q = 0, implying that

c(wk
0, w

′) =
{ ±(1 + (−1)n) for IG(n, 2n);

0 for OG(n, 2n + 1).

Therefore, IG(n, 2n) is orientable if, and only if, n is odd, and OG(n, 2n+1) is orientable for
every n. If k > 0 then there is only one possible choice of w′ such that wk

0 cover w′, namely,
wk

0 = 1 2 · · · (k − 1) k|n n − 1 · · · k + 1 and w′ = 1 2 · · · (k − 1) (k + 1)|n n − 1 · · · k, which is
a pair of type B4. Then, P = k, T = n, and Q = 0, implying that

c(wk
0, w

′) =
{ ±(1 + (−1)k+n) for IG(n − k, 2n);
±(1 − (−1)k+n) for OG(n − k, 2n + 1).

Therefore, IG(n − k, 2n) is orientable if, and only if, k + n ≡ n − k mod 2 is odd, and
OG(n − k, 2n + 1) is orientable if, and only if, k + n ≡ n − k mod 2 is even. �

3.4. Duality.
3.4. Duality. Given w ∈ (k)

n , define w∨ = wwk
0 the dual permutation of w. Write w as in

equation (2), the one-line notation of the dual permutation of w is

w∨ = u1 · · · uk |vn−k−r · · · v1 λ1 · · · λr.

The length of w∨ is �(w∨) = �(wk
0)− �(w). The next proposition states that the duality of a

permutation also implies a duality over the covering pairs.

Proposition 3.14 ([9]). Let w, w be permutations in 
(k)
n . Then, w covers w′ if, and only

if, (w′)∨ covers w∨. Moreover,

(1) Type(w, w′) = B1 if, and only if, Type((w′)∨, w∨) = B1;
(2) Type(w, w′) = B2 if, and only if, Type((w′)∨, w∨) = B2;
(3) Type(w, w′) = B3 if, and only if, Type((w′)∨, w∨) = B4.

The next proposition shows that c((w′)∨, w∨) can be obtained, according to c(w, w′) and
the type of the pair w, w′.
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Proposition 3.15. Let w, w′ be in 
(k)
n such that w covers w′. Then, |c(w, w′)| = |c((w′)∨,

w∨)| if, and only if, one of the following happens:

• For IG(n − k, 2n):
(1) Type(w, w′) = B1 and n − k is odd;
(2) Type(w, w′) = B2;
(3) Type(w, w′) = B3 or B4, and n − k is odd;

• For OG(n − k, 2n + 1):
(1) Type(w, w′) = B1 or B2;
(2) Type(w, w′) = B3 or B4, and n − k is even.

Proof. Denote by P∨, T∨, and Q∨ the integers of Table 1 for the dual pair (w′)∨, w∨. We
will describe such integers in terms of P, T , and Q case-by-case. Assume the flag manifold
is IG(n − k, 2n).

If Type(w, w′) =B1 then T∨ = n−r+1 = (n−k+1−2r)+T . Thus, (−1)T∨ = (−1)n−k+1(−1)T

and we conclude that both coefficients coincide if, and only if, n − k + 1 is even.
If Type(w, w′) = B2 then T∨ = n− r−q+1 = (n−k−2q−2r+1)+Q and Q∨ = n− r+ t =

(n− k − 2r + 2t − 1)+ T . Thus, (−1)T∨+Q∨ = (−1)T+Q and we conclude that both coefficients
coincide.

If Type(w, w′) = B3 then P∨ = p = P and T∨ = n − r − q + 1 = (n − k − 2q − 2r + 1) + Q.
Thus, (−1)P∨+T∨ = (−1)n−k+1(−1)Q−P and we conclude that both coefficients coincide if, and
only if, n − k + 1 is even.

If Type(w, w′) = B4 then P∨ = p = P and Q∨ = n− r+ t = (n− k− 2r+ 2t− 1)+T . Thus,
(−1)Q∨−P∨ = (−1)n−k+1(−1)P+T and we conclude that both coefficients coincide if, and only
if, n − k + 1 is even.

The proof for OG(n − k, 2n + 1) is analogous. �

We define the incidence graph of a Grassmannian as the graph whose vertices are the
permutations of  (k)

n and the edges “→” and “⇒” are given by the covering relations as
follows: if w covers w′ and c(w, w′) = 0 then w→ w′; if w covers w′ and c(w, w′) = ±2 then
w⇒ w′.

Example 3. The incidence graphs for the odd orthogonal Grassmannian OG(2, 9) and
isotropic Grassmannian IG(2, 8), where n = 4 and k = 2, are given in Figure 8. The duality
of permutations and pairs can be seen as the symmetry through the horizontal dashed line.

(1) For F = IG(2, 8), by Proposition 3.15, only dual pairs w, w′ of type B2 satisfy
|c(w, w′)| = |c((w′)∨, w∨)|. In the incidence graph in Figure 8, this means that the
edge of a pair of type B1, B3, or B4 should be different from the edge associated
with its dual. Therefore, the homology groups are

H11(F,Z) = 0, H8(F,Z) = Z2, H5(F,Z) = Z ⊕ Z2, H2(F,Z) = Z2,

H10(F,Z) = Z2, H7(F,Z) = Z2, H4(F,Z) = Z ⊕ Z2, H1(F,Z) = Z2,

H9(F,Z) = Z, H6(F,Z) = (Z2)2, H3(F,Z) = Z2, H0(F,Z) = Z.

(2) For F = OG(2, 9), by Proposition 3.15, the coefficients and the corresponding edges
in Figure 8 are the same for all dual pairs. Therefore, the homology groups are
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Fig.8. The incidence graph of IG(2, 8) on the left and OG(2, 9) on the right.

H11(F,Z) = Z, H8(F,Z) = Z2, H5(F,Z) = (Z2)2, H2(F,Z) = Z2,

H10(F,Z) = 0, H7(F,Z) = Z ⊕ Z2, H4(F,Z) = Z ⊕ Z2, H1(F,Z) = Z2,

H9(F,Z) = Z2, H6(F,Z) = Z2, H3(F,Z) = Z2, H0(F,Z) = Z.

3.5. First and second homology groups.
3.5. First and second homology groups. Finally, as a by-product of our methods to

compute the coefficients for the boundary map, it is not difficult to obtain results about the 1st
and 2nd homology groups of odd orthogonal Grassmannians and isotropic Grassmannians.

Proposition 3.16.
(i) If F = IG(n − k, 2n) then

H1(F,Z) =
{
Z if k = 0;
Z2 otherwise;

H2(F,Z) =
{

0 if n = 2, k = 1;
Z2 otherwise;

(ii) If F = OG(n − k, 2n + 1) then

H1(F,Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z if n = 1, k = 0;
Z if n = 2, k = 1;
Z2 otherwise;

H2(F,Z) =
{

0 if k = 0;
Z2 otherwise.
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Proof. To compute H1(F,Z) and H2(F,Z), we only require to know the boundary maps ∂1,
∂2, and ∂3, which depend on k and n. Table 2 shows the incidence graph up to 3-dimensional
cells for different arrangements of n and k. In the last graph, we denote ka = k + a.

Table 2. Bruhat graphs to compute 1st and 2nd homology

The 1st and 2nd homology groups can be computed using such diagrams. �

4. Proof of the main results

4. Proof of the main results
In this section, we compute σ(w)−σ(w′) for each type of covering pairs w, w′. Remember

that Inv+(w) and Inv−(w) are given by the equations (14) and (15).
Let us denote (β′)+i, j = β

+
i, j(w

′) where (i, j) ∈ Inv+(w′), β̃−i, j = β
−
i, j(w̃) where (i, j) ∈ Inv−(w̃),

and (β̃′)−i, j = β
−
i, j(w̃

′) where (i, j) ∈ Inv−(w̃′). It will be useful to write σ(w)−σ(w′) = S+ +S−

with

S+ =
∑

(i, j)∈ Inv+(w)

β+i, j −
∑

(i, j) ∈ Inv+(w′)

(β′)+i, j and S− =
∑

(i, j)∈ Inv−(w̃)

β̃−i, j −
∑

(i, j) ∈ Inv−(w̃′)

(β̃′)−i, j.

We can see in Theorem 3.10 that κ depends on the type of G. We can merge both types in
a single formula after adopting the following notation: let isB be the variable that indicates
whether the Grassmannian is odd orthogonal or not, i.e.,

isB =
{

1 for OG(n − k, 2n + 1);
0 for IG(n − k, 2n).

Then, κ in Theorem 3.10 can be given as follows:
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• Type B1: κ = (1 + isB)T − isB;
• Type B2: κ = T + Q − isB;
• Type B3: κ = Q − P;
• Type B4: κ = P + T − isB.

Proposition 4.1. Let w, w′ be in 
(k)
n such that Type(w, w′) = B1. Denote T = w−1(λ1)

= k + r. Then, κ = (isB + 1)T − isB and γ = 21−isB ε1.

Proof. Observe that w(T ) = λ1 = 1, w′(T ) = λ1 = 1, and w(i) = w′(i) whenever i � T . By
Propositions 2.6(i) and 3.5, Inv+(w) = Inv+(w′) = {(i, j) : i ∈ [k] and j ∈ [k + 1, k + αi]}.

Clearly, T ∈ [k + 1, k + αi] for every i ∈ [k]. For (i, j) ∈ Inv+(w),

β+i, j =

{
εw(i) + ε1 if j = T ;
εw(i) − εw( j) if j � T ;

(β′)+i, j =
{
εw(i) − ε1 if j = T ;
εw(i) − εw( j) if j � T.

Then, S+ can be rearranged as

S+ =
k∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑
j=k+1

(β+i, j − (β′)+i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ =
k∑

i=1

(β+i,T − (β′)+i,T ) = 2kε1 = (2isBk)(21−isBε1).

To compute S−, we know that λ′t = λt+1 for 1 � t � r−1 = r′ by Proposition 2.6(i). Using
Lemma 3.6 yields the position of λ1 = 1 in w̃ and the position of λ1 = 1 in w̃′ are equal to r.
In other words, w̃(r) = 1, w̃′(r) = 1, and w̃(i) = w̃′(i) whenever i � r.

For i = r, we have that [i, i− 1+ λr−i+1] = [r, r]. By Proposition 3.7, Inv−(w̃) = {(i, j) : i ∈
[r] and j ∈ [i, i − 1 + λr−i+1]} and Inv−(w̃′) = Inv−(w̃) − {(r, r)}. Assume that (β̃′)−r,r = 0 to
simplify the notation.

For (i, j) ∈ Inv−(w̃),

β̃−i, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
21−isBε1 if i = r;
−εw̃(i) + ε1 if i < r, j = r;

2−isB·δi j(−εw̃(i) − εw̃( j)) otherwise;

(β̃′)−i, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i = r;

−εw̃(i) − ε1 if i < r, j = r;
2−isB·δi j(−εw̃(i) − εw̃( j)) otherwise.

Then, S− can be rearranged as

S− =
r∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ =
r−1∑
i=1

(β̃−i,r − (β̃′)−i,r) + (β̃−r,r − (β̃′)−r,r)

= (2isBr − 2isB + 1)(21−isBε1).

We can easily observe that 2isB = isB + 1. Therefore,

σ(w) − σ(w′) = (2isBk + 2isBr − 2isB + 1)(21−isBε1) = ((isB+)T − isB)(21−isBε1). �

The next two lemmas are required for the next proofs. Consider w ∈ 
(k)
n , with double

partition Λ = (α, λ) and r = �(λ).

Lemma 4.2. If 1 � i < j � r then j + λr− j+1 � i + λr−i+1.
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Proof. For every i ∈ [r − 1], we have λr−i+1 � 1 + λr−i since λ is a strict partition.
Furthermore, if l ∈ [r − i] then λr−i+1 � l + λr−i+1−l. Hence, given i < j, take l = j − i. �

Lemma 4.3. Let i and j be integers such that i ∈ [k] and j ∈ [n − k]. Then, j � αi if, and
only if, k − i + 1 � α∗j .

Proof. Notice that j � αi if, and only if, {αl : αl ≥ j} ⊇ {αi, . . . , αk}. The result follows
from the definition of α∗. �

Proposition 4.4. Let w, w′ be in 
(k)
n such that Type(w, w′) = B2. Denote T = w−1(λt) =

k + r − t + 1 and Q = w−1(vq) = k + r + q. Then, κ = T + Q − isB and γ = ελt − εvq .
Proof. Observe that the indexes T and Q were chosen such that vq = λt − 1, w(T ) = λt,

w(Q) = vq, w′(T ) = vq, w′(Q) = λt, and w(i) = w′(i) whenever i � T and i � Q. By
Propositions 2.6(ii) and 3.5, Inv+(w) = Inv+(w′) = {(i, j) : i ∈ [k] and j ∈ [k + 1, k + αi]}.

Notice that T ∈ [k + 1, k + r] ⊂ [k + 1, k + αi] and Q � [1, k + r]. For (i, j) ∈ Inv+(w),

β+i, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εw(i) + ελt if j = T ;
εw(i) − εvq if j = Q;
εw(i) − εw( j) otherwise;

(β′)+i, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εw(i) + εvq if j = T ;
εw(i) − ελt if j = Q;
εw(i) − εw( j) otherwise.

The summation S+ can be rearranged as follows

S+ =
k∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑
j=k+1

(
β+i, j − (β′)+i, j

)⎞⎟⎟⎟⎟⎟⎟⎠ .
Applying Lemma 4.3 gives Q � k + αi if, and only if, k − α∗Q−k + 1 � i. Keeping in mind

that T always lies in the interval [k + 1, k + αi] for any i, we can split the summation S+ over
i in the following parts:

(i) If i ∈ [k−α∗Q−k] then Q � [k+1, k+αi] and
k+αi∑
j=k+1

(β+i, j−(β′)+i, j) = (β+i,T−(β′)+i,T ) = ελt−εvq .

(ii) If i ∈ [k−α∗Q−k +1, k] then Q ∈ [k+1, k+αi] and
k+αi∑
j=k+1

(β+i, j− (β′)+i, j) = (β+i,T − (β′)+i,T )+

(β+i,Q − (β′)+i,Q) = 2(ελt − εvq).
Hence,

S+ =
k−α∗Q−k∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑
j=k+1

(β+i, j − (β′)+i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ +
k∑

i=k−α∗Q−k+1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑

j=k+r+1

(β+i, j − (β′)+i, j)

⎞⎟⎟⎟⎟⎟⎟⎠
= (k + α∗Q−k)(ελt − εvq ).

To compute S−, we know that λ′t = λt − 1 and λ′i = λi for i � t by Proposition 2.6(ii).
Using Lemma 3.6 yields the position of λt in w̃ is T̃ := w̃−1(λt) = T − k = r − t + 1, and
the position of vq in w̃ is Q̃ := w̃−1(vq) = Q − α∗Q−k. In other words, w̃(T̃ ) = w(T ) = λt,
w̃′(T̃ ) = w′(T ) = vq, w̃(Q̃) = w(Q) = vq, w̃′(Q̃) = w′(Q) = λt, and w̃(i) = w̃′(i) whenever
i � T̃ and i � Q̃. By Proposition 3.7, Inv−(w̃) = {(i, j) : i ∈ [r] and j ∈ [i, i − 1 + λr−i+1]} and
Inv−(w̃′) = Inv−(w̃) − {(T̃ , Q̃)}.
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Notice that T̃ ∈ [1, r] and Q̃ � [1, r]. It remains to determine whether T̃ and Q̃ lie in
the interval [i, i − 1 + λr−i+1]. Applying Lemma 2.4 gives Q̃ = Q − α∗Q−k = k + r + q − μ∗q.
The number μ∗q can be computed as follows: μ∗q = #{ul : ul > vq} = n − vq − #{λl : λl >

vq} − #{vl : vl > vq} = n − (λt − 1) − (r − t + 1) − (n − k − r − q) = k + t + q − λt. Hence,
Q̃ = r − t + λt = T̃ − 1 + λr−T̃+1.

By Lemma 4.2, given i ∈ [1, r], we can say whether T̃ and Q̃ belong to [i, i − 1 + λr−i+1]
according to how i compares to T̃ . Namely,

T̃ , Q̃ ∈ [i, i − 1 + λr−i+1], for 1 � i < T̃ ;(16)

[T̃ , Q̃] = [i, i − 1 + λr−i+1], for i = T̃ ;(17)

T̃ , Q̃ � [i, i − 1 + λr−i+1], for T̃ < i � r.(18)

Since (T̃ , Q̃) � Inv−(w̃′), we will assume (β̃′)−
T̃ ,Q̃
= 0 to simplify the notation. For (i, j) ∈

Inv−(w),

β̃−i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ελt − εvq if i = T̃ , j = Q̃;
21−isBελt if i = T̃ , j = T̃ ;
ελt − εw̃( j) if i = T̃ , T̃ < j < Q̃;
−εw̃(i) + ελt if i < T̃ , j = T̃ ;
−εw̃(i) − εvq if i < T̃ , j = Q̃;

2−isB·δi j(−εw̃(i) − εw̃( j)) otherwise;

(β̃′)−i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = T̃ , j = Q̃;
21−isBεvq if i = T̃ , j = T̃ ;
εvq − εw̃( j) if i = T̃ , T̃ < j < Q̃;
−εw̃(i) + εvq if i < T̃ , j = T̃ ;
−εw̃(i) − ελt if i < T̃ , j = Q̃;

2−isB·δi j(−εw̃(i) − εw̃( j)) otherwise.

The summation S− can be rearranged as follows

S− =
r∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1+λr−i+1∑

j=i

(
β̃−i, j − (β̃′)−i, j

)⎞⎟⎟⎟⎟⎟⎟⎠ .
We can split the above summation over i in the following parts:

(i) If i ∈ [T̃ − 1] then, by (16),

i−1+λr−i+1∑
j=i

(β̃−i, j − (β̃′)−i, j) = (β̃−
i,T̃
− (β̃′)−

i,T̃
) + (β̃−

i,Q̃
− (β̃′)−

i,Q̃
) = 2(ελt − εvq).

(ii) If i = T̃ then, by (17),

Q̃∑
j=T̃

(β̃−
T̃ , j
− (β̃′)−

T̃ , j
) = (β̃−

T̃ ,T̃
− (β̃′)−

T̃ ,T̃
) +

Q̃−1∑
j=T̃+1

(β̃−
T̃ , j
− (β̃′)−

T̃ , j
) + (β̃−

T̃ ,Q̃
− (β̃′)−

T̃ ,Q̃
)

= (21−isB + Q̃ − T̃ )(ελt − εvq).
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(iii) If i ∈ [T̃ + 1, r] then, by (18),
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j) = 0.

We can easily observe that 21−isB − 2 = −isB. Thus,

S− =
T̃−1∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ +
Q̃∑

j=T̃

(β̃−
T̃ , j
− (β̃′)−

T̃ , j
) +

r∑
i=T̃+1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j)

⎞⎟⎟⎟⎟⎟⎟⎠
= (−isB + T + Q − k − α∗Q−k)(ελt − εvq).

Therefore,

σ(w) − σ(w′) = (T + Q − isB)(ελt − εvq ). �

Proposition 4.5. Let w, w′ be in 
(k)
n such that Type(w, w′) = B3. Denote P = w−1(up)

= p and Q = w−1(vq) = k + r + q. Then, κ = Q − P and γ = εup − εvq .
Proof. Observe that the indexes P and Q were chosen such that vq = up − x, w(P) = up,

w(Q) = vq, w′(P) = vq, w′(Q) = up, and w(i) = w′(i) whenever i � P and i � Q. Proposition
2.6(iii), recall that α′P = αP − 1 and α′i = αi for i � P. Then, by Proposition 3.5, Inv+(w) =
{(i, j) : 1 � i � k and k + 1 � j � k + αi} and Inv+(w′) = Inv+(w) − {(P,Q)}.

Clearly P ∈ [1, k] and Q � [1, k]. Since (P,Q) � Inv−(w̃′), we will assume (β̃′P,Q) = 0. For
(i, j) ∈ Inv+(w),

β+i, j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
εup − εvq if i = P, j = Q;
εup − εw( j) if i = P, j � Q;
εw(i) − εvq if i � P, j = Q;
εw(i) − εw( j) otherwise;

(β′)+i, j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if i = P, j = Q;

εvq − εw( j) if i = P, j � Q;
εw(i) − εup if i � P, j = Q;
εw(i) − εw( j) otherwise.

Then, S+ can be rearranged as follows

S+ =
k∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑
j=k+1

(β+i, j − (β′)+i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ .
To compute this summation, we need to check when Q � k+αi. Notice that if i = P then,

by (10), αP = r+#{vl : vl < uP} = r+q which implies that Q = k+αP. Applying Lemma 4.3
gives Q � k+αi if, and only if, k−α∗Q−k+1 � i. But, α∗Q−k = α

∗
αP
= #{αl : αl > αP} = k−P+1.

Hence, Q � k + αi if, and only if, i � P.
We can split the summation of S+ over i in the following parts:

(i) If 1 � i < P then Q � [k + 1, k + αi] and
k+αi∑
j=k+1

(β+i, j − (β′)+i, j) = 0.

(ii) If i = P then [k + 1, k + αP] = [k + 1,Q] and
Q∑

j=k+1

(β+P, j − (β′)+P, j) = (β+P,Q − (β′)+P,Q) +

Q−1∑
j=k+1

(β+P, j − (β′)+P, j) = (Q − k)(εup − εvq ).

(iii) If P < i � k then Q ∈ [k+1, k+αi] and
k+αi∑
j=k+1

(β+i, j−(β′)+i, j) = (β+i,Q−(β′)+i,Q) = εup−εvq .
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Hence,

S+ =
P−1∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑
j=k+1

(β+i, j − (β′)+i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ +
Q∑

j=k+1

(β+P, j − (β′)+P, j) +
k∑

i=P+1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑
j=k+1

(β+i, j − (β′)+i, j)

⎞⎟⎟⎟⎟⎟⎟⎠
= (Q − P)(εup − εvq).

To compute S−, it is clear that both w̃ and w̃′ coincide. Then, β− = (β′)− and the sum S−

is zero. Therefore,

σ(w) − σ(w′) = (Q − P)(εup − εvq ). �

Proposition 4.6. Let w, w′ be in 
(k)
n such that w, w′ is a pair of type B4. Denote P =

w−1(up) = p and T = w−1(λt) = k + r − t + 1. Then, κ = P + T − isB and γ = ελt − εup .

Proof. Observe that the indexes P = p and T = k + r − t + 1 were chosen such that
up = λt − x, w(P) = up, w(T ) = λt, w′(P) = λt, w′(T ) = up, and w(i) = w′(i) whenever i � P
and i � Q. By Proposition 2.6(iv), recall that α′P = αP + x − 1 and α′i = αi for i � P. Then,
by Proposition 3.5, Inv+(w) = {(i, j) : 1 � i � k and k + 1 � j � k + αi} and Inv+(w′) =
Inv+(w) ∪ A, where A is the set given by: if x > 1 then A = {(P, k + αP + l) : 1 � l � x − 1};
if x = 1 then A = ∅.

Notice that P ∈ [1, k] and T ∈ [k + 1, k + αi] for every i ∈ [1, k] since T � k + r � k + αi.
Then, all roots β+i, j and (β′)+i, j for (i, j) ∈ Inv+(w) are

β+i, j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
εup + ελt if i = P, j = T ;
εw(i) + ελt if i � P, j = T ;
εup − εw( j) if i = P, j � T ;
εw(i) − εw( j) otherwise;

(β′)+i, j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ελt + εup if i = P, j = T ;
εw(i) + εup if i � P, j = T ;
ελt − εw( j) if i = P, j � T ;
εw(i) − εw( j) otherwise.

For (P, j) ∈ A, i.e., k + αP + 1 � j � k + αP + x − 1, the additional roots (β′)+P, j of w′ are
(β′)+P, j = ελt − εw( j).

Then, S+ can be rearranged as follows

S+ =
k∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
k+αi∑
j=k+1

(β+i, j − (β′)+i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ −
k+αP+x−1∑
j=k+αP+1

(β′)+P, j.

Keeping in mind that T always lies in the interval [k+ 1, k +αi] for any i, we can split the
above summation over i in the following parts:

(i) If 1 � i � k and i � P then
k+αi∑
j=k+1

(β+i, j − (β′)+i, j) = β
+
i,T − (β′)+i,T = ελt − εup .

(ii) If i = P then
k+αP∑
j=k+1

(β+P, j − (β′)+P, j) =
T−1∑

j=k+1

(β+P, j − (β′)+P, j) + (β+P,T − (β′)+P,T ) +
k+αP∑
j=T+1

(β+P, j −
(β′)+P, j) = (1 − αP)(ελt − εup).

Hence,

S+ =
∑

i∈[1,k]
i�T

(ελt − εup) + (1 − αP)(ελt − εup) −
k+αP+x−1∑
j=k+αP+1

(ελt − εw( j))
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= (k − αP)(ελt − εup) −
k+αP+x−1∑
j=k+αP+1

(ελt − εw( j)).

To compute S−, we know that λ′t = λt − x and λ′i = λi for i � t by Proposition 2.6(iv).
Using Lemma 3.6 yields the position of λt in w̃ is T̃ := w̃−1(w(T )) = T − k = r − t + 1, and
the position of up in w̃ is P̃ := w̃−1(w(P)) = P + αP. In other words, w̃(P̃) = w(P) = up,
w̃′(P̃) = w′(P) = λt, w̃(T̃ ) = w(T ) = λt, w̃′(T̃ ) = w′(T ) = up, and w̃(i) = w̃′(i) whenever
i � T̃ and i � P̃. By Proposition 3.7, Inv−(w̃) = {(i, j) : 1 � i � r and i � j � i − 1 + λr−i+1}
and Inv−(w̃′) = Inv−(w̃) − B, where B = {(T̃ , P̃ + l) : 0 � l � x − 1}.

Notice that T̃ ∈ [1, r], P̃ � [1, r], and P̃ = P + αP = up + #{λl : λl > up} = (λt − x) + (r −
t + 1) = T̃ − x+ λr−T̃+1. By Lemma 4.2, given i ∈ [1, r], we can say whether P̃ and T̃ belong
to [i, i − 1 + λr−i+1] according to how i compares to T̃ . Namely,

T̃ , P̃ ∈ [i, i − 1 + λr−i+1], for 1 � i < T̃ ;(19)

[T̃ , P̃ + x − 1] = [i, i − 1 + λr−i+1], for i = T̃ ;(20)

T̃ , P̃ � [i, i − 1 + λr−i+1], for T̃ < i � r.(21)

For j � P̃, since (T̃ , j) � Inv−(w̃′), we will assume that (β̃′)−
T̃ , j
= 0 to simplify the notation.

For (i, j) ∈ Inv−(w),

β̃−i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ελt − εup if i = T̃ , j = P̃;
21−isBελt if i = T̃ , j = T̃ ;
ελt − εw̃( j) if i = T̃ , j > T̃ , j � P̃;
−εw̃(i) + ελt if i < T̃ , j = T̃ ;
−εw̃(i) − εup if i < T̃ , j = P̃;

2−isB·δi j(−εw̃(i) − εw̃( j)) otherwise;

(β̃′)−i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = T̃ , j � P̃;
21−isBεup if i = T̃ , j = T̃ ;
εup − εw̃( j) if i = T̃ , T̃ < j < P̃;
−εw̃(i) + εup if i < T̃ , j = T̃ ;
−εw̃(i) − ελt if i < T̃ , j = P̃;

2−isB·δi j(−εw̃(i) − εw̃( j)) otherwise.

Then, S− can be rearranged as follows

S− =
r∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ .
We can split the above summation on i in the following parts:

(i) If 1 � i < T̃ then, by (19),
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j) = (β̃−
i,T̃
− (β̃′)−

i,T̃
) + (β̃−

i,P̃
− (β̃′)−

i,P̃
) =

2(ελt − εup).

(ii) If i = T̃ then, by (20),
P̃+x−1∑

j=T̃

(β̃−
T̃ , j
− (β̃′)−

T̃ , j
) = (β̃−

T̃ ,T̃
− (β̃′)−

T̃ ,T̃
) +

P̃−1∑
j=T̃+1

(β̃−
T̃ , j
− (β̃′)−

T̃ , j
) +
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(β̃−
T̃ ,P̃
−(β̃′)−

T̃ ,P̃
)+

P̃+x−1∑
j=P̃+1

(β̃−
T̃ , j
−(β̃′)−

T̃ , j
) = (21−isB+ P̃−T̃ )(ελt−εup)+

P+αP+x−1∑
j=P+αP+1

(ελt−εw̃( j)).

(iii) If T̃ < i � r then, by (21),
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j) = 0.

Hence,

S− =
T̃−1∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ +
P̃+x−1∑

j=T̃

(β̃−
T̃ , j
− (β̃′)−

T̃ , j
) +

r∑
i=T̃+1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1+λr−i+1∑

j=i

(β̃−i, j − (β̃′)−i, j)

⎞⎟⎟⎟⎟⎟⎟⎠
= (P + T + αp − k − isB)(ελt − εup) +

P+αP+x−1∑
j=P+αP+1

(ελt − εw̃( j)).

Finally, the remaining summation over S− is supposed to cancel with the one in S+. If we
prove that w̃( j) = w( j + k − P) for j ∈ [P + αP + 1, P + αP + x − 1], then we clearly have

P+αP+x−1∑
j=P+αP+1

(ελt − εw̃( j)) =
P+αP+x−1∑
j=P+αP+1

(ελt − εw( j+k−P)) =
k+αP+x−1∑
j=k+αP+1

(ελt − εw( j)).

Considering l = j − P − αP, the above assertion is equivalent to prove that w(l + αP +

k) = w̃(l + P + αP), for l ∈ [1, x − 1]. Clearly, l + αP + k > k and, by Lemma 3.6,
w̃−1(w(l + αP + k)) = l + αP + k − α∗l+αP

. We know that αP+1 = α
′
P+1 � α

′
P = αP + x − 1 since

α′ is also a partition. Then, by definition, α∗l+αP
= #{i : αi � l+αP} = #{P+ 1, . . . , k} = k− P

for every l ∈ [1, x − 1]. Hence, w̃−1(w(l + αP + k)) = l + P + αP.
Therefore,

σ(w) − σ(w′) = (P + T − isB)(ελt − εvq). �

5. Final comments and further directions

5. Final comments and further directions(1) We have realized that Theorem 3.12 is true for all flag manifolds of split real forms.
This will appear in a forthcoming paper.

(2) Example 3 of OG(2, 9) has revealed how the choice of signs may be an obstacle to
get the homology groups. We expect to apply the theory in [13] to find an algorithm
that provides an appropriate choice of signs for covering pairs.

(3) If one obtains a complete characterization of the covering pairs for type D, we await
to achieve similar results for the coefficients of even orthogonal Grassmannians.

(4) We look forward to get analogous excitations as defined by [7] and [5] inside the
HSYD’s for any odd orthogonal and isotropic Grassmannians.
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manuscript.
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