
Sugimoto, K. and Shimokawa, T.
Osaka J. Math.
59 (2022), 559–590

CLASSIFICATION OF PARA-REAL FORMS
OF ABSOLUTELY SIMPLE PARA-HERMITIAN

SYMMETRIC SPACES

Kyoji SUGIMOTO and Takuya SHIMOKAWA

(Received May 19, 2020, revised April 22, 2021)

Abstract
We introduce the notion of para-real forms of para-Hermitian symmetric spaces and classify

para-real forms of absolutely simple para-Hermitian symmetric spaces of hyperbolic orbit type.

1. Introduction

1. Introduction
Let G/L be a para-Hermitian symmetric space and let I be its para-complex structure.

We will introduce the notion of para-real forms of para-Hermitian symmetric spaces. A
nonempty set R ⊂ G/L is called a para-real form, if there exists an involutive isometry
Ξ of G/L such that Ξ is a para-antiholomorphic and that R coincides with a connected
component of (G/L)Ξ � Fix(G/L,Ξ). In addition, two para-real forms R1 of G/L1 and R2

of G/L2 are equivalent, if there exists a homothety Φ from G/L1 onto G/L2 such that Φ
is para-holomorphic and that Φ(R1) = R2. We assume that the complexification of the Lie
algebra g of G is simple and G/L can be realized as a hyperbolic orbit under the adjoint
representation of G on the Lie algebra g of G. The main result of this paper is the following
theorem:

Theorem 1.1. Any para-real form R of an absolutely simple para-Hermitian symmetric
space G/L of hyperbolic orbit type (see Definitions 2.3 and 2.4) is equivalent to one in Table
1.

Here in the first row of Table 1, the symbols G/CG(Z) and H/CH(Z) mean an APHS of
hyperbolic orbit type and a para-real form of G/CG(Z), respectively. In addition, R∗ �
R \ {0}, R+ is the set of positive numbers, and S(GL(p,R) ×GL(q,R)) is the set of matrices(

X O
O Y

)
∈ SL(p + q,R),

where X ∈ GL(p,R), Y ∈ GL(q,R).
We introduce the notion of para-real forms of para-Hermitian symmetric spaces similarly

to the notion of real forms of Hermitian symmetric spaces. On real forms, a number of study
have been conducted. For example, real forms of (pseudo-) Hermitian symmetric spaces
were classified under various conditions (cf. [2], [10], [19]). S. Kaneyuki and M. Kozai
introduced the notion of para-Hermitian symmetric spaces and classified them under the
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Table 1. Para-real forms of absolutely simple para-Hermitian symmetric spaces

G/CG(Z) H/CH(Z) Condition
Type AI

SL(n,R)/S(GL(i,R) ×GL(n − i,R))
SO(n)/(SO(i) × SO(n − i))

2 ≤ n
1 ≤ i < ((n/2) + 1)

SO0(i, n − i)/(SO(i) × SO(n − i))
3 ≤ n
1 ≤ i < ((n/2) + 1)

SL(n,R)/ SO0(k, n − k)/
4 ≤ n

S(GL(k − i,R) ×GL(n − k + i,R)) (SO(k − i) × SO0(i, n − k))
1 ≤ k ≤ n − 1
1 ≤ i ≤ k − 1

SL(n,R)/ SO0(k, n − k)/
4 ≤ n

S(GL(i + j,R) ×GL(n − i − j,R)) (SO0(i, j) × SO0(k − i, n − k − j))
2 ≤ k ≤ n − 1
1 ≤ i ≤ k − 1
1 ≤ j ≤ n − k − 1

SL(2n,R)/S(GL(n,R) ×GL(n,R))
S(GL(n,R) ×GL(n,R))/SL(n,R)

1 ≤ n
(SL(n,C) × T )/SL(n,R)

SL(2n,R)/
Sp(n,R)/(Sp(i,R) × Sp(n − i,R))

2 ≤ n
S(GL(2i,R) ×GL(2(n − i),R)) 1 ≤ i < ((n/2) + 1)

Type AII

SU∗(2n)/

Sp(n)/(Sp(i) × Sp(n − i))
3 ≤ n

(SU∗(2i) × SU∗(2(n − i)) × R+)

Sp(i, n − i)/(Sp(i) × Sp(n − i))
1 ≤ i < ((n/2) + 1)

SO∗(2n)/(SO∗(2i) × SO∗(2(n − i)))

Sp(k, n − k)/(Sp(i) × Sp(k − i, n − k))
4 ≤ n
1 ≤ k < n − 1
1 ≤ i ≤ k − 1
4 ≤ n

SU∗(2n)/ Sp(k, n − k)/ 2 ≤ k ≤ n − 1
(SU∗(2(i + j)) × SU∗(2(n − i − j)) × R+) (Sp(i, j) × Sp(k − i, n − k − j)) 1 ≤ i ≤ k − 1

1 ≤ j ≤ n − k − 1

SU∗(4n)/(SU∗(2n) × SU∗(2n) × R+)
(SL(2n,C) × T )/SU∗(2n)

2 ≤ n
(SU∗(2n) × SU∗(2n) × R+)/SU∗(2n)

Type AIII

SU(n, n)/(SL(n,C) × R∗)

(SU(n) × SU(n) × T )/SU(n)

3 ≤ n
SO0(n, n)/SO(n,C)
(SL(n,C) × R+)/SU(n)
SO∗(2n)/SO(n,C)
(SU(i, n − i) × SU(n − i, i) × T )/

3 ≤ n
SU(i, n − i)

1 ≤ i < ((n/2) + 1)
(SL(n,C) × R+)/SU(i, n − i)

SU(2n, 2n)/(SL(2n,C) × R∗) Sp(2n,R)/Sp(n,C)
2 ≤ n

Sp(n, n)/Sp(n,C)
Type BDI

SO0(p, q)/(SO0(p − 1, q − 1) × R∗) (SO(p) × SO(q))/ 1 ≤ p ≤ q
(SO(p − 1) × SO(q − 1)) p + q � 2

SO0(n, n)/(SL(n,R) × R∗)
(SO(n) × SO(n))/SO(n)

2 ≤ n
SO(n,C)/SO(n)

SO(n,C)/SO0(i, n − i)
2 ≤ n
1 ≤ i < ((n/2) + 1)

SO0(p, q)/(SO0(p − 1, q − 1) × R∗) (SO0(i, j) × SO0(p − i, q − j))/
1 ≤ p ≤ q

(SO0(i − 1, j) × SO0(p − i, q − j − 1))
1 ≤ i < p − 1
1 ≤ j < q − 1

SO0(2p, 2q)/(SO0(2p − 1, 2q − 1) × R∗) (SO0(p, q) × SO0(p, q))/SO0(p, q) 1 ≤ p ≤ q
SO0(n, n)/(SO0(n − 1, n − 1) × R∗) SO(n,C)/SO(n − 1,C)

SO0(2n, 2n)/(SL(2n,R) × R∗) (SU(n, n) × T )/Sp(n,R) 2 ≤ n
(SL(2n,R) × R+)/Sp(n,R)
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Table 1. Para-real forms of absolutely simple para-Hermitian symmetric
spaces (continued)

G/CG(Z) H/CH(Z) Condition
Type DIII

SO∗(4n)/(SU∗(2n) × R+)

(SU(2n) × T )/Sp(n)

3 ≤ n
SO(2n,C)/SO∗(2n)
(SO∗(2n) × SO∗(2n))/SO∗(2n)
(SU∗(2n) × R+)/Sp(n)

(SU∗(2n) × R+)/Sp(i, n − i)
3 ≤ n
1 ≤ i < ((n/2) + 1)

(SU∗(2i, 2n − 2i) × R+)/Sp(i, n − i)
2 ≤ n
1 ≤ i < ((n/2) + 1)

Type CI

Sp(n,R)/(SL(n,R) × R∗)
(SU(n) × T )/SO(n)

3 ≤ n
(SL(n,R) × R+)/SO(n)
(SU(i, n − i) × T )/SO0(i, n − i) 3 ≤ n
(SL(n,R) × R+)/SO0(i, n − i) 1 ≤ i < ((n/2) + 1)

Sp(2n,R)/(SL(2n,R) × R∗) (Sp(n,R) × Sp(n,R))/Sp(n,R)
2 ≤ n

Sp(n,C)/Sp(n,R)
Type CII

Sp(n, n)/(SU∗(2n) × R+)

(Sp(n) × Sp(n))/Sp(n)

2 ≤ n
(SU(n, n) × T )/SO∗(2n)
(SU∗(2n) × R+)/SO∗(2n)
Sp(n,C)/Sp(n,R)

(Sp(i, n − i) × Sp(i, n − i))/Sp(i, n − i)
2 ≤ n
1 ≤ i < ((n/2) + 1)

Type EI

E6(6)/(Spin(5, 5) × R∗)

Sp(4)/(Sp(2) × Sp(2))

—

F4(4)/SO0(4, 5)
Sp(4,R)/Sp(2,C)
Sp(4,R)/(Sp(2,R) × Sp(2,R))
Sp(2, 2)/(Sp(2) × Sp(2))
Sp(2, 2)/(Sp(1, 1) × Sp(1, 1))
Sp(2, 2)/Sp(2,C)

Type EIV

E6(−26)/(Spin(1, 9) × R+)

F4/SO(9)

—
Sp(1, 3)/(Sp(1, 1) × Sp(2))
F4(−20)/SO(9)
F4(−20)/SO0(1, 8)

Type EV

E7(7)/(E6(6) × R∗)

SU(8)/Sp(4)

—

SU(4, 4)/Sp(4,R)
SU(4, 4)/Sp(2, 2)
SL(8,R)/Sp(4,R)
SU∗(8)/Sp(4)
SU∗(8)/Sp(2, 2)
(E6(2) × T )/F4(4)

(E6(6) × R+)/F4(4)

Type EIV

E7(−25)/(E6(−26) × R∗)

(E6 × T )/F4

—

(E6(−26) × R+)/F4

(E6(−26) × R+)/F4(−20)

SU∗(8)/Sp(1, 3)
SU(2, 6)/Sp(1, 3)
(E6(−14) × T )/F4(−20)
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certain condition in [6]. In addition, Kaneyuki and Kozai showed the relation between the
symmetric R-spaces and para-Hermitian symmetric spaces. On para-Hermitian symmetric
spaces, it seems that there has been no study similar to real forms of Hermitian symmetric
spaces. For this reason, we try to introduce the notion of para-real forms of para-Hermitian
symmetric spaces and classify them under certain conditions.

Let G be a semisimple connected Lie group, let g be the Lie algebra of G, and let Z
be a semisimple element of g which satisfies all the eigenvalues of ad Z are real. Then
the adjoin orbit Ad G(Z) of G through Z is called hyperbolic orbit. It is known that the
adjoin orbit of G through an element X ∈ g is hyperbolic orbit if and only if Ad G(X) is
a para-Kähler homogeneous space (see Remark 2.2). Kaneyuki and Kozai showed a one-
to-one correspondence between effective semisimple graded Lie algebras of first kind and
semisimple para-Hermitian symmetric spaces of hyperbolic orbit type in [6]. Thus the study
of semisimple para-Hermitian symmetric spaces of hyperbolic orbit type means the study
of hyperbolic orbits of semisimple Lie groups which correspond to semisimple graded Lie
algebras of first kind.

Let (G/L, σ̂, I, g) be a simple para-Hermitian symmetric space, let g be the Lie algebra of
G, and let l be the Lie algebra of L. Then the center z(l) of l is one or two dimensions over R
(cf. [9]). If z(l) is one dimension (resp. two dimensions) over R, then we call (G/L, σ̂, I, g)
first category (resp. second category) (cf. [7]). It is known that (G/L, σ̂, I, g) is first cate-
gory if and only if (G/L, σ̂, I, g) is absolutely simple. In addition (G/L, σ̂, I, g) is second
category if and only if g is complexification of some absolutely simple Lie algebra. Thus
the study of absolutely simple para-Hermitian symmetric spaces means the study of simple
para-Hermitian symmetric spaces of first category.

A para-real form R of an absolutely simple para-Hermitian symmetric space G/L of hy-
perbolic orbit type has several features similar to real forms of Hermitian symmetric spaces.
For instance, R is a totally geodesic, Lagrangian submanifold of G/L (cf. Section 3). We
note that the fixed point set (G/L)Ξ is generally not connected in contrast with the case of
(simple irreducible pseudo-) Hermitian symmetric spaces (cf. Example 3.1).

This paper is organized as follows. In Section 2, we provide useful symbols and recol-
lect some definitions and facts being related to fundamental proposition of para-Hermitian
symmetric spaces. Proposition 2.1 is an important fact related to absolutely simple para-
Hermitian symmetric spaces. On an absolutely simple para-Hermitian symmetric space,
a para-Hermitian metric is unique up to constant, hence our result Theorem 1.1 does not
depend on the choice of para-Hermitian metrics. In Section 3, we introduce the notion of
para-real forms of para-Hermitian symmetric spaces and define an equivalent relation of
para-real forms. Theorem 3.1 shows us a relation between para-real forms and Lie alge-
bra automorphisms. In Section 4, we construct a method for classifying para-real forms in
Lemma 4.3. In addition, we prepare several useful lemmas related to Lemma 4.3. In Sec-
tion 5, we determine para-real forms based on the way of Lemma 4.3 in some cases. As a
classical type, we consider the example of g = su(n, n). Further, as an exceptional type, we
consider the example of g = e7(7). In similar ways of these, we determine every para-real
form of every absolutely simple para-Hermitian symmetric space of hyperbolic orbit type.
Consequently, we obtain Theorem 1.1.

The authors would like to express their profound gratitude to Professors Makiko Sumi
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Tanaka, Nobutaka Boumuki, and Kurando Baba for their valuable comments and advice.
The authors also thank the referee for valuable comments.

2. Preliminaries.

2. Preliminaries.2.1. Notation.
2.1. Notation. We use the following notation, where M is a manifold, G is a Lie group,

and g is a Lie algebra:
(n1) X(M): the set of vector fields on M,
(n2) TpM: the tangent space of M at p ∈ M,
(n3) I(M, g): the group of isometries of a pseudo-Riemannian manifold (M, g),
(n4) I(M, g, p): the isotropy subgroup at a point p ∈ M of the group of isometries I(M, g),
(n5) Aut(G), Aut(g): the groups of automorphisms of G and g, respectively,
(n6) Lie(G): the Lie algebra of G,
(n7) Inv(G), Inv(g): the sets of involutive automorphisms (involutions, as an abbreviation)

of G and g, respectively,
(n8) Ad, ad: the adjoint representations of G and g, respectively,
(n9) f |A: the restriction of a map f : X → Y to a subset A ⊂ X,
(n10) adh Z � ad Z|h for a subspace h ⊂ g and Z ∈ g when ad Z(h) ⊂ h,
(n11) Bg: the Killing form of g,
(n12) Aut(g, φ) � {ψ ∈ Aut(g) | φ ◦ ψ = ψ ◦ φ} for φ ∈ Aut(g),
(n13) CG(Z) � {x ∈ G | Ad(x)Z = Z} for Z ∈ Lie(G),
(n14) cg(Z) � {X ∈ g | [Z, X] = 0} for Z ∈ g,
(n15) Z(G), z(g): the centers of G and g, respectively,
(n16) G0: the identity component of G,
(n17) Gσ: the closed subgroup of G which consists of the fixed points of an involution σ of

G,
(n18) MΞ, gξ: the fixed point sets in M and g of maps Ξ : M → M and ξ : g → g,

respectively,
(n19) Ax: the inner automorphism of G by an element x ∈ G,
(n20) φ∗: the differential map of a smooth map φ : G → G at the identity element,
(n21) τ: the action of G onto G/L defined by τx : aL �→ xaL for x ∈ G and aL ∈ G/L,
(n22) o: the origin of G/L.
In addition, we use the notation of Lie groups and Lie algebras in [3].

2.2. Para-Hermitian symmetric spaces.
2.2. Para-Hermitian symmetric spaces. We review basics of para-Hermitian symmetric

spaces.

Definition 2.1 (cf. [15, pp. 52–54], [11, p. 64]). (1) Let G be a connected Lie group and
let L be a closed subgroup of G. The pair (G/L, σ̂) of a homogeneous space G/L and an
involution σ̂ of G is called a symmetric space, if the following inclusion relation holds:

(Gσ̂)0 ⊂ L ⊂ Gσ̂.

(2) Let (G/L, σ̂) be a symmetric space and let Σ : G/L → G/L be a map defined by
Σ(xL) � σ̂(x)L for xL ∈ G/L. For any point p � xL ∈ G/L, we define an involu-
tive diffeomorphism Sp : G/L → G/L by Sp � τx ◦ Σ ◦ τx−1 , which is independent of
the choice of x ∈ G satisfying p = xL. Then we call Sp the symmetry at a point p of
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(G/L, σ̂).
(3) Let (G/L, σ̂) be a symmetric space and let Sp be the symmetry at a point p of (G/L, σ̂).

Then a diffeomorphism Φ : G/L → G/L is called an automorphism of a symmetric
space (G/L, σ̂), if the equality Φ ◦ Sp = SΦ(p) ◦ Φ holds.

(4) A symmetric space (G/L, σ̂) is uniquely equipped with a G-invariant affine connection
∇1 which makes a map Σ : G/L 
 xL �→ σ̂(x)L ∈ G/L an affine transformation. We call
the connection ∇1 the canonical affine connection on (G/L, σ̂).

(5) A symmetric space (G/L, σ̂) is called effective, if G is effective on G/L as a transforma-
tion group.

(6) A symmetric space (G/L, σ̂) is called semisimple, if Lie(G) is semisimple.

Remark 2.1. If a symmetric space (G/L, σ̂) admits a G-invariant pseudo-Riemannian
metric g, then the Levi-Civita connection induced by g coincides with the canonical affine
connection ∇1 (cf. [15], p. 55).

Definition 2.2 (cf. [6, pp. 82–84, pp. 86–87]). (1) Let M be a 2n-dimensional manifold.
A tensor field I of type (1, 1) on M is called a para-complex structure, if the following
conditions are satisfied:

(i) I2 is the identity map of X(M),
(ii) for each p ∈ M, the (+1) (resp. (−1)) -eigenspace T+p M (resp. T−p M) of Ip is an

n-dimensional subspace of TpM,
(iii) for each X, Y ∈ X(M), the equality [IX, IY]− I[IX, Y]− I[X, IY]+ [X, Y] = 0 holds.
We call the pair (M, I) a para-complex manifold.

(2) Let (M, I) be a para-complex manifold and let g be a pseudo-Riemannian metric on M.
We call g a para-Hermitian metric on M, if the equality

g(IX, Y) + g(X, IY) = 0

holds for each X, Y ∈ X(M). We call the triplet (M, I, g) a para-Hermitian manifold.
(3) Let (M, I) and (M′, I′) be para-complex manifolds. A smooth map Φ : M → M′ is

called para-holomorphic (resp. para-antiholomorphic), if the equality

(Φ∗)p ◦ Ip = IΦ(p) ◦ (Φ∗)p (resp. (Φ∗)p ◦ Ip = −IΦ(p) ◦ (Φ∗)p)

holds for each p ∈ M.
(4) Let (M, I, g) be a para-Hermitian manifold. If a 2-form ω defined by ω(X, Y) := g(X, IY)

for X, Y ∈ X(M) is closed, g is called a para-Kähler metric.
(5) A para-Hermitian symmetric space is a quadruplet (G/L, σ̂, I, g) for a symmetric space

(G/L, σ̂) equipped with a G-invariant para-complex structure I and a G-invariant para-
Hermitian metric g.

Remark 2.2. Let (G/L, σ̂, I, g) be a para-Hermitian symmetric space.
(1) A 2-form ω defined by ω(X, Y) := g(X, IY) for X, Y ∈ X(G/L) is a symplectic form. In

other words, g is a para-Kähler metric (cf. [6, p. 86]).
(2) For an arbitrary x ∈ G, τx is a para-holomorphic isometry of (G/L, I, g).

Definition 2.3. A real Lie algebra g is called absolutely simple, if its complexification gC
is simple. A Lie group G and a symmetric space (G/L, σ̂) are called absolutely simple, if



Para-Real Forms of Para-Hermitian Symmetric Spaces 565

Lie(G) is absolutely simple.

Remark 2.3. We abbreviate “absolutely simple para-Hermitian symmetric space” to
“APHS”.

Proposition 2.1 (cf. [4, p. 478], [6, pp. 89–92], [9, p. 306]). Let (G/L, σ̂, I, g) be an APHS
and let g � Lie(G). In addition, set l � gσ̂∗ and u � g−σ̂∗ . Then

(1) there exists a unique element Z ∈ z(l) such that
(i) l = cg(Z),

(ii) Io = adu Z.
(2) For this Z ∈ z(l), the followings are satisfied:

(i) CG(Z)0 ⊂ L ⊂ CG(Z).
(ii) l = g0 and u = g−1 ⊕ g1, where gλ denotes the λ-eigenspace in g of ad Z (λ = 0,±1).
(iii) σ̂∗ = exp

√−1π ad Z.
(iv) z(l) = RZ.
(v) There exists a Cartan involution θ of g such that θ◦ σ̂∗ = σ̂∗ ◦ θ and that θ(Z) = −Z.

(vi) If we take an open subgroup L̄ of CG(Z), let Ī (resp. ḡ) be the G-invariant extension
of adu Z or − adu Z (resp. λBg|u×u for λ ∈ R \ {0}), then (G/L̄, σ̂, Ī, ḡ) becomes an
APHS. In addition, Z (resp. −Z) is the element which satisfies the condition (1) for
the APHS (G/L̄, σ̂, Ī, ḡ), if Īo = adu Z (resp. Īo = − adu Z).

Remark 2.4. (1) We call the element Z in Proposition 2.1 the characteristic element of
an APHS (G/L, σ̂, I, g). This is a nonzero semisimple element of g such that the set of
eigenvalues of ad Z on g is {±1, 0}.

(2) On an APHS (G/L, σ̂, I, g), for any G-invariant para-Hermitian metric g′ with respect
to I, there exists the nonzero real number λ such that g′ is the G-invariant extension of
λBg|u×u (cf. [18, p. 24]).

Definition 2.4. We call an APHS (G/L, σ̂, I, g) hyperbolic orbit type, if L coincides with
CG(Z) for the characteristic element Z of G/L. In other words, G/L is the adjoint orbit
through Z.

2.3. Para-holomorphic isometries.
2.3. Para-holomorphic isometries.

Lemma 2.1 (cf. [18, p. 29]). Let (G/L, σ̂, I, g) be an APHS, let g � Lie(G), and let Z be
the characteristic element of (G/L, σ̂, I, g). Put Aut(g, Z)+ � {φ ∈ Aut(g) | φ(Z) = Z} and
Aut(g, Z)− � {φ ∈ Aut(g) | φ(Z) = −Z}. Then as a disjoint union we have

Aut(g, σ̂∗) = Aut(g, Z)+ ∪ Aut(g, Z)−.

Proposition 2.2 (cf. [18, pp. 29–30]). Let (G/L, σ̂, I, g) be an APHS of hyperbolic orbit
type such that Z(G) is trivial and let g � Lie(G). For an arbitrary φ ∈ Aut(g, σ̂∗), there
exists the unique φ̂ ∈ Aut(G) such that (1) φ̂(L) = L and (2) φ̂∗ = φ. Let Φ : G/L→ G/L be
a map defined by Φ(xL) = φ̂(x)L for xL ∈ G/L. Then Φ ∈ I(G/L, g, o). In addition the map

fisom : Aut(g, σ̂∗) −→ I(G/L, g, o), φ �−→ Φ
is a group isomorphism.
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Lemma 2.2. Let (G/L, σ̂, I, g) be an APHS of hyperbolic orbit type such that Z(G) is
trivial, let g � Lie(G), and let Z be the characteristic element of (G/L, σ̂, I, g). For φ ∈
Aut(g, σ̂∗), Φ � fisom(φ) is para-holomorphic (resp. para-antiholomorphic) if and only if
φ ∈ Aut(g, Z)+ (resp. Aut(g, Z)−).

Proof. We assume φ ∈ Aut(g, Z)+. By Propositions 2.1 and 2.2, we have

((Φ∗)o ◦ Io)(X) = (φ ◦ ad Z)(X) = φ[Z, X] = ad Z(φ(X)) = (Io ◦ (Φ∗)o)(X)

for X ∈ g−σ̂∗ � To(G/L). By the G-invariance of I and Remark 2.2 (2), Φ is para-
holomorphic. In the case of φ ∈ Aut(g, Z)−, we obtain Φ is para-antiholomorphic by the
similar way to the case of φ ∈ Aut(g, Z)+.

Conversely, We assume Φ is para-holomorphic (resp. para-antiholomorphic). By Lemma
2.1, φ ∈ Aut(g, Z)+ or Aut(g, Z)−. Thus φ ∈ Aut(g, Z)+ (resp. φ ∈ Aut(g, Z)−). �

Corollary 2.1. For i = 1, 2, let (G/CG(Zi), σ̂i, Ii, gi) be an APHS such that Z(G) is trivial,
where Zi is the characteristic element of (G/CG(Zi), σ̂i, Ii, gi). Put g � Lie(G). For an
arbitrary φ ∈ Aut(g) which satisfies φ(Z1) = Z2 (resp. φ(Z1) = −Z2), there exists the unique
φ̂ ∈ Aut(G) such that (1) φ̂(CG(Z1)) = CG(Z2) and (2) φ̂∗ = φ. Let Φ : G/CG(Z1) →
G/CG(Z2) be a map defined by Φ(xCG(Z1)) = φ̂(x)CG(Z2) for xCG(Z1) ∈ G/CG(Z1). Then
the map Φ is a para-holomorphic isometry (resp. para-antiholomorphic isometry).

Proof. We can prove it in the similar ways to the proofs of Lemma 2 in [18, p. 29] and
Lemma 2.2. �

2.4. Affine transformations and connected components.
2.4. Affine transformations and connected components. We need the following lem-

mas to prove Theorem 3.1. We note that Lemma 2.4 is a generalization of Lemma 2.3.1
in [2, p. 42], where we do not assume the irreducibility of symmetric spaces (Gi/Li, σ̂i)
(i = 1, 2) in Lemma 2.4.

Lemma 2.3 (cf. [2, pp. 44–45]). Let (G/L, σ̂) be a symmetric space and let ξ̂ ∈ Inv(G)
such that σ̂ ◦ ξ̂ = ξ̂ ◦ σ̂ and that ξ̂(L) = L. Let Ξ be a diffeomorphism of G/L defined by
Ξ(aL) � ξ̂(a)L for aL ∈ G/L and let Co be the connected component of (G/L)Ξ including
the origin o. Then Co is a closed, connected, complete, totally geodesic submanifold of
(G/L,∇1) (with the induced topology from G/L). In addition, Co = (Gξ̂)0/((Gξ̂)0 ∩ L) and
Co is a symmetric space with respect to σ̂|(Gξ̂)0

.

Remark 2.5. We refer to [8, p. 180] for the definition of totally giodesic submanifolds.
We note that this definition differs from one in [3, p. 79].

Lemma 2.4. For i = 1, 2, let (Gi/Li, σ̂i) be an effective semisimple symmetric spaces and
let Φ be an affine diffeomorphism from (G1/L1,∇1

1) onto (G2/L2,∇1
2) such that Φ(o1) = o2.

Then there exists the unique isomorphism φ̂ from G1 onto G2 such that

(1) φ̂ ◦ σ̂1 = σ̂2 ◦ φ̂, (2) φ̂(L1) = L2, (3) Φ ◦ π1 = π2 ◦ φ̂.
Here we denote by oi the origin of Gi/Li, by ∇1

i the canonical affine connection on (Gi/Li, σ̂i)
and by πi the natural projection from Gi onto Gi/Li for i = 1, 2.
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Proof. Put Mi � Gi/Li for i = 1, 2. We denote by τi the action of Gi onto Gi/Li defined
by τi

x(aLi) = xaLi for x ∈ Gi, aLi ∈ Gi/Li for i = 1, 2. We denote by Si
pi

the symmetry
at pi ∈ Gi/Li for i = 1, 2. First, we prove the Lie group Gi is isomorphic to (Aut(Mi))0,
where Aut(Mi) denotes the group of automorphisms of a symmetric space Mi. Since Mi is
connected and semisimple, Aut(Mi) coincides with the group of affine transformations of
(Mi,∇1

i ) and (Aut(Mi))0 is isomorphic to G(Mi) as a Lie group, where G(Mi) denotes the
group generated by {Si

p ◦ Si
q | p, q ∈ Mi} (cf. [11, p. 64, p. 84]). Moreover, G(Mi) is equal to

the image τi
Gi

. Indeed, let p � aLi, q � bLi ∈ Mi, and let Σi � Si
oi

. Then we have

Si
p ◦ Si

q = (τi
a ◦ Σi ◦ τi

a−1 ) ◦ (τi
b ◦ Σi ◦ τi

b−1 )

= τi
a ◦ τi

σ̂i(a−1) ◦ τi
σ̂i(b) ◦ τi

b−1

= τi
(aσ̂i(a−1)σ̂i(b)b−1).

Therefore, G(Mi) ⊂ τi
Gi

. Consequently, G(Mi) = τi
Gi

because G(Mi) = (Aut(Mi))0 and
τi

Gi
⊂ (Aut(Mi))0. Since Mi is effective, τi

Gi
� Gi. Thus Gi is isomorphic to (Aut(Mi))0 by

the correspondence

(2.4.1) τi : Gi −→ (Aut(Mi))0, a �−→ τi
a.

Secondly, we get the following equation:

(2.4.2) Φ ◦ Σ1 ◦ Φ−1 = Σ2.

Indeed, by the definition of Σi, we have Σi(oi) = oi. Then the differential map (Σi)∗ at the
origin oi equals −id on Toi Mi. Therefore, (Φ ◦ Σ1 ◦Φ−1)∗ = (Σ2)∗ on To2 (M2). Moreover, by
the assumption, we have (Φ ◦ Σ1 ◦ Φ−1)(o2) = Σ2(o2). Thus we obtain Equation (2.4.2) by
Lemma 6 in [14, p. 820].

Thirdly, we give the unique isomorphism φ̂ from G1 onto G2 which satisfies (1), (2), and
(3). We define the homeomorphism

AΦ : Aut(M1) −→ Aut(M2), Ψ �−→ Φ ◦ Ψ ◦ Φ−1

with respect to the compact-open topology. Furthermore, its restriction

AΦ : (Aut(M1))0 −→ (Aut(M2))0, τ
1
a �−→ Φ ◦ τ1

a ◦ Φ−1

is a Lie group isomorphism. Since τi in (2.4.1) is an isomorphism, we obtain the isomor-
phism

φ̂ : G1 −→ G2, a �−→ (τ2)−1(AΦ(τ1
a)).

We prove φ̂ satisfies (1), (2), and (3).
For any a1 ∈ G1, there exists an element a2 ∈ G2 such that Φ ◦ τ1

a1
◦ Φ−1 = τ2

a2
, i.e.,

φ̂(a1) = a2.
(1) Since σ̂i is an involutive automorphism of Gi, we have

Σi ◦ τi
ai
◦ Σi = τ

i
σ̂i(ai).

Thus we have

Φ ◦ τ1
σ̂1(a1) ◦ Φ−1 = Φ ◦ (Σ1 ◦ τ1

a1
◦ Σ1) ◦ Φ−1
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(2.4.2)
= Σ2 ◦ Φ ◦ τ1

a1
◦ Φ−1 ◦ Σ2 = Σ2 ◦ τ2

a2
◦ Σ2 = τ

2
σ̂2(a2).

Consequently, we have

(φ̂ ◦ σ̂1)(a1) = (τ2)−1(AΦ(τ1
σ̂1(a1))) = (τ2)−1(Φ ◦ τ1

σ̂1(a1) ◦ Φ−1) = σ̂2(a2) = (σ̂2 ◦ φ̂)(a1).

Thus (1) holds.
(3) It is obtained by

π2(φ̂(a1)) = π2(a2) = τ2
a2

(o2) = (Φ ◦ τ1
a1
◦ Φ−1)(o2) = Φ(τ1

a1
(o1)) = Φ(π1(a1)).

(2) For all a1 ∈ L1, it follows that π2(φ̂(a1)) = Φ(π1(a1)) = Φ(o1) = o2. As a result,
φ̂(L1) ⊂ L2. On the other hand, we have π1(φ̂−1(a2)) = Φ−1(π2(a2)) = Φ−1(o2) = o1 for any
a2 ∈ L2. Thus φ̂−1(L2) = L1. Hence (2) holds.

The uniqueness of φ̂ can be proven in a similar way to the proof of Lemma 2.3.1 in [2,
pp. 42–43]. �

3. Relation between para-real forms and Lie algebra automorphisms.

3. Relation between para-real forms and Lie algebra automorphisms.3.1. Para-real forms.
3.1. Para-real forms. In this subsection, we define a para-real form of a para-Hermitian

symmetric space.

Definition 3.1. For a para-Hermitian symmetric space (G/L, σ̂, I, g), a nonempty subset
R ⊂ G/L is called a para-real form of G/L, if there exists an involutive isometry Ξ of G/L
such that Ξ is para-antiholomorphic and that R coincides with a connected component of
(G/L)Ξ.

Lemma 3.1. Let (G/L, σ̂, I, g) be an APHS of hyperbolic orbit type and let ω be the
closed 2-form defined by ω(X, Y) := g(X, IY) for X, Y ∈ X(G/L). Let Ξ be an involutive
para-antiholomorphic isometry of G/L which satisfies Ξ(o) = o and let R be a para-real
form of G/L with respect to Ξ containing the origin o. In addition, we assume that Z(G) is
trivial. Then R is a closed, connected, complete, totally geodesic, Lagrangian submanifold
of the symplectic, pseudo-Riemmanian manifold (G/L, g, ω).

Proof. Put M � G/L. By Proposition 2.2, there exists ξ̂ ∈ Aut(G) such that σ̂ ◦ ξ̂ = ξ̂ ◦ σ̂
and that Ξ(aL) = ξ̂(a)L for aL ∈ G/L. Thus R is a closed, connected, complete, totally
geodesic submanifold of M by Lemma 2.3. By Remark 2.2 (1), ω is a symplectic form of
M. We prove the equalities

dim TpR =
1
2

dim TpM, gp(TpR, Ip(TpR)) = {0}
for any p ∈ R. Since Ξ2 = id, we have

TpM = T+p M ⊕ T−p M.

Here T+p M (resp. T−p M) denotes the (+1) (resp. (-1)) -eigenspace of (Ξ∗)p in TpM. We
obtain the equalities

Ip(T+p M) = T−p M, Ip(T−p M) = T+p M
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because Ξ is para-antiholomorphic. Therefore, T+p M = TpR yields dimTpR = (1/2)dimTpM
and gp(TpR, Ip(TpR)) = {0}. Thus Lemma 3.1 holds. �

Example 3.1. Let G � SL(2,R), let g be its Lie algebra sl(2,R), and let

I1,1 �
(−1 0

0 1

)
∈ sl(2,R).

The map σ̂ : G 
 a �→ I1,1aI1,1 ∈ G is an involution of G. Then we have

Gσ̂ =

{(
x 0
0 1/x

) ∣∣∣∣∣∣ x ∈ R \ {0}
}
.

Set Z � (−1/2)I1,1 ∈ g and u � g−σ̂∗ . Then we obtain an APHS (G/Gσ̂, σ̂, I, g), where I
is the G-invariant extension of adu Z and g is the G-invariant extension of Bg|u×u. We note
that this Z is the characteristic element of the APHS (G/Gσ̂, σ̂, I, g) and Gσ̂ coincides with
CG(Z).

We construct a para-real form of the APHS. We define an involution ξ̂ of G by ξ̂(a) �
J1,1aJ1,1 for a ∈ G, where

J1,1 �
(
0 1
1 0

)
.

This ξ̂ satisfies ξ̂(Gσ̂) = Gσ̂ and ξ̂∗(Z) = −Z. Thus we define a map Ξ : G/Gσ̂ −→ G/Gσ̂ by

Ξ(aGσ̂) = ξ̂(a)Gσ̂

for aGσ̂ ∈ G/Gσ̂. Then the map Ξ is a para-antiholomorphic isometry because (Ξ∗)o = ξ̂∗|u
and ξ̂∗(Z) = −Z. Then (G/Gσ̂)Ξ is given by

(G/Gσ̂)Ξ =
{(

x y

y x

)
Gσ̂

∣∣∣∣∣∣ x2 − y2 = 1, x, y ∈ R
}
.

Thus (G/Gσ̂)Ξ has two connected components. Each connected component of (G/Gσ̂)Ξ is
a para-real form of the APHS (G/Gσ̂, σ̂, I, g). We note that G/Gσ̂ is a hyperboloid of one
sheet and (G/Gσ̂)Ξ equals a hyperbola in G/Gσ̂.

3.2. Equivalence relations on (G) and d(g).
3.2. Equivalence relations on (G) and d(g). We assume that G is an absolutely sim-

ple connected Lie group. Let (G) denote the set of pairs (G/L,R) of an APHS G/L of
hyperbolic orbit type and a para-real form R of G/L. We define an equivalence relation on
(G) as follows:

Definition 3.2. We call two elements (G/L1,R1) and (G/L2,R2) ∈ (G) are equivalent,

which is denoted by (G/L1,R1) � (G/L2,R2) or (G/L1,R1)
Φ� (G/L2,R2), if there exists a

homothety Φ from G/L1 onto G/L2 such that Φ is para-holomorphic, and that Φ(R1) = R2.

Let g be an absolutely simple Lie algebra. Let d(g) denote the set of pairs (Z, ξ) of a
nonzero semisimple element Z of g and an involution ξ of g with ξ(Z) = −Z, where the set of
eigenvalues of ad Z on g is {0,±1}. We define an equivalence relation on d(g) as follows:
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Definition 3.3. We call two elements (Z1, ξ1) and (Z2, ξ2) ∈ d(g) are equivalent, which
denoted by (Z1, ξ1) ∼ (Z2, ξ2) or (Z1, ξ1) φ∼ (Z2, ξ2), if there exists φ ∈ Aut(g) such that
φ ◦ ξ1 = ξ2 ◦ φ and that φ(Z1) = Z2.

3.3. A correspondence between d(g)/∼ and (G)/�.
3.3. A correspondence between d(g)/∼ and (G)/�. We fix an absolutely simple

connected Lie group G with trivial center. In this subsection, we define a bijection F from
d(g)/∼ onto (G)/�, where g is the Lie algebra of G. First, we construct an element
(G/L,R) ∈ (G) from (Z, ξ) ∈ d(g). Take an arbitrary (Z, ξ) ∈ d(g), we obtain the direct
sum decomposition g = g0⊕g−1⊕g1 with respect to ad Z, where gλ denotes the λ-eigenspace
of ad Z of g (λ = 0,±1). Put σ̂ � Aexp

√−1πZ and σ � σ̂∗. Then we get the following
equalities

gσ = g0 = cg(Z), u � g−σ = g−1 ⊕ g1.
Since Z is a semisimple element of g such that all the eigenvalues of ad Z are real, we ob-
tain an APHS (G/CG(Z), σ̂, I, g) such that the element Z is the characteristic element of
(G/CG(Z), σ̂, I, g) by Theorem 3.7 in [6]. Here I (resp. g) is the G-invariant extension of
adu Z (resp. Bg|u×u) (cf. Proposition 2.1). By Lemma 2.1 and Proposition 2.2, ξ induces the
unique involutive isometry Ξ � fisom(ξ) of (G/CG(Z), σ̂, I, g) satisfying Ξ(o) = o. More-
over, by Lemma 2.2, Ξ is para-antiholomorphic. Set Ro be the connected component of
(G/CG(Z))Ξ containing the origin o. Then this Ro is a para-real form of G/CG(Z). Thus

(G/CG(Z),Ro) ∈ (G).

Consequently, we define a map

f : d(g) −→ (G), (Z, ξ) �−→ (G/CG(Z),Ro).

Remark 3.1. Let (Z, ξ) ∈ d(g) and let (G/CG(Z),Ro) � f (Z, ξ). By Lemma 2.3, Ro is a
symmetric space.

We denote by [(Z, ξ)] (resp. [(G/CG(Z),R)]) the equivalence class of (Z, ξ) ∈ d(g) (resp.
(G/CG(Z),R) ∈ (G)).

Lemma 3.2. Let (Z1, ξ1), (Z2, ξ2) ∈ d(g). If (Z1, ξ1) ∼ (Z2, ξ2), then f (Z1, ξ1) � f (Z2, ξ2).

Proof. By Definition 3.3, there exists φ ∈ Aut(g) such that φ(Z1) = Z2 and that

(3.3.1) φ ◦ ξ1 = ξ2 ◦ φ.
By Corollary 2.1, there exists the unique φ̂ ∈ Aut(G) such that φ̂(CG(Z1)) = CG(Z2) and that
φ̂∗ = φ. In addition, we obtain a para-holomorphic isometry

Φ : G/CG(Z1) −→ G/CG(Z2), aCG(Z1) �−→ φ̂(a)CG(Z2)

which satisfies Φ(o1) = o2, where oi is the origin of G/CG(Zi) (i = 1, 2). For i = 1, 2, put
Ξi � fisom(ξi) and (G/CG(Zi),Ri) � f (Zi, ξi). By Equation (3.3.1), we have Φ◦Ξ1 = Ξ2 ◦Φ.
Then for an arbitrary p ∈ R1,

Ξ2(Φ(p)) = Φ(Ξ1(p)) = Φ(p).

Hence Φ(R1) ⊂ (G/CG(Z2))Ξ2 . Moreover, Φ(R1) = R2 because Φ(o1) = o2. Therefore
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f (Z1, ξ1)
Φ� f (Z2, ξ2). �

We define a map F : d(g)/∼ → (G)/� by

F : [(Z, ξ)] �−→ [ f (Z, ξ)].

By Lemma 3.2, the map F is well-defined.

Lemma 3.3. For any (G/L,Q) ∈ (G), there exists (Z, ξ) such that L = CG(Z) and that
(G/L,Q) � f (Z, ξ).

Proof. Take an arbitrary (G/L,Q) ∈ (G), where Q is a para-real form with respect to an
involutive para-antiholomorphic isometry Ξ of G/L. Since G/L is an APHS of hyperbolic
orbit type, L can be expressed as CG(Z) for a nonzero semisimple element Z of g which
satisfies the eigenvalues of ad Z on g are ±1, 0. Since Q is a nonempty set, there exists an
element aCG(Z) ∈ Q (a ∈ G). Put Ξo � τ−1

a ◦ Ξ ◦ τa, then Ξo is also an involutive para-
antiholomorphic isometry of G/CG(Z) which satisfies Ξo(o) = o because of Remark 2.2 (2).
Furthermore, Ξo(τ−1

a (p)) = τ−1
a (Ξ(p)) = τ−1

a (p) for p ∈ Q. Hence τ−1
a (Q) coincides with the

para-real form Ro of G/CG(Z) with respect to Ξo containing the origin o. Therefore, we have

(G/CG(Z),Ro)
τa� (G/CG(Z),Q)

by Remark 2.2 (2). On account of Proposition 2.2 and Lemma 2.2, there exists the unique
ξ ∈ Aut−(g, Z) such that

Ξo = fisom(ξ).

Moreover, ξ is an involution because Ξo is an involution. Therefore, (Z, ξ) ∈ d(g) and

f (Z, ξ) = (G/CG(Z),Ro) � (G/CG(Z),Q). �

Theorem 3.1. The map F : d(g)/∼ → (G)/�, [(Z, ξ)] �→ [ f (Z, ξ)] is a bijection.

Proof. By Lemma 3.3, F is surjective. We prove that F is injective. For i = 1, 2, let
(Zi, ξi) ∈ d(g). We assume that

(G/CG(Z1),R1) � f (Z1, ξ1) � f (Z2,R2) � (G/CG(Z2),R2).

Here Ri is a para-real form of G/CG(Zi) with respect to Ξi � fisom(ξi) containing the origin
oi of G/CG(Zi) for i = 1, 2. By Definition 3.2, there exists a para-holomorphic homothety
Φ′ from G/CG(Z1) onto G/CG(Z2) such that Φ′(R1) = R2. We make a para-holomorphic
homothety Φ from G/CG(Z1) onto G/CG(Z2) which satisfies

(3.3.2) Φ(R1) = R2, Φ(o1) = o2.

By Proposition 2.2, there exists the unique ξ̂2 ∈ Inv(G) such that (ξ̂2)∗ = ξ2 and that
Ξ2(aCG(Z2)) = ξ̂2(a)CG(Z2) for aCG(Z2) ∈ G/CG(Z2). For i = 1, 2, set σ̂i � Aexp

√−1πZi

and σi � (σ̂i)∗. Since ξi(Zi) = −Zi, we have

ξi ◦ σi = σi ◦ ξi (i = 1, 2).

Thus we have ξ̂2 ◦ σ̂2 = σ̂2 ◦ ξ̂2 because G is connected. On account of Lemma 2.3, we
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obtain the equality

R2 = (Gξ̂2 )0/((Gξ̂2 )0 ∩CG(Z2)).

Since Φ′(o1) ∈ R2, there exists an element a ∈ (Gξ̂2 )0 such that Φ′(o1) = a−1CG(Z2). Then
we obtain a para-holomorphic homothetyΦ : G/CG(Z1)→ G/CG(Z2) which satisfies (3.3.2)
by setting Φ � τ2

a ◦Φ′, where τ2 is the action of G onto G/CG(Z2) defined by τ2
x(bCG(Z2)) =

xbCG(Z2) for x ∈ G, bCG(Z2) ∈ G/CG(Z2). Moreover, Φ is an affine transformation with
respect to the canonical affine connections of G/CG(Z1) and G/CG(Z2) (cf. Remark 2.1).
Then G/CG(Zi) is effective because Z(G) is trivial (i = 1, 2). Thus by Equation (3.3.2) and
Lemma 2.4, there exists the unique φ̂ ∈ Aut(G) such that

(3.3.3) (i) φ̂ ◦ σ̂1 = σ̂2 ◦ φ̂, (ii) φ̂(CG(Z1)) = CG(Z2), (iii) Φ ◦ π1 = π2 ◦ φ̂.
Here πi is the natural projection from G onto G/CG(Zi). Put φ � φ̂∗. Then we have

φ ◦ σ1 = σ2 ◦ φ.
Thus we have φ(Z1) ∈ z(gσ2 ). Since Φ is para-holomorphic, we have φ(Z1) = Z2 by Proposi-
tion 2.1 (2) (iv). At the end of the proof, we prove the equation

φ ◦ ξ1 = ξ2 ◦ φ.
Set ui � g−σi for i = 1, 2. Since ξi ◦ σi = σi ◦ ξi, we obtain the direct sum decomposition

(3.3.4) ui = u
+
i ⊕ u−i ,

where u±i � {X ∈ ui | ξi(X) = ±X}, respectively. Then

Toi(G/CG(Zi)) = ui, Toi(Ri) = u+i , Bg(u+i , u
−
i ) = {0}.

Therefore, Equation (3.3.2) and Equation (3.3.3) (iii) imply φ(u+1 ) = u+2 . Moreover, we have
φ(u−1 ) = u−2 because φ(u1) = u2, Equation (3.3.4), and Bg is non-degenerate on ui (i = 1, 2).
Hence we get the equation φ ◦ ξ1 = ξ2 ◦ φ on u1 = u

+
1 ⊕ u−1 . Since g is absolutely simple,

g1 = [u1, u1] ⊕ u1 (cf. [15], p. 56). Therefore, we get the equation φ ◦ ξ1 = ξ2 ◦ φ on g and
the relation

(Z1, ξ1) φ∼ (Z2, ξ2).

Hence F is injective. �

Lemma 3.4. Let (G/CG(Z), σ̂, I, g) be an APHS of hyperbolic orbit type with respect to
the characteristic element Z, where it is not necessary to assume that the center of G is
trivial. Set G̃ � G/Z(G).
(1) (G̃/(CG̃(Z)), σ̃, Ĩ, g̃) is an APHS of hyperbolic orbit type with respect to the charac-

teristic element Z, where σ̃ is an involution of G̃ defined by aZ(G) �→ σ̂(a)Z(G) for
aZ(G) ∈ G̃, and Ĩ (resp. g̃) is the G̃-invariant extension of Io (resp. go).

(2) (G̃/(CG̃(Z)), σ̃, Ĩ, g̃) is para-holomorphic isometric isomorphic to (G/CG(Z), σ̂, I, g).
(3) There is a bijection from (G)/� onto (G̃)/�.

Proof. (1) Set g � Lie(G). Since G is simple, Z(G) is discrete subgroup of G. Thus Lie(G̃)
coincides with g. In addition, we have Z(G) ⊂ CG(Z). Set L � CG(Z) and L̃ � L/Z(G). We
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note that L̃ = CG̃(Z). First, we prove that (G̃/L̃, σ̃) is a symmetric space. Since σ̂(Z(G)) ⊂
Z(G), we define an involution σ̃ of G̃ by aZ(G) �→ σ̂(a)Z(G). It is clear that L̃ ⊂ G̃σ̃.
We denote by π the natural projection from G onto G̃. Then we have G̃σ̃ = π(Gσ) and
(G̃σ̃)0 = π((Gσ̂)0). Thus we have (G̃σ̃)0 ⊂ L̃ ⊂ G̃σ̃. Hence (G̃/L̃, σ̃) is a symmetric space.
Second, we prove that the symmetric space (G̃/L̃, σ̃) becomes an APHS. By Proposition 2.1
and Remark 2.4 (2), we have Io = adg−σ̂∗ Z and go = λBg|g−σ̂∗×g−σ̂∗ (λ ∈ R \ {0}). By definition
of σ̃, we have σ̂∗ = σ̃∗. Thus we have To(G/L) = Tõ(G̃/L̃), where o (resp. õ) is the origin
of G/L (resp. G̃/L̃). Therefore, (G̃/L̃, σ̃, Ĩ, g̃) is an APHS with respect to the characteristic
element Z, where Ĩ (resp. g̃) is the G̃-invariant extension of Ĩõ � Io (resp. g̃õ � go). Hence
(1) holds.

(2) Since π(L) ⊂ L̃, we define a map

ΠL : G/L→ G̃/L̃, aL �→ π(a)L̃.

It is clear that the map ΠL is a diffeomorphism satisfying ΠL(o) = õ. By definitions of G̃ and
π, the differential map π∗ coincides with identity map of g. Thus we have

(3.3.5) ((ΠL)∗)o ◦ Io = Ĩõ ◦ ((ΠL)∗)o,

because Io = Ĩõ and To(G/L) = Tõ(G̃/L̃). We denote by τ (resp. τ̃) the action of G onto
G/L defined by τa : G/L 
 bL �→ abL ∈ G/L for a ∈ G (resp. G̃ onto G̃/L̃ defined by
τ̃ã : G̃/L̃ 
 b̃L̃ �→ ãb̃L̃ ∈ G̃/L̃ for ã ∈ G̃). Then we have

ΠL ◦ τa = τ̃π(a) ◦ ΠL

for a ∈ G because π is a homomorphism. Thus Equation (3.3.5), G-invariance of I, and G̃-
invariance of Ĩ imply that the map Π is para-holomorphic. Moreover, g̃õ = go = λBg|g−σ̂∗×g−σ̂∗
(λ ∈ R \ {0}), G-invariance of g, and G̃-invariance of g̃ imply that the map ΠL is an isometry.
Hence (2) holds.

(3) Let (G/L0,R) ∈ (G). By the Definition 3.1, there exists an involutive para-
antiholomorphic isometry Ξ of G/L0 such that R coincides with a connected component
of (G/L0)Ξ. Set L̃0 � L0/Z(G) and Ξ̃ � ΠL0 ◦ Ξ ◦ Π−1

L0
. Then Ξ̃ is an involutive para-

antiholomorphic isometry of G̃/L̃0 because ΠL0 is para-holomorphic isometry. For any
p ∈ R, we have

Ξ̃(ΠL0 (p)) = (ΠL0 ◦ Ξ ◦ Π−1
L0

)(Π(p)) = ΠL0 (Ξ(p)) = ΠL0 (p).

Thus ΠL0 (R) ⊂ (G̃/L̃0)Ξ̃. Moreover, ΠL0 (R) is a para-real form of G̃/L̃0 with respect to Ξ̃
containing ΠL0 (p) for p ∈ R because R is para-real form of G/L0 and ΠL0 is a diffeomor-
phism. Consequently, we define a map

f0 : (G) −→ (G̃) (G/L0,R) �→ (G̃/L̃0,ΠL0 (R)).

Then the map f0 is a surjection. Indeed, for (G̃/L̃0, R̃) ∈ (G̃), we have (G/L0,Π
−1
L0

(R̃)) ∈
(G). Thus we have f0(G/L0,Π

−1
L0

(R̃)) = (G̃/L̃0, R̃). For (G/L1,R1), (G/L2,R2) ∈ (G),
we prove that (G/L1,R1) � (G/L2,R2) if and only if f0(G/L1,R1) � f0(G/L2,R2). We

assume that (G/L1,R1)
Φ� (G/L2,R2). Then ΠL2 ◦Φ ◦Π−1

L1
is a para-holomorphic homothety

from ΠL1 (G/L1) onto ΠL2 (G/L2) because ΠLi is a para-holomorphic isometry (i = 1, 2).
Moreover, we have
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(ΠL2 ◦ Φ ◦ Π−1
L1

)(ΠL1 (R1)) = (ΠL2 ◦ Φ)(R1) = ΠL2 (R2).

Thus we have f0(G/L1,R1) � f0(G/L2,R2). Conversely, if f0(G/L1,R1)
Φ′� f0(G/L2,R2),

then Π−1
L2
◦ Φ′ ◦ ΠL1 is a para-holomorphic homothety from G/L1 onto G/L2 which satisfies

(Π−1
L2
◦ Φ′ ◦ ΠL1 )(R1) = R2. Consequently, we define a map

F0 : (G)/� −→ (G̃)/�, [(G/L,R)] �→ [ f0(G/L,R)].

Here the map F0 is well-defined and a bijection. Hence (3) holds. �

In order to prove Theorem 1.1, it is enough to determine d(g)/∼ by Theorem 3.1 and
Lemma 3.4.

4. A way to the determination of d(g)/∼.

4. A way to the determination of d(g)/∼.4.1. Noncompact real forms of complex simple Lie algebras.
4.1. Noncompact real forms of complex simple Lie algebras. In this subsection, we

review the construction of a noncompact real form of a complex simple Lie algebra. Let gC
be a complex simple Lie algebra, let cC be a Cartan subalgebra of gC, and let Δ be the root
system of gC with respect to cC. For each α ∈ Δ, there exists the unique element Hα ∈ cC such
that BgC(H,Hα) = α(H) for all H ∈ cC. There exists a basis, called a Weyl basis, {Xα | α ∈ Δ}
of gC mod cC such that
(1) [H, Xα] = α(H)Xα for any H ∈ cC and α ∈ Δ,
(2) [Xα, X−α] = Hα for any α ∈ Δ,
(3) [Xα, Xβ] = 0 if α + β � 0 and α + β � Δ,
(4) [Xα, Xβ] = Nα,βXα+β if α + β ∈ Δ.
Here each element of {Nα,β | α, β, α + β ∈ Δ} is a nonzero real number and Nα,β = −N−α,−β
holds for any α, β ∈ Δ with α + β ∈ Δ. A Weyl basis gives rise to a compact real form gu of
gC as follows:

gu =
√−1cR ⊕ span

R
{Xα − X−α | α ∈ Δ} ⊕ span

R
{√−1(Xα + X−α) | α ∈ Δ}.

Here cR � span
R
{Hα | α ∈ Δ} (cf. [3, p. 182]). Let θ ∈ Inv(gC) with θ(gu) = gu. We

decompose

gu = k ⊕
√−1p

as the direct sum of k � gθu and
√−1p � g−θu . Then we get a noncompact real form g of gC

by

g = k ⊕ p.
It is known that g = k ⊕ p is the Cartan decomposition with respect to θ|g.

According to the above procedure, we obtain noncompact real forms of gC. Conversely,
we obtain every noncompact real form of gC as above (cf. [3, p. 235]).

4.2. A way of the determination of d(g)/∼.
4.2. A way of the determination of d(g)/∼. In this subsection, we introduce a way to

determine d(g)/∼ for every absolutely simple Lie algebra g.
First, we review symmetric pairs of Lie algebras. Let g be a real Lie algebra and let

ξ ∈ Inv(g). Then we call (g, gξ) a symmetric pair with respect to ξ. We call two symmetric
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pairs (g, gξ) and (g′, g′ξ′) are isomorphic, if there exists a Lie algebra isomorphism φ from g
onto g′ such that φ ◦ ξ ◦ φ−1 = ξ′.

Remark 4.1. (1) The classification of symmetric pairs was given by M. Berger in Tableau
II of [1] up to isomorphism when g is simple. Thus for any involution ξ of a simple Lie
algebra, there exists the unique symmetric pair (g, h) such that (g, h) appears in Tableau
II of [1] and that the symmetric pair (g, gξ) is isomorphic to (g, h).

(2) Let g be an absolutely simple Lie algebra and let (Z, ξ), (Z′, ξ′) ∈ d(g). We assume
that symmetric pairs (g, gξ) and (g, gξ

′
) are not isomorphic each other. Then for any

φ ∈ Aut(g), φ ◦ ξ ◦ φ−1 � ξ′. By Definition 3.3, we have (Z, ξ) � (Z′, ξ′).

Let θ be a Cartan involution of g which satisfies ξ ◦ θ = θ ◦ ξ. We obtain the Cartan
decomposition g = k⊕p with respect to θ. Set h � gξ andm � g−ξ. It is clear that θξ := θ ◦ ξ
is also an involution of g. Thus we obtain another direct sum decomposition g = ha ⊕ ma

with respect to θξ. Here

ha = {X ∈ g | θξ(X) = X}, ma = {X ∈ g | θξ(X) = −X}.
We note the following relations:

ha = (h ∩ k) ⊕ (m ∩ p), ma = (h ∩ p) ⊕ (m ∩ k).
The symmetric pair (g, ha) is called the associated symmetric pair of (g, h) (cf. [16, p.436]).

We review a restricted root system (cf. [16, 17]). Let a be a maximal abelian subspace in
m ∩ p and let Δ(g, a) be the restricted root system of g with respect to a. For α ∈ Δ(g, a),
we denote by gα the root subspace of g with respect to α. Then we have θξ(gα) ⊂ gα for
any α ∈ Δ(g, a). Thus we obtain the direct sum decomposition gα = g+α ⊕ g−α , where g+α
(resp. g−α) is the (+1) (resp. (−1)) -eigenspace of θξ|gα . We note that g+α = h

a ∩ gα. Set
Δ(ha, a) � {α ∈ Δ(g, a) | g+α � {0}}. It is clear that Δ(ha, a) is a root system. Then we call
Δ(ha, a) a restricted root system of ha with respect to a.

Lemma 4.1. Let g be an absolutely simple Lie algebra and let θ be a Cartan involution
of g. For any (Z0, ξ0) ∈ d(g), there exists a pair (Z, ξ) ∈ d(g) such that

(1) ξ ◦ θ = θ ◦ ξ,
(2) (Z0, ξ0) ∼ (Z, ξ),
(3) Z ∈ W(Δ1(ha, a)).
Here h � gξ, m � g−ξ, g = k ⊕ p is the Cartan decomposition with respect to θ, and
ha � (h ∩ k) ⊕ (m ∩ p). In addition, a is a maximal abelian subspace in m ∩ p, Δ1(ha, a)
is a fundamental system of the restricted root system Δ(ha, a), and W(Δ1(ha, a)) � {X ∈
a | α(X) ≥ 0 for all α ∈ Δ1(ha, a)}.

Proof. First, we construct a Cartan involution θ0 of g which satisfies

(4.2.1) θ0 ◦ ξ0 = ξ0 ◦ θ0, θ0(Z0) = −Z0.

Put σ � exp
√−1π ad Z0 ∈ Inv(g). By definition of d(g), ξ0 ∈ Aut(g, Z0)−∩Inv(g). Lemma

2.1 implies that ξ0◦σ = σ◦ξ0. On account of Lemma 2.7 in [13, p. 71], there exists a Cartan
involution θ0 of g such that

θ0 ◦ ξ0 = ξ0 ◦ θ0, θ0 ◦ σ = σ ◦ θ0.
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Thus θ0 ∈ Aut(g, σ). Since Z0 is a semisimple element of g such that every eigenvalue of
ad Z on g is real and by Lemma 2.1, θ0(Z0) = −Z0.

Next, we construct a pair (Z1, ξ) ∈ d(g) which is equivalent to (Z0, ξ0). Since θ and θ0

are Cartan involutions of g, there exists φ ∈ Aut(g) such that

(4.2.2) θ = φ ◦ θ0 ◦ φ−1.

Put Z1 � φ(Z0) and

(4.2.3) ξ � φ ◦ ξ0 ◦ φ−1.

Then ξ(Z1) = −Z1 and Z1 is also a nonzero semisimple element of g which satisfies the
eigenvalues of ad(Z1) on g are 0,±1. Thus

(Z1, ξ) ∈ d(g), (Z0, ξ0) φ∼ (Z1, ξ).

Moreover, we have ξ ◦ θ ◦ ξ−1 = θ because

ξ ◦ θ ◦ ξ−1
(4.2.3)
(4.2.2)
= (φ ◦ ξ0 ◦ φ−1) ◦ (φ ◦ θ0 ◦ φ−1) ◦ (φ ◦ ξ0 ◦ φ−1)−1

= φ ◦ ξ0 ◦ θ0 ◦ ξ−1
0 ◦ φ−1 (4.2.1)

= φ ◦ θ0 ◦ φ−1

(4.2.2)
= θ.

Hence (1) holds.
At the end of the proof, we construct an element Z which satisfies (2) and (3) with keeping

ξ fixed. Let K, H, and Ha be the connected Lie subgroups of G whose Lie algebras are k,
h, and ha, respectively. Here G is the connected Lie group whose Lie algebra is g. Then
the Weyl group of Δ(ha, a) coincides with NH∩K(a)/ZH∩K(a) = NHa(a)/ZHa(a), where NM(a)
(resp. ZM(a)) denotes the normalizer (resp. the centralizer) of a in M (cf [17, p. 170]).
Moreover, any maximal abelian subspaces a1 and a2 in m∩ p are conjugate under the action
of H ∩ K (cf. [16, pp. 445-446]). In addition, we have θ(Z1) = (φ ◦ θ0)(Z0) = −Z1 because
of (4.2.1). Thus there exists k ∈ H ∩ K such that Ad k transfers Z1 ∈ m∩ p into W(Δ1(ha, a))
because the Weyl group acts transitively on the set of Weyl chambers. Since H is connected
and h = gξ, we have Ad k = ξ ◦ Ad k ◦ ξ−1. Therefore, by setting Z � Ad k(Z1), we obtain
the following:

(Z, ξ) ∈ d(g), (Z0, ξ0) φ∼ (Z1, ξ)
Ad k∼ (Z, ξ), Z ∈ W(Δ1(ha, a)).

They imply (2) and (3). Hence Lemma 4.1 holds. �

Lemma 4.2. Let g be an absolutely simple Lie algebra and let gC be the its complexifica-
tion. Let (Z, ξ) ∈ d(g), let θ be a Cartan involution of g which satisfies θ ◦ ξ = ξ ◦ θ and
θ(Z) = −Z, and let g = k⊕ p be the Cartan decomposition of g with respect to θ. In addition,
set h � gξ, kd � (h ∩ k) ⊕ √−1(h ∩ p), and (G/CG(Z),R) � f (Z, ξ).
(1) The symmetric pair (h, ch(Z)) corresponds to the para-real form R.
(2) The symmetric pair (kd, ckd (

√−1Z)) corresponds to a real form of a compact Hermitian
symmetric space Gu/CGu(

√−1Z) which corresponds to (gu, cgu(
√−1Z)), where gu � k ⊕√−1p is a compact real form of gC.
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Proof. (1) By Lemma 2.3, we have R = (Gξ̂)0/((Gξ̂)0 ∩ CG(Z)). Here ξ̂ is the unique
automorphism of G which satisfies ξ̂(CG(Z)) = CG(Z) and ξ̂∗ = ξ (cf. Proposition 2.2). Thus
(1) holds.

(2) Let m � g−ξ, let gd � (h ∩ k) ⊕ √−1(m ∩ k) ⊕ √−1(h ∩ p) ⊕ (m ∩ p), and let pd �
(m ∩ p) ⊕ √−1(m ∩ k). Then gd is a real form of gC. Let ξC be the complex linear extension
of ξ to gC. Then we have ξC(gd) = gd and ξd � ξC|gd ∈ Inv(gd). Moreover, we obtain
the Cartan decomposition gd = kd ⊕ pd with respect to ξd (cf. [16, p. 435]). Then we have
gdu � k

d ⊕ √−1pd = gu. Since the element Z ∈ m ∩ p satisfies the set of eigenvalues of ad Z
on g is {0,±1}, the element

√−1Z ∈ √−1(m ∩ p) ⊂ √−1pd satisfies the set of eigenvalues of
ad(
√−1Z) on gu is {0,±√−1}. Hence (gu, cgu(

√−1Z)) is a compact Hermitian symmetric pair
and the symmetric pair (kd, ckd (

√−1Z)) corresponds to a real form of a compact Hermitian
symmetric space Gu/CGu(

√−1Z) (cf. [19, pp. 294–296]). �

By Lemmas 4.1 and 4.2, we obtain the following lemma.

Lemma 4.3. Let gC be a complex simple Lie algebra. For any real form g of gC, we obtain
d(g)/∼ by the following steps.

(Step 1) Take a compact real form gu of gC and an involution θ ∈ Inv(gC) such that θ(gu) =
gu. Set g � k ⊕ p, where k (resp.

√−1p) is the (+1) (resp. (−1)) -eigenspace of
θ in gu. Here g is a noncompact real form of gC and θ is a Cartan involution of g
(cf. Subsection 4.1). If gC is classical type, realize g as a set of matricies. If gC is
exceptional type, realize g by the way of Subsection 4.1.

(Step 2) Take an involution ξ of g which satisfies θ ◦ ξ = ξ ◦ θ (by Remark 4.1 (1), the
symmetric pair (g, gξ) is isomorphic to a symmetric pair (g, h) which appears in
Tableau II of [1]).

(Step 3) Decompose g = h ⊕ m as the direct sum of h � gξ and m � g−ξ, and set ha �
(h ∩ k) ⊕ (m ∩ p). For any semisimple element S ∈ gu which satisfies that the set
of eigenvalues of ad S on gu is {0,±√−1}, if the symmetric pair (kd, ckd (S)) does
not correspond to a real form of a compact Hermitian symmetric space Gu/CGu(S)
which corresponds to (gu, cgu(S)), then (Z, ξ) � d(g) for any Z ∈ g by Lemma 4.2
(2). Here kd � (h ∩ k) ⊕ √−1(h ∩ p).

(Step 4) Take a maximal abelian subspace a in m ∩ p.
(Step 5) Take a fundamental system Δ1(ha, a) of the restricted root system Δ(ha, a).
(Step 6) Choose all nonzero elements Z ∈ W(Δ1(ha, a)) � {X ∈ a | α(X) ≥ 0 for all α ∈

Δ1(ha, a)} which satisfy that the eigenvalues of adha Z are contained in {0,±1}.
(Step 7) Choose all elements Z such that the set of eigenvalues of ad Z on g is {0,±1}, among

the elements chosen in (Step 6).
(Step 8) Determine all pairs which are equivalent to each other among the pairs (Z, ξ) ∈

d(g) for ξ taken in (Step 2) and for Z chosen in (Step 7).
Repeat from (Step 2) to (Step 8) until the symmetric pairs (g, gξ) exhaust the pair (g, h)
isomorphic to (g, gξ) in Tableau II of [1].

Proof. By Remark 4.1 (2) and Lemmas 4.1, 4.2, Lemma 4.3 holds . �
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Remark 4.2. (1) Related to (Step 1), if g is classical type (resp. exceptional type), a Car-
tan involution θ of g is realized explicitly in [3, pp. 451-455] (resp. [12, p. 297, p. 305]).

(2) Related to (Step 2), for any involution ξ0 ∈ Inv(g), there exist an involution ξ ∈ Inv(g)
and φ ∈ Aut(g) such that ξ = φ ◦ ξ0 ◦ φ−1 and that ξ ◦ θ = θ ◦ ξ, where θ is the Cartan
involution which fixed in (Step 1) by Lemma 4.1. Here symmetric pairs (g, gξ0 ) and
(g, gξ) are isomorphic each other.

(3) Related to (Step 4) and (Step 5), we can take an arbitrary maximal abelian subspace a in
m ∩ p and an arbitrary fundamental system Δ1(ha, a) of Δ(ha, a) by the proof of Lemma
4.1.

4.3. Lemmas related to Lemma 4.3.
4.3. Lemmas related to Lemma 4.3. The following lemmas enable us to carry out (Step

6) and (Step 7) in Lemma 4.3 in systematic ways.

Lemma 4.4. Let g be an absolutely simple Lie algebra. We assume that (Step 1)-(Step
5) in Lemma 4.3 have been achieved. If an element Z ∈ W(Δ1(ha, a)) satisfies that the
eigenvalues of adha Z are 0 or ±1, then one of the following cases holds:

(1) Any eigenvalue of adha Z is 0.
(2) The eigenvalues of adha Z are 0,±1.

In addition, the eigenvalue of adha Z is only 0 if and only if Z ∈ z(ha) ∩ a.
Proof. Related to the eigenvalues of adha Z, the possible cases are

(i) Only 0, (ii) ± 1, (iii) 0, 1, (iv) 0,−1, (v) 0,±1.

Case (i): It is clear that (i) holds if and only if Z ∈ z(ha) ∩ a.
Case (ii): Since adha Z(Z) = 0 and Z � 0, the case does not occur.
Case (iii): For an arbitrary α ∈ Δ(ha, a), α(Z) is one of the eigenvalues of adha Z. Thus

α(Z) = 0 because −α ∈ Δ(ha, a) and by the assumption of (iii). In particular, for every
β ∈ Δ1(ha, a), β(Z) = 0. Hence, the case does not occur.

Case (iv): We can prove that the case does not occur by the similar way in Case (iii). �

Lemma 4.5. Let g be an absolutely simple Lie algebra. We assume that (Step 1)-(Step
5) in Lemma 4.3 have been achieved and Δ(ha, a) is irreducible. Let γ be the highest root
of Δ(ha, a) with respect to Δ1(ha, a). If an element Z ∈ W(Δ1(ha, a)) satisfies that the set of
eigenvalues of adha Z is {0,±1}, then

γ(Z) = 1.

Proof. By the assumption, for an arbitrary α ∈ Δ(ha, a), α(Z) = 0 or ±1. Thus γ(Z) = 1
because γ is the highest root and Z ∈ W(Δ1(ha, a)). �

Corollary 4.1. Let g be an absolutely simple Lie algebra. We assume that (Step 1)-(Step
5) in Lemma 4.3 have been achieved and Δ(ha, a) is irreducible. Set Δ1(ha, a) = {α1, . . . , αl}.
Let {Z1, . . . , Zl} be the dual basis of Δ1(ha, a) and let γ be the highest root of Δ(ha, a). If an
element Z ∈ W(Δ1(ha, a)) satisfies that the set of eigenvalues of adha Z is {0,±1}, then there
exist Zi ∈ {Z1, . . . , Zl} satisfying γ(Zi) = 1 and C ∈ z(ha) ∩ a such that

Z = Zi +C.
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Proof. Since Δ1(ha, a) is a fundamental system of Δ(ha, a),

γ =

l∑
i=1

μiαi (μi ∈ Z, μi ≥ 1, 1 ≤ i ≤ l).

We have

Z =
l∑

i=1

λiZi +C (C ∈ z(ha) ∩ a, λi ∈ R, λi ≥ 0, 1 ≤ i ≤ l).

Since {Z1, . . . , Zl} is the dual basis of Δ1(ha, a), we have

1 = γ(Z) =
l∑

i=1

μiλi

by Lemma 4.5. Then λi = αi(Z) is the eigenvalue of adha Z (1 ≤ i ≤ l). Thus λi = 0 or 1
because Z ∈ W(Δ1(ha, a)). Thus there exists 1 ≤ i ≤ l such that λi = 1 and that λk = 0, if
k � i. Hence Corollary 4.1 holds. �

We consider the case Δ(ha, a) is not irreducible. As a result, it turns out that it is enough
to consider the case where Δ(ha, a) is the disjoint union of two irreducible root systems by
Section 5. We assume that Δ(ha, a) is decomposed as the disjoint union of two irreducible
root systems Δ1 and Δ2. For i = 1, 2, let Δ1

i � {αi
1, . . . , α

i
ki
} be a fundamental system of Δi,

let {Zi
1, . . . , Z

i
ki
} be the dual basis of Δ1

i , and let γi be the highest root of Δi with respect to Δ1
i .

Under these notations, we obtain the following.

Corollary 4.2. Let g be an absolutely simple Lie algebra. If an element Z ∈ W(Δ1(ha, a))
satisfies that the set of eigenvalues of adha Z is {0,±1}, then

(1) γi(Z) = 0 or 1 and γ1(Z) + γ2(Z) � 0,
(2) there exist Z1

n ∈ {Z1
1 , . . . , Z

1
k1
} satisfying γ1(Z1

n) = 1, Z2
m ∈ {Z2

1 , . . . , Z
2
k2
} satisfying

γ2(Z2
m) = 1, and C ∈ z(ha) ∩ a such that

Z = λZ1
n + μZ2

m +C,

where λ, μ = 0 or 1 and λ + μ � 0.

Proof. We can prove it by the similar ways to the proofs of Lemma 4.5 and Corollary 4.1.
�

Lemma 4.6. Let g be an absolutely simple Lie algebra. We assume that (Step 1)-(Step 6)
in Lemma 4.3 have been achieved. The following (1), (2) and (3) are equivalent:

(1) The set of eigenvalues of ad Z on g is {0,±1}.
(2) (ad[Z,g] Z)2 = id.
(3) (ad Z)3 = ad Z.

Proof. Since Z ∈ a ⊂ p, Z is a semisimple element of g. Thus we can decompose
g = cg(Z) ⊕ [Z, g] as a direct sum. Hence (1) holds if and only if (2) holds. It is clear that (1)
holds if and only if (3) holds. �
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In order to carry out (Step 8) in Lemma 4.3, Lemma 4.2 and the following lemma are
useful.

Definition 4.1 (cf. [6, p. 88]). Let (g, l) be a symmetric pair with respect to σ and let
u � g−σ. Then (g, l) is called para-Hermitian, if there exist a linear endomorphism I of u
and a non-degenerate symmetric bilinear form 〈, 〉 on u such that
(1) I2 = id, I � id,
(2) [I, adu l] = 0,
(3) 〈IX, Y〉 + 〈X, IY〉 = 0 for any X, Y ∈ u,
(4) 〈ad X(Y1), Y2〉 + 〈Y1, ad X(Y2)〉 = 0 for any X ∈ l, Y1, Y2 ∈ u.

Lemma 4.7. Let g be an absolutely simple Lie algebra. We assume that (Step 1)-(Step 7)
in Lemma 4.3 have been achieved.

(1) The symmetric pair (g, cg(Z)) is para-Hermitian.
(2) The symmetric pair (ha, cha(Z)) is also para-Hermitian, if the element Z is not contained

in z(ha).
(3) The pair (cg(Z), cha(Z)) is the associated symmetric pair of (cg(Z), ch(Z)).

Proof. (1) By the assumption and Lemma 2.1 in [4, p. 477], (g, cg(Z)) is para-Hermitian.
(2) Put σ � exp adha

√−1πZ. Then (ha, cha(Z)) is a symmetric pair with respect to σ, if Z
is not contained z(ha). Set la � (ha)σ = cha(Z) and ua � (ha)−σ. By settings I � adua Z and
〈, 〉 � Bg|ua×ua , (ha, cha(Z)) becomes a para-Hermitian symmetric pair with respect to I and
〈, 〉.

(3) We obtain the equalities cg(Z) = gσ, ch(Z) = gξ ∩ gσ, and cha(Z) = gθξ ∩ gσ. Thus
(cg(Z), ch(Z)) and (cg(Z), cha(Z)) are symmetric pairs with respect to θξ and ξ, respectively. It
is clear that (cg(Z), cha(Z)) is the associated symmetric pair of (cg(Z), ch(Z)). �

5. The determination of d(g)/∼.

5. The determination of d(g)/∼.
In this section, we determine para-real forms of ASPH’s of hyperbolic orbit type. Let g be

an absolutely simple Lie algebra. According to the classification of simple para-Hermitian
symmetric pairs in [6, p. 97], we consider the case where g is one of the following:

List 1
Type g Condition
AI sl(n,R) 2 ≤ n
AII su∗(2n) 3 ≤ n
AIII su(n, n) 3 ≤ n
BDI so(p, q) 1 ≤ p ≤ q, p + q � 2
DIII so∗(4n) 3 ≤ n
CI sp(n,R) 3 ≤ n
CII sp(n, n) 2 ≤ n
EI e6(6) —

EIV e6(−26) —
EV e7(7) —
EVII e7(−25) —
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We setup the following notations:

M(p,q)(K) : the set of all matrices of order p × q over K (K = C or R),

El : the identity matrix of order l,

A × B �
(
A O
O B

)
, A↗ B �

(
O B
A O

)
for matrices A, B,

Ip,q � −Ep × Eq, Jl � −El ↗ El.

5.1. An example of classical type.
5.1. An example of classical type. We consider the case of Type AIII: su(n, n).
Let gC be the complex Lie algebra sl(2n,C) and let gu � su(2n), a compact real form of

gC. Put θ � Ad In,n. Then we obtain the noncompact real form g of gC as follows:

g =

{(
X1 X2
t X̄2 X3

) ∣∣∣∣∣∣ Xl ∈ gl(n,C) for l = 1, 2, 3,Tr(X1 + X3) = 0,
X1, X3 : skew Hermitian

}
= su(n, n).

Then we have g = k⊕p, where k � gθu is the set of matrices X1×X3 in g, which is isomorphic
to su(n) ⊕ su(n) ⊕ √−1R, and p �

√−1g−θu is the set of matrices t X̄2 ↗ X2 in g.
We take an involution ξ of g which satisfies θ ◦ ξ = ξ ◦ θ. According to Tableau II of [1],

ξ is conjugate to one of the following:

ξ0 � θ, ξ1 : X �−→ −tX (X ∈ g), ξ2 � Ad Jn, ξ3 � ξ1 ◦ ξ2, ξ4 � θ ◦ ξ3,

ξ5 � Ad(Ip,n−p × Iq,n−q) (1 ≤ p, q ≤ n − 1),

ξ6 � ξ1 ◦ Ad(Jk × Jk) ◦ ξ1 (when n = 2k, 2 ≤ k).

We decompose g = hl ⊕ml where hl � gξl and ml � g−ξl for ξl (0 ≤ l ≤ 6), and then

h0 = k � su(n) ⊕ su(n) ⊕ √−1R,

h1 =

{(
X1

√−1X2√−1tX2 X3

) ∣∣∣∣∣∣ Xl ∈ gl(n,R) for l = 1, 2, 3,
X1, X3 : skew symmetric

}
� so(n, n),

h2 =

{(
X1 X2

−X2 X1

) ∣∣∣∣∣∣ X1, X2 ∈ gl(n,C), Tr(X1) = 0,
X1, X2 : skew Hermitian

}
� sl(n,C) ⊕ R,

h3 =

{(
X1 X2

X̄2 X̄1

) ∣∣∣∣∣∣ X1, X2 ∈ gl(n,C), Tr(X1) = 0,
X1 : skew Hermitian, X2 : symmetric

}
� sp(n,R),

h4 =

{(
X1 X2

−X̄2 X̄1

) ∣∣∣∣∣∣ X1, X2 ∈ gl(n,C) ,Tr(X1) = 0,
X1 : skew Hermitian, X2 : skew symmetric

}
� so∗(2n),

h5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 O X13 O
O X22 O X24

t X̄13 O X33 O
O tX̄24 O X44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣
X11 ∈ gl(p,C), X22 ∈ gl(n − p,C),
X33 ∈ gl(q,C), X44 ∈ gl(n − q,C),

X13 ∈ M(p,q)(C), X24 ∈ M(n−p,n−q)(C),
Tr(X11) + Tr(X22) + Tr(X33) + Tr(X44) = 0,

Xll : skew Hermitian for 1 ≤ l ≤ 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
� su(p, q) ⊕ su(n − p, n − q) ⊕ √−1R,
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h6 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 X12 X13 X14

−X̄12 −tX11 X̄14 −X̄13
t X̄13

tX14 X33 X34
t X̄14 −tX13 −X̄34 −tX33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

Xlm ∈ gl(k,C) for 1 ≤ l,m ≤ 4,
X11, X33 : skew Hermitian

X12, X34 : symmetric

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
� sp(k, k).

The case of ξ = ξ1: ha1 � (h1 ∩ k) ⊕ (m1 ∩ p) is given by

ha1 =

{(
X1 X2
tX2 X3

) ∣∣∣∣∣∣ Xl ∈ gl(n,R) for l = 1, 2, 3,
X1, X3 : skew symmetric

}
� so(n, n).

We take a maximal abelian subspace a1 in

m1 ∩ p =
{(

O X2
tX2 O

) ∣∣∣∣∣∣ X2 ∈ gl(n,R)
}

as

a1 =

{
A =

(
O diag(a1, . . . , an)

diag(a1, . . . , an) O

) ∣∣∣∣∣∣ a1, . . . an ∈ R
}
,

where diag(a1, . . . , an) denotes the diagonal matrix with diagonal entries a1, . . . , an. Here
we note that z(ha1) ∩ a1 = {0}. Then the restricted root system Δ(ha1, a1) is

Δ(ha1, a1) = {±(el − em), ±(el + em) | 1 ≤ l < m ≤ n}.
Here el : a1 −→ R (1 ≤ l ≤ n) is a linear map defined by

el(A) = al, A =
(

O diag(a1, . . . , an)
diag(a1, . . . , an) O

)
∈ a1.

Set αl � el − el+1 for 1 ≤ l ≤ n − 1 and αn � en−1 + en. Then Δ1(ha1, a1) � {α1, . . . , αn} is a
fundamental system of Δ(ha1, a1). The Dynkin diagram of Δ1(ha1, a1) with the coefficients of
the highest root is:

Let {Z1, . . . , Zn} be the dual basis of Δ1(ha1, a1). By Corollary 4.1, the elements satisfying the
property in (Step 6) in Lemma 4.3 are only Z1, Zn−1, and Zn. Here

Z1 =

(
O diag(1, 0, . . . , 0)

diag(1, 0, . . . , 0) O

)
, Zn−1 =

1
2

(−In−1,1 ↗ −In−1,1),

Zn =
1
2

(En ↗ En).

Moreover, by Lemma 4.6, the set of eigenvalues of ad Zl on g is {0,±1} for l = n − 1, n.
However, the set of eigenvalues of ad Z1 on g is not {0,±1}. Indeed, they include 2. In
fact, the restricted root system Δ(g, a1) is Type Cn and we obtain a fundamental system
Δ1(g, a1) = {α1, . . . αn−1, α

′
n}, where α′n � 2en. Then the Dynkin diagram of Δ1(g, a1) with



Para-Real Forms of Para-Hermitian Symmetric Spaces 583

the coefficients of the highest root is:

Let γ be the highest root of Δ(g, a1) and Xγ ∈ gγ � {X ∈ g | ad A(X) = γ(A)X for ∀A ∈ a1}.
Then ad Z1(Xγ) = γ(Z1)Xγ = 2Xγ.

We define a map φ ∈ Aut(g) by φ � Ad I2n−1,1. It is clear that ξ1 ◦ φ = φ ◦ ξ1 and
φ(Zn−1) = Zn. Hence (Zn−1, ξ1) ∼ (Zn, ξ1). In addition, we have

cg(Zn) =
{(

X1 X2

X2 X1

) ∣∣∣∣∣∣ X1, X2 ∈ gl(n,C), Tr(X1) = 0,
X1 : skew Hermitian, X2 : Hermitian

}
� sl(n,C) ⊕ R,

ch1 (Zn) =
{(

X1
√−1X2√−1X2 X1

) ∣∣∣∣∣∣ X1, X2 ∈ gl(n,R),
X1, X2 : skew symmetric

}
� so(n,C).

Hence we obtain the following proposition:

Proposition 5.1. In the case of ξ = ξ1, each elements (Z, ξ) ∈ d(g) are equivalent to
(Zn, ξ). Here Zn = (1/2)(En ↗ En). Moreover, we get the following equalities:

(g, cg(Zn)) = (su(n, n), sl(n,C) ⊕ R),

(h1, ch1 (Zn)) = (so(n, n), so(n,C)).

The case of ξ = ξ2: We obtain ha2 � (h2 ∩ k) ⊕ (m2 ∩ p) as

ha2 =

{(
X1 X2

X2 X1

) ∣∣∣∣∣∣ X1, X2 ∈ gl(n,C), Tr(X1) = 0,
X1 : skew Hermitian, X2 : Hermitian

}
� sl(n,C) ⊕ R.

We take a maximal abelian subspace a2 in

m2 ∩ p =
{(

O X2

X2 O

) ∣∣∣∣∣∣ X2 ∈ gl(n,C),
X2 : Hermitian

}

as

a2 =

{
A =

(
O diag(a1, . . . , an)

diag(a1, . . . , an) O

) ∣∣∣∣∣∣ a1, . . . an ∈ R
}
.

Here, we note that z(ha2) ∩ a2 = R(En ↗ En). Then the restricted root system Δ(ha2, a2) is
given by

Δ(ha2, a2) = {±(el − em) | 1 ≤ l < m ≤ n}.
Set αl � el − el+1 for 1 ≤ l ≤ n − 1. Then we obtain a fundamental system Δ1(ha2, a2) =
{α1, . . . , αn−1}. The Dynkin diagram of Δ1(ha2, a2) with the coefficients of the highest root is:
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Then the dual basis {Z1, . . . , Zn−1} of Δ1(ha2, a2) is given by

Zl =
1
n

(((n − l)El × −lEn−l)↗ ((n − l)El × −lEn−l)),

for 1 ≤ l ≤ n − 1. By Corollary 4.1, the elements satisfying the property in (Step 6) in
Lemma 4.3 are only λ0C and Zl + λlC (1 ≤ l ≤ n − 1). Here C � En ↗ En ∈ z(ha2) ∩ a2 and
λm ∈ R (0 ≤ m ≤ n − 1) are arbitrary. By the similar way to the case of ξ = ξ1, it turns out
that λ0C and Zl + λlC are satisfy the property in (Step 7) in Lemma 4.3 when λ0 = ±1/2 and
λl = (−n + 2l)/2n for 1 ≤ l ≤ n − 1. Then we get the following equalities

cg(λ0C) =
{(

X1 X2

X2 X1

) ∣∣∣∣∣∣ X1, X2 ∈ gl(n,C),
X1 : skew Hermitian, X2 : Hermitian

}
� sl(n,C) ⊕ R,

λ0 = ±1
2
,

cg(Zl + λlC) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 X12 X13 X14

−t X̄12 X22 −t X̄14 X24

X13 −X14 X11 −X12
t X̄14 X24

t X̄12 X22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣
X11, X13 ∈ gl(l,C),

X22, X24 ∈ gl(n − l,C),
X12, X14 ∈ M(l,n−l)(C),

X11, X22 : skew Hermitian,
X13, X24 : Hermitian

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
� sl(n,C) ⊕ R,

ch2 (λ0C) =
{(

X1 O
O X1

) ∣∣∣∣∣∣ X1 ∈ gl(n,C),
X1 : skew Hermitian

}
� su(n), λ0 = ±1

2
,

ch2 (Zl + λlC) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 O O X14

O X22 −t X̄14 O
O −X14 X11 O

tX̄14 O O X22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

X11 ∈ gl(l,C), X22 ∈ gl(n − l,C),
X14 ∈ M(l,n−l)(C),

X11, X22 : skew Hermitian

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
� su(l, n − l).

By Definition 3.3, if (h2, ch2 (Zl + λlC)) and (h2, ch2 (Zk + λkC)) are not isomorphic, then
(Zl + λlC, ξ2) and (Zk + λkC, ξ2) are not equivalent to (1 ≤ l, k ≤ n − 1). Hence we obtain the
following proposition:

Proposition 5.2. In the case of ξ = ξ2, each element (Z, ξ) ∈ d(g) is equivalent to one
of the following:

(λ0C, ξ), (Z1 + λ1C, ξ), . . . , (Zk + λkC, ξ).

Here k is the largest integer which dose not exceed n/2+1, Zl = (1/n)(((n− l)El×−lEn−l)↗
((n − l)El × −lEn−l)), C = En ↗ En, λ0 = ±1/2, and λl = (−n + 2l)/2n for 1 ≤ l ≤ k.
Therefore, Zl + λlC = (1/2)(−Il,n−l ↗ −Il,n−l) (1 ≤ l ≤ k). Moreover, we get the following
equalities:
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(g, cg(λ0C)) = (su(n, n), sl(n,C) ⊕ R),

(h2, ch2 (λ0C)) = (sl(n,C) ⊕ R, su(n)),

(g, cg(Zl + λlC)) = (su(n, n), sl(n,C) ⊕ R) (1 ≤ l ≤ k),

(h2, ch2 (Zl + λlC)) = (sl(n,C) ⊕ R, su(l, n − l)) (1 ≤ l ≤ k).

For the other cases, (Z, ξ) are determined in a similar way.

5.2. An example of exceptional type.
5.2. An example of exceptional type. We consider the case of Type EV : e7(7).
Let gC be the complex Lie algebra (e7)C and let cC be a Cartan subalgebra of gC. Then

we have a fundamental system Δ1(gC, cC) � {γ1, . . . , γ7} of the root system Δ(gC, cC) and the
Dynkin diagram of Δ1(gC, cC) with the coefficients of the highest root is:

Let {Xα}α∈Δ(gC,cC) be a Weyl basis of gC mod cC = span
C
{Hγ1 , . . . ,Hγ7}, let gu be a compact

real form of gC, and let {T1, . . . , T7} be the dual basis of Δ1(gC, cC). In addition, we define
linear maps tθ̃1 : c∗

C
→ c∗

C
and θ̃2 : gC → gC by

tθ̃1(γl) � −γl (1 ≤ l ≤ 7), θ̃2 � exp
√−1π ad T2.

Then θ̃2 ∈ Inv(gC). Let θ̃1 be an involution of gC induced by tθ̃1. Then θ̃1(gu) = gu and
θ̃2(gu) = gu. Thus we obtain noncompact real forms gi = ki ⊕ pi of gC, where ki � g

θ̃i
u and

pi �
√−1g−θ̃i

u for i = 1, 2. Put θi � θ̃i|gi for i = 1, 2. It turns out that ki is isomorphic to su(8)
and gi is isomorphic to e7(7) for i = 1, 2. Thus we describe these real forms g1 and g2 of gC
as the same symbol g. Therefore, it is possible to choose a Cartan involution θ of g from
{θ1, θ2}. Let γ be the highest root of Δ(gC, cC). We take an involution ξ of g which satisfies
θ ◦ ξ = ξ ◦ θ (θ = θ1 or θ2). According to Tableau II of [1], this ξ is conjugate to one of ξl’s
in the followings:

(θ, ξ0, h0) = (θ1, θ1, su(8)),

(θ, ξ1, h1) = (θ1, exp
√−1π ad T1, so(6, 6) ⊕ sl(2,R)),

(θ, ξ2, h2) = (θ1, θ1 ◦ ξ1, su(4, 4)),

(θ, ξ3, h3) = (θ1, θ1 ◦ exp
√−1π ad T2, sl(8,R)),

(θ, ξ4, h4) = (θ1, ξ4, e6(6) ⊕ R),

(θ, ξ5, h5) = (θ1, θ1 ◦ ξ4, su
∗(8)),

(θ, ξ6, h6) = (θ2, exp
√−1π ad T7, e6(2) ⊕

√−1R),

(θ, ξ7, h7) = (θ2, θ2 ◦ ξ6, so
∗(12) ⊕ su(2)).

Here hl � gξl for 0 ≤ l ≤ 7, and ξ4 means an involution of g induced by

γ1 �→ γ6, γ2 �→ γ2, γ3 �→ γ5, γ4 �→ γ4,

γ5 �→ γ3, γ6 �→ γ1, γ7 �→ −γ.
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Then we cannot construct a para-real form in the case of ξ = ξ1 or ξ7 by Lemma 4.2 (2). In
fact, by the classification of real forms of compact Hermitian symmetric spaces in [10, 19],
a symmetric pair which corresponds to a real form of compact Hermitian symmetric space
E7/(E6 × T ) is isomorphic to one of the following:

(su(8), sp(4)), (e6 ⊕
√−1R, f4).

Put kdl � (hl ∩ k) ⊕
√−1(hl ∩ p) for 0 ≤ l ≤ 7. Then

kdl = su(8) (l = 0, 2, 3, 5),

kdl = e6 ⊕
√−1R (l = 4, 6),

kdl = so(12) ⊕ su(2) (l = 1, 7).

The case of ξ = ξ2: We take a Cartan involution θ of g as θ1. Let m2 � g−ξ and let
ha2 � (h2 ∩ k1) ⊕ (m2 ∩ p1). Then g coincides with cR ⊕

⊕
α∈Δ(gC,cC) RXα, where cR �

span
R
{Hγ1 , . . . ,Hγ7}. Then cR is a maximal abelian subspace in m2 ∩ p1. Moreover, we have

ha2 � so(6, 6) ⊕ sl(2,R) = h1 because the symmetric pair (g, h1) is the associated symmetric
pair of (g, h2). Here we note that z(ha2) ∩ a2 = {0}. Set a2 � cR, α1 � γ|a2 , and αl � γl|a2
for 2 ≤ l ≤ 7. Then Δ1(ha2, a1) � {α1, . . . , α7} is a fundamental system of the restricted root
system Δ(ha2, a2). The Dynkin diagram of Δ1(ha2, a2) with the coefficients of the highest root
is:

Let {Z1, . . . , Z6} be the dual basis of the D6 part {α7, α6, . . . , α2} and let {W1} be the dual
basis of the A1 part {α1}:

W1 = (1/2)T1, Z1 = (−1/2)T1 + T7, Z2 = −T1 + T6, Z3 = (−3/2)T1 + T5,

Z4 = −2T1 + T4, Z5 = (−3/2)T1 + T3, Z6 = −T1 + T2.

By Corollary 4.2, the elements satisfying the property in (Step 6) in Lemma 4.3 are only Zl,
W1, or Zl +W1 (l = 1, 5, 6). Moreover, only Z6 and Z1 +W1 satisfy the property in (Step 7)
in Lemma 4.3 among them by Lemma 4.6.

We consider ch2 (Z) (Z = Z6 or Z1+W1). Set σ1 � exp
√−1π ad Z6, σ2 � exp

√−1π ad(Z1

+ W1). Then c̃i � ((cC)σi)ξ1 is a Cartan subalgebra of g̃i � ((gC)σi)ξ1 for i = 1, 2. We
note that (cha2 (Z6))C = g̃1 and (cha2 (Z1 + W1))C = g̃2. Then Δ1(g̃1, c̃1) � {γ3, γ4, . . . , γ7, γ}
is a fundamental system of the root system Δ(g̃1, c̃1) and Δ1(g̃2, c̃2) � {γ2, γ3, . . . , γ6} is a
fundamental system of the root system Δ(g̃2, c̃2). For i = 1, 2, the Dynkin diagrams of
Δ1(g̃i, c̃i) with the coefficients of the highest root are:
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By Lemma 4.7 and the classification of simple para-Hermitian symmetric pairs in [6, p. 97],
we have cg(Z) = e6(6) ⊕R for Z = Z6 or Z1 +W1. Since (cg(Z), cha2 (Z)) is a symmetric pair for
Z = Z6 or Z1 +W1, cha2 (Z6) is isomorphic to sl(6,R)⊕ sl(2,R) and cha2 (Z1 +W1) is isomorphic
to so(5, 5) ⊕ R ⊕ R by Tableau II of [1]. By Lemma 4.7 (3) and [16, p. 441], we have
ch2 (Z6) � sp(4,R) and ch2 (Z1 +W1) � sp(2, 2). Hence we obtain the following proposition:

Proposition 5.3. In the case of ξ = ξ2, each elements (Z, ξ) ∈ d(g) are equivalent to
one of the following:

(Z6, ξ), (Z1 +W1, ξ).

Here Z6 = −T1 + T2 and Z1 +W1 = T7. Moreover, we get the following equalities:

(g, cg(Z6)) = (e7(7), e6(6) ⊕ R),

(h2, ch2 (Z6)) = (su(4, 4), sp(4,R)),

(g, cg(Z1 +W1)) = (e7(7), e6(6) ⊕ R),

(h2, ch2 (Z1 +W1)) = (su(4, 4), sp(2, 2)).

The case of ξ = ξ6: We take a Cartan involution θ of g as θ2. Let m6 � g−ξ6 and
ha6 � (h6 ∩ k)⊕ (m6 ∩ p). Since the symmetric pair (g, h7) is the associated symmetric pair of
(g, h6), ha6 is isomorphic to h7 = so∗(12) ⊕ su(2). Here we note that z(ha6) = {0}.

Set δ1 � γ2 + γ3 + 2γ4 + 2γ5 + 2γ6 + γ7, δ2 � γ1 + γ2 + γ3 + 2γ4 + 2γ5 + γ6 + γ7,
and δ3 � γ1 + γ2 + 2γ3 + 2γ4 + γ5 + γ6 + γ7. Then we obtain a maximal abelian subspace
a6 in m6 ∩ p2 as a6 � span

R
{√−1(Xδt − X−δt ) | t = 1, 2, 3}. Set β1 � (1/2)(γ3 − γ5),

β2 � (1/2)(γ1 −γ6), and β3 � γ2 +γ3 +2γ4 +2γ5 +2γ6 +γ7. Then we obtain a fundamental
system Δ1(ha6, a6) � {β1, β2, β3} of the restricted root system Δ(ha6, a6). The Dynkin diagram
of Δ1(ha6, a6) with the coefficients of the highest root is:

Let {Z1, Z2, Z3} be the dual basis of {β1, β2, β3}. By Lemma 4.5 and Corollary 4.1, only Z3

satisfies the property in (Step 6) in Lemma 4.3. In addition, Z3 satisfies the property in (Step
7) in Lemma 4.3 by Lemma 4.7. By the classification of simple para-Hermitian symmetric
pairs in [6, p. 97], cg(Z3) = e6(6)⊕R. Then ch5 (Z3) is isomorphic to f4(4) because of Lemma 4.2
(2) and the classification of real forms of compact Hermitian symmetric spaces in [10, 19].
Hence we obtain the following proposition:

Proposition 5.4. In the case of ξ � ξ6, each elements (Z, ξ) ∈ d(g) are equivalent to
(Z3, ξ). Moreover, we get the following equalities:

(g, cg(Z3)) = (e7(7), e6(6) ⊕ R),



588 K. Sugimoto and T. Shimokawa

(h5, ch5 (Z3)) = (e6(2) ⊕
√−1R, f4(4)).

For the other cases, (Z, ξ) are determined by the similar methods.

5.3. APHS’s of hyperbolic orbit type.
5.3. APHS’s of hyperbolic orbit type. In this subsection, we give the classification of

APHS’s of hyperbolic orbit type.

Lemma 5.1. Let (G/L, σ̂, I, g) be an APHS of hyperbolic orbit type.

(1) If G = E6(6), then L = Spin(5, 5) × R∗.
(2) If G = E6(−26), then L = Spin(1, 9) × R+.
(3) If G = E7(7), then L = E6(6) × R∗.
(4) If G = E7(−25), then L = E6(−26) × R∗.

Proof. By the proof of Lemma 6 in [18, p. 39], (1) holds.
Since (G/L, σ̂, I, g) is an APHS of hyperbolic orbit type, there exists the characteristic

element Z ∈ Lie(G) such that L = CG(Z) and that σ̂ = exp
√−1π ad Z by Proposition 2.1.

We consider (2). By Theorem 3.6.8 in [20, p. 219], we have Gσ̂ = Spin(1, 9) × R+ = (Gσ̂)0.
Hence (2) holds because (Gσ̂)0 ⊂ L ⊂ Gσ̂.

Next, we consider (3). By Theorem 4.4.6 in [21, p. 387], we have Gσ̂ = E6(6) × R∗ and
(Gσ̂)0 = E6(6) × R+ ⊂ CG(Z). In addition, we have {e} × R∗ ⊂ Z(Gσ̂) ⊂ CG(Z). Thus we
obtain

Gσ̂ = E6(6) × R∗ ⊂ ({e} × R∗)(E6(6) × {1}) ⊂ CG(Z)CG(Z) ⊂ CG(Z).

Hence (3) holds. We can prove (4) in the similar ways to the proofs of (3) by Theorem 4.4.6
in [21, p. 387]. �

S. Kaneyuki gives the classification of classical APHS’s of hyperbolic orbit type in [5,
p. 368]. Therefore, we obtain the classification of APHS’s of hyperbolic orbit type by
Kaneyuki [5, p. 368], Kaneyuki-Kozai [6, p. 97], and Lemma 5.1:

List 2
Type G/CG(Z) Condition
AI SL(n,R)/S(GL(i,R) ×GL(n − i,R)) 2 ≤ n
AII SU∗(2n)/(SU∗(2i) × SU∗(2(n − i)) × R+) 3 ≤ n
AIII SU(n, n)/(SL(n,C) × R∗) 3 ≤ n

BDI
SO0(p, q)/(SO0(p − 1, q − 1) × R∗) 1 ≤ p ≤ q, p + q � 2

SO0(n, n)/(SL(n,R) × R∗) 2 ≤ n
DIII SO∗(4n)/(SU∗(2n) × R+) 3 ≤ n
CI Sp(n,R)/(SL(n,R) × R∗) 3 ≤ n
CII Sp(n, n)/(SU∗(2n) × R+) 2 ≤ n
EI E6(6)/(Spin(5, 5) × R∗) —

EIV E6(−26)/(Spin(1, 9) × R+) —
EV E7(7)/(E6(6) × R∗) —
EVII E7(−25)/(E6(−26) × R∗) —

By the procedure in Lemma 4.3, we determine d(g)/∼ for each absolutely simple Lie
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algebra g in List 1. Thus we obtain Theorem 1.1.
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