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Osaka J. Math.
58 (2021), 855–883

FELLER GENERATORS AND STOCHASTIC DIFFERENTIAL
EQUATIONS WITH SINGULAR (FORM-BOUNDED) DRIFT

Damir KINZEBULATOV and Yuliy A. SEMËNOV
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Abstract
We consider the problem of constructing weak solutions to the Itô and to the Stratonovich

stochastic differential equations having critical-order singularities in the drift and critical-order
discontinuities in the dispersion matrix.

1. Introduction

1. Introduction
The present paper is concerned with the problem of existence of a (unique) weak solution

to the stochastic differential equation (SDE)

X(t) = x −
∫ t

0
b(X(s))ds +

√
2
∫ t

0
σ(X(s))dW(s), x ∈ Rd,(SDEI)

W(t) is a d-dimensional Brownian motion, d ≥ 3,

with drift b : Rd → Rd that is in general locally unbounded, and dispersion matrix σ ∈
L∞(Rd,Rd ⊗ Rd) that can be discontinuous.

The search for the largest class(es) of admissible b and σ is of fundamental importance
and has long history. The first principal result is due to N. I. Portenko [27]: If |b| ∈ Lp ≡
Lp(Rd) for a p > d, and a = σσ	 is Hölder continuous, then there exists a unique in
law weak solution to (SDEI); the weak solution can be constructed using either an analytic
approach or the Girsanov transform. The result in [27] was extended (in the case a = I) by
R. Bass-Z.-Q. Chen [2] to b in the standard Kato class Kd+1

0 , see definition and more detailed
discussion below. Since Kd+1

0 contains, for every ε > 0, vector fields b such that |b| � L1+ε
loc ,

the use of Girsanov transform to construct a weak solution becomes problematic. In recent
papers [18, 19], N. V. Krylov established weak existence and uniqueness in law for a general
measurable uniformly elliptic σ and b ∈ Ld(Rd,Rd) (both σ and b can be time-dependent);
it is easily seen that Ld(Rd,Rd) −Kd+1

0 � ∅.
(With regard to the existence and pathwise uniqueness of strong solutions to (SDEI), the

corresponding result for σ = I, |b| ∈ Lp, p > d is due to N. V. Krylov-M. Röckner [21], and
for |∇σ| ∈ Lp, |b| ∈ Lp, p > d, due to X. Zhang [31]; both these results allow time-dependent
coefficients. Let us also note that imposing additional assumption on the structure of b
(integrability condition on the negative part of div b) allows to prove weak existence and
uniqueness for (SDEI) with σ = I, |b| ∈ Lp for some p < d, see X. Zhang-G. Zhao [32].)
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See Section 3 below for further discussion.
In this paper we establish existence and uniqueness (in appropriate sense) of weak solu-

tion to (SDEI), not assuming additional structure of the drift b such as radial symmetry or
differentiability, under the following assumptions on b and σ:
Condition (C1) The vector field b is form-bounded, i.e. |b| ∈ L2

loc and there exist constants
δ > 0 and λ = λδ > 0 such that

‖|b|(λ − Δ)−
1
2 ‖2→2 �

√
δ

(write b ∈ Fδ). Here and below, ‖ · ‖p→q := ‖ · ‖Lp→Lq . Equivalently, condition b ∈ Fδ can be
stated as the quadratic form inequality

‖bϕ‖22 ≤ δ‖∇ϕ‖22 + cδ‖ϕ‖22, ϕ ∈ W1,2,

for a constant cδ (= λδ). The constant δ is called the form-bound of b.
Clearly,

b1 ∈ Fδ1 , b2 ∈ Fδ2 ⇒ b1 + b2 ∈ Fδ,
√
δ :=

√
δ1 +

√
δ2.

Examples. Let us list some sub-classes of Fδ defined in elementary terms.
1. The class Fδ contains vector fields b (= b1 + b2) in Lp(Rd,Rd) + L∞(Rd,Rd), p > d (by

Hölder’s inequality) and in Ld(Rd,Rd) + L∞(Rd,Rd) (by Sobolev’s inequality) with form-
bound δ that can be chosen arbitrarily small.

2. The class Fδ also contains vector fields having critical-order singularities, such as

b(x) =
√
δ

d − 2
2
|x|−2x

(by the Hardy-Rellich inequality ‖|x|−1ϕ‖22 ≤ ( 2
d−2 )2‖∇ϕ‖22, ϕ ∈ W1,2). More generally, the

class Fδ contains vector fields b with |b| in Ld,∞ (the weak Ld space) � Ld. Recall that a
measurable function h : Rd → R is in Ld,∞ if ‖h‖d,∞ := sups>0 s|{x ∈ Rd : |h(x)| > s}|1/d < ∞.
By the Strichartz inequality with sharp constants [16, Prop. 2.5, 2.6, Cor. 2.9], if |b| in Ld,∞,
then

b ∈ Fδ1 with
√
δ1 = ‖|b|(λ − Δ)−

1
2 ‖2→2

≤ ‖b‖d,∞Ω−
1
d

d ‖|x|−1(λ − Δ)−
1
2 ‖2→2

≤ ‖b‖d,∞Ω−
1
d

d 2−1Γ
( d−2

4
)

Γ
( d+2

4
) = ‖b‖d,∞Ω− 1

d
d

2
d − 2

.

where Ωd = π
d
2Γ( d

2 + 1) is the volume of the unit ball in Rd.
3. Furthermore, Fδ contains vector fields in the Campanato-Morrey class and the Chang-

Wilson-Wolff class with δ depending on the respective norm of the vector field in these
classes, see [6]. The class Fδ contains b with |b|2 in the Kato class of potentials {V ∈ L1

loc |
‖(λ − Δ)−1|V |‖∞ ≤

√
δ for some λ = λδ > 0} (by interpolation).

We note that for every ε > 0 one can find b ∈ Fδ such that |b| � L2+ε
loc (Rd,Rd), e.g. consider

|b|2(x) = C
1B(0,1+α) − 1B(0,1−α)∣∣∣|x| − 1

∣∣∣−1
(− ln

∣∣∣|x| − 1
∣∣∣)β , β > 1, 0 < α < 1.
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Another example is: if h ∈ L2(R), T : Rd → R is a linear map, then the vector field
b(x) = h(T x)e, where e ∈ Rd, is in Fδ with appropriate δ (but |b| may not be in Ld,∞

loc ).
We refer to [12, sect. 4] for a more detailed discussion on class Fδ.

Condition (C2) The diffusion matrix a := σσᵀ satisfies a ≥ νI, ν > 0 and (write ∇i ≡ ∂xi)

(∇rai�)d
i=1 ∈ Fγr� , 1 ≤ r, � ≤ d,

for some γr� > 0.
For example, a matrix a with entries in W1,d satisfies (C2) with γr� that can be chosen

arbitrarily small. The model example of a matrix a satisfying (C2) and having a critical
discontinuity is

a(x) = I + c
x ⊗ x
|x|2 , the constant c > −1

(in fact, ∇rai� = c1r=i
x�
|x|2 + c1r=�

xi
|x|2 + cxix� 2xr

|x|4 , so |(∇rai�)d
i=1| ≤ 2|c||x|−1 ⇒ (∇rai�)d

i=1 ∈ Fγr� ,
γr� = (4c)2/(d − 2)2 by the Hardy-Rellich inequality). Another example is

a(x) = I + c(sin log(|x|))2e ⊗ e, e ∈ Rd, |e| = 1

(indeed, ∇rai� = 2c(sin log |x|)(cos log |x|)|x|−2xr eie�; now, use example 2 above). More
generally, we can consider an infinite sum of these two matrices with their points of discon-
tinuity constituting e.g. a dense subset of Rd.

We note that the class (C2) contains matrices a � VMO class, see details below.
Intuitively, the form-bounds γr� can be viewed as measures of discontinuity of (differ-

entiable) matrix a. (To illustrate this, we note that if ai j ∈ W1,p, p > d, then γr� can be
chosen arbitrarily small, while ai j are Hölder continuous by the Sobolev Embedding Theo-
rem. On the other hand, in the previous example of a discontinuous a, form-bounds γr� > 0
are determined by c.)

Denote C∞ := {g ∈ C(Rd) | limx→∞ g(x) = 0} (with the sup-norm). The central an-
alytic object in this paper is positivity preserving contraction C0 semigroup e−tΛC∞ (a,b) on
C∞ (Feller semigroup) whose generator −ΛC∞(a, b) is an operator realization in C∞ of the
formal operator

(∇ · a · ∇ − b · ∇) f (x) =
d∑

i, j=1

∇i
(
ai j(x)∇ j f (x)

) −
d∑

j=1

b j(x)∇ j f (x).

We construct e−tΛC∞ (a,b) under assumptions (C1), (C2). The construction, based on a W1, qd
d−2

estimate on solutions to the corresponding elliptic equation in Lq and a Lr → L∞ iteration
procedure, is the main analytic result of this paper.

We note that the condition b ∈ Fδ, δ < 1 is known in the literature first of all as the
condition ensuring that the sesquilinear form t[u, v] := 〈∇u ·a ·∇v̄〉+ 〈b ·∇u, v〉 with a general
uniformly elliptic a, on u, v ∈ W1,2, where

〈h〉 :=
∫
Rd

h(x)dx, 〈h, g〉 := 〈hḡ〉,

is m-sectorial; then t[u, v] = 〈Λ2(a, b)u, v〉, u ∈ D(Λ2) ⊂ W1,2, v ∈ W1,2, where operator
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−Λ2(a, b) (a realization of the formal operator ∇ · a · ∇ − b · ∇ in L2) is the generator of
a quasi contraction C0 semigroup on L2 [10, Ch.VI] (“form-method” of constructing C0

semigroups). Below we construct C0 semigroup in C∞, a space having (locally) stronger
topology than L2, under the same assumption b ∈ Fδ, for δ < cd with appropriate constant
0 < cd < 1, at expense of requiring that a satisfies (C2) with γr� < c′d, c′d = c′d(δ) > 0.

The operator behind (SDEI) is the non-divergence form operator

−a · ∇2 + b · ∇ = −
d∑

i, j=1

ai j(x)∇i∇ j +

d∑
j=1

b j(x)∇ j.

We re-write it as

(1) −a · ∇2 + b · ∇ = −∇ · a · ∇ + (∇a + b) · ∇,
where the vector field ∇a is defined by (∇a)k :=

∑d
i=1(∇iaik). By (C2), ∇a is in Fδa with

δa ≤ ∑d
r,�=1 γr�, and so ∇a + b is an admissible drift. Thus, under appropriate assumptions

on the values of form-bounds δ, δa, γr�, the Feller generator −ΛC∞(a,∇a+ b) is well defined
(Theorem 1(i)). In Theorem 1(ii), (iii), we show that the probability measures on the space of
continuous trajectories determined by the Feller semigroup e−tΛC∞ (a,∇a+b) admit description
as weak solutions to (SDEI).

If we could only handle drifts in Lp(Rd,Rd), p > d, and thus in order to use (1) would
have to require ∇ra·� ∈ Lp(Rd,Rd), p > d, then by the Sobolev Embedding Theorem a would
have to be Hölder continuous. It is the fact that we can handle critical-order singularities in
the drift that allows us to consider diffusion matrices a with critical discontinuities.

We emphasize that there are b ∈ Fδ so singular that they destroy the Gaussian upper
(and lower) bound on the heat kernel of −∇ · a · ∇ + b · ∇, −a · ∇2 + b · ∇ (e.g. for a = I,
b(x) = d−2

2

√
δ|x|−2x, see [22, 23], see also [24]).

The following example shows that the existence of a weak solution to (SDEI) must de-
pend on the value of the form-bound of b.

Example 1. Consider the SDE (d ≥ 3)

X(t) = −
∫ t

0
b(X(s))ds +

√
2W(t), t ≥ 0,

where

b(x) :=
√
δ

d − 2
2
|x|−2x ∈ Fδ.

If
√
δ < 1 ∧ 2

d−2 , then by Theorem 1 below this equation has a weak solution.
If
√
δ ≥ 2d

d−2 , then an elementary argument (see e.g. [15, Example 1] ) shows that the SDE
does not have a weak solution. In this sense, the singularity of b is of critical order.

In Section 4 we consider the Stratonovich SDE

(SDES) X(t) = x −
∫ t

0
b(X(s))ds +

√
2
∫ t

0
σ(X(s)) ◦ dW(s), x ∈ Rd,

assuming that (∇rσi j)d
i=1 ∈ Fδr j for some δr j > 0. We put (SDES) in Itô form without losing

the class of singularities of the drift or the class of discontinuities of the dispersion matrix
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(although imposing somewhat more restrictive assumptions on the values of form-bounds
δ and γr�). From the analytic point of view, imposing conditions on ∇rσi j seems to be
pertinent to the subject matter since it provides an operator behind (SDES).

We prove that the weak solution to (SDEI) or (SDES) is unique among all weak solutions
that can be constructed using reasonable approximations of a, b, i.e. the ones that keep the
values of form-bounds intact, see remark 2 below.

Since in our construction the weak solutions to (SDEI), (SDES) are determined from
the very beginning by a Feller semigroup, we do not need the uniqueness in law in order
to prove that the associated process is strong Markov. Concerning a possible proof of the
uniqueness in law we note that, under the assumptions (C1), (C2), in general |∇u| � L∞,
u = (μ + Λq(a,∇a + b))−1 f , even if f ∈ C∞c and a = I.

Let us also note that v(t, ·) = e−tΛq(a,∇a+b) f (·) is a unique weak solution to Cauchy problem
for the corresponding parabolic equation in Lq, cf. remark 4 below.

The results of this paper are new even if b = 0 or σ = I.

Notation. We denote by (X, Y) the space of bounded linear operators between Banach
spaces X → Y , endowed with the operator norm ‖ · ‖X→Y . Set (X) := (X, X). We write
T = s-X- limn Tn for T , Tn ∈ (X) if T f = limn Tn f in X for every f ∈ X.
R̄d := Rd ∪ {∞} is the one-point compactification of Rd.
Ω̄D := D([0,∞[, R̄d) the set of all right-continuous functions X : [0,∞[→ R̄d having the

left limits (càdlàg functions), such that X(t) = ∞, t > s, whenever X(s) = ∞ or X(s−) = ∞.
t = σ{X(s) | 0 ≤ s ≤ t, X ∈ Ω̄D} the minimal σ-algebra containing all cylindrical sets

{X ∈ Ω̄D | (X(s1), . . . , X(sn)
) ∈ A, A ⊂ (R̄d)n is open}0≤s1≤···≤sn≤t. Set ∞ = σ{X(s) | 0 ≤ s <

∞, X ∈ Ω̄D}.
Ω := C([0,∞[,Rd) denotes the set of all continuous functions X : [0,∞[→ Rd.
t := σ{X(s) | 0 ≤ s ≤ t, X ∈ Ω}, ∞ := σ{X(s) | 0 ≤ s < ∞, X ∈ Ω}.
C0,α = C0,α(Rd) is the space of Hölder continuous functions with exponent 0 < α < 1.

The results of the present paper were announced in [13] and [14].

2. Itô diffusion

2. Itô diffusion
Without loss of generality, we assume from now on that a ≥ I.
We fix the following smooth approximation of the matrix a and the vector field b:

an := I + eεnΔ
(
ηn(a − I)

)
, εn ↓ 0,

where ηn(x) = 1 if |x| < n, ηn(x) = n + 1 − |x| if n ≤ |x| ≤ n + 1, ηn(x) = 0 if |x| > n + 1, and

bn := eεnΔ(1nb), εn ↓ 0,

where 1n is the indicator of {x ∈ Rd | |x| ≤ n, |b(x)| ≤ n}.
By a standard result, given a Feller semigroup T t on C∞, there exist probability measures

{Px}x∈Rd on ∞ such that (Ω̄D,t,∞, Px) is a Markov process and

EPx[ f (X(t))] = T t f (x), X ∈ Ω̄D, f ∈ C∞, x ∈ Rd

(see e.g. [3, Ch.I.9]). In the next theorem we prove that these probability measures are, in
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fact, concentrated on finite continuous trajectories (Ω,∞).

Theorem 1 (Main result). Let d ≥ 3. Assume that conditions (C1), (C2) are satisfied,
i.e. the vector fields b ∈ Fδ, ∇a ∈ Fδa , (∇rai�)d

i=1 ∈ Fγr� , with the form-bounds δ, δa, γr�

satisfying, for some q > d − 2 if d ≥ 4 or q ≥ 2 if d = 3,

(2)

⎧⎪⎪⎨⎪⎪⎩
1 − q

4 (
√
γ + ‖a − I‖∞

√
δ + δa) > 0, where γ :=

∑d
r,�=1 γr�,

(q − 1)
(
1 − q

√
γ

2
) − (
√
δ + δa

√
δa + δ + δa) q2

4 − (q − 2) q
√
δ+δa
2 − ‖a − I‖∞ q

√
δ+δa
2 > 0.

The following is true:

(i) The limit

(�) s-C∞- lim e−tΛC∞ (an,∇an+bn) (loc. uniformly in t ≥ 0),

where ΛC∞(an,∇an+bn) := −an ·∇2+bn ·∇, D(ΛC∞(an,∇an+bn)) := (1−Δ)−1C∞, exists and
thus determines a Feller semigroup on C∞, which we denote by e−tΛC∞ (a,∇a+b). Its generator
−ΛC∞(a,∇a + b) is an appropriate operator realization of the formal operator a · ∇2 − b · ∇
on C∞. (We explain the choice of notation ΛC∞(a,∇a + b) below.)

We have
(
e−tΛC∞ (a,∇a+b) � Lq ∩C∞

)clos
Lq→C∞ ∈ (Lq,C∞), t > 0.

Also, there exists a constant μ0 = μ0(d, q, δ, δa, γ) > 0 such that u =
(
μ+ΛC∞(a,∇a+b)

)−1 f ,
μ > μ0, f ∈ Lq∩C∞, is in C0,α, possibly after change on a measure zero set, with the Hölder
continuity exponent α = 1 − d−2

q .

Let Px be determined by T t := e−tΛC∞ (a,∇a+b).
Then for every x ∈ Rd:

(ii) The trajectories of the process are Px a.s. finite and continuous on 0 ≤ t < ∞.

We denote Px � (Ω,∞) again by Px.

(iii) EPx

∫ t
0 |b(X(s))|ds < ∞, X ∈ Ω, and, for any selection of f ∈ C∞c , f (y) := yi, or

f (y) := yiy j, 1 ≤ i, j ≤ d, the process

M f (t) := f (X(t)) − f (x) +
∫ t

0
(−a · ∇2 f + b · ∇ f )(X(s))ds, t ≥ 0,

is a continuous martingale relative to (Ω,t, Px); the latter thus determines a weak solution
to (SDEI) on an extension of (Ω,t, Px).

Remark 1. Clearly, condition (2) is trivially satisfied if δ and γ (≥ δa) are sufficiently
small; for example, if ai j ∈ W1,d and |b| ∈ Ld, then δ and γ can be made arbitrarily small, see
examples above. If a = I, then this condition reduces to δ < 1 ∧ ( 2

d−2 )2.

Since our assumptions on δ, δa, γr� involve only strict inequalities, we may and will
assume that εn, εn ↓ 0 in the definition of an, bn are chosen so that

(∇r(an)i�)d
i=1 ∈ Fγ̂r� (1 ≤ r, � ≤ d), ∇an ∈ Fδ̂a

, bn ∈ Fδ̂

with form-bounds δ̂, δ̂a, γ̂r� (with λ � λ(n)) satisfying (2). Below, without loss of generality,
δ̂ = δ, δ̂a = δa, γ̂r� = γr�.
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Remark 2. The solution to the martingale problem of (iii) is unique in the following
sense. In addition to the hypothesis of Theorem 1, assume that ‖a − I‖∞ + δ < 1. If {Qx}x∈Rd

is another solution to the martingale problem such that

Qx = w- lim
n
Px(ãn, b̃n) for every x ∈ Rd,

for some smooth ãn, b̃n whose form-bounds δ̃, δ̃a, γ̃r� (provided that λ � λ(n)) satisfy (2),
then {Qx}x∈Rd = {Px}x∈Rd . See Appendix B for the proof.

3. Comments

3. Comments
1. The Feller semigroup in (i) is the principal analytic object; the other assertions (ii), (iii)

of the theorem follow from the regularity properties of the resolvent
(
μ+ΛC∞(a,∇a+ b)

)−1,
cf. Lemmas 7 and 8 below.

2. Even if a = I, C∞c � D(ΛC∞(I, b)) (already for b ∈ L∞(Rd,Rd) − Cb(Rd,Rd)). An
attempt to find a complete description of D(ΛC∞(I, b)) in elementary terms for a general
b ∈ Fδ is doomed.

3. To prove Theorem 1(i), we first construct a Feller semigroup e−ΛC∞ (a,b) associated to
the divergence form operator −∇ · a · ∇ + b · ∇ by showing that if the form-bounds δ, δa, γr�

satisfy, for some q > d − 2 if d ≥ 4 or q ≥ 2 if d = 3

(3)

⎧⎪⎪⎨⎪⎪⎩
1 − q

4 (
√
γ + ‖a − I‖∞

√
δ) > 0,

(q − 1)
(
1 − q

√
γ

2
) − (
√
δ
√
δa + δ)

q2

4 − (q − 2) q
√
δ

2 − ‖a − I‖∞ q
√
δ

2 > 0

(the role of q will be explained below), then the limit

(��) s-C∞- lim e−tΛC∞ (an,bn) (loc. uniformly in t ≥ 0),

where ΛC∞(an, bn) := −∇ · an · ∇ + bn · ∇, D(ΛC∞(an, bn)) := (1 − Δ)−1C∞, exists and thus
determines a Feller semigroup, e−tΛC∞ (a,b). Then, since

−an · ∇2 + bn · ∇ = −∇ · an · ∇ + (∇an + bn) · ∇,
and ∇a+b ∈ Fδa+δ, ∇an+bn ∈ Fδa+δ with λ � λ(n), we obtain (�) from (��) upon replacing
b by ∇a + b. (In particular, (2) is (3) with δ replaced by δa + δ.)

4. The proof of existence of the limit (��) goes as follows.
By Theorem A.1 below, there exists a positivity preserving L∞ contraction quasi contrac-

tion C0 semigroup e−tΛr(a,b) in Lr, r > 2
2−√δ

(4) e−tΛr(a,b) := s-Lr- lim e−tΛr(an,bn) (loc. uniformly in t ≥ 0),

where Λr(an, bn) := −∇ · an · ∇ + bn · ∇, D(Λq(an, bn)) = W2,r. Note that Lr has a (locally)
weaker topology than C∞, so it is easier to prove convergence there.

At the next step, we prove a priori bound on un := (μ + Λq(an, bn))−1 f , μ > μ0, f ∈ Lq,
for q ≥ 2 satisfying (3):

(� � �) ‖∇un‖ qd
d−2
≤ C‖ f ‖q,

(Lemma 1). This bound for q > d − 2 if d ≥ 4 or q ≥ 2 for d = 3, allows us to run an
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iteration procedure Lr → L∞ that yields for a r0 >
2

2−√δ

‖un − um‖∞ ≤ B‖un − um‖γr0 , n,m ≥ 1,

where constants γ > 0, B do not depend on n, m (Section 5.2). Thus, since un converge
in Lr0 by (4), it follows that un converge in C∞. The latter allows us to apply the Trotter
Approximation Theorem, which yields existence of the limit (��).

5. Let us comment more on the existing literature on stochastic differential equations with
singular drifts.

In [2], the authors prove existence and uniqueness in law of weak solution to the SDE

(5) X(t) = x −
∫ t

0
b(X(s))ds +

√
2W(t), x ∈ Rd,

for b in Kd+1
0 := ∩δ>0Kd+1

δ , where the Kato class Kd+1
δ = {|b| ∈ L1

loc | ‖(λ − Δ)−
1
2 |b|‖∞ ≤√

δ for some λ = λδ} (in fact, [2] allow b to be a measure). We note that

Kd+1
0 − Fδ � ∅, Fδ −Kd+1

δ1
� ∅

(already Ld(Rd,Rd) � Kd+1
δ1

).
In [17], the authors construct a Feller semigroup on C∞ associated to the operator −Δ +

b · ∇, b ∈ Fδ. The a priori bound (� � �) and the Lr → L∞ iteration procedure developed in
the present paper extend the corresponding results in [17] (see also [12, sect. 4]).

In [15, Theorem 1], we proved an analogue of Theorem 1(ii),(iii) for SDE (5) with b in
the class of weakly form-bounded vector fields

F1/2

δ :=
{|b| ∈ L1

loc | ‖|b|
1
2 (λ − Δ)−

1
4 ‖2→2 ≤

√
δ for some λ = λδ

}
that contains both the Kato class Kd+1

δ and Fδ2 as its proper subclasses (as thus the sums
of vector fields in these two classes). The corresponding Feller semigroup was constructed
in [11], see also [12, sect. 5], but using a different technique that depends crucially on the
pointwise estimate |∇(μ−Δ)−1(x, y)| ≤ c(κμ−Δ)−

1
2 (x, y). This estimate holds for −Δ replaced

by −∇ · a · ∇ but only for Hölder continuous a. In the present paper, we include matrices a
having critical discontinuities at expense of restricting the class of admissible drifts b from
F1/2

δ to Fδ.
We note that Theorem 1 in the case a = I is not a special case of [15, Theorem 1] since it

admits larger values of the form bound of b.
6. The last assertion of Theorem 1(i), i.e. that u ∈ C0,α, α = 1 − d−2

q , follows easily
from the a priori bound (� � �) via the Sobolev Embedding Theorem. This result captures
quantitative dependence of the Hölder continuity of u on the values of form-bounds δ, δa

and γr�. (Let us note that we can appropriately normalize the coefficients of −∇ · a · ∇ +
b · ∇, −a · ∇2 + b · ∇ so that δ, δa and γr� become constant multiplies of the corresponding
coefficients).

7. The proof of Theorem 1 does not use W2,p bounds on un. In fact, even if a = I, such
bounds do not exist for large p for a general b ∈ Fδ.

For less singular drifts, there is an extensive literature on W2,p bounds on solutions to
the corresponding non-divergence form elliptic and parabolic equations. In particular, such
estimates exist for matrices a with entries in the VMO class (which includes ai j ∈ W1,d
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considered in [25]), see [9], see also [8] where the VMO class appeared for the first time
in the context of W2,p bounds for non-divergence form equations. Moreover, W1,p and W2,p

bounds exist for both divergence and non-divergence form equations for a locally small in
the BMO norm, see [4, 5]. Note that already our model example a(x) = I + c x⊗x

|x|2 , c > −1,
is not in the VMO class. Although this a is in BMO, we do not require in Theorem 1 local
smallness of its BMO norm (≡ smallness of c, i.e. smallness of γr�). For other admissible
classes of a, however requiring control over geometry of the set of discontinuities, see [7, 20]
and references therein. See also [31] where W2,p estimates are obtained assuming |∇a|,
|b| ∈ Lp, p > d (in fact, a, b can be time-dependent).

We note that the operator −a · ∇2 with ∇kai j ∈ Ld,∞ has been studied in L2 in [1].
8. For the divergence form operator, the iteration procedure depends on the a priori bound

(� � �), more precisely, on
(6)

sup
n
‖∇un‖2qd

d−2
< ∞, un := (μ+Λq(an, bn))−1 f , f ∈ L1∩L∞, q ∈ ] 2

2 − √δ ∨ (d − 2),
2√
δ

[
.

Other than that, the iteration procedure works for an arbitrary uniformly elliptic matrix a:

(Hu)
a = a∗ : Rd → Rd ⊗ Rd is measurable,
σI ≤ a(x) ≤ ξI for a.e. x ∈ Rd for some 0 < σ < ξ < ∞,

see Section 5.2 for details. In this regard, we note another instance where a priori bound (6)
is valid. Let a ∈ (Hu). Without loss of generality, σ = 1. Let σI ≤ an ≤ ξI be a smooth
approximation of a as defined above. Set A := −∇ · an · ∇. Then for p > 2, by the N. Meyers
Embedding Theorem [26],

(7) (μ + A)−1 ∈ (−1,p,1,p), μ > 0,

(8) ‖∇(μ + A)−1(μ − Δ)
1
2 ‖p→p ≤ Cp, Cp � Cp(μ),

provided that

‖∇(μ − Δ)−
1
2 ‖2p→p ≤

ξ

ξ − σ,

see also [12, Theorem G.1]. Thus, assuming that ξ and σ are sufficiently close to each other,
we can select p = q j, where q ∈]d − 2,∞[, to obtain a priori bound (6) for un := (μ+ A)−1 f .
The latter allows us to run the iteration procedure, which then yields associated to −∇ · a · ∇
Feller semigroup. (The convergence of un in Lr0 , r0 > 2, follows e.g. from Theorem A.1.)

Let b = b′+b′′ ∈ Ld(Rd,Rd)+L∞(Rd,Rd), in which case b ∈ Fδ with δ that can be chosen
arbitrarily small. We can further perturb A by b · ∇ arguing as in [12, sect. 4]. Namely, let
T := bn · ∇(μ + A)−1. Then (p = dq

d−q , f ∈ Cc)

‖T f ‖q ≤ ‖b′‖d‖∇(μ + A)−1(μ − Δ)
1
2 ‖p→p‖(μ − Δ)−

1
2 f ‖p

+ ‖b′′‖∞‖∇(μ + A)−1(μ − Δ)
1
2 ‖q→q‖(μ − Δ)−

1
2 f ‖q

(we use (8))

≤ (‖b′‖dCsCp + μ
− 1

2 Cq‖b′′‖∞)‖ f ‖q
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for all q ∈]2, 2+ ε], where 0 < ε < d − 2 depends on ξ and σ. Without loss of generality, we
may assume that ‖b′‖d is sufficiently small (at expense of increasing ‖b′′‖∞) Thus, for μ > 0
sufficiently large so that ‖T‖q→q < 1, we have

(μ + A + bn · ∇)−1 = (μ + A)−1(1 + T
)−1

and thus

‖∇(μ + A + bn · ∇)−1 f ‖p
≤ ‖∇(μ + A)−1(1 − Δ)

1
2 ‖p→p‖(1 − Δ)−

1
2
(
1 + T

)−1 f ‖p
(we apply (7) and the Sobolev Embedding Theorem)

≤ C‖(1 + T
)−1 f ‖q ≤ C1‖ f ‖q.

Above we can replace p = dq
d−q by q ≤ p ≤ qd

d−q . Take p = dq
d−2 . If ξ and σ are close to each

other, we can select q ∈]2 ∨ (d − 2), d[, thus arriving at a priori bound

sup
n
‖∇un‖2p < ∞, un := (μ + A + bn · ∇)−1 f , f ∈ L1 ∩ L∞,

needed to run the iteration procedure. (The convergence of un in Lr0 , r0 > 2, follows from
Theorem A.1.) The latter allows to prove: Let d ≥ 3, a ∈ (Hu), b ∈ Ld(Rd,Rd)+ L∞(Rd,Rd).
If ξ and σ are sufficiently close to each other, then the limit

s-C∞- lim e−tΛC∞ (an,bn) (loc. uniformly in t ≥ 0),

whereΛC∞(an, bn) := −∇·an ·∇+bn ·∇, D(ΛC∞(an, bn)) := (1−Δ)−1C∞, exists and determines
a Feller semigroup on C∞. We note that this result can not be achieved on the basis of the
De Giorgi-Nash theory.

9. The method of proof of the a priori bound (� � �) is rather general.
We could have considered matrices a of the form

a = I + c f ⊗ f, c > −1 (or a sum of such matrices),

assuming that

f ∈ L∞(Rd,Rd) ∩W1,2
loc (Rd,Rd), ‖ f ‖∞ = 1,

∇if ∈ Fδi , δi > 0, i = 1, 2, . . . , d, δf :=
d∑

i=1

δi,

in which case ∇a = c
[
(divf)f + f · ∇f

] ∈ Fδa with δa ≤ |c|2(
√

d + 1)2δf.
Then the condition (3) is replaced with: δ < 1 ∧ ( 2

d−2
)2, and, for some q > d − 2 if d ≥ 4

or q ≥ 2 if d = 3,

0 < c < (q − 1 − Q)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(q − 1) q

√
δf

2 +
q2(
√
δf+
√
δ)2

16 + (q − 2) q2δf
16

]−1 if 1 − q
√
δf

4 − q
√
δ

4 ≥ 0,

( q2√δf
2 + (q − 2) q2δf

16 +
q
√
δ

2 − 1
)−1 if 0 ≤ 1 − q

√
δf

4 < q
√
δ

4 ,

[
(q − 1)

(
q
√
δf − 1

)
+

q
√
δ

2
]−1 if 1 − q

√
δf

4 < 0,
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where Q := q
√
δ

2
[
q − 2 +

(√
δa +
√
δ
) q

2
]
, or

−(q − 1 − Q
)[

(q − 1)
(
1 + q

√
δf) +

q
√
δ

2

]−1
< c < 0.

4. Stratonovich diffusion

4. Stratonovich diffusion
We replace condition (C2) of the introduction by
(C′2) a ≥ νI, ν > 0 and, for each 1 ≤ r, j ≤ d,

(∇rσi j)d
i=1 ∈ Fδr j

for some δr j > 0.
Then we can re-write (SDES) as

(SDE′S) X(t) = x −
∫ t

0
b(X(s))ds +

∫ t

0
c(X(s))ds +

√
2
∫ t

0
σ(X(s))dW(s), x ∈ Rd,

where

c := (ci)d
i=1, ci :=

1√
2

d∑
r, j=1

(∇rσi j)σr j.

By (C′2),

c ∈ Fδc , δc ≤ 1
2
‖σ‖2∞

d∑
r, j=1

δr j

(here ‖σ‖∞ = ‖(∑d
r, j=1 σ

2
r j)

1
2 ‖∞). We note that (C′2) yields (C2):

(∇rai�)d
i=1 ∈ Fγr� , γr� ≤ [‖σ·�‖∞(

d∑
j=1

δr j)
1
2 + ‖σ‖∞δ

1
2
r�
]2
.

We fix the following approximation of σ by smooth matrices: σn = I + eεnΔ
(
ηn(σ − I)

)
(ηn were defined earlier). Then we may assume that an, bn and cn satisfy

(∇r(an)i�)d
i=1 ∈ Fγr� (1 ≤ r, � ≤ d), ∇an ∈ Fδa , cn ∈ Fδc , ∇an − cn + bn ∈ Fδa+δc+δ

with λ � λ(n).
The next result is an immediate consequence of Theorem 1.

Theorem 2. Let d ≥ 3. Assume that conditions (C1), (C′2) are satisfied, with δ, δa, δc, γ
satisfying (3) for some q > 2 ∨ (d − 2) with δ replaced by δ + δa + δc. Then:

(i) The limit

e−tΛC∞ (a,∇a+b−c) := s-C∞- lim e−tΛC∞ (an,∇an+bn−cn) (loc. uniformly in t ≥ 0),

whereΛC∞(an,∇an+bn−cn) := −an·∇2+(bn−cn)·∇, D(ΛC∞(an,∇an+bn−cn)) := (1−Δ)−1C∞,
exists and determines a Feller semigroup.

Let (Ω̄D,t,∞, Px) be the Feller process determined by e−tΛC∞ (a,∇a+b−c). The following is
true for every x ∈ Rd:
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(ii) The trajectories of the process are Px a.s. finite and continuous on 0 ≤ t < ∞.

We denote Px � (Ω,∞) again by Px.

(iii) EPx

∫ t
0 |b(X(s))|ds < ∞, X ∈ Ω, and for any selection of f ∈ C∞c , f (y) := yi, or

f (y) := yiy j, 1 ≤ i, j ≤ d, the process

M f (t) := f (X(t)) − f (x) +
∫ t

0
(−a · ∇2 f + (b − c) · ∇ f )(X(s))ds, t ≥ 0,

is a continuous martingale relative to (Ω,t, Px); the latter thus determines a weak solution
to (SDE′S) on an extension of (Ω,t, Px).

Remark 2 also applies to Theorem 2, provided that ‖a − I‖∞ + δ + δc < 1.

5. Proof of Theorem 1(i): Construction of Feller semigroup

5. Proof of Theorem 1(i): Construction of Feller semigroup
As we explained in the introduction, it suffices to construct the Feller semigroup e−tΛC∞ (a,b)

corresponding to the divergence form operator −∇ · a · ∇ + b · ∇:

Proposition 1. Assume that b ∈ Fδ, (∇rai�)d
i=1 ∈ Fγr� and ∇a ∈ Fδa , with γr�, δ, δa satisfy,

for some q > d − 2 if d ≥ 4 or q ≥ 2 if d = 3,

(∗)
⎧⎪⎪⎨⎪⎪⎩

1 − q
4 (
√
γ + ‖a − I‖∞

√
δ) > 0, where γ :=

∑d
r,�=1 γr�,

(q − 1)
(
1 − q

√
γ

2
) − (
√
δ
√
δa + δ)

q2

4 − (q − 2) q
√
δ

2 − ‖a − I‖∞ q
√
δ

2 > 0.

Then the limit

s-C∞- lim e−tΛC∞ (an,bn) (loc. uniformly in t ≥ 0),

whereΛC∞(an, bn) := −∇·an ·∇+bn ·∇, D(ΛC∞(an, bn)) := (1−Δ)−1C∞ exists, and determines
a contraction C0 semigroup, e−tΛC∞ (a,b).

We have
(
e−tΛC∞ (a,b) � Lq ∩C∞

)clos
Lq→C∞ ∈ (Lq,C∞), t > 0.

Also, u =
(
μ + ΛC∞(a, b)

)−1 f , μ > μ0, f ∈ Lq ∩C∞ is in C0,α, α = 1 − d−2
q .

The two key ingredients of the proof of Proposition 1 are the a priori bounds and the
iteration procedure.

5.1. A priori bounds.
5.1. A priori bounds.

Lemma 1. Let d ≥ 3. Assume that q ≥ 2, γr�, δ, δa are such that (∗) is satisfied. Then
there exist constants μ0 = μ0(d, q, δ, δa, γ) > 0 and Kl = Kl(d, q, δ, δa, γ), l = 1, 2, such that
the bounds

(∗∗)
‖∇un‖q ≤ K1(μ − μ0)−

1
2 ‖h‖q,

‖∇un‖q j ≤ K2(μ − μ0)
1
q− 1

2 ‖h‖q, j := d
d−2 ,

hold for un := (μ + Λq(an, bn))−1h, μ > μ0, h ∈ Lq, n ≥ 1.

Proof. Since an, bn are C∞ smooth, we have for all μ > λδ
2(q−1)

(μ + ΛC∞(an, bn))−1 � C∞ ∩ Lq = (μ + Λq(an, bn))−1 � C∞ ∩ Lq,
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by Theorem A.1 (to apply the theorem, we note that, by our assumptions, bn ∈ Fδ where
δ < 1).

Thus, it suffices to prove (∗∗) for (μ + Λq(an, bn))−1h, 0 ≤ h ∈ C1
c .

Set An
q := −∇ · an · ∇, D(An

q) := W2,q.
Put

0 ≤ un := (μ + Λq(an, bn))−1h,

where Λq(an, bn) = An
q + bn · ∇, D(Λq(an, bn)) = W2,q, n ≥ 1. Clearly, since an, bn ∈ C∞, we

have un ∈ W3,q.
For brevity, we omit index n everywhere below, and write u ≡ un, a ≡ an, b ≡ bn, Aq ≡ An

q.
Set

w := ∇u, Iq :=
d∑

r=1

〈(∇rw)2|w|q−2〉, Jq := 〈(∇|w|)2|w|q−2〉,

Ia
q :=

d∑
r=1

〈(∇rw · a · ∇rw)|w|q−2〉, Ja
q := 〈(∇|w| · a · ∇|w|)|w|q−2〉,

where, recall,

〈h〉 :=
∫
Rd

h(x)dx, 〈h, g〉 := 〈hḡ〉.

Set [F,G] := FG −GF.
We multiply the equation μu + Λq(a, b)u = h by the test function

φ := −∇ · (w|w|q−2) = −
d∑

r=1

∇r(wr |w|q−2)

and integrate:

μ〈|w|q〉 + 〈Aqw, w|w|q−2〉 + 〈[∇, Aq]u, w|w|q−2〉 = 〈−b · ∇u, φ〉 + 〈h, φ〉,

μ〈|w|q〉 + Ia
q + (q − 2)Ja

q + 〈[∇, Aq]u, w|w|q−2〉 = 〈−b · ∇u, φ〉 + 〈h, φ〉.
Since by our assumption a ≥ I, we have Ia

q ≥ Iq, Ja
q ≥ Jq. We thus obtain the principal

inequality

(•) μ〈|w|q〉 + Iq + (q − 2)Jq ≤ −〈[∇, Aq]u, w|w|q−2〉 + 〈−b · ∇u, φ〉 + 〈h, φ〉 − R1
q.

We will estimate the RHS of (•) in terms of Iq and Jq.
First, we estimate

〈[∇, Aq]u, w|w|q−2〉 :=
d∑

r=1

〈[∇r, Aq]u, wr |w|q−2〉.

Set γ =
∑

r,� γr�. From now on, we omit the summation sign in repeated indices.

Claim 1.

|〈[∇r, Aq]u, wr |w|q−2〉| ≤ M1Iq + N1Jq +C1〈|w|q〉,
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where constants

M1 :=
1

4α
, N1 := αγ

q2

4
+ (q − 2)

[
βγ

q2

4
+

1
4β

]
, C1 :=

(
α + (q − 2)β

)
λγ α, β > 0.

Proof of Claim 1. Note that [∇r, Aq]u = −∇ · ∇ra · ∇u. Thus,

〈[∇r, Aq]u, wr |w|q−2〉 = 〈(∇rai�)w�, (∇iwr)|w|q−2〉
+ (q − 2)〈(∇rai�)w�, wr |w|q−3∇i|w|〉.

By quadratic inequalities,

|〈[∇r, Aq]u, wr |w|q−2〉| ≤ α〈|∇ra·�|2|w|q〉 + 1
4α

Iq

+ (q − 2)
[
β
〈|∇ra·�|2|w|q〉 + 1

4β
Jq

]
.

By (C2), ∇ra·� ∈ Fγr� , i.e.

〈|∇ra·�|2|g|2〉
(
=

∑
r,�

〈|∇ra·�|2|g|2〉
)
≤ γ〈|∇g|2〉 + λγ〈|g|2〉, g ∈ W1,2,

so that

(9)
〈|∇ra·�|2|w|q〉 ≤ γq2

4
Jq + λγ〈|w|q〉.

The proof of Claim 1 is completed. �

We estimate the term 〈−b · w, φ〉 in (•) as follows.

Claim 2. There exist constants C2, C′2 such that

〈−b · w, φ〉 ≤ M2Iq + N2Jq +C2‖w‖qq +C′2‖w‖q−2
q ‖h‖2q,

where constants

M2 := ‖a− I‖∞ 1
4α1

, N2 :=
(√
δ
√
δa + δ

)q2

4
+ (q− 2)

q
√
δ

2
+ ‖a− I‖∞α1δ

q2

4
, α1 > 0.

Proof of Claim 2. We have φ = (−Δu)|w|q−2 − |w|q−3w · ∇|w|, so

〈−b · w, φ〉 = 〈−Δu, |w|q−2(−b · w)〉 − (q − 2)〈w · ∇|w|, |w|q−3(−b · w)〉
=: F1 + F2.

Set

Bq := 〈|b|2|w|q〉.
We have

F2 ≤ (q − 2)B
1
2
q J

1
2
q .

Next, we bound F1. We represent −Δu = ∇ · (a − I) · w − μu − b · w + h, and evaluate:
∇ · (a − I) · w = ∇a · w + (a − I)i�∇iw�, so

F1 = 〈∇ · (a − I) · w, |w|q−2(−b · w)〉 + 〈(−μu − b · w + h), |w|q−2(−b · w)〉



Feller Generators and Stochastic Differential Equations 869

= 〈∇a · w, |w|q−2(−b · w)〉
+ 〈(a − I)i�∇iw�, |w|q−2(−b · w)〉
+ 〈(−μu − b · w + h), |w|q−2(−b · w)〉.

Set Pq := 〈|∇a|2|w|q〉. We bound F1 from above by applying consecutively the following
estimates:

1) 〈∇a · w, |w|q−2(−b · w)〉 ≤ P
1
2
q B

1
2
q .

2) 〈(a − I)i�∇iw�, |w|q−2(−b · w)〉 ≤ ‖a − I‖∞I
1
2
q B

1
2
q ≤ ‖a − I‖∞(α1Bq +

1
4α1

Iq
)
.

3) 〈μu, |w|q−2b · w〉 ≤ μ
μ−ωq

B
1
2
q ‖w‖

q−2
2

q ‖h‖q for all μ > ωq := λ
√
δ

2(q−1) .

Indeed, 〈μu, |w|q−2(−b · w)〉 ≤ μB
1
2
q ‖w‖

q−2
2

q ‖u‖q and, by Theorem A.1, ‖u‖q � (μ − ωq)−1‖h‖q,
μ > ωq.

4) 〈b · w, |w|q−2b · w〉 ≤ Bq.

5) 〈h, |w|q−2(−b · w)〉| ≤ B
1
2
q ‖w‖

q−2
2

q ‖h‖q.
In 3) and 5) we estimate B

1
2
q ‖w‖

q−2
2

q ‖h‖q ≤ ε0Bq +
1

4ε0
‖w‖q−2

q ‖h‖2q (ε0 > 0).
The above estimates yield:

〈−b · w, φ〉 = F1 + F2

≤ P
1
2
q B

1
2
q + ‖a − I‖∞I

1
2
q B

1
2
q + Bq + (q − 2)B

1
2
q J

1
2
q

+ ε0

(
μ

μ − μ1
+ 1

)
Bq +C′2(ε0)‖w‖q−2

q ‖h‖2q.

Selecting ε0 > 0 sufficiently small, using that the assumption on δ, δa are strict inequalities,
we can and will ignore below the terms multiplied by ε0.

Finally, we use in the last estimate: By b ∈ Fδ,

Bq ≤ q2

4
δJq + λδ〈|w|q〉

(cf. (9)), and by ∇a ∈ Fδa ,

Pq ≤ q2

4
δaJq + λδa‖w‖qq.

This yields Claim 2. �

We estimate the term 〈h, φ〉 in (•) as follows.

Claim 3. For each ε0 > 0 there exists a constant C = C(ε0) < ∞ such that

〈h, φ〉 ≤ ε0Iq +C‖w‖q−2
q ‖h‖2q.

Proof of Claim 3. We have:

〈h, φ〉 = 〈−Δu, |w|q−2h〉 − (q − 2)〈|w|q−3w · ∇|w|, h〉 =: F1 + F2.

Due to |Δu|2 ≤ d|∇rw|2 and 〈|w|q−2h2〉 ≤ ‖w‖q−2
q ‖h‖2q,

F1 ≤
√

dI
1
2
q ‖w‖

q−2
2

q ‖h‖q, F2 ≤ (q − 2)J
1
2
q ‖w‖

q−2
2

q ‖h‖q.
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Now the standard quadratic estimates yield Claim 3. �

We now apply Claims 1, 2 and 3 in (•). Since the assumption on γ, δ, δa in the theorem
are strict inequalities, select ε0 > 0 sufficiently small so that we can ignore the term ε0Iq

from Claim 3. We arrive at: There exists μ0 > 0 such that for all μ > μ0

(μ − μ0)‖w‖qq + (1 − M1 − M2)Iq + (q − 2 − N1 − N2)Jq ≤ C‖h‖qq,
We select α = β := 1

q
√
γ
, α1 := 1

q
√
δ
. By the assumptions of the theorem, the coefficient of Iq

1 − M1 − M2 = 1 − q
4

(
√
γ + ‖a − I‖∞

√
δ) is positive,

so, by Iq ≥ Jq,

(μ − μ0)‖w‖qq +
[
(q − 1)

(
1 − q

√
γ

2
) − (
√
δ
√
δa + δ)

q2

4
− (q − 2)

q
√
δ

2
− ‖a − I‖∞ q

√
δ

2

]
Jq

≤ C‖h‖qq.
By the assumptions of the theorem the coefficient of Jq is positive. Thus, we have

(μ − μ0)‖w‖qq + cJq ≤ C‖h‖qq, c > 0.

In particular, (μ − μ0)‖w‖qq ≤ C‖h‖qq, which yields immediately the first estimate in (∗∗).
Applying the Sobolev Embedding Theorem in Jq =

4
q2 〈(∇|∇u| q2 )2〉, we obtain the second

estimate in (∗∗).
The proof of Lemma 1 is completed. �

5.2. Iteration procedure.
5.2. Iteration procedure. The iteration procedure works for an arbitrary uniformly el-

liptic matrix a ∈ (Hu).
Define t[u, v] := 〈∇u · a · ∇v̄〉, D(t) = W1,2. There is a unique self-adjoint operator A ≡

A2 ≥ 0 on L2 associated with the form t: D(A) ⊂ D(t), 〈Au, v〉 = t[u, v], u ∈ D(A), v ∈ D(t).
−A is the generator of a positivity preserving L∞ contraction C0 semigroup T t

2 ≡ e−tA, t ≥ 0,
on L2. Then T t

r := [T t � Lr ∩ L2]Lr→Lr determines C0 semigroup on Lr for all r ∈]1,∞[. The
generator −Ar of T t

r (≡ e−tAr ) is the desired operator realization of ∇ · a · ∇ in Lr, r ∈]1,∞[.
(One can furthermore show that T t extends to a contraction C0 semigroup on L1.)

Definition 1. A vector field b : Rd → Rd belongs to Fδ1 (A), δ1 > 0, the class of vector
fields form-bounded with respect to A ≡ A2, if b2

a := b · a−1 · b ∈ L1
loc and there exists a

constant λ = λ(δ1) > 0 such that

‖ba(λ + A)−
1
2 ‖2→2 ≤

√
δ1.

Remark 3. It is easily seen that if a ≥ I (as in Theorem 1), then b ∈ Fδ ≡ Fδ(−Δ) ⇒
b ∈ Fδ1 (A) with δ1 = δ.

Consider

{an}∞n=1 ⊂ C1(Rd,Rd ⊗ Rd) ∩ (Hu) with σ � σ(n), ξ � ξ(n),

and
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{bn}∞n=1 ⊂ C1(Rd,Rd) ∩
⋂
m≥1

Fδ1 (A
m), δ1 < 1, Am ≡ A(am), with λ � λ(n,m).

(It is easily seen that an, bn in Theorem 1 satisfy these assumptions.)
By Theorem A.1 below, −Λr(an, bn) := ∇ · an · ∇ − bn · ∇, D(Λr(an, bn)) = W2,r, is the

generator of a positivity preserving L∞ contraction quasi contraction C0 semigroup on Lr,
r ∈] 2

2−√δ ,∞[, with the resolvent set of −Λr(an, bn) containing μ > λδ1
2(r−1) for all n ≥ 1.

Set un := (μ + Λr(an, bn))−1 f , f ∈ L1 ∩ L∞ and

g := um − un.

Lemma 2 (The iteration inequality). There are positive constants C = C(d), k = k(δ1)
such that

‖g‖r j ≤ (
Cσ−1(δ1 + 2ξσ−1)(1 + 2ξ)‖∇um‖2q j

) 1
r
(
r2k) 1

r ‖g‖1− 2
r

s′(r−2),

where q ∈ ] 2
2−√δ1

∨ (d − 2), 2√
δ1

[
, 2s = q j, j = d

d−2 , s′ := s
s−1 and s′(r − 2) > 2

2−√δ1
, μ > λ.

Proof. Write bn ∈ Fδ1 (A
m) equivalently as

〈bn · a−1
m · bn, |ϕ|2〉 ≤ δ1〈∇ϕ · am · ∇ϕ̄〉 + λδ1〈|ϕ|2〉, ϕ ∈ W1,2.

Let ψ = g|g|r−2, v = g|g| r−2
2 . We multiply the equation

(μ + Λq(an, bn))g = F, where F := ∇ · (am − an) · ∇um + (bn − bm) · ∇um,

by ψ and integrate to obtain

μ‖v‖22 +
4

rr′
〈∇v · an · ∇v〉

= −2
r
〈v, bn · ∇v〉 + 〈∇ · (am − an) · ∇um, v|v|1− 2

r 〉 + 〈(bn − bm) · ∇um, v|v|1− 2
r 〉.

We estimate the terms in the RHS as follows. By the quadratic inequality, using bn ∈ Fδ1 (A
n),

|〈v, bn · ∇v〉| ≤ ε〈bn · a−1
n · bn, |v|2〉 + (4ε)−1〈∇v · an · ∇v〉

≤ (εδ1 + (4ε)−1)〈∇v · an · ∇v〉 + ελδ1‖v‖22
=

√
δ1〈∇v · an · ∇v〉 + (2

√
δ1)−1λδ1‖v‖22 (ε = (2

√
δ1)−1).

〈∇ · (am − an) · ∇um, v|v|1− 2
r 〉 = −

(
2 − 2

r

)
〈(am − an) · ∇um, |v|1− 2

r∇v〉

≤
(
2 − 2

r

)
ξ
(
β‖∇v‖22 + β−1‖ |v|1− 2

r |∇um| ‖22
)

(β > 0)

≤ 2ξ
(
βσ−1〈∇v · an · ∇v〉 + β−1‖ |v|1− 2

r |∇um| ‖22
)
.

〈(bn − bm) · ∇um, v|v|1− 2
r 〉 ≤ 〈(|bn| + |bm|)|v|, |v|1− 2

r |∇um|〉 (bn, bm ∈ Fδ1 (A
n))

≤ βδ1〈∇v · an · ∇v〉 + βλδ1‖v‖22 + β−1‖ |v|1− 2
r |∇um| ‖22.

Thus, we obtain
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[
μ −

(1
r

1√
δ1
+ β

)
λδ1

]
‖v‖22 +

( 4
rr′
− 2

r

√
δ1 − β(δ1 + 2ξσ−1))〈∇v · an · ∇v〉

≤ (1 + 2ξ)β−1‖ |v|1− 2
r |∇um| ‖22.

Since r > 2
2−√δ1

⇔ 2
r′ −
√
δ1 > 0, we can fix k > 1 sufficiently large so that 4

rr′ − 2
r

√
δ1 =

2
r
( 2

r′ −
√
δ1

)
> 2r−k. Fix β by β(δ1 + 2ξσ−1) = 4

rr′ − 2
r

√
δ1 − r−k (≥ r−k). Thus

[
μ −

(1
r

1√
δ1
+ β

)
λδ1

]
‖v‖22 + r−k〈∇v · an · ∇v〉

≤ (δ1 + 2ξσ−1)(1 + 2ξ)rk‖ |v|1− 2
r |∇um| ‖22.

The choice of μ (μ > λ) ensures that the expression in the square brackets is strictly positive.
Indeed, μ − ( 1

r
1√
δ1
+ β

)
λδ1 > μ − ( 1

r
1√
δ1
+

( 4
rr′ − 2

r

√
δ1

) 1
δ1+2ξσ−1

)
λδ1 > μ − λ. Thus

〈∇v · an · ∇v〉 ≤ (δ1 + 2ξσ−1)(1 + 2ξ)r2k‖∇um‖22s‖v‖2(1− 2
r )

2s′(1− 2
r )
,

and so

‖∇v‖22 ≤ σ−1(δ1 + 2ξσ−1)(1 + 2ξ)r2k‖∇um‖22s‖v‖2(1− 2
r )

2s′(1− 2
r )
.

By the Sobolev Embedding Theorem, cd‖v‖22 j ≤ ‖∇v‖22.
The proof of Lemma 2 is completed. �

Lemma 3. In the notation of Lemma 2, assume that supm ‖∇um‖2q j < ∞, μ > μ0. Then for
any r0 >

2
2−√δ1

‖g‖∞ ≤ B‖g‖γr0 , μ ≥ 1 + μ0 ∨ λδ1,

where γ =
(
1 − s′

j
)(

1 − s′
j +

2s′
r0

)−1
> 0, and B = B(d, δ1) < ∞.

Proof. Let D := Cσ−1(δ1 + 2ξσ−1)(1 + 2ξ) supm ‖∇um‖2q j < ∞. We iterate the inequality
of Lemma 2,

(�) ‖g‖r j ≤ D
1
r (r

1
r )2k‖g‖1− 2

r
s′(r−2)

as follows. Successively setting s′(r1 − 2) = r0, s′(r2 − 2) = jr1, s′(r3 − 2) = jr2, . . . so that
rn = (t − 1)−1(tn( r0

s′ + 2) − tn−1 r0
s′ − 2

)
, where t = j

s′ > 1, we get from (�)

‖g‖rn j ≤ DαnΓn‖g‖γn
r0 ,

where

αn =
1
r1

(
1 − 2

r2

)(
1 − 2

r3

)
. . .

(
1 − 2

rn

)
+

1
r2

(
1 − 2

r3

)(
1 − 2

r4

)
. . .

(
1 − 2

rn

)

+ · · · + 1
rn−1

(
1 − 2

rn

)
+

1
rn

;

γn =

(
1 − 2

r1

)(
1 − 2

r2

)
. . .

(
1 − 2

rn

)
;

Γn =

[
rr−1

n
n rr−1

n−1(1−2r−1
n )

n−1 rr−1
n−2(1−2r−1

n−1)(1−2r−1
n )

n−2 . . . rr−1
1 (1−2r−1

2 )...(1−2r−1
n )

1

]2k
.
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Since αn = tn − r−1
n (t − 1)−1 and γn = r0tn−1(s′rn)−1,

αn ≤ α ≡
(r0

s′
+ 2 − r0

j

)−1
,

and

inf
n
γn > γ =

(
1 − s′

j

)(
1 − s′

j
+

2s′

r0

)−1
> 0, sup

n
γn < 1.

Note that ‖g‖r0 → 0 as n,m → ∞ (Theorem A.1), and so ‖g‖γn
r0 ≤ ‖g‖γr0 for all large enough

n,m.
Finally, since

Γ
1
2k
n = rr−1

n
n rtr−1

n
n−1rt2r−1

n
n−2 . . . rtn−1r−1

n
1 and btn ≤ rn ≤ atn,

where a = r1(t − 1)−1, b = r1t−1, we have

Γ
1
2k
n ≤ (atn)(btn)−1

(atn−1)(btn−1)−1
. . . (at)(bt)−1

=

[
atn−t−n(t−1)−1

t
∑n

i=1 it−i
] 1

b ≤
[
a(t−1)−1

bt(t−1)2
] 1

b

.

The proof of Lemma 3 is completed. �

Remark. That γ is strictly greater than 0 is the main concern of the iteration procedure.

5.3. Proof of Proposition 1.
5.3. Proof of Proposition 1. Let a be as in the assumptions of the theorem. By Theorem

A.1, un := (μ +Λr0 (an, bn))−1 f , f ∈ L1 ∩ L∞, are well defined for all μ > λδ
2(r0−1) (we use that

b ∈ Fδ ⇒ b ∈ Fδ1 (A) with δ1 = δ since a ≥ I).
The second inequality in (∗∗) verifies the assumptions of Lemma 3, which in turn yields

‖un − um‖∞ ≤ B‖un − um‖γr0 , r0 > 2, γ > 0.

Since by Theorem A.1 the sequence {un} is fundamental in Lr0 , we obtain that {un} is funda-
mental in C∞.

We will also need

Lemma 4. Let Un := (μ + Λr0 (an, bn))−1F, μ > λ, F := (−∇ · (an − I) · ∇ + bn · ∇)(μ −
Δ)−1 f , f ∈ C1

c . There are constants 0 < γ̃ ≤ 1, B̃ and B̂ independent of n such that

‖Un‖∞ ≤ B̃‖Un‖γ̃r0 ,

‖μUn‖∞ ≤ B̂‖μUn‖γ̃r0

whenever r0 >
2

2−√δ1
.

Proof. Arguing exactly as in the proof of Lemma 2, we obtain the inequalities

‖Un‖r j ≤ (Cδ1‖∇(μ − Δ)−1 f ‖2q j)
1
r (r2k)

1
r ‖Un‖1−

2
r

x′(r−2),

‖μUn‖r j ≤ (Cδ1‖∇ f ‖2q j)
1
r (r2k)

1
r ‖μUn‖1−

2
r

x′(r−2);
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their iteration provides the required result. �

Lemma 5. In the notation of Lemma 4, we have

‖μUn‖r ≤
(8

r

( 2
r′
− √

δ1

))− 1
2
(
μ − λδ1

δ1

)− 1
2 ‖∇ f ‖r

whenever r > 2
2−√δ1

.

Proof. Arguing again as in the proof of Lemma 2, we obtain the inequality (β > 0)[
μ −

(1
r

1√
δ1
+ β

)
λδ1

]
‖v‖22 +

( 4
rr′
− 2

r

√
δ1 − βδ1

)
‖∇v‖22 ≤ (4β)−1‖ |v|1− 2

r | fμ| ‖22,

where v := Un|U |
r−2

2
n and fμ := ∇(μ − Δ)−1 f . Putting here βδ1 =

4
rr′ − 2

r

√
δ1 and noticing that

δ1

[
μ −

(1
r

1√
δ1
+ β

)
λδ1

]
= μ − λ

( 4
rr′
−
√
δ1

r

)
≥ μ − λ,

we have
8
r

( 2
r′
− √

δ1

)
(μ − λ)‖v‖22 ≤ δ1‖v‖2(1− 2

r )
2 ‖ fμ‖2r .

It remains to note that ‖ fμ‖r ≤ μ−1‖∇ f ‖r. �

Lemma 6. s-C∞- limμ↑∞ μ(μ + ΛC∞(an, bn))−1 = 1 uniformly in n.

Proof. Clearly it suffices to show that

lim
μ↑∞

sup
n
‖μ[(μ + Λr(an, bn))−1 − (μ − Δ)−1] f ‖∞ = 0 for all f ∈ C1

c .

Since

− [
(μ + Λr(an, bn))−1 − (μ − Δ)−1] f

= (μ + Λr(an, bn))−1(−∇ · (an − I) · ∇ + bn · ∇)(μ − Δ)−1 f = Un,

we obtain by Lemma 4 and Lemma 5 that

‖μUn‖∞ ≤ B̂‖μUn‖γ̃r0 ≤ Ḃ(μ − λ)−
γ̃
2 ‖∇ f ‖γ̃r0 ,

which yields the required. �

We are in position to complete the proof of Proposition 1.
The fact that {un} is fundamental in C∞, and Lemma 6, verify conditions of the Trotter

Approximation Theorem [10, Ch. IX, sect. 2]: the limit

s-C∞- lim e−tΛC∞ (an,bn) (loc. uniformly in t ≥ 0)

exists and determines a contraction C0 semigroup on C∞, e−tΛC∞ (a,b). The latter is positivity
preserving since e−tΛC∞ (an,bn) are. Thus, e−tΛC∞ (a,b) is a Feller semigroup.

By the construction of e−tΛC∞ (a,b), we have the following consistency property:

(10) (μ + ΛC∞(a, b))−1 =
(
(μ + Λq(a, b))−1 � Lq ∩C∞

)clos
C∞→C∞ , μ > μ0.
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The last assertion of Proposition 1 now follows (10), (∗∗) and the Sobolev Embedding The-
orem.

The proof of Proposition 1 is completed.
The proof of assertion (i) of Theorem 1 is completed.

6. Proof of Theorem 1(ii),(iii): The martingale problem

6. Proof of Theorem 1(ii),(iii): The martingale problem
The Feller semigroup e−tΛC∞ (a,∇a+b) and the next two estimates will allow us to use the

approach of [15] where we considered the case a = I.

Lemma 7. In the assumptions of Theorem 1, there exist constants μ0 > 0 and Ci =

Ci(δ, δa, γ, q, μ), i = 1, 2, such that, for all h ∈ Cc and μ > μ0, we have:

(11)
∥∥∥(μ + ΛC∞(a,∇a + b))−1|bm|h

∥∥∥∞ ≤ C1‖|bm| 2q h‖q,

(12) ‖(μ + ΛC∞(a,∇a + b))−1|bm − bn|h‖∞ ≤ C2
∥∥∥|bm − bn| 2q h

∥∥∥
q.

We will also need a weighted variant of Lemma 7 . Define the weight

ρ(y) ≡ ρl(y) := (1 + l|y|2)−ν, ν >
d
2q
+ 1, l > 0, y ∈ Rd.

Clearly,

(13) |∇ρ| ≤ ν√lρ, |Δρ| ≤ 2ν(2ν + d + 2)lρ.

Lemma 8. In the assumptions of Theorem 1, there exist constants μ0 > 0 and K1 =

K1(δ, γ, δa, q) and K2 = K2(δ, γ, δa, q, μ) such that, for all h ∈ Cc(Rd), μ > μ0 and sufficiently
small l = l(δ, γ, δa, q) > 0, we have:

(E1)
∥∥∥ρ(μ + ΛC∞(an,∇an + bn))−1h

∥∥∥∞ ≤ K1‖ρh‖q,

(E2)
∥∥∥ρ(μ + ΛC∞(an,∇an + bn))−1|bm|h

∥∥∥∞ ≤ K2‖|bm| 2q ρh‖q.
We need the weight ρ in order to control the behaviour of the semigroups e−tΛC∞ (an,∇an+bn)

at infinity in absence of a uniform (in n) Gaussian upper bound on their integral kernels.
We prove Lemma 7 and Lemma 8 in the next section.

We return to the proof of assertions (ii) and (iii) of Theorem 1. By construction,

(14) e−tΛC∞ (a,∇a+b) = s-C∞- lim e−tΛC∞ (an,∇an+bn) (loc. uniformly in t ≥ 0),

where ΛC∞(an,∇an + bn) := −an · ∇2 + bn · ∇, D(ΛC∞(an,∇an + bn)) := (1 − Δ)−1C∞.
Let Pn

x be the probability measures associated with e−tΛC∞ (an,∇an+bn), n = 1, 2, . . .
Set Ex := EPx , and En

x := EPn
x .

Lemma 9. For every x ∈ Rd and t > 0, Px[X(t) = ∞] = 0.

The proof repeats the proof of [15, Lemma 2], where we use crucially estimate (E1) of
Lemma 8. Lemma 9 yields Theorem 1(ii).

Set ΩD := D([0,∞[,Rd), the subspace of Ω̄D (:= D([0,∞[, R̄d)) consisting of the trajec-
tories X(t) � ∞, 0 ≤ t < ∞. Let  ′t := σ(X(s) | 0 ≤ s ≤ t, X ∈ ΩD),  ′∞ := σ(X(s) | 0 ≤
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s < ∞, X ∈ ΩD). By Lemma 9, (ΩD,
′∞) has full Px-measure in (Ω̄D,∞). We denote the

restriction of Px from (Ω̄D,∞) to (ΩD,
′∞) again by Px.

Lemma 10. For every x ∈ Rd and g ∈ C∞c (Rd),

g(X(t)) − g(x) +
∫ t

0
(−a · ∇2g + b · ∇g)(X(s))ds,

is a martingale relative to (ΩD,
′
t , Px).

The proof follows the proof of [15, Lemma 3] where we apply estimates (11) and (12) of
Lemma 7.

Armed with Lemma 10, we show, repeating the proof of [15, Lemma 4], that for each
x ∈ Rd, Ω has full Px-measure in ΩD. We denote the restriction of Px from (ΩD,

′∞) to
(Ω,∞) again by Px. In view of Lemma 10, we obtain

Lemma 11. For every x ∈ Rd and g ∈ C∞c (Rd),

g(X(t)) − g(x) +
∫ t

0
(−a · ∇2g + b · ∇g)(X(s))ds, X ∈ Ω,

is a continuous martingale relative to (Ω,t, Px).

Using Lemma 11 and estimate (E2) of Lemma 8, we follow the proof of [15, Lemma 5]
to obtain

Lemma 12. For every x ∈ Rd and t > 0, Ex
∫ t

0 |b(X(s))|ds < ∞, and, for f (y) = yi or
f (y) = yiy j, 1 ≤ i, j ≤ d,

f (X(t)) − f (x) +
∫ t

0
(−a · ∇2 f + b · ∇ f )(X(s))ds, X ∈ Ω,

is a continuous martingale relative to (Ω,t, Px).

Lemma 12 yields Theorem 1(iii).
The proof of Theorem 1(ii)(iii) is completed.

7. Proofs of Lemmas 7 and 8

7. Proofs of Lemmas 7 and 8
The proof of Lemma 7 is obtained via a simple modification of the proof of Lemma 8.

We will attend to it in the end of this section.

Proof of Lemma 8 . We follow the proof of Lemma 1. Since an, bn are C∞ smooth, we
have, in view of Theorem A.1, for all μ > λδ

2(q−1)

(μ + ΛC∞(an,∇an + bn))−1 � C∞ ∩ Lq = (μ + Λq(an,∇an + bn))−1 � C∞ ∩ Lq,

(note that, by our assumptions, ∇an + bn ∈ Fδa+δ with δa + δ < 1).
Thus, it suffices to prove estimates (E1), (E2) in Lemma 8 for (μ + Λq(an,∇an + bn))−1.
Set An

q := −∇ · an · ∇, D(An
q) := W2,q. To shorten the proof, we introduce notation

b̂n := ∇an + bn ∈ Fδ0 , δ0 := δa + δ.

Put
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0 ≤ un := (μ + Λq(an, b̂n))−1h, 0 ≤ h ∈ C1
c ,

where Λq(an, b̂n) = An
q + b̂n · ∇ (= −an · ∇2 + bn · ∇), D(Λq(an, b̂n)) = W2,q, n ≥ 1. Clearly,

since an, bn ∈ C∞, we have un ∈ W3,q.
For brevity, we omit index n everywhere below, and write u ≡ un, a ≡ an, b̂ ≡ b̂n, Aq ≡ An

q.
Set

η := ρq, w := ∇u, Iq :=
d∑

r=1

〈(∇rw)2|w|q−2η〉, Jq := 〈(∇|w|)2|w|q−2η〉,

Ia
q :=

d∑
r=1

〈(∇rw · a · ∇rw)|w|q−2η〉, Ja
q := 〈(∇|w| · a · ∇|w|)|w|q−2η〉.

By (13),

(15) |∇η| ≤ c1
√

lη, |Δη| ≤ c2lη.

Recall [F,G] := FG −GF.

Proof of (E1). We multiply the equation μu + Λq(a, b̂)u = h by the test function

φ := −∇ · (ηw|w|q−2) ≡ −
d∑

r=1

∇r(ηwr |w|q−2)

and integrate:

μ〈η|w|q〉 + 〈Aqw, ηw|w|q−2〉 + 〈[∇, Aq]u, ηw|w|q−2〉 = 〈−b̂ · ∇u, φ〉 + 〈h, φ〉,

μ〈η|w|q〉 + Ia
q + (q − 2)Ja

q + R1
q + 〈[∇, Aq]u, ηw|w|q−2〉 = 〈−b̂ · ∇u, φ〉 + 〈h, φ〉,

where R1
q := 〈∇η · a · ∇|w|, |w|q−1〉.

We will get rid of the terms containing ∇η, which we denote by Rk
q, towards the end of

the proof, by selecting the constant l in the definition of η = ρq to be sufficiently small, and
then appealing to the estimates (15).

By our assumption a ≥ I, and so Ia
q ≥ Iq, Ja

q ≥ Jq. We obtain the principal inequality

(••) μ〈η|w|q〉 + Iq + (q − 2)Jq ≤ −〈[∇, Aq]u, ηw|w|q−2〉 + 〈−b̂ · ∇u, φ〉 + 〈h, φ〉 − R1
q.

We estimate 〈[∇, Aq]u, ηw|w|q−2〉 :=
∑d

r=1〈[∇r, Aq]u, ηwr |w|q−2〉 first. Below we omit the
summation sign in repeated indices.

Claim 4.

|〈[∇r, Aq]u, ηwr |w|q−2〉| ≤ αγq2

4
Jq +

1
4α

Iq + (q − 2)
[
βγ

q2

4
+

1
4β

]
Jq γ =

∑
r,�

γr�

+ R2
q +

(
α + (q − 2)β

)
R3

q +
(
α + (q − 2)β

)
λγ〈η|w|q〉, (α, β > 0)

where R2
q := 〈(∇rai�)w�, wr |w|q−2∇iη〉, R3

q := q
2〈∇|w|, |w|q−1∇η〉 + 1

4 〈|w|q (∇η)2

η
〉.

The proof repeats the proof of Claim 1.
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Claim 5. There exist constants Ci (i = 0, 1, 2) such that

〈−b̂ · w, φ〉 ≤
[(√

δ0
√
δa + δ0

)q2

4
+ (q − 2)

q
√
δ0

2

]
Jq

+ ‖a − I‖∞
[
α1δ0

q2

4
Jq +

1
4α1

Iq

]
+C0‖η 1

qw‖qq +C1‖η 1
qw‖q−2

q ‖η
1
q h‖2q +C2R3

q + R4
q,

where R4
q := −〈∇η, w|w|q−2(−b̂ · w)〉〉, and α1 > 0.

Proof. The proof repeats the proof of Claim 2, with 3) replaced by

3◦) 〈μu, η|w|q−2b̂ · w〉 ≤ μ
μ−μ1

B
1
2
q ‖η

1
qw‖

q−2
2

q ‖η
1
q h‖q for some μ1 > 0, for all μ > μ1.

Indeed, 〈μu, η|w|q−2(−b̂ · w)〉 ≤ μB
1
2
q ‖η

1
qw‖

q−2
2

q ‖η
1
q u‖q and ‖η 1

q u‖q � (μ − μ1)−1‖η 1
q h‖q, μ > μ1,

for appropriate μ1 > 0. To prove the last estimate, we multiply (μ + Λq(a, b̂))u = h by ηuq−1

to obtain

μ〈u, ηuq−1〉 − 〈∇ · a · w, ηuq−1〉 = 〈−b̂ · w, ηuq−1〉 + 〈h, ηuq−1〉,

μ‖η 1
q u‖qq + 4(q − 1)

q2 〈η∇u
q
2 · a · ∇u

q
2 〉 + R5

q = 〈−b̂ · w, ηuq−1〉 + 〈h, ηuq−1〉,

where R5
q := 2

q
〈
a · ∇u

q
2 , (∇η)u

q
2
〉
. In the RHS we apply the quadratic inequality to 〈−b̂ ·

∇u, ηuq−1〉 to obtain:

μ‖η 1
q u‖qq + 4(q − 1)

q2 〈η∇u
q
2 · a · ∇u

q
2 〉 + R5

q

≤ κ2
q
〈η(∇u

q
2 )2〉 + 1

2κq
〈ηb̂2uq〉 + 〈h, ηuq−1〉 (κ > 0),

μ‖η 1
q u‖qq + 4(q − 1)

q2 〈η∇u
q
2 · a · ∇u

q
2 〉 + R5

q

≤ κ2
q
〈η(∇u

q
2 )2〉 + 1

2κq
〈ηb̂2uq〉 + ‖η 1

q h‖q‖η 1
q u‖q−1

q .

Since a ≥ I, we can replace in the LHS 〈η∇u
q
2 · a · ∇u

q
2 〉 by 〈η(∇u

q
2 )2〉. By b̂ ∈ Fδ0 ,

〈ηb̂2uq〉 ≤ δ0〈η(∇u
q
2 )2〉 + 2〈∇u

q
2 ,∇η〉 + 〈(∇η)2uq〉 + λδ0〈ηuq〉, and thus we arrive at

(
μ − μ1

)‖η 1
q u‖qq +

[4(q − 1)
q2 − κ2

q
− 1

2κq
δ0

]
〈η(∇u

q
2 )2〉 ≤ −R5

q + R6
q + ‖η

1
q h‖q‖η 1

q u‖q−1
q ,

where μ1 := λδ0, R6
q := 1

2κq
(
2〈∇u

q
2 ,∇η〉 + 〈(∇η)2uq〉). We select κ :=

√
δ0
2 . Since by the

assumptions of the lemma q > 2
2−√δ0

, the coefficient of 〈η(∇u
q
2 )2〉 is positive. In turn, by

(15),

−R5
q ≤ c2

√
l‖a‖∞〈|∇u

q
2 |, ηu

q
2
〉 ≤ c2

2

√
l‖a‖∞(〈η(∇u

q
2 )2〉 + 〈ηuq〉).

We estimate R6
q similarly. The required estimate (μ − μ1)‖η 1

q u‖q ≤ ‖η 1
q h‖q now follows upon

selecting l in the definition of η (= ρq) sufficiently small at expense of increasing μ1 slightly.
This completes the proof of 3◦). �
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Claim 6. For each ε0 > 0 there exists a constant C = C(ε0) < ∞ such that

〈h, φ〉 ≤ ε0Iq +C‖η 1
qw‖q−2

q ‖η
1
q h‖2q + R7

q,

where R7
q := −〈∇η · w|w|q−2, h〉.

The proof repeats the proof of Claim 3.
Claims 4, 5 and 6 applied in (•) yield (assuming ε0 > 0 is chosen sufficiently small):

There exists μ0 > μ1 such that

(μ − μ0)‖η 1
qw‖qq + Iq + (q − 2)Jq − αγ q2

4 Jq − 1
4α Iq − (q − 2)

[
βγ q2

4 +
1

4β

]
Jq

−
(
(
√
δ0
√
δa + δ0) q2

4 + (q − 2) q
√
δ0

2

)
Jq − ‖a − I‖∞

(
α1δ0

q2

4 Jq +
1

4α1
Iq

)
≤ C‖η 1

q h‖qq − R1
q + R2

q +CR3
q + R4

q + R7
q, α = β := 1

q
√
γ
, α1 := 1

q
√
δ0
.

By the assumptions of the theorem, the coefficient of Iq, 1 − q
4 (
√
γ + ‖a − I‖∞√δ0) − ε0 is

positive, so by Iq ≥ Jq we have

(μ − μ0)‖η 1
qw‖qq +

[
(q − 1)

(
1 − q

√
γ

2
) − (

√
δ0

√
δa + δ0)

q2

4
− (q − 2)

q
√
δ0

2
− ‖a − I‖∞ q

√
δ0

2

]
Jq

≤ C‖η 1
q h‖qq − R1

q + R2
q +CR3

q + R4
q + R7

q.

By the assumptions of the theorem the coefficient of Jq is positive. Selecting l in the defini-
tion of η sufficiently small, we eliminate the terms Rk

q (k = 1, 2, 3, 4, 7) using the estimates
(15) as in the proof of 3◦), at expense of increasing μ0 and decreasing the coefficient of Jq

slightly, arriving at

(μ − μ0)‖η 1
qw‖qq + cJq ≤ C‖η 1

q h‖qq, c > 0.

In Jq ≡ 4
q2 〈η(∇|∇u| q2 )2〉, we commute η and ∇ using (15), arriving at

〈(∇|∇(η
1
q u)| q2 )2〉 ≤ C′‖η 1

q h‖qq.
Applying the Sobolev Embedding Theorem twice, we obtain (E1).

Proof of (E2). We modify the proof of Lemma 1 by including the weight η in the same
way as in the proof of (E1) above, and replacing h by |bm|h. Now u = (μ + Λq(a, b̂))−1|bm|h,
where 0 � h ∈ Cc.

We obtain an obvious analogue of Claim 2 as follows:
We replace 3) in its proof with

3′) 〈b̂ · w, η|w|q−2μun〉 � μC(μ)B
1
2
q ‖η

1
qw‖

q−2
2

q ‖η
1
q |bm| 2q h‖q,

where we have used ‖η 1
q un‖q � C(μ)‖η 1

q |bm| 2q h‖q. The proof of the last estimate follows the
proof of the analogous estimate in 3◦), but now we estimate 〈h, ηuq−1〉 by Young’s inequality:

〈|bm|h, ηuq−1〉 ≤ q − 1
q

σ
q

q−1 〈η|bm|
q−2
q−1 uq〉 + σ

−q

q
〈η|bm|2hq〉 (σ > 0)

≤ q − 1
q

σ
q

q−1 〈η(1 + |bm|2)uq〉 + σ
−q

q
〈η|bm|2hq〉.

It remains to apply bm ∈ Fδ in order to estimate 〈η(1+ |bm|2)uq〉 in terms of 〈η(∇u
q
2 )2〉, ‖η 1

q u‖qq
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and the terms containing ∇η which can be discarded at expense on increasing μ0. Selecting
σ > 0 sufficiently small, we obtain the required estimate.

Next, we replace 5) by

5′) 〈|bm|h, η|w|q−2(−b̂ · w)〉| ≤ B
1
2
q
〈
η(|bm|h)2|w|q−2〉 1

2 , where, in turn,

〈
η(|bm|h)2|w|q−2〉 ≤ q − 2

q
ε

q
q−2

〈
η|bm|2|w|q〉 + 2

q
ε−

2
q
〈
η|bm|2hq〉

(use bm ∈ Fδ)

≤ q − 2
q

ε
q

q−2

[q2

4
δJq + R3

q + λδ〈|w|qη〉
]
+

2
q
ε−

2
q
〈
η|bm|2hq〉(16)

where ε > 0 is to be chosen sufficiently small.
We obtain an analogue of Claim 3 by replacing the estimate 〈|w|q−2h2〉 ≤ ‖w‖q−2

q ‖h‖2q in its
proof by (16). The analogue of R7

q is −〈∇η · w|w|q−2, |bm|h〉, which we eliminate as follows.
By (15),

−〈∇η · w|w|q−2, |bm|h〉 � c2
1l
〈
η(|bm|h)2|w|q−2〉 1

2 ‖η 1
qw‖

q
2
q ,

so applying (16) to the first multiple in the RHS we estimate in the LHS in terms of the
quantities that we can control, by multiplied by the constant l that we can choose arbitrarily
small.

The rest of the proof repeats the proof of (E1). �

Proof of Lemma 7 . The proof of (11) repeats the proof of (E2) with η taken to be ≡ 1
(and so all terms Rk

q disappear). The proof of (12) also repeats the proof of (E2) with η ≡ 1,
where we take into account that bm − bn ∈ Fδ. �

Appendix A

Appendix A
We use notation introduced in the beginning of Section 5.2.

Theorem A.1 ([12, Theorem 4.6]). Let a, an ∈ (Hu), b, bn : Rd → Rd, A ≡ A(a), An ≡
A(an), n = 1, 2, . . . Assume that

(i) b ∈ Fδ1 (A), bn ∈ Fδ1 (A
n), δ1 < 1, with λ � λ(n),

(ii) an → a strongly in L2
loc(Rd,Rd ⊗ Rd), bn → b strongly in L2

loc(Rd,Rd).

Then:
(j) The limit

e−tΛr(a,b) := s-Lr- lim
n→∞ e−tΛr(an,bn) (loc. uniformly in t ≥ 0), r ∈ ] 2

2 − √δ1
,∞[

,

where Λr(an, bn) := −∇ · an · ∇ + bn · ∇, D(Λr(an, bn)) = W2,r, exists and determines a quasi
contraction C0 semigroup on Lr.

(jj) The resolvent set of −Λr(a, b), −Λr(an, bn) contains
{
ζ ∈ C

∣∣∣∣ Reζ > λ
√
δ1

2(r−1)

}
.
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Remark 4. We note that v(t, ·) = e−tΛr(a,b) f (·), f ∈ Lr, is a unique weak solution in Lr to
Cauchy problem for parabolic equation (∂t − ∇ · a · ∇ + b · ∇)v(t, ·) = 0, v(0+, ·) = f (·). See
[29, Theorem 1.1] for details.

Appendix B

Appendix B
The solution to the martingale problem of Theorem 1(iii) is unique in the following sense.

In the assumptions of Theorem 1, let ‖a − I‖∞ + δ < 1. If {Qx}x∈Rd is another solution to the
martingale problem (iv) such that

Qx = w- lim
n
Px(ãn, b̃n) for every x ∈ Rd,

where smooth b̃n, ãn satisfy (C1), (C2) with form-bounds δ̃, γ̃rk, γ̃a (provided that λ � λ(n))
satisfying (2), then {Qx}x∈Rd = {Px}x∈Rd .

Proof. The ideas in the following argument are rather standard, cf. [28, Ch.3, sect. 2].
For f ∈ C∞c , x ∈ Rd, denote

Rn
μ f (x) := EPn

x

∫ ∞

0
e−μs f (X(s))ds

(
= (μ + ΛC∞(ãn,∇ãn + b̃n))−1 f (x)

)
,

RQ
μ f (x) := EQx

∫ ∞

0
e−μs f (X(s))ds, μ > 0.

Let us show that (μ + ΛC∞(a,∇a + b))−1 f (x) = RQ
μ f (x) for all μ > 0 sufficiently large; this

would imply that {Qx}x∈Rd = {Px}x∈Rd .
We have:
1) Rn

μ f (x)→ RQ
μ f (x) (the assumption).

2) ‖RQ
μ f ‖2 � (μ − ω2)−1‖ f ‖2, μ > ω2.

Indeed, Rn
μ f = (μ + Λ2(ãn,∇ãn + b̃n))−1 f , f ∈ C∞c . Since e−tΛ2(ãn,∇ãn+b̃n) is a quasi con-

traction on L2, ‖(μ + Λ2(ãn,∇ãn + b̃n))−1‖2→2 � (μ − ω2)−1, μ > ω2, 0 < ω2 � ω2(n). Thus,
‖Rn

μ f ‖2 � (μ−ω2)−1‖ f ‖2 for all n. Now 2) follows from 1) by a weak compactness argument
in L2.

By 2), RQ
μ admits extension by continuity to L2, which we denote by RQ

μ,2.

3) ‖(−(a − I) · ∇2 + b · ∇)(μ − Δ)−1‖2→2 � ‖a − I‖∞ + δ (we use b ∈ Fδ).
4) (μ + Λ2(a,∇a + b))−1 f = (μ − Δ)−1(1 + (−(a − I) · ∇2 + b · ∇)(μ − Δ)−1)−1 f .
Indeed, by our assumptions ‖a − I‖∞ + δ < 1, so in view of 3) the RHS is well defined.

Clearly, 4) holds for a = an, b = bn. We pass to the limit n→ ∞ using Theorem A.1.
5) (μ + ΛC∞(a,∇a + b))−1 f = RQ

μ f a.e. on Rd.
Indeed, since {Qx} is a weak solution of (SDEI), we have by Itô’s formula

(μ − Δ)−1h = RQ
μ [

(
1 + (−(a − I) · ∇2 + b · ∇)(μ − Δ)−1)h], h ∈ C∞c .

Since ‖(1 + (−(a − I) · ∇2 + b · ∇)(μ − Δ)−1)‖2→2 < ∞ (by 3)), we have, in view of 2),

(μ − Δ)−1g = RQ
μ,2[

(
1 + (−(a − I) · ∇2 + b · ∇)(μ − Δ)−1)g], g ∈ L2.

Take g =
(
1+(−(a− I) ·∇2+b ·∇)(μ−Δ)−1)−1 f , f ∈ C∞c . Then by 4) (μ+Λ2(a,∇a+b))−1 f =
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RQ
μ,2 f . By the consistency property (μ+ΛC∞(a,∇a+b))−1|C∞c ∩L2 = (μ+Λ2(a,∇a+b))−1|C∞c ∩L2 ,

and the result follows.
6) Fix a q > 2 ∨ (d − 2) satisfying the assumptions of Theorem 1. Since Rn

μ f = (μ +
Λq(ãn,∇ãn + b̃n))−1 f , we obtain by (� � �) that for all μ > μ0

‖∇Rn
μ f ‖q j � K‖ f ‖q, j =

d
d − 2

, μ > μ0.

By a weak compactness argument in Lq j, in view of 1), we have |∇RQ
μ f | ∈ Lq j, and there is

a subsequence of {Rn
μ f } (without loss of generality, it is {Rn

μ f } itself) such that

∇Rn
μ f

w−→ ∇RQ
μ f in Lq j(Rd,Rd).

By Mazur’s Lemma, there is a sequence of convex combinations of the elements of
{∇Rn

μ f }∞n=1 that converges to ∇RQ
μ f strongly in Lq j(Rd,Rd), i.e.∑

α

cα∇Rnα
μ f

s−→ ∇RQ
μ f in Lq j(Rd,Rd).

Now, in view of 1), the latter and the Sobolev Embedding Theorem yield
∑
α cαRnα

μ f
s−→

RQ
μ f in C∞. Therefore, by 5), (μ + ΛC∞(a,∇a + b))−1 f (x) = RQ

μ f (x) for all x ∈ Rd, f ∈ C∞c ,
as needed. �
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