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Abstract
We consider one-dimensional stochastic differential equations driven by Cauchy processes

with drift. This driving process is also known as a strictly 1-stable process. In this paper, we
study the pathwise uniqueness of the solution to the stochastic differential equations under a
non-Lipschitz condition on the diffusion coefficient.

1. Introduction and main result

1. Introduction and main result
Let us consider the one-dimensional stochastic differential equation:

Xt = x +
∫ t

0
F(Xs−)dZs,(1)

where Z = (Zt : t ≥ 0) is a Cauchy process with drift parameter γ characterized by the
Lévy–Khintchine representation:

E[eiuZt ] = exp{t(−π|u| + iγu)}.
Note that the Lévy process Z is also called a strictly 1-stable process. In this paper, we shall
study the pathwise uniqueness of the solution to this stochastic differential equation.

Let us recall some known results on the pathwise uniqueness of the solution to the sto-
chastic differential equation:

(2) Xt = x +
∫ t

0
F(Xs−)dZ(α)

s ,

where Z(α) = (Z(α)
t : t ≥ 0) is a strictly α-stable process with 0 < α ≤ 2. When α = 2, that is,

the process Z(2) is a Brownian motion, Yamada and Watanabe [12] have proved the pathwise
uniqueness if F is locally 1/2-Hölder continuous. When 1 < α < 2, the Lévy measure of
the process Z(α) is given by

ναr−,r+(dz) = |z|−α−1{r−1(z<0) + r+1(z>0)}dz,

where r−, r+ are non-negative constants such that r− + r+ > 0, and the drift of the process
Z(α) is given by

γαr−,r+ = −
∫
|z|≥1

zναr−,r+(dz).
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In case of r− = r+, Komatsu [8] and Bass [2] have proved the pathwise uniqueness if F
is locally 1/α-Hölder continuous. In case of r− = 0, Li and Mytnik [9] have done if F is
increasing and locally (α − 1)/α-Hölder continuous. In case of r− ≤ r+, Fournier [5] has
done if F is (α − κ)/α-Hölder continuous where

κ =
1
π

arccos

⎡⎢⎢⎢⎢⎢⎣ (r−/r+)2 sin2(πα) − {
1 + (r−/r+) cos(πα)

}2

(r−/r+)2 sin2(πα) +
{
1 + (r−/r+) cos(πα)

}2

⎤⎥⎥⎥⎥⎥⎦ ∈ [α − 1, 1],

and satisfies that {F(x)−F(y)}sgn(y−x) ≤ C|x−y|where C is a positive constant. Note that κ
satisfies

∫
R\{0}{|1+z|κ−1−κz}ναr−,r+(dz) = 0. In [11], we studied the pathwise uniqueness when

the driving process is a more general Lévy process but α-stable processes with 0 < α ≤ 1
are not included. On the other hand, when the process Z(α) is a symmetric α-stable process,
Bass, Burdzy and Chen [3] have proved that there exists the function F that is bounded
above and below by positive constants and λ-Hölder continuous for 0 < λ < 1 ∧ (1/α), but
under which the pathwise uniqueness fails.

In this paper, we shall consider the stochastic differential equation (1), that is, the equation
(2) where α = 1 and r− = r+ but with an additional drift γ > 0. We may assume that γ > 0
without loss of generality. If γ < 0, we shall consider the equation:

Xt = x +
∫ t

0
F(Xs−)dZs = x +

∫ t

0
F̂(Xs−)dẐs,

where F̂ = −F and Ẑ = −Z is a Cauchy process with drift −γ. Now we state our main result.

Theorem 1.1. Let γ > 0 and set

β =
2
π

arctan
(
γ

π

)
.

Suppose that the coefficient F of the equation satisfies the following conditions:

• the function F is locally (1 − β)-Hölder continuous, that is, for each m ∈ N, there
exists a positive constant C1(m) such that

|F(x) − F(y)| ≤ C1(m)|x − y|1−β for |x|, |y| ≤ m;(3)

• for each m ∈ N, there exists a positive constant C2(m) such that

{F(x) − F(y)}sgn(x − y) ≤ C2(m)|x − y| for |x|, |y| ≤ m.(4)

Then, the solution to the equation (1) is pathwise unique.

Our driving process is a symmetric 1-stable process with non-vanishing drift. If the drift
γ = 0, the result in [3] tells us that the Lipschitz condition on the coefficient F is sharp for
the pathwise uniqueness. However, if γ � 0, our result guarantees the pathwise uniqueness
under the weaker conditions on F.

Remark 1.2. The condition (4) can not be removed because the pathwise uniqueness fails
for the stochastic differential equation (1) with the initial value x = 0 and the coefficient
F(y) = |y|θ where θ ∈ (0, 1):

Xt =

∫ t

0
|Xs−|θdZs.(5)
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To show this, we use the similar argument to the proof of Proposition in [8] and Remark 2.3
in [2]. Let θ ∈ (0, 1). Set

τ(u) =
∫ u

0
|Zs|−θds and τ−1(t) = inf{u ≥ 0 : τ(u) > t}.

We know that E[τ(u)] < ∞ and τ(u)→ ∞ as u→ ∞. Then, applying Theorem 3 in Kallsen
and Shiryaev [7], the process V = (Vt : t ≥ 0) defined by

Vt =

∫ τ−1(t)

0
|Zs−|−θdZs,

is a Cauchy process with drift γ. We define the process U = (Ut : t ≥ 0) by Ut = Zτ−1(t), then
we obtain

Ut =

∫ t

0
|Us−|θdVs.

Hence, (U,V) is a solution to the equation (5) and the process U is not identically zero.
However, (0,V) is also a solution to the equation (5). Therefore, the pathwise uniqueness
fails for the equation (5).

The organization of this paper is as follows: in Section 2, we prepare some notations and
establish the Itô formula for the function given by the convolution of |x|β and a mollifier. In
Section 3, we compute the remainder term of the Itô formula via the Fourier analysis. In
Section 4, we establish the Itô formula for |x|β by the limiting argument, and prove our main
result.

2. Preliminaries

2. Preliminaries
Let C∞c (R) be the elements of C∞(R) with compact support, and (R) the Schwartz space

of rapidly decreasing functions on R.
Let Z = (Zt : t ≥ 0) be a Cauchy process with drift γ. This process is characterized by the

triplet (γ, 0, ν) where ν is the Lévy measure on R0 := R \ {0} given by

ν(dz) = |z|−2dz,

and γ is the drift parameter. In this paper, we are concerned with the case of γ � 0 instead
of γ = 0 which is known as a Cauchy process.

By the Lévy–Khintchine formula, the Lévy symbol η of Z1 is given by

η(u) = E[eiuZ1 ] = exp{−π|u| + iγu}.
By the Lévy–Itô decomposition, it can be represented as

Zt = γt +
∫ t

0

∫
|z|<1

zÑ(ds, dz) +
∫ t

0

∫
|z|≥1

zN(ds, dz),

where N(ds, dz) is a Poisson random measure with the intensity dsν(dz), and Ñ(ds, dz) is
the compensated Poisson random measure given by Ñ(ds, dz) = N(ds, dz) − dsν(dz).

Let x ∈ R and F : R → R be continuous. For i = 1, 2, we shall consider two càdlàg
solutions Xi = (Xi

t : t ≥ 0) to the stochastic differential equation:
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Xi
t = x +

∫ t

0
F(Xi

s−)dZs(6)

= x + γ
∫ t

0
F(Xi

s)ds +
∫ t

0

∫
|z|<1

F(Xi
s−)zÑ(ds, dz) +

∫ t

0

∫
|z|≥1

F(Xi
s−)zN(ds, dz).

Throughout this paper, we assume the existence of weak solutions to the stochastic differ-
ential equation (6). It is known that the stochastic differential equation has a weak solution
under suitable conditions on the coefficient F, see [1, 6, 10, 13]. In this paper, we shall
focus on the pathwise uniqueness of the solution to the equation (6) under a non-Lipschitz
condition on the coefficient F.

For the sake of simplicity of notations, we write

Yt = X1
t − X2

t , Gt = F(X1
t ) − F(X2

t ).

Then, we shall study the difference between the solutions of the equation (6):

Yt = γ

∫ t

0
Gsds +

∫ t

0

∫
|z|<1

Gs−zÑ(ds, dz) +
∫ t

0

∫
|z|≥1

Gs−zN(ds, dz).

Let 0 < β < 1 and set Φ(x) = |x|β. Let ψ : R → R be a mollifier, that is, ψ satisfies that
ψ ∈ C∞c (R), ψ ≥ 0, Suppψ ⊂ [−1, 1] and

∫
R
ψ(x)dx = 1. For n ∈ N, define ψn : R → R by

ψn(x) = nψ(nx). Define the convolution of Φ and ψn by

(Φ ∗ ψn)(x) =
∫
R

Φ(y)ψn(x − y)dy,

and denote Φ ∗ ψn by Φn for the simplicity. For m ∈ N, define the stopping time Tm by

Tm = inf{t > 0 : |X1
t | ∧ |X2

t | > m}.
We establish the following inequality:

Lemma 2.1. For each x, y ∈ R, it holds that

|Φn(x + y) −Φn(x)| ≤ |y|β.
Proof. This follows from the inequality:

|x + y|β ≤ |x|β + |y|β(7)

for each x, y ∈ R. �

Now we can apply the Itô formula for the function Φn and obtain that

Φn(Yt∧Tm) = Φn(0) + γ
∫ t∧Tm

0
Φ′n(Ys)Gsds(8)

+

∫ t∧Tm

0

∫
|z|<1
{Φn(Ys− +Gs−z) −Φn(Ys−)}Ñ(ds, dz)

+

∫ t∧Tm

0

∫
|z|≥1
{Φn(Ys− +Gs−z) −Φn(Ys−)}Ñ(ds, dz)

+

∫ t∧Tm

0

∫
R0

{Φn(Ys +Gsz) −Φn(Ys) −Φ′n(Ys)Gsz1(|z|<1)}ν(dz)ds.
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Remark 2.2. Since Φ′n is bounded, it follows from the mean value theorem that

E

[∫ t∧Tm

0

∫
|z|<1
|Φn(Ys +Gsz) −Φn(Ys)|2ν(dz)ds

]

= E

⎡⎢⎢⎢⎢⎢⎣
∫ t∧Tm

0

∫
|z|<1

∣∣∣∣∣∣
∫ 1

0
Φ′n(Ys +Gsθz)Gszdθ

∣∣∣∣∣∣
2

ν(dz)ds

⎤⎥⎥⎥⎥⎥⎦
≤ 4C3(n)2C4(m)2t

∫
|z|<1

z2ν(dz) = 8C3(n)2C4(m)2t,

where C3(n) = supx∈R |Φ′n(x)| and C4(m) = sup|x|≤m |F(x)|, and hence the 3rd term on the
right-hand side of (8) is a square-integrable martingale.

Remark 2.3. Since F is continuous, it follows from Lemma 2.1 and the inequality (7)
that

E

[∫ t∧Tm

0

∫
|z|≥1
|Φn(Ys +Gsz) −Φn(Ys)|ν(dz)ds

]

≤ E
[∫ t∧Tm

0

∫
|z|≥1
|Gsz|βν(dz)ds

]
≤ 2βC4(m)βt

∫
|z|≥1
|z|βν(dz) =

2β+1C4(m)βt
1 − β ,

where C4(m) is the same constant as in Remark 2.2, and hence the 4th term on the right-hand
side of (8) is a martingale.

Moreover, the last term on the right-hand side of (8) can be represented as follows:

Lemma 2.4. For each m, n ∈ N and t ≥ 0, it holds that∫ t∧Tm

0

∫
R0

{Φn(Ys +Gsz) −Φn(Ys) −Φ′n(Ys)Gsz1(|z|<1)}ν(dz)ds

=

∫ t∧Tm

0
|Gs|

(∫
R0

{Φn(Ys + z) −Φn(Ys) −Φ′n(Ys)z1(|z|<1)}ν(dz)
)

1(GsYs�0)ds.

Proof. It follows that Gs = 0 if Ys = 0. We then have

Φn(Ys +Gsz) −Φn(Ys) −Φ′n(Ys)Gsz1(|z|<1) = 0,

if GsYs = 0. We consider the integrand on (GsYs � 0).
Now, we shall show that∫ t∧Tm

0

∫
R0

Φ′n(Ys)Gsz1(
|z|<

∣∣∣∣ 1
Gs

∣∣∣∣, |z|≥1
)1(∣∣∣∣ 1

Gs

∣∣∣∣>1,GsYs�0
)ν(dz)ds = 0,(9)

∫ t∧Tm

0

∫
R0

Φ′n(Ys)Gsz1(
|z|<1, |z|≥

∣∣∣∣ 1
Gs

∣∣∣∣
)1(∣∣∣∣ 1

Gs

∣∣∣∣<1,GsYs�0
)ν(dz)ds = 0.(10)

From Fubini’s theorem and the symmetry of ν, it is enough to show the integrability of in-
tegrands on the left-hand side of the above equations. By using the inequality: |x|−1 log |x| ≤
e−1 for each |x| > 1, we have∫ t∧Tm

0

∫
R0

|Φ′n(Ys)Gsz|1(
|z|<

∣∣∣∣ 1
Gs

∣∣∣∣, |z|≥1
)1(∣∣∣∣ 1

Gs

∣∣∣∣>1,GsYs�0
)ν(dz)ds
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=

∫ t∧Tm

0
|Φ′n(Ys)Gs|

⎛⎜⎜⎜⎜⎜⎝
∫

1≤|z|<| 1
Gs
|
dz
|z|

⎞⎟⎟⎟⎟⎟⎠ 1(∣∣∣∣ 1
Gs

∣∣∣∣>1,GsYs�0
)ds

= 2
∫ t∧Tm

0
|Φ′n(Ys)Gs|

(
log

∣∣∣∣∣ 1
Gs

∣∣∣∣∣
)

1(∣∣∣∣ 1
Gs

∣∣∣∣>1,GsYs�0
)ds

≤ 2e−1
∫ t∧Tm

0
|Φ′n(Ys)|ds

≤ 2C3(n)e−1t

where C3(n) is the same constant as in Remark 2.2. Similarly, we have∫ t∧Tm

0

∫
R0

|Φ′n(Ys)Gsz|1(
|z|<1, |z|≥

∣∣∣∣ 1
Gs

∣∣∣∣
)1(∣∣∣∣ 1

Gs

∣∣∣∣<1,GsYs�0
)ν(dz)ds

= 2
∫ t∧Tm

0
|Φ′n(Ys)Gs|

∣∣∣∣∣log
∣∣∣∣∣ 1
Gs

∣∣∣∣∣
∣∣∣∣∣ 1(∣∣∣∣ 1

Gs

∣∣∣∣<1,GsYs�0
)ds

= 2
∫ t∧Tm

0
|Φ′n(Ys)Gs| (log |Gs|) 1(|Gs |>1,GsYs�0)ds

≤ 2e−1
∫ t∧Tm

0
|Φ′n(Ys)||Gs|2ds

≤ 8C3(n)C4(m)2e−1t,

where C4(m) is the same constant as in Remark 2.2. Hence, we have (9) and (10). From
this, we have∫ t∧Tm

0

∫
R0

{Φn(Ys +Gsz) −Φn(Ys) −Φ′n(Ys)Gsz1(|z|<1)}ν(dz)ds

=

∫ t∧Tm

0

∫
R0

{Φn(Ys +Gsz) −Φn(Ys) −Φ′n(Ys)Gsz1(
|z|<

∣∣∣∣ 1
Gs

∣∣∣∣
)}1(GsYs�0)ν(dz)ds

=

∫ t∧Tm

0
|Gs|

(∫
R0

{Φn(Ys + v) −Φn(Ys) −Φ′n(Ys)v1(|v|<1)}ν(dv)
)

1(GsYs�0)ds,

by the change of variables v = Gsz, and the required result follows. �

Hence, by taking expectations of (8) we have the following:

Proposition 2.5. For each m, n ∈ N and t ≥ 0, it holds that

E[Φn(Yt∧Tm)]

= Φn(0) + γE
[∫ t∧Tm

0
Φ′n(Ys)Gsds

]

+ E

[∫ t∧Tm

0
|Gs|

(∫
R0

{Φn(Ys + z) −Φn(Ys) −Φ′n(Ys)z1(|z|<1)}ν(dz)
)

1(GsYs�0)ds
]
.

Proof. This follows from (8), Remarks 2.2, 2.3 and Lemma 2.4. �
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3. Computation of the remainder term

3. Computation of the remainder term
In this section, we shall compute the remainder term of the Itô formula via the Fourier

analysis. The computation can be found in Engelbert and Kurenok [4] in a more general
case. However, we shall compute it a little more simply in our setting for convenience of the
reader. Firstly, we set

 f (x) :=
∫
R0

{ f (x + z) − f (x) − f ′(x)z1(|z|<1)}ν(dz),

for f ∈ C2(R).

Remark 3.1. For f ∈ (R), the operator  coincides with the infinitesimal generator of a
Cauchy process, see Theorem 3.3.3 (3) in Applebaum [1].

Using the Fourier transform of f ∈ L1(R) defined by

 [ f ](u) :=
∫
R

e−iux f (x)dx for u ∈ R,

and the inverse Fourier transform defined by


−1[ f ](x) :=

1
2π

∫
R

eiux f (u)du for x ∈ R,

the operator  on (R) can be represented as follows:

Lemma 3.2. For each f ∈ (R) and x ∈ R, it holds that

 f (x) = −π−1[|u| [ f ](u)](x).

Proof. This follows from the same argument as in the proof of Theorem 3.3.3 (3) in [1].
In fact, by using the identity:

∫
R0
{eiuz −1− iuz1|z|<1}ν(dz) = −π|u|, the required result follows

from Fubini’s theorem. �

By using the Fourier transform, we have the following two lemmas:

Lemma 3.3. For each x ∈ R, it holds that

Φn(x) = C5(β)−1
[
|u|−β [ψn](u)

]
(x)

where

C5(β) = −2πΓ(β + 1) cos
(
π(β + 1)

2

)
.

Proof. It follows from Lemma 2.1 that∫
|z|≥1
|Φn(x + z) −Φn(x)|dz ≤

∫
|z|≥1
|z|βν(dz) =

2
1 − β.

Since Φ′′n is bounded, it follows from the mean value theorem that∫
|z|<1
|Φn(x + z) −Φn(x) −Φ′n(x)z|ν(dz) ≤

∫
|z|<1

∫ 1

0
|Φ′′n (x + θz)|(1 − θ)z2dθν(dz)
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≤ C6(n)
2

∫
|z|<1

z2ν(dz) = C6(n),

where C6(n) = supx∈R |Φ′′n (x)|. Thus, Φn is well-defined for n ∈ N.
Let 0 < ε < 1. Set Φε(x) = Φ(x)e−ε|x| and Φε, n = Φε ∗ ψn. We then have Φε, n ∈ (R).

Now, we will show that

lim
ε↓0

Φε, n(x) = Φn(x).

We see that

lim
ε↓0
{Φε, n(x + z) −Φε, n(x) −Φ′ε, n(x)z1(|z|<1)} = Φn(x + z) −Φn(x) −Φ′n(x)z1(|z|<1).

By Lemma 2.1, we have

Φε, n(x) ≤ Φn(x) ≤ |x|β +Φn(0) ≤ |x|β + 1.

Thus, it follows from the inequality (7) that

|Φε, n(x + z) −Φε, n(x)| ≤ |x + z|β + 1 + |x|β + 1 ≤ 2|x|β + |z|β + 2,

and the right-hand side is integrable with respect to the measure ν(dz) = |z|−2dz on (|z| ≥ 1).
By using integration by parts, we have

Φ′′ε, n(x) =
∫
R

Φε(y)ψ′′n (x − y)dy =
∫
R

Φ′ε(y)ψ′n(x − y)dy,

where the weak derivative Φ′ε is given by

Φ′ε(y) = β|y|β−1e−ε|y|sgn(y) − ε|y|βe−ε|y|sgn(y)

for y ∈ R0 and Φ′ε(0) = 0. By the inequality: |x|e−|x| ≤ e−1 for x ∈ R, we have for y � 0

|Φ′ε(y)| ≤ β|y|β−1e−ε|y| + ε|y|βe−ε|y| ≤ (β + e−1)|y|β−1.

Thus, it follows from the mean value theorem and the inequality (7) that

|Φε, n(x + z) −Φε, n(x) −Φ′ε, n(x)z|

=

∣∣∣∣∣∣
∫ 1

0
Φ′′ε, n(x + θz)(1 − θ)z2dθ

∣∣∣∣∣∣
≤

∫ 1

0

(∫
R

|Φ′ε(y)ψ′n(x + θz − y)|dy
)

(1 − θ)z2dθ

≤ (β + e−1)z2
∫ 1

0

(∫
R

|y|β−1|ψ′n(x + θz − y)|dy
)

(1 − θ)dθ

≤ C7(n)(βe + 1)
2e

z2
∫ x+|z|+ 1

n

x−|z|− 1
n

|y|β−1dy

≤ C7(n)(βe + 1)
βe

z2
(
|x|β + |z|β +

∣∣∣∣∣1n
∣∣∣∣∣
β)
,

where C7(n) = supx∈R |ψ′n(x)|, since we have Suppψ′n ⊂ [−n−1, n−1]. Moreover, the right-
hand side of the above inequality is integrable with respect to the measure ν(dz) = |z|−2dz on
(|z| < 1). Hence, it follows from the dominated convergence theorem that
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lim
ε↓0

Φε, n(x) = lim
ε↓0

∫
R0

{Φε, n(x + z) −Φε, n(x) −Φ′ε, n(x)z1(|z|<1)}ν(dz)

=

∫
R0

{Φn(x + z) −Φn(x) −Φ′n(x)z1(|z|<1)}ν(dz)

= Φn(x).

By Lemma 3.2, we have

Φε, n(x) = −π−1 [|u| [Φε, n](u)
]
(x) = −π−1 [|u| [Φε](u) [ψn](u)

]
(x),

since Φε, n ∈ (R). Thus, it is sufficient to show that

lim
ε↓0

{
−π−1 [|u| [Φε](u) [ψn](u)

]
(x)

}
= C5(β)−1

[
|u|−β [ψn](u)

]
(x).

By using the identity: ∫ ∞

0
xξ−1e−wxdx = Γ(ξ)w−ξ(11)

for each ξ > 0 and Re(w) > 0, we have

 [Φε](u) =
∫
R

|x|βe−ε|x|−iuxdx

=

∫ ∞

0
xβe−(ε+iu)xdx +

∫ ∞

0
xβe−(ε−iu)xdx

= Γ(β + 1)
{
(ε + iu)−β−1 + (ε − iu)−β−1

}
,

since β + 1 > 0 and Re(ε ± iu) = ε > 0. We then have for u � 0,

lim
ε↓0
|u| [Φε](u) = 2Γ(β + 1)|u|−β cos

(
π(β + 1)

2

)
.

Moreover, we have

||u| [Φε](u) [ψn](u)| ≤ 2Γ(β + 1)|u|−β | [ψn](u)| ,
and the right-hand side is integrable on R, since −β > −1 and  [ψn] ∈ (R). Hence, it
follows from the dominated convergence theorem that

lim
ε↓0

{
−π−1 [|u| [Φε](u) [ψn](u)

]
(x)

}

= −2πΓ(β + 1) cos
(
π(β + 1)

2

)

−1

[
|u|−β [ψn](u)

]
(x),

and the required result follows. �

Lemma 3.4. For each x ∈ R, it holds that


−1

[
|u|−β [ψn](u)

]
(x) = C8(β)

∫
R

|x − y|β−1ψn(y)dy

where

C8(β) =
Γ(1 − β)

π
cos

(
π(β − 1)

2

)
.
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Proof. Let ε > 0. We have∣∣∣|u|−βe−ε|u| [ψn](u)
∣∣∣ ≤ |u|−β | [ψn](u)| ,

and the right-hand side is integrable on R since −β > −1 and  [ψn] ∈ (R). Hence, it
follows from the dominated convergence theorem that

lim
ε↓0


−1

[
|u|−βe−ε|u| [ψn](u)

]
(x) = 

−1
[
|u|−β [ψn](u)

]
(x).

By Fubini’s theorem, we have


−1

[
|u|−βe−ε|u| [ψn](u)

]
(x) =

1
2π

∫
R

eiux|u|−βe−ε|u|
(∫
R

ψn(y)e−iuydy
)

du

=
1

2π

∫
R

(∫
R

e−iu(y−x)|u|−βe−ε|u|du
)
ψn(y)dy

=
1

2π

∫
R



[
|u|−βe−ε|u|

]
(y − x)ψn(y)dy

=
1

2π

∫
R



[
|u|−βe−ε|u|

]
(y)ψn(x + y)dy.

By the identity (11), we have



[
|u|−βe−ε|u|

]
(y) = Γ(1 − β)

{
(ε + iy)β−1 + (ε − iy)β−1

}
,

since 1 − β > 0. We then have for y � 0,

lim
ε↓0



[
|u|−βe−ε|u|

]
(y) = 2Γ(1 − β)|y|β−1 cos

(
π(β − 1)

2

)
.

Moreover, we have∣∣∣ [|u|−βe−ε|u|](y)ψn(x + y)
∣∣∣ ≤ 2Γ(1 − β)|y|β−1ψn(x + y),

and the right-hand side is integrable with respect to the Lebesgue measure dy on R, since
β − 1 > −1 and ψn ∈ C∞c (R). Hence, it follows from the dominated convergence theorem
that

lim
ε↓0

1
2π

∫
R



[
|u|−βe−ε|u|

]
(y)ψn(x + y)dy =

Γ(1 − β)
π

cos
(
π(β − 1)

2

) ∫
R

|y|β−1ψn(x + y)dy

=
Γ(1 − β)

π
cos

(
π(β − 1)

2

) ∫
R

|x − y|β−1ψn(y)dy,

and the required result follows. �

Hence, we have the following:

Proposition 3.5. For each x ∈ R, it holds that

Φn(x) = C9(β)
∫
R

|x − y|β−1ψn(y)dy

where

C9(β) = πβ tan
(
πβ

2

)
.
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Proof. By using Euler’s reflection formula: Γ(ξ)Γ(1 − ξ) = π/ sin(πξ) for 0 < ξ < 1, we
have

C5(β)C8(β) = 2βΓ(β)Γ(1 − β) sin2
(
πβ

2

)
=

2πβ
sin(πβ)

sin2
(
πβ

2

)
= πβ tan

(
πβ

2

)
,

and the required result follows from Lemmas 3.3 and 3.4. �

4. Pathwise uniqueness

4. Pathwise uniqueness
In this section, we shall study the pathwise uniqueness of the solution to the stochastic

differential equation (1). To prove our main result, we shall take the expectations of the Itô
formula for |Yt|β.

Firstly, by Proposition 3.5, we can rewrite Proposition 2.5 as follows:

Proposition 4.1. For each m, n ∈ N and t ≥ 0, it holds that

E[Φn(Yt∧Tm)] = Φn(0) + γE
[∫ t∧Tm

0
Φ′n(Ys)Gsds

]
(12)

+C9(β)E
[∫ t∧Tm

0
|Gs|

(∫
R

|Ys − y|β−1ψn(y)dy
)

ds
]
,

where C9(β) is the same constant as in Proposition 3.5.

Proof. This follows from Propositions 2.5 and 3.5. �

Now we shall take the limits of (12) as n → ∞. Since Φn(Yt∧Tm) → |Yt∧Tm |β as n → ∞
and by Lemma 2.1

Φn(Yt∧Tm) ≤ |Yt∧Tm |β +Φn(0) ≤ |Yt∧Tm |β + 1 ≤ (2m)β + 1,

it follows from the dominated convergence theorem that

lim
n→∞E[Φn(Yt∧Tm)] = E[|Yt∧Tm |β].

Before we take the limit of the right-hand side, we establish the following inequality:

Lemma 4.2. For each n ∈ N and x ∈ R0, it holds that∫
R

|x − y|β−1ψn(y)dy ≤ C10(β)|x|β−1,

where the positive constant C10(β) does not depend on n.

Proof. Firstly, we have for |x| > 2/n
∫
R

|x − y|β−1ψn(y)dy =
∫
|y|< 1

n

|x − y|β−1ψn(y)dy ≤
(
|x| − 1

n

)β−1

≤
∣∣∣∣∣ x2

∣∣∣∣∣
β−1

.

Next, we have for 0 < |x| ≤ 2/n∫
R

|x − y|β−1ψn(y)dy =
∫
R

|y|β−1ψn(x − y)dy

= n
∫
R

|y|β−1ψ(nx − ny)dy
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=

∫
R

∣∣∣∣∣yn
∣∣∣∣∣
β−1

ψ(nx − y)dy

≤ C11n1−β
∫ nx+1

nx−1
|y|β−1dy

≤ C1121−β|x|β−1
∫
|y|≤3
|y|β−1dy =

C1122−β3β

β
|x|β−1,

where C11 = supx∈R ψ(x). Note that C11 ≥ 1/2 since ψ satisfies that Suppψ ⊂ [−1, 1] and∫
R
ψ(y)dy = 1.
Hence, we have for each x � 0∫

R

|x − y|β−1ψn(y)dy ≤
(
21−β ∨ C1122−β3β

β

)
|x|β−1 =

C1122−β3β

β
|x|β−1.

The proof is complete. �

Now, we will take the limit of the right-hand side of (12) as n→ ∞.

Lemma 4.3. Under the condition (3), it holds that

lim
n→∞E

[∫ t∧Tm

0
Φ′n(Ys)Gsds

]
= βE

[∫ t∧Tm

0
Gs|Ys|β−1sgn(Ys)1(GsYs�0)ds

]
.

Proof. It follows that Gs = 0 if Ys = 0. We then have Φ′n(Ys)Gs = 0 if GsYs = 0. Now we
consider the integrand on (GsYs � 0). By using integration by parts, we have

Φ′n(x) = β
∫
R

|x − y|β−1sgn(x − y)ψn(y)dy.

Since limn→∞Φ′n(x) = β|x|β−1sgn(x) for x � 0, we have

lim
n→∞Φ

′
n(Ys)Gs = βGs|Ys|β−1sgn(Ys).

By Lemma 4.2 and the condition (3), we have

|Φ′n(Ys)Gs| ≤ C10(β)β|Gs||Ys|β−1 ≤ C1(m)C10(β)β.

Hence, the required result follows from the dominated convergence theorem. �

Lemma 4.4. Under the condition (3), it holds that

lim
n→∞E

[∫ t∧Tm

0
|Gs|

(∫
R

|Ys − y|β−1ψn(y)dy
)

ds
]
= E

[∫ t∧Tm

0
|Gs||Ys|β−11(GsYs�0)ds

]
.

Proof. It follows that Gs = 0 if Ys = 0. We then have

|Gs|
(∫
R

|Ys − y|β−1ψn(y)dy
)
= 0,

if GsYs = 0. Now we consider the integrand on (GsYs � 0). We have

lim
n→∞ |Gs|

(∫
R

|Ys − y|β−1ψn(y)dy
)
= |Gs||Ys|β−1.

By Lemma 4.2 and the condition (3), we have
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|Gs|
∣∣∣∣∣
∫
R

|Ys − y|β−1ψn(y)dy
∣∣∣∣∣ ≤ C10(β)|Gs||Ys|β−1 ≤ C1(m)C10(β).

Hence, the required result follows from the dominated convergence theorem. �

We then have the following:

Proposition 4.5. Under the condition (3), it holds that

E[|Yt∧Tm |β] = βγE
[∫ t∧Tm

0
Gs|Ys|β−1sgn(Ys)1(GsYs�0)ds

]

+C9(β)E
[∫ t∧Tm

0
|Gs||Ys|β−11(GsYs�0)ds

]
,

where C9(β) is the same constant as in Proposition 3.5.

Proof. This follows from Proposition 4.1, and Lemmas 4.3 and 4.4 �

Now, we shall prove our main result.
Proof of Theorem 1.1. Let γ > 0 and set

β =
2
π

arctan
(
γ

π

)
.

Then, by 0 < β < 1, the constant C9(β) in Proposition 3.5 is given by C9(β) = βγ. By
Proposition 4.5 and the condition (4), we have

E[|Yt∧Tm |β] = 2βγE
[∫ t∧Tm

0
|Gs||Ys|β−11(GsYs>0)ds

]
≤ 2C2(m)βγE

[∫ t∧Tm

0
|Ys|βds

]
.

Hence, by Gronwall’s inequality, we have E[|Yt∧Tm |β] = 0. Since Tm ↑ ∞ as m → ∞, it
follows from the monotone convergence theorem that

0 = lim
m→∞E[|Yt∧Tm |β] = E[|Yt|β],

and the required result follows. �
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