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Abstract
Minhyong Kim introduced arithmetic Chern–Simons invariants for totally imaginary number

fields as arithmetic analogues of the Chern–Simons invariants for 3-manifolds. In this paper, we
extend Kim’s definition to any number field, by using the modified étale cohomology groups
and fundamental groups which take real primes into account. We then show explicit formulas of
mod 2 arithmetic Dijkgraaf–Witten invariants for real quadratic fields Q(

√
p1 p2 · · · pr), where

pi’s are distinct prime numbers congruent to 1 mod 4, in terms of the Legendre symbols of pi’s.
We also show topological analogues of our formulas for 3-manifolds.

1. Introduction

1. Introduction
In recent years, Minhyong Kim ([9], [6]) initiated the study of arithmetic Chern–Simons

theory for number fields as an arithmetic analogue of the Dijkgraaf–Witten theory for 3-
manifolds [7], based on the analogies between number rings and 3-manifolds, and primes
and knots in arithmetic topology [13]. We note that Dijkgraaf–Witten theory may be re-
garded as a 3-dimensional Chern–Simons gauge theory with finite gauge groups. Kim’s
theory is concerned with totally imaginary number fields, since it employs some results on
étale cohomology groups of the ring of integers of totally imaginary number fields, which
no longer hold for number fields with real primes. Therefore, it is desirable to extend Kim’s
theory for number fields with real primes.

In this paper, we extend Kim’s theory for number fields with real primes, by using the
modified étale cohomology groups and the modified étale fundamental groups which take
real primes into account. We then explicitly calculate the mod 2 arithmetic Dijkgraaf–Witten
invariants for real quadratic fields Q(

√
p1 p2 · · · pr), where pi’s are distinct prime numbers

congruent to 1 mod 4, in terms of the Legendre symbols of pi’s.
Let us outline the construction of arithmetic Chern–Simons invariants and arithmetic

Dijkgraaf–Witten invariants in the following. Let n be a positive integer and let K be a finite
algebraic number field containing n-th roots of unity. Note that if K has a real prime, then n
must be 2. We choose a primitive n-th root of unity ζn in K, which induces an isomorphism
Z/nZ � μn. Let K denote the ring of integers of K and let X = Spec K denote the prime
spectrum of K . Let X∞ denote the set of infinite primes of K and set X = X�X∞. Follow-
ing [3] and [1], we may introduce a Grothendieck topology (site) Xét called the Artin–Verdier
site, the topos Sh(Xét) of abelian sheaves on Xét, and the modified étale cohomology groups
Hi(X, F) for F ∈ Sh(Xét) and i ≥ 0. These cohomology groups admit the 3-dimensional
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Artin–Verdier duality and there is an isomorphism H3(X,Z/nZ) � Z/nZ determined by the
choice of ζn. In addition, we have the category FEtX of finite étale coverings over X, which
is proven to be a Galois category. We define the modified étale fundamental group π1(X) as
the fundamental group of FEtX .

Now, let A be a finite group and let c ∈ H3(A,Z/nZ). Let (X, A) = Homc(π1(X), A)/A
denote the set of conjugacy classes of all continuous homomorphisms π1(X) → A. Then,
for each ρ ∈(X, A), the arithmetic Chern–Simons invariant CSc(ρ) of ρ associated to c is
defined as the image of c under the composition

H3(A,Z/nZ)
ρ∗−→ H3(π1(X),Z/nZ)

j3−→ H3(X,Z/nZ) � Z/nZ

of maps, where j3 is the edge homomorphism in the modified Hochschild–Serre spectral

sequence Hp(π1(X),Hq(X̃,Z/nZ)) ⇒ Hp+q(X,Z/nZ) (see Section 2 for X̃). The arithmetic
Dijkgraaf–Witten invariant of X associated to c is then defined by

Zc(X) =
∑

ρ∈(X,A)

exp
(
2πi
n

CSc(ρ)
)
.

A basic problem is to concretely calculate CSc(ρ) and Zc(X). The papers [6], [5], and [4]
are concerned with this problem for the cases where K is totally imaginary and c is some
specific cocycle. In this paper, we consider the case where K is the real quadratic field
Q(
√

p1 p2 · · · pr), each pi being a prime number congruent to 1 mod 4, A = Z/2Z, and c is
the non-trivial cocycle in H3(A,Z/2Z) � Z/2Z. For this purpose, we generalize results in
[1] and [4], which describe CSc(ρ) by the Artin symbol in unramified class field theory, for
any number fields. Afterward, by using Gauss’s genus theory, we explicitly calculate CSc(ρ)
and Zc(X), in terms of the Legendre symbols among pi’s.

We remark that for 3-manifolds, the abelian Chern–Simons partition functions and the
Dijkgraaf–Witten invariants are given by Gaussian integrals and Gaussian sums (cf. [10,
Chapter 3], [15]). Since our formula (Theorem 4.2.2) for number fields is given in a form
similar to Gaussian sums, we may expect that the cases with non-abelian gauge groups
would be given by a non-abelian generalization of Gaussian sums.

Following the analogies in arithmetic topology, in Section 5, we show a topological coun-
terpart of our main result in the context of Dijkgraaf–Witten theory for 3-manifolds.

Here are the contents of this paper. In Subsection 2.1, notations being as above, we intro-
duce the Artin–Verdier site Xét and the category FEtX of finite étale coverings over X. We
show that FEtX is a Galois category and define the modified étale fundamental group π1(X)
as the automorphism group of the fiber functor of FEtX . In Subsection 2.2, we introduce the
topos Sh(Xét) of abelian sheaves on Xét and define the modified étale cohomology groups
Hi(X, F) for F ∈ Sh(Xét) and i ≥ 0. We also show the modified Hochschild–Serre spec-
tral sequence. In Section 3, by using the materials prepared in Subsection 2.1 and 2.2, we
extend Kim’s definition for all number fields. In Section 4, we firstly extend a result in [1]
for X. Then, we explicitly calculate mod 2 CSc(ρ) and Zc(X) for K = Q(

√
p1 p2 · · · pr) with

pi ≡ 1 mod 4. In Section 5, as an appendix, we rearrange the theory of Dijkgraaf–Witten
invariants for 3-manifolds and show the topological counterparts of our main theorems. This
final section aims to clarify the analogy and may be read independently.

The results in this paper were announced by the author at the workshop “Low dimen-
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sional topology and number theory XI” held in Osaka University in March 2019. During the
preparation of this paper after that, we found the paper [11] which also studies the arithmetic
Chern–Simons theory for number fields with real primes. They use compactly supported
étale cohomology groups.

Notation. As usual, we denote by Z, Q, R, and C the ring of rational integers, the field of
rational numbers, the field of real numbers, and the field of complex numbers, respectively.
For a commutive ring R, we denote by R× the group of units in R. For a number field K, we
denote by K the ring of integers of K. We denote by IK the group of fractional ideals of
K, and by Na ∈ Z the norm of a ∈ IK . We denote by ClK , (resp. Cl+K ) the ideal class group
(resp. the narrow ideal class group) of K.

2. The modified étale cohomology groups for a number ring

2. The modified étale cohomology groups for a number ring
In Subsection 2.1, we recall the Artin–Verdier site for a number field. We then define

the modified étale fundamental group of the ring of integers, taking the infinite primes into
account. In Subsection 2.2, we define the modified étale cohomology groups and show the
Hochschild–Serre spectral sequence. We follow the argument of [1] and [3] throughout this
section.

2.1. The Artin–Verdier site and the modified étale fundamental group.
2.1. The Artin–Verdier site and the modified étale fundamental group. Let K be a

finite algebraic number field and let X = Spec K be the prime spectrum of the ring K

of integers of K. Let X∞ denote the set of infinite primes, namely, real primes and pairs
of conjugate complex primes of K, and we set X = X � X∞. Let Y be a scheme which
is étale over X. A real prime of Y is defined by a point y : Spec C → Y which factors
through Spec R. A complex prime of Y is defined to be a pair of complex conjugate points
y, y : Spec C→ Y such that y � y. An infinite prime of Y is a real prime or a complex prime
of Y . Let Y∞ denote the set of infinite primes of Y . Note that an étale morphism f : Y → X
induces f∞ : Y∞ → X∞. We say that f∞ is unramified at y∞ ∈ Y∞ if y∞ is a real prime or
if (y∞, f∞(y∞)) is a complex prime. Regarding Grothendieck topologies, we refer to [2] and
[19].

Definition 2.1.1 ([1, Definition 2.1], [3, Proposition 1.2]). The Artin–Verdier site Xét of
X is the Grothendieck topology consisting of the category Cat(Xét) and a set Cov(Xét) of
coverings defined as follows.

• An object in Cat(Xét) is a pair (Y, M), where f : Y → X is a scheme étale over X
and M ⊂ Y∞ such that f∞| : M → X∞ is unramified. A morphism ϕ : (Y1, M1) →
(Y2, M2) in Cat(Xét) is a morphism of shemes ϕ : Y1 → Y2 over X such that the
induced map ϕ∞ : (Y1)∞ → (Y2)∞ satisfies ϕ∞(M1) ⊂ M2.
• A covering in Cov(Xét) is a family of morphisms {ϕi : (Yi, Mi) → (Z,N)}i∈I in

Cat(Xét) which satisfies ∪
i
ϕi(Yi) = Z and ∪

i
ϕi(Mi) = N.

Remark 2.1.2. In Cat(Xét), the fiber product of morphisms ϕi : (Yi, Mi) → (Z,N) (i =
1, 2) is defined by (Y1×

Z
Y2, M3), where Y1×

Z
Y2 is the fiber product in the category of schemes

and M3 is the set consisting of points of (Y1 ×
Z

Y2)∞ whose images are in Mi under the
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projections (Y1 ×
Z

Y2)∞ → Yi∞ for i = 1, 2. We can check easily that M3 is isomorphic to
M1 ×

N
M2 in the category of sets.

Next, we introduce a Galois category to define the modified étale fundamental group.
We say that (Y, M) ∈ Cat(Xét) is finite étale if Y → X is a finite étale morphism of schemes

over X and M = Y∞. We denote by FEtX the full subcategory of Xét whose objects are finite
étale, and denote by FSets the category of finite sets.

In the following, we often abbreviate (Y, Y∞) to Y for a scheme Y étale over X. Let K be
an algebraic closure of K and let η̃ : Spec K → X be a geometric point. Then we have
functors

Fη̃ : FEtX → FSets; Y → HomX(η̃, Y),

U : FEtX → FEtX; Y → Y.

We note that the forgetful functor U is fully faithful.

Definition 2.1.3 ([17, V.4]). Let C be a category and let F : C → FSets be a covariant
functor. C is called a Galois category with a fiber functor F if C and F satisfy the following
axioms.

(G1) C has a final object and finite fiber products.
(G2) Finite direct sums exist in C . The quotient of an object by a finite group of auto-

morphisms exist in C .

(G3) Let u : A1 → A2 be a morphism in C . Then u factors into a composition A1
f−→

A′
g−→ A2, where f is a strict epimorphism and g is a monomorphism which is an

isomorphism on a direct summand of A2.
(G4) F is a left exact functor.
(G5) F commutes with finite direct sums and the quotient of an object by a finite group

of automorphisms. F sends strict epimorphisms to epimorphisms.
(G6) Let u : A1 → A2 be a morphism in C such that F(u) is an isomorphism. Then u is

an isomorphism.

Proposition 2.1.4. FEtX is a Galois category with a fiber functor Fη̃.

Proof. We check the six axioms (G1)～(G6) of Galois categories for FEtX and Fη̃. It is
well-known that the category FEtX of schemes finite étale over X is a Galois category with a
fiber functor F′η̃ : FEtX → FSets Y → HomX(η̃, Y) [17, V.7], so that FEtX and F′η̃ admit the
axioms (G1)～(G6) and F′η̃. Let us verify (G1)～(G6) for FEtX .
(G1) FEtX has a final object (id : X → X, X∞). For Yi ∈ FEtX (i = 1, 2, · · · ,m), we see that∏

i

Yi ∈ FEtX . So we have
∏

i

Yi =
∏

i

Yi by the universal property of fiber products.

(G2) FEtX has an initial object (Spec 0, (Spec 0)∞) = (∅, ∅). In a similar way to (G1), we
see that FEtX admits finite direct sums. For Y ∈ FEtX and a finite subgroup G ⊂ AutX(Y),
we have AutX(Y) = AutX(Y) by the definition of morphisms of Cat(Xét). So we have the
quotient of Y → X ∈ FEtX by G ⊂ AutX(Y) and then one can check Y/G = Y/G.
(G3) For any morphism Y1 → Y2 in FEtX , Y1 → Y2 factors as
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Y1
f−→ Y ′

g−→ Y ′
⊔

Y ′′ � Y2 in FEtX , where f is a strict epimorphism and g is a monomor-

phism. This sequence induces Y1
f−→ Y ′

g−→ Y ′
⊔

Y ′′ � Y2.
(G4) and (G5) are obvious since U is fully faithful and U ◦ F′η̃ = Fη̃ .
(G6) Let u : Y1 → Y2 be a morphism in FEtX . If Fη̃(u) : Fη̃(Y1) → Fη̃(Y2) is an iso-
morphism, then U(u) : Y1 → Y2 is an isomorphism. Since the forgetful functor U is fully
faithful, u is an isomorphism. �

Now we define the modified étale fundamental group.

Definition 2.1.5. The modified étale fundamental group π1(X) = π1(X, η̃) with geometric
basepoint η̃ is defined by the fundamental group of the Galois category FEtX associated to
the fiber functor Fη̃, namely, the group of automorphisms of Fη̃.

The fundamental theorem of Galois categories is stated as follows.

Theorerm 2.1.6. There is an equivalence of categories between FEtX and the category
of finite discrete sets equipped with continuous left actions of π1(X).

Next, in order to describe π1(X) more explicitly, we observe which object is Galois in
the Galois category FEtX . By the definitions of a connected object and a Galois object in a
Galois category, one can see that Y ∈ FEtX is connected in FEtX if and only if Y → X is
connected in FEtX , and that a connected object Y is Galois in FEtX if and only if AutX(Y) =
AutX(Y) → F′η̃(Y) = Fη̃(Y) is bijective, i.e., Y is Galois in FEtX . Therefore, we have the
following Proposition.

Proposition 2.1.7. Let K̃ (resp. K̃ab) denote the maximal Galois (resp. abelian) extension
of K which is unramified over all finite and infinite primes. Then we have the following.
(1) There is a natural isomorphisms Gal(K̃/K) � π1(X).
(2) The abelianization πab

1 (X) of π1(X) admits natural isomorphisms

ClK
∼→ Gal(K̃ab/K) � πab

1 (X) ; [a] →
(

K̃ab/K
a

)
given by the Artin reciprocity law.

2.2. The Artin–Verdier topos and the modified étale cohomology groups.
2.2. The Artin–Verdier topos and the modified étale cohomology groups. Let Sh(Xét)

denote the Artin–Verdier étale topos, namely, the category of abelian sheaves on the site Xét.
Let us recall the decomposition lemma for Sh(Xét) following [1] and [3]. We fix an algebraic
closure K of K. For each x ∈ X∞, we fix an extension x of x to K and denote by Ix the inertia
group of x. If x is a real prime, then we have Ix � Z/2Z; if x is a complex prime, then Ix is
trivial. Let η : Spec K → X denote the generic point. Then, for F ∈ Sh(Xét), we can regard
η∗F = Fη as a Gal(K/K)-module and Ix ⊂ Gal(K̃/K) acts on η∗F. We define a site T X∞ as
follows. An object in T X∞ is a pair (M,m) where M is a finite set and m : M → X∞ is a map.
A morphism (M1,m1)→ (M2,m2) in T X∞ is a map f : M1 → M2 such that m2 = f ◦m1. A
covering in T X∞ is a family of morphisms {ϕi : (Mi,mi) → (M,m)}i∈I in T X∞ such that mi

is surjective and M = ∪
i
ϕ(Mi). Hence, each G on T X∞ is identified with a family of abelian

groups {Gx}x∈X∞ . We define maps of sites p : Xét → T X∞ and q : Xét → Xét by the forgetful
functors. Then we have functors
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Sh(T X∞)
p∗
�
p∗

Sh(Xét)
q∗
�
q∗

Sh(Xét).

Next, we define the category Sh(Xét)′ as follows. An object in Sh(Xét)′ is a triple ({Gx}x∈X∞ ,

F, {σx : Gx → (η∗F)Ix}x∈X∞), where {Gx}x∈X∞ ∈ Sh(T X∞), F ∈ Sh(Xét) and {σx : Gx →
(η∗F)Ix}x∈X∞ is a family of homomorphisms of abelian groups. A morphism ({Gx}, F, {σx})→
({G′x}, F′, {σ′x}) is a pair of morphisms {Gx} → {G′x}, and F → F′ such that the induced dia-
gram

Gx
σx−−−−−→ (η∗F)Ix⏐⏐⏐⏐⏐	 ⏐⏐⏐⏐⏐	

G′x
σ′x−−−−−→ (η∗F′)Ix

is commutative for each x ∈ X∞.
Now we state the decomposition lemma, which was previously proved for Sh(Xét) ([1,

Proposition 2.3] and [3, Proposition 1.2]).

Lemma 2.2.1. There is an equivalence of categories given by the functors

Sh(Xét)
Φ

�
Ψ

Sh(Xét)′

defined by

Φ : S → (q∗S, p∗S, p∗S→ p∗q∗q∗S), Ψ : ({Gx}, F, {σx}) → q∗F ×p∗q∗q∗F p∗{Gx}.
Proof. We may check the following properties (1)–(4), so that [2, Proposition 2.4] yields

the assertion.
(1) q∗(resp. p∗) is left adjoint to q∗ (resp. p∗).
(2) q∗, p∗ are exact.
(3) p∗, q∗ are fully faithful.
(4) For any S ∈ Sh(Xét), q∗S = 0 holds if and only if there exists G ∈ Sh(T X∞) such that
S = p∗G.
We refer to [21, Proposition 1.3.3] for (1), (3), and (4). The property (2) follows from the
fact that Xét, Xét and T X∞ have final objects and finite fiber products preserved by p and q.

�

Remark 2.2.2. (1) Via the equivalence of categories in Lemma 2.2.1, we identify p∗, p∗,
q∗, q∗ with the functors ψ∗, ψ∗, φ∗, φ∗ defined by

φ∗({Gx}, F, {σx}) = F, φ∗F = ({(η∗F)Ix}, F, {id}),
ψ∗({Gx}, F, {σx}) = {Gx}, ψ∗{Gx} = ({Gx}, 0, {0}).

respectively.
(2) The constant sheaf AXét

on Xét associated to an abelian group A satisfies AXét
= φ∗(AXét

).
In the following, if there is no confusion, we will abbreviate AXét

to A.
(3) For S = ({Gx}, F, {σx}) ∈ ObSh(Xét), the section of S at (Y, M) ∈ Xét is given by F(Y)×η∗F
Gx1 ×η∗F Gx2 ×η∗F · · · ×η∗F Gxr , where {x1, x2, · · · , xr} is the image of M by Y∞ → X∞.
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Definition 2.2.3. For each S ∈ Sh(Xét), the cohomology group Hi(X, S) is called the i-th
modified étale cohomology group of X with values in S.

The group Hi(X, S) of the constant sheaf Z/nZ is calculated in [3, Proposition 2.13] and
[1, Corollary 2.15]. Let us recall the Artin–Verdier duality.

Proposition 2.2.4 (The Artin–Verdier duality [3, Theorem 5.1]). Let F be a constructible
sheaf on X = Spec K. We fix an algebraic closure K of K. For each x ∈ X∞, we fix an
extension x of x to K. Let η : Spec K → X denote the generic point. Let Gm,X denote the
étale sheaf of units on X. Then we have the following.

(a) Hi(X, φ∗F) = Exti
X

(φ∗F, φ∗Gm,X) = 0 for i > 3.
(b) The Yoneda pairing

Hi(X, φ∗F) × Ext3−i
X

(φ∗F, φ∗Gm,X)→ H3(X, φ∗Gm,X) � Q/Z

is a perfect duality of finite groups for i ≥ 2.
(c) If for every x ∈ X∞ the inertia group Ix of x acts trivially on the Gal(K/K)-module
η∗F = Fη, then the pairing in (b) is perfect for any i ≥ 0.

Applying Proposition 2.2.4 to the constant sheaf F = Z/nZ on X, we obtain the following
Proposition, where we denote by μn(K) the group of n-th roots of unity in K and put Z1 =

{(a, a) ∈ K× ⊕ IK | (a)−1 = an}, B1 = {(bn, (b)−1) ∈ K× ⊕ IK | b ∈ K×}.
Proposition 2.2.5 ([3, Proposition 2.13], [1, Corollary 2.15]). We have

Exti
X

(Z/nZ, φ∗Gm,X) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μn(K) (i = 0)

Z1/B1 (i = 1)

ClK/nClK (i = 2)

Z/nZ (i = 3)

0 (i > 3),

where Gm,X is the étale sheaf of units on X. Then we have, by the Artin–Verdier duality,

Hi(X,Z/nZ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z/nZ (i = 0)

(ClK/nClK)∼ (i = 1)

(Z1/B1)∼ (i = 2)

(μn(K))∼ (i = 3)

0 (i > 3),

where (−)∼ denotes Hom(−,Q/Z).

Remark 2.2.6. Assume that K contains primitive n-th roots of unity. For each v′ ∈ K×,
we choose a primitive n-th root v′

1
n of v′. By Theorem 2.1.6, for a continuous and surjective

homomorphism ρ : π1(X) → Z/nZ, there is a corresponding Galois object Y → X (Y =
Spec L) whose Galois group is Z/nZ. Since L is a cyclic extension of degree n unramified
at all finite and infinite primes, there exists v ∈ K× such that L = K(v

1
n ) and there exists

a ∈ IK which satisfies an = (v)−1. By the definition of L and the Galois correspondence,
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there is an isomorphism χ : Gal(L/K)
∼→ Z/nZ such that the following diagram

π1(X)
res ��

ρ

��

Gal(L/K)

χ
������������

Z/nZ

commutes, where res : π1(X) → Gal(L/K) denotes the restriction map. By Proposition
2.1.7, we also have the following commutative diagram

ClK

(
K̃ab/K

)
��

(
L/K

)
��

π1
ab(X)

res������������

Gal(L/K),

where
(

L/K
)

: ClK → Gal(L/K) denotes the Artin map.

Now we state the extension of Hochschild–Serre spectral sequence.

Theorerm 2.2.7. Let Y → X be a Galois object in FEtX. Then for any S ∈ Sh(Xét), there
is a cohomological spectral sequence

Hp(Gal(Y/X),Hq(Y , S|Y))⇒ Hp+q(X, S).

Proof. Let Gal(Y/X)-mod denote the category of Gal(Y/X)-modules. We consider the
functors

F1 : Sh(Xét)→ Gal(Y/X)-mod, S → S(Y)
F2 : Gal(Y/X)-mod→ Ab, M → MGal(Y/X),

where the action of G = Gal(Y/X) on S(Y) is defined by σ.x = S(σ)(x) for x ∈ S(Y)
and σ ∈ G. In the same manner as in [12, Remark5.4] and [12, Proposition 1.4], we can
easily check (F2 ◦ F1)(S) = S(Y)G = S(X). Let I be an injective object in Sh(Xét). By
replacing Y and X with Y and X in the argument of [12, Example2.6], one can see that
Hi(G, I(Y)) � Ȟi(Y/X, I) for any i ≥ 1. Since I is injective, we have Ȟi(Y/X, I) = 0 by the
definition of C̆ech cohomologies. Therefore, F1(I) = I(Y) is a F2-acyclic object. By the
Grothendieck spectral sequence, we obtain the assertion. �

Let (Yi → X, Yi → Yj) denote the inverse system of finite Galois coverings over X and

put X̃ = lim←−−
i

Yi, X̃ = lim←−−
i

Yi. By Hp(X̃,Z/nZ) = lim←−−
i

Hp(Yi,Z/nZ) and the local cohomology

sequence [3, Proposition 1.4], we have Hp(X̃,Z/nZ) = lim←−−
i

Hp(Yi,Z/nZ). So on passing to

the inverse limit, we obtain the following.

Corollary 2.2.8. There is a cohomological spectral sequence

Hp(π1(X),Hq(X̃,Z/nZ))⇒ Hp+q(X,Z/nZ).
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3. Arithmetic Dijkgraaf–Witten invariants for a number ring

3. Arithmetic Dijkgraaf–Witten invariants for a number ring
In this section, we introduce the notions of arithmetic Chern–Simons invariant and the

arithmetic Dijkgraaf–Witten invariant for a number field, by using the modified étale coho-
mology groups introduced in Section 2. Let X = Spec K denote the prime spectrum of the
ring of integers of a number field K containing primitive n-th roots of unity. We choose a
primitive n-th root of unity ζn in K, which induces an isomorphism Z/nZ � μn. Let A be a
finite group and let c ∈ H3(A,Z/nZ). Let (X, A) = Homc(π1(X), A)/A denote the set of
conjugacy classes of all continuous homomorphisms π1(X)→ A. Recall that by Proposition
2.2.5 we have the fundamental class isomorphism H3(X,Z/nZ) � Z/nZ that depends on the
choice of ζn.

Definition 3.1. For ρ ∈(X, A), the arithmetic Chern–Simons invariant CSc(ρ) associ-
ated to c is defined by the image of c under the composition of maps

H3(A,Z/nZ)
ρ∗−→ H3(π1(X),Z/nZ)

j3−→ H3(X,Z/nZ) � Z/nZ,

where j3 is the edge homomorphisms in the modified Hochschild–Serre spectral sequence

Hp(π1(X),Hq(X̃,Z/nZ)) ⇒ Hp+q(X,Z/nZ) of Corollary 2.2.8 We can easily see that CSc(ρ)
is independent of the choice of ρ in its conjugacy class. The map

CSc : (X, A)→ Z/nZ
is called the arithmetc Chern–Simons functional associated to c. The arithmetic Dijkgraaf–
Witten invariant of X associated to c is then defined by

Zc(X) =
∑

ρ∈(X,A)

exp
(
2πi
n

CSc(ρ)
)
.

When A = Z/mZ, we call CSc(ρ) and Zc(X) the mod m arithmetic Chern–Simons invariant
and the mod n arithmetic Dijkgraaf–Witten invariant, respectively.

Remark 3.2. (1) If K is totally imaginary, so that K has no ramification at infinite primes,
then we have π1(X) = π1(X) and Hi(X,Z/nZ) = Hi(X,Z/nZ). Therefore Definition 3.1 is
indeed an extension of Kim’s definition [9].
(2) When A is abelian, by Proposition 2.1.7, we have

(X, A) = Homc(π1(X), A) � Hom(ClK , A).

4. Mod 2 arithmetic Dijkgraaf–Witten invariants for the real quadratic number
fields Q(√p1 · · · pr) with pi ≡ 1 mod 4

4. Mod 2 arithmetic Dijkgraaf–Witten invariants for the real quadratic number
fields Q(√p1 · · · pr) with pi ≡ 1 mod 4

In this section, we study explicit formulas for number fields. In Subsection 4.1, we es-
tablish an explicit formula (Theorem 4.1.3) relating the Chern–Simons invariant to the Artin
Symbol of Kummer extensions over any number field containing primitive n-th roots of
unity, extending [1, Proposition 4.2] and [4, Theorem 1.3]. In Subsection 4.2, by using The-
orem 4.1.3 and invoking Gauss’s genus theory, we explicitly compute the mod 2 arithmetic
Dijkgraaf–Witten invariant for a quadratic field Q(

√
p1 · · · pr) with pi ≡ 1 mod 4 (Theorem

4.2.2).
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4.1. A formula for Kummer extensions with use of the Artin Symbols.
4.1. A formula for Kummer extensions with use of the Artin Symbols. Let us describe

the setting in this subsection. We continue to work over any number field K containing
primitive n-th roots of unity. Keeping the same notations as in Section 3, we set A = Z/nZ
and c = id∪β(id) ∈ H3(A,Z/nZ). Here, id ∈ H1(A,Z/nZ) denotes (the image of) the identity
map and

β : H1(A,Z/nZ)→ H2(A,Z/nZ)

denotes the Bockstein map (connecting homomorphism) induced by the short exact se-
quence

0→ Z/nZ ×n→ Z/n2Z→ Z/nZ→ 0.

Let ji : Hi(π1(X),Z/nZ) → Hi(X,Z/nZ) (i = 0, 1, 2, 3, · · · ) denote the edge homomor-
phisms in the modified Hochschild–Serre spectral sequence (Corollary 2.2.7). For each
ρ ∈(X, A) = Homc(π1(X), A), let ρ∗X denote the composition

H1(A,Z/nZ)
ρ∗−→ H1(π1(X),Z/nZ)

j1−→ H1(X,Z/nZ)

of the natural map j1 and the induced map ρ∗. Then we have

CSc(ρ) = ρ∗X(id) ∪ β̃(ρ∗X(id)) ∈ H3(X,Z/nZ),

where ∪ : H1(X,Z/nZ) × H2(X,Z/nZ) → H3(X,Z/nZ) is the cup product and β̃ :
H1(X,Z/nZ)→ H2(X,Z/nZ) is the Bockstein map.

Remark 4.1.1. For the definition of the cup product in the category of sheaves on any
site, we refer to [18, Corollary 3.7].

We recall some calculations of the cohomology of groups.

Lemma 4.1.2. (1) We have an isomorphism Hi(Z/nZ,Z/nZ) � Z/nZ for every i ≥ 0.
(2) The cohomology class c = id ∪ β(id) is represented by a cochain α : (Z/nZ)3 → Z/nZ
defined by

α(g1, g2, g3) =
1
n
g1(g2 + g3 − (g2 + g3)) mod n,

where g ∈ {0, 1, . . . , n − 1} is a representative element of g ∈ Z/nZ.
(3) The 3rd cohomology group H3(Z/nZ,Z/nZ) is generated by c = id ∪ β(id).

Proof. Consider the projective resolution of Z[Z/nZ]-modules over Z

· · · ×p→ Z[Z/nZ]
×q→ Z[Z/nZ]

×p→ Z[Z/nZ]
×q→ Z[Z/nZ]

ε→ Z,
where p =

∑
g∈Z/nZ

g, q = −(0 mod n) + (1 mod n), and ε(
∑

g∈Z/nZ
agg) =

∑
g∈Z/nZ

ag, By taking the

functor HomZ[Z/nZ](−,Z/nZ), we obtain the first assertion

Hi(Z/nZ,Z/nZ) � Z/nZ (i ≥ 0).(4.1.2.1)

By applying the snake lemma to the diagram
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0 −−−−−→ C1(Z/nZ,Z/nZ)
×n−−−−−→ C1(Z/nZ,Z/n2Z) −−−−−→ C1(Z/nZ,Z/nZ) −−−−−→ 0⏐⏐⏐⏐⏐	d

⏐⏐⏐⏐⏐	d
⏐⏐⏐⏐⏐	d

0 −−−−−→ C2(Z/nZ,Z/nZ)
×n−−−−−→ C2(Z/nZ,Z/n2Z) −−−−−→ C2(Z/nZ,Z/nZ) −−−−−→ 0,

we obtain the second assertion. For the third assertion, by (4.1.2.1), it suffices to show
that for each n′ = 1, 2, . . . , n − 1, the cohomology class n′c is not zero in H3(Z/nZ,Z/nZ).
Assume that there is a cochain b ∈ C2(Z/nZ,Z/nZ) such that db = n′α. Then, for each
(g1, g2, g3) ∈ (Z/nZ)3, we have

(n′α)(g1, g2, g3) = b(g2, g3) − b(g1 + g2, g3) + b(g1, g2 + g3) − b(g1, g2).

So we obtain
n−1∑
i=0

(n′α)(1 mod n, i mod n, 1 mod n) = 0.(4.1.2.2)

By the definition of α, we also have

(n′α)(g1, g2, g3) =
n′

n
g1(g2 + g3 − (g2 + g3)) mod n.

So we obtain
n−1∑
i=0

(n′α)(1 mod n, i mod n, 1 mod n) = n′mod n.

This contradicts the equation (4.1.2.2). �

Now we show the main assertion of this subsection. We keep the same notations as in
Remark 2.2.6.

Theorerm 4.1.3. Let X = Spec K denote the prime spectrum of the ring of integers
of a number field K containing primitive n-th roots of unity. Let ρ : π1(X) → Z/nZ be a
continuous and surjective homomorphism. Set A = Z/nZ and c = id ∪ β(id) ∈ H3(A,Z/nZ).
Let L = K(v

1
n ) denote the Kummer extension corresponding to Ker ρ as in Remark 2.2.6,

so that L/K is unramified at all finite and infinite primes and there exist some a ∈ IK and
v ∈ K× with an = (v)−1. Let χ : Gal(L/K)

∼→ Z/nZ denote the natural isomorphism induced
by ρ. Then we have

CSc(ρ) = χ
((

L/K
a

))
.

Proof. When K is totally imaginary, the assertion holds by [4, Theorem 1.3]. So we
consider the case K has real primes and n = 2. By direct calculation, we see that ρ∗(id) ∈
H1(π1(X),Z/2Z) corresponds to ρ ∈ Homc(π1(X),Z/2Z) via the natural isomorphism

H1(π1(X),Z/2Z) � Homc(π1(X),Z/2Z).

Then, by Proposition 2.2.5 and Remark 2.2.6 , ρ∗X(id) = j1 ◦ ρ∗(id) ∈ H1(X,Z/2Z) corre-
sponds to the composition χ ◦

(
L/K

)
∈ Homc(ClK ,Z/2Z) via the natural isomorphism

H1(X,Z/2Z) � Homc(ClK ,Z/2Z).
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We regard β̃(ρ∗X(id)) as an element in Ext1
X

(Z/2Z, φ∗Gm,X)∼ = (Z1/B1)∼ through Artin–
Verdier duality. Then by [1, Corollary 3.13], we have

ρ∗X(id) ∪ β̃(ρ∗X(id)) = β̃(ρ∗X(id))([(v, a)]) = ρ∗X(id)(β̃′([(v, a)])),

where β̃′ : Ext1
X

(Z/2Z, φ∗Gm,X) → Ext2
X

(Z/2Z, φ∗Gm,X) is the connecting homomorphism
induced by the short exact sequence

0→ Z/2Z ×2→ Z/22Z→ Z/2Z→ 0.

By replacing X with X in the proof of [1, Lemma 4.1], one can see β̃′([(v, a)]) = [a]. Hence
we see that CSc(ρ) = 0 holds if and only if

(
L/K
a

)
∈ Gal(L/K) is trivial. Therefore, we obtain

the assertion. �

4.2. Explicit formulas of the mod 2 arithmetic Dijkgraaf–Witten invariants for real
quadratic number fields Q(

√
p1 p2 · · · pr) with pi ≡ 1 mod 4.

4.2. Explicit formulas of the mod 2 arithmetic Dijkgraaf–Witten invariants for real
quadratic number fieldsQ(

√
p1 p2 · · · pr) with pi ≡ 1 mod 4. In the following, we consider

the case K = Q(
√

p1 p2 · · · pr), where each pi is a prime number such that pi ≡ 1 mod 4.
We keep the notation as in the previous subsection and suppose that n = 2, A = Z/2Z, and
c = id ∪ β(id) ∈ H3(A,Z/2Z). Assume that the norm of the fundamental unit in 

×
K is −1.

Then the narrow ideal class group Cl+K is the same as ClK .

Remark 4.2.1. The fundamental unit ofQ(
√

5 · 13 · 61) is ε =
63 +

√
5 · 13 · 61
2

with Nr ε
= 1. We eliminate such cases to use Gauss’s genus theory.

By pi ≡ 1 mod 4, the discriminant of K is p1 p2 · · · pr. We define the abelian multiplicative
2-group T× by

T× = {(x1, x2, · · · , xr) ∈ {±1}r |
r∏

i=1

xi = 1},

and put e×i j = (1, · · · , 1, i-th−1 , 1, · · · , 1,
j-th
−1 , 1, · · · , 1) ∈ T× for each (i, j) with 1 � i < j � r.

In addition, we define an additive 2-group T+ by

T+ = {(x1, x2, · · · , xr) ∈ (Z/2Z)r |
r∑

i=1

xi = 0}.

and put e+i j
de f
= (0, · · · , 0, i-th

1 , 0, · · · , 0,
j-th
1 , 0, · · · , 0) ∈ T+ for each (i, j) with 1 � i < j � r.

Then we have a standard isomorphism T+ → T×; (xi)i → ((−1)xi)i. By Gauss’s genus theory
[16, §4.7], there is an isomorphism

Cl+K/2Cl+K
∼−→ T×,

given by

[a] →
((

Na
p1

)
,

(
Na
p2

)
, · · · ,

(
Na
pr

))
,

where
(

pi

)
denotes the Legendre symbol. Therefore, by Proposition 2.1.7, we obtain the

following isomorphisms
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Homc(π1(X),Z/2Z) � Hom(Cl+K/2Cl+K ,Z/2Z)

� Hom(T×, {±1}) � Hom(T+,Z/2Z).

We denote the corresponding elements in those groups by the same letters.
Now we prove the following formula.

Theorerm 4.2.2. Notations being as above, for each nontrivial ρ ∈ Hom(T×, {±1}), the
arithmetic Chern–Simons invariant satisfies

(−1)CSc(ρ) =
∏
i< j

ρ(e×i j)=−1

(
p j

pi

)
.

Proof. Define elements b1, b2, · · · , br−1 ∈ T× by

b1 = (−1, 1, 1, · · · ,−1), b2 = (1,−1, 1, 1, · · · ,−1), · · · , br−1 = (1, 1, · · · , 1,−1,−1)

so that the tuple (b1, b2, · · · , br−1) is a basis of T×. Let J = { j1, j2 · · · , jm} ⊂ {1, 2, · · · , r − 1}
with j1 < j2 · · · < jm and suppose that ρ(bi) = −1 if and only if i ∈ J. Note that ρ(e×i j) = −1
holds if and only if the intersection {i, j}∩J consists of one element. Let L denote the abelian
unramified extension of K corresponding to 2ClK via the class field theory (Proposition
2.1.7), namely, we put

L = Q(
√

p1,
√

p2, · · · ,√pr).

Let Lρ denote the unramified Kummer extension of K corresponding to Kerρ ⊂ π1(X), so
that we have

(4.2.2.1) Lρ = K(
√
v), a2v = (v)−1

for some v ∈ K× and av ∈ IK . In order to apply Theorem 4.1.3, let us explicitly find such
v. Let a = (a1, a2, · · · , ar) ∈ T× and let a ∈ IK whose image [a] corresponds to a via the
isomorphism Cl+K/2Cl+K

∼−→ T× of Gauss’s genus theory. Then the Artin symbol
(

L/K
a

)
∈

Gal(L/K) is characterized by(
L/K
a

)
(
√

pi) = ai
√

pi (i = 1, 2, · · · , r).

Let u : K× → K×/(K×)2 denote the natural projection. By Remark 2.2.6, the class u(v) ∈
K×/(K×)2 is characterized by (

Lρ/K
a

)
(
√
v)/
√
v = ρ(a).

Since
( Lρ/K

)
is the restriction of

(
L/K

)
to Lρ, we may put

v = p j1 p j2 · · · p jm/p1 p2 · · · pr.

Since the minimal polynomial of (1+
√

p1 p2 · · · pr)/2 over Q is congruent to (2X − 1)2 mod
pi, we have

(pi) = pi
2,

where pi = (pi,
√

p1 p2 · · · pr) is the prime ideal of K . Hence we have
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av = p1p2 · · · pr/p j1p j2 · · · p jm .

We see that the composite map

χ′ : Gal(L/K)
∼→ ClK/2ClK

∼→ T×
ρ
� {±1}

sends
(

L/K
av

)
∈ Gal(L/K) to

r∏
i=1

(
Nav
pi

)
∈ {±1}. By the quadratic residue and the assumption

that pl ≡ 1 mod 4 (l = 1, . . . , r), we have
(

p j

pi

)
=

(
pi

p j

)
for any distinct i, j ∈ {1, 2, . . . , r}. So

we obtain
r∏

i=1

(
Nav
pi

)
=

r∏
i=1

∏
1≤ j≤r

j�J

(
p j

pi

)

=
∏

1≤i≤r
i∈J

∏
1≤ j≤r

j�J

(
pi

p j

)

=
∏
i< j

ρ(e×i j)=−1

(
p j

pi

)
.

The last equation follows from the fact that ρ(e×i j) = −1 holds if and only if the inter-
section {i, j} ∩ J consists of one element. On the other hand, since Lρ is the unrami-
fied Kummer extension of K corresponding to Kerρ ⊂ π1(X), the composite map χ′ :
Gal(L/K)

∼→ ClK/2ClK
∼→ T×

ρ
� {±1} induces the natural isomorphism χ′′ : Gal(Lρ/K) =

Gal(L/K)/(Kerρ)
∼→ {±1}. Let χ : Gal(Lρ/K)

∼→ Z/2Z denote the natural isomorphism

induced by ρ : π1(X) → Z/2Z. We see that χ is equal to the composite map Gal(Lρ/K)
χ′′→

{±1} ∼→ Z/2Z. Therefore, by Theorem 4.1.3, we have

(−1)CSc(ρ) = χ′′
((

Lρ/K
av

))
=

∏
i< j

ρ(e×i j)=−1

(
p j

pi

)
.

�

Since the invariant CSc(0) of the trivial representation 0 ∈ Hom(T+,Z/2Z) is zero, we
have the following

Corollary 4.2.3. For ρ ∈ Hom(T+,Z/2Z), we have

CSc(ρ) =
∑
i< j

ρ(e+i j)lk2(pi, p j),

where lk2(pi, p j) denotes the modulo 2 linking number of pi and p j defined by (−1)lk2(pi,p j) =(
pi
p j

)
.

By Definition 3.1, the mod 2 arithmetic Dijkgraaf–Witten invariant is given by
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Zc(X) =
∑

ρ∈Hom(T+,Z/2Z)

(−1)CSc(ρ).

Hence we obtain the following.

Corollary 4.2.4. The mod 2 arithmetic Dijkgraaf–Witten invariant is given by

Zc(X) =
∑

ρ∈Hom(T+,Z/2Z)

⎛⎜⎜⎜⎜⎜⎜⎝∏
i< j

(
pi

p j

)ρ(e+i j)
⎞⎟⎟⎟⎟⎟⎟⎠ .

Example 4.2.5. Here are some numerical examples of CSc(ρ) and Zc(X) for the case r = 3.
We define ρ0, ρ1, ρ2 and ρ3 in Hom(T+,Z/2Z) by

ρ0(1, 1, 0) = 0, ρ0(0, 1, 1) = 0, ρ0(1, 0, 1) = 0,

ρ1(1, 1, 0) = 1, ρ1(0, 1, 1) = 0, ρ1(1, 0, 1) = 1,

ρ2(1, 1, 0) = 0, ρ2(0, 1, 1) = 1, ρ2(1, 0, 1) = 1,

ρ3(1, 1, 0) = 1, ρ3(0, 1, 1) = 1, ρ3(1, 0, 1) = 0,

so that Hom(T+,Z/2Z) = {ρ0, ρ1, ρ2, ρ3}.
(1) K = Q(

√
5 · 29 · 37) :

lk2(5, 29) = 0, lk2(29, 37) = 1, lk2(37, 5) = 1,

CSc(ρ0) = 0, CSc(ρ1) = 1, CSc(ρ2) = 0, CSc(ρ3) = 1,

Zc(X) = 0.

(2) K = Q(
√

5 · 13 · 73) :

lk2(5, 13) = lk2(13, 73) = lk2(73, 5) = 1,

CSc(ρ0) = CSc(ρ1) = CSc(ρ2) = CSc(ρ3) = 0,

Zc(X) = 4.

5. Appendix on mod 2 Dijkgraaf–Witten invariants for double branched covers of
the 3-sphere

5. Appendix on mod 2 Dijkgraaf–Witten invariants for double branched covers of
the 3-sphere

In this section, we present topological analogues of Theorem 4.2.2, Corollary 4.2.3 and
Corollary 4.2.4 in the content of Dijkgraaf–Witten theory for 3-manifolds, in the spirit of
arithmetic topology. For this purpose, we firstly display M2K2R-dictionary, due to Mazur,
Kapranov&Reznikov, Morishita, and Kim, concerning the analogies between 3-dimensional
topology and number theory (cf. [13]):

Based on this dictionary, in Subsection 5.1, we introduce the Dijkgraaf–Witten invariants
for 3-manifolds in a slightly different manner from the original one. In Subsections 5.2 and
5.3, we present topological analogues of Subsections 4.1 and 4.2 respectively.
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3-dimensional topology number theory

connected, oriented, and closed compactified spectrum of a number ring
3-manifold M X = Spec K

knot maximal ideal
 : S1 → M p : Spec (K/p)→ Spec (K)

link finite set of maximal ideals
L = 1 ∪2 ∪ · · · ∪r S = {p1, p2, · · · , pr}

fundamental group modified étale fundamental group
π1(M) π1(X)

1-cycle group Z1(M) ideal group IK

mod 2 linking number Legendre symbol

lk(1,2) mod 2
(

p1

p2

)
1-boundary group B1(M) principal ideal group PK

∂ : C2(M)→ Z1(M); S → ∂S ∂ : K× → IK ; a → (a)
1st integral homology group ideal class group

H1(M) = Z1(M)/B1(M) ClK = IK/PK

Hurewicz isomorphism Artin reciprocity
π1(M)ab � Gal(Mab/M) � H1(M) π1(X)ab � Gal(K̃ab/K) � ClK

Poincaré duality Artin–Verdier duality
Hi(M,Z/nZ) � H3−i(M,Z/nZ) Hi(X,Z/nZ) � Ext3−i

X
(Z/nZ, φ∗Gm,X)∼

5.1. Dijkgraaf–Witten invariants for 3-manifolds.
5.1. Dijkgraaf–Witten invariants for 3-manifolds. In this subsection, we introduce the

Dijkgraaf–Witten invariants in a manner slightly different from the original one [7] to clarify
the analogy between the Dijkgraaf–Witten invariant for a 3-manifold and that for a number
ring. In order to define the invariant, we show the following proposition, which is a topo-
logical analogue of Corollary 2.2.8.

Proposition 5.1.1. Let M be a connected compact 3-manifold. Then, for n ≥ 2, there is
a cohomological spectral sequence

Hp(π1(M),Hq(M̃,Z/nZ))⇒ Hp+q(M,Z/nZ),

where M̃ denotes the universal covering of M.

Proof. Although this may be well known, we give a proof for the sake of readers. Since M
is compact, the singular cohomology Hi(M,Z/nZ) can be identified with the cohomology of
the constant sheaf Z/nZ on M. So we show the assertion for the cohomology of the constant
sheaf. We denote by Gal(M̃/M)-mod the category of Gal(M̃/M)-modules. We consider the
functors

F1 : Sh(M)→ Gal(M̃/M)-mod, S → S(M̃)
F2 : Gal(M̃/M)-mod→ Ab,R → RGal(M̃/M),

where the action of G = Gal(M̃/M) on S(M̃) is defined by σ.x = S(σ)(x) for x ∈ S(M̃) and
σ ∈ G. In a similar way to Proposition 2.2.7, we can check (F2◦F1)(S) = S(M̃)G = S(M) and
that F1 sends any injective object I to a F2-acyclic object. Therefore we have the expected
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spectral sequence by the Grothendieck spectral sequence and π1(M) � Gal(M̃/M). �

Now we define the Dijkgraaf–Witten invariant for a 3-manifold.

Definition 5.1.2. Let M be a connected oriented closed 3-manifold and let c ∈
H3(A,Z/nZ) for a finite group A and n ≥ 2. Let (M, A) = Hom(π1(M), A)/A denote
the set of conjugacy classes of all homomorphisms π1(M) → A. Note that the fundamental
class [M] generates H3(M,Z/nZ) � Z/nZ. For each ρ ∈ (M, A), the Chern–Simons in-
variant CSc(ρ) of ρ associated to c is defined by the image of c under the composition of the
maps

H3(A,Z/nZ)
ρ∗−→ H3(π1(M),Z/nZ)

j3−→ H3(M,Z/nZ)
< ,[M]>−−−−−−→ Z/nZ,

where j3 denotes the edge homomorphisms in the spectral sequence

Hp(π1(M),Hq(M̃,Z/nZ))⇒ Hp+q(M,Z/nZ)

of Proposition 5.1.1. The Dijkgraaf–Witten invariant of M associated to c is then defined by

Zc(M) =
∑

ρ∈(M,A)

exp
(
2πi
n

CSc(ρ)
)
.

When A = Z/mZ, we call CSc(ρ) and Zc(M) the mod m Chern–Simons invariant and the
mod m Dijkgraaf–Witten invariant respectively.

Remark 5.1.3. The Dijkgraaf–Witten invariant was originally defined as follows [7]. Let
M and A be as in Definition 5.1.2. Let BA denotes a classifying space for A. Consider
U(1) = {z ∈ C | |z| = 1} and let c ∈ H3(A,U(1)). Then the Dijkgraaf–Witten invariant
DWc(M), is defined by

DWc(M) =
∑

ρ∈Hom(π1(M),A)

< fρ∗c, [M] >,

where fρ : M → BA denotes the classifying map with respect to ρ and < , > : H3(M,U(1))×
H3(M,Z)→ U(1) denotes the natural pairing.

The relation between this definition and Definition 5.1.2 is given as follows. Suppose that
A = Z/nZ, so that there is an isomorphism H3(A,U(1)) � μn ⊂ U(1) sending c to an n-th
root of unity ζn,c in U(1). Then, we may verify that for any ρ ∈ Hom(π1(M), A), the equality

ζ
CSid∪β(id)(ρ)
n,c =< fρ∗c, [M] >

holds, where id ∪ β(id) is a natural generator of H3(Z/nZ,Z/nZ) (see Lemma 4.1.2). In
particular, when ζn,c = exp( 2πi

n ), we have

DWc(M) = Zid∪β(id)(M).

5.2. A formula with use of the Hurewicz isomorphism.
5.2. A formula with use of the Hurewicz isomorphism. In this subsection, we show

a topological analogue of Theorem 4.1.3. Let us describe the setting in this subsection.
Keeping the same notations as in Subsection 5.1, we set A = Z/nZ and c = id ∪ β(id) ∈
H3(A,Z/nZ), where id ∈ H1(A,Z/nZ) is the identity map and
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βi : Hi(A,Z/nZ)→ Hi+1(A,Z/nZ) (i = 0, 1, 2, · · · )
is the Bockstein map induced by the short exact sequence

0→ Z/nZ ×n→ Z/n2Z→ Z/nZ→ 0.(∗)
In addition, for i = 1, 2, · · · , let βi : Hi(M,Z/nZ)→ Hi+1(M,Z/nZ) and βi : Hi(M,Z/nZ)→
Hi−1(M,Z/nZ) denote the Bockstein maps of the singular homology and cohomology in-
duced by (∗). Furthermore, for i = 1, 2, · · · , let β̃i : Hi(M,Z/nZ) → Hi−1(M,Z) denote the
Bockstein map of the singular homology induced by the short exact sequence

0→ Z ×n→ Z→ Z/nZ→ 0.

Let ji : Hi(π1(M),Z/nZ) → Hi(M,Z/nZ) (i = 0, 1, 2, 3, · · · ) denote the edge homomor-
phisms in the spectral sequence of Proposition 5.1.1. We will abbreviate ji ◦ ρ∗ to ρ∗M for
ρ ∈(M, A) = Hom(π1(M), A)/A. We denote by Φi : Hi(M,Z/nZ)

∼→ H3−i(M,Z/nZ) (i =
0, 1, 2, 3) the isomorphism of the Poincaré duality defined by u → u ∩ [M], where

∩ : Hi(M,Z/nZ) × H3(M,Z/nZ)→ H3−i(M,Z/nZ)

denotes the cap product. Note that, by the universal coefficient theorems, we have

H1(M,Z/nZ) � H1(M) ⊗ Z/nZ � H1(M)/nH1(M).

Together with the Hurewicz isomorphism, we obtain the isomorphisms

Hom(π1(M),Z/nZ) � Hom(H1(M),Z/nZ) � Hom(H1(M,Z/nZ),Z/nZ)

� H1(M,Z/nZ).

We see that each ρ ∈ Hom(π1(M),Z/nZ) corresponds to ρ∗M(id) ∈ H1(M,Z/nZ) via these iso-
morphisms. We denote by ρ̃ ∈ Hom(H1(M,Z/nZ),Z/nZ) the homomorphism corresponding
to ρ and ρ∗M(id). Now we show the main assertion in this subsection.

Theorerm 5.2.1. Notations being as above, let u ∈ Z2(M,Z/nZ) be a 2-cycle that rep-
resents Φ1(ρ∗M(id)) ∈ H2(M,Z/nZ). Then there is a 2-chain D ∈ C2(M,Z) such that
D mod n = u and there is a 1-cycle a ∈ Z1(M,Z) satisfying ∂D = na. Let [a] denote
the homology class in H1(M,Z/nZ) defined by a. Then we have

CSc(ρ) = ρ̃([a]).

Proof. We consider the following commutative diagram,

0 −−−−−→ C2(M,Z)
×n−−−−−→ C2(M,Z)

mod n−−−−−→ C2(M,Z/nZ) −−−−−→ 0⏐⏐⏐⏐⏐	∂ ⏐⏐⏐⏐⏐	∂ ⏐⏐⏐⏐⏐	∂
0 −−−−−→ C1(M,Z)

×n−−−−−→ C1(M,Z)
mod n−−−−−→ C1(M,Z/nZ) −−−−−→ 0.

By the upper short exact sequence, there is a 2-chain D ∈ C2(M,Z) such that D mod n = u.
Hence, we have

(∂D)mod n = ∂(Dmod n) = ∂u = 0.
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Therefore, by the lower short exact sequence, there is a 1-cycle a ∈ Z1(M,Z) such that
∂D = na. For the latter assertion, by direct calculation, we can check Φ2 ◦ β1 = β2 ◦ Φ1.

Then, by Definition 5.1.2, we have,

CSc(ρ) = < ρ∗M(id) ∪ β1(ρ∗M(id)), [M] >

= < ρ∗M(id),Φ2(β1(ρ∗M(id))) >

= ρ̃(β2(Φ1(ρ∗M(id)))).

Next, we consider the following commutative diagram,

0 −−−−−→ Z
×n−−−−−→ Z −−−−−→ Z/nZ −−−−−→ 0⏐⏐⏐⏐⏐	p1

⏐⏐⏐⏐⏐	p2

⏐⏐⏐⏐⏐	id

0 −−−−−→ Z/nZ ×n−−−−−→ Z/n2Z −−−−−→ Z/nZ −−−−−→ 0,

where p1 and p2 are natural projections, and id is the identity map. By considering the
connecting homomorphism with respect to the singular homologies for each row, we see
that β2 = p1∗ ◦ β̃2. Then the required statement immediately follows by the definition of β̃2.

�

5.3. A topological analogue of the explicit formulas of the mod 2 Dijkgraaf–Witten
invariants for double branched covers of the 3-sphere.

5.3. A topological analogue of the explicit formulas of the mod 2 Dijkgraaf–Witten
invariants for double branched covers of the 3-sphere. In this subsection, we prove
topological analogues of Theorem 4.2.2, Corollary 4.2.3, and Corollary 4.2.4. Keeping
the notations as in Subsections 4.2, 5.1, and 5.2, we consider the case A = Z/2Z and
c = id ∪ β(id) ∈ H3(A,Z/2Z) in Definition 5.1.2. A tame knot  is the image of a
continuous embedding S1 → S3 which extends to an embedding of a solid torus. Let
 = 1 ∪ 2 ∪ · · · ∪ r be a tame link in the 3-sphere S3. Let h : M → S3 denote the
double covering ramified along , that is, h is obtained by the Fox completion [8] of the
unramified covering Y → X := S3\ corresponding to the kernel of the surjective homo-
morphism H1(X)→ Z/2Z that maps any meridian of i to 1 ∈ Z/2Z. Recall that T+ denotes
the abelian group defined by

T+ = {(x1, x2, · · · , xr) ∈ (Z/2Z)r |
r∑

i=1

xi = 0}

and we put

e+i j = (0, · · · , 0, i-th
1 , 0, · · · , 0,

j-th
1 , 0, · · · , 0) ∈ T+

for each (i, j) with 1 � i < j � r. By the topological analogue of Gauss’s genus theory [14,
Corollary], there is an isomorphism

(5.3.1) g : H1(M)/2H1(M)
∼→ T+

given by

[a] → (lk(h∗(a),i) mod 2),

where lk( , ) denotes the linking number. Hence we obtain the isomorphisms
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Hom(π1(M),Z/2Z) � Hom(H1(M),Z/2Z) � Hom(H1(M,Z/2Z),Z/2Z)

� Hom(T+,Z/2Z)

� H1(M,Z/2Z).

by Subsection 5.2.
Now we prove a topological analogue of Corollary 4.2.3.

Theorerm 5.3.1. Notations being as above, for ρ ∈ Hom(T+,Z/2Z), we have

CSc(ρ) =
∑
i< j

ρ(e+i j)lk(i, j) mod 2.

Proof. Define elements b1, b2, · · · , br−1 ∈ T+ by

b1 = (1, 0, 0, · · · , 1), b2 = (0, 1, 0, 0, · · · , 1), · · · , br−1 = (0, 0, · · · , 0, 1, 1)

so that the tuple (b1, b2, · · · , br−1) is a basis of T+. Let J = { j1, j2 · · · , jm} ⊂ {1, 2, · · · , r − 1}
with j1 < j2 · · · < jm and suppose that ρ(bi) = 1 if and only if i ∈ J. For each i = 1, 2, · · · , r,
let i be a Seifert surface of i in S3, and put ̃i := h−1(i) and ̃i := h−1(i). Let u ∈
Z2(M,Z/nZ) be a 2-cycle that represents Φ1(ρ∗M(id)) ∈ H2(M,Z/nZ). There is a 2-chain D ∈
C2(M,Z) such that D mod 2 = u and a 1-cycle aρ ∈ Z1(M,Z) satisfying ∂D = 2aρ. In order
to apply Theorem 5.2.1, let us explicitly find such a D. Let a = (a1, a2, · · · , ar) ∈ T+ and let
a ∈ Z1(M,Z) whose image [a] corresponds to a via the isomorphism H1(M)/2H1(M)

∼→ T+
of the topological analogue of Gauss’s genus theory. We note that the mod 2 linking number
(lk(h∗(a), h∗(∂D)) mod 2) is equal to the mod 2 intersection number of a and D. Therefore,
by the Poincaré duality, a 2-chain D ∈ C2(M,Z) satisfies u = D mod 2 ∈ Z2(M,Z/nZ) for
some u with [u] = Φ1(ρ∗M(id)) if and only if

lk(h∗(a), h∗(∂D)) mod 2 = ρ(a).

Therefore, we may put

D =
r∑

i=1

̃i −
∑

i∈{ j1, j2,··· , jm}
̃i.

In this case, the 1-cycle

aρ =

r∑
i=1

̃i −
∑

i∈{ j1, j2,··· , jm}
̃i

satisfies ∂D = 2aρ. By Theorem 5.2.1, we obtain

CSc(ρ) = ρ̃([aρ])

= ρ(g([aρ]))

= ρ((lk(h∗(aρ),i) mod 2)

=

m∑
l=1

lk(h∗(aρ), jl) mod 2

=

m∑
l=1

∑
i�{ j1, j2,··· , jm}

lk(i, jl) mod 2
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=
∑
i< j

ρ(e+i j)lk(i, j) mod 2.

�

By Definition 5.1.2, the mod 2 Dijkgraaf–Witten invariant is given by

Zc(M) =
∑

ρ∈Hom(T+,Z/2Z)

exp (πi CSc(ρ)) .

Hence we obtain the following.

Corollary 5.3.2. Notations being as above, we have

Zc(M) =
∑

ρ∈Hom(T+,Z/2Z)

∏
i< j

(−1)ρ(e+i j)lk(i, j).

Example 5.3.3. Let L be a two-bridge link B(a, b) (0 < a < b, b: even, (a, b) = 1).
So we have r = 2 and Hom(T+,Z/2Z) = Z/2Z. Then, the double branched cover M is
the lens space L(a, b). By Proposition 5.3.1 and [20, p.540 and p.543], for each 0 � ρ ∈
Hom(T+,Z/2Z), we have

CSc(ρ) =
b/2∑
k=1

(−1)�(2k−1)a/b� mod 2,

where � � denotes the floor function. Therefore, we also have

Zc(M) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2, if

b/2∑
k=1

(−1)�(2k−1)a/b� is even,

0, if otherwise.

Remark 5.3.4. In the context of quantum topology, Murakami, Ohtsuki and Okada cal-
culated the mod n Dijkgraaf–Witten invariant for the 3-manifold obtained by a Dehn surgery
on S3 along a framed link and expressed the mod n Dijkgraaf–Witten invariant in terms of
Gaussian sums and the linking matrix of the framed link [15, Proposition 9.1]. Since our
formula (Theorem 4.2.2) for number fields is given in a form similar to Gaussian sums, we
may expect that the cases with non-abelian gauge groups would be given by a non-abelian
generalization of Gaussian sums.

Acknowledgements. The author woulld like to thank his supervisor Masanori Morishita
for suggesting the problem studied in this paper. He is also thankful to Junhyong Kim for
discussion and to Yuji Terashima for communication. He would like to thank the referee for
careful reading of the paper and useful comments.

References

[1] E. Ahlqvist and M. Carlson: The étale cohomology ring of the ring of integers of a number field,
arXiv:1803.08437.



954 H. Hirano

[2] M. Artin: Grothendieck topologies, Harvard University, Cambridge, Mass, 1962.
[3] M. Bienenfeld: An étale cohomology duality theorem for number fields with a real embedding, Trans.

Amer. Math. Soc. 303 (1987), 71–96.
[4] F.M. Bleher, T. Chinburg, R. Greenberg, M. Kakde, G. Pappas and M.J. Taylor: Cup products in the étale

cohomology of number fields, New York J. Math. 24 (2018), 514–542.
[5] H.-J. Chung, D. Kim, M. Kim, G. Pappas, J. Park and H. Yoo: Abelian arithmetic Chern-Simons theory

and arithmetic linking numbers, Int. Math. Res. Not. IMRN (2019), 5674–5702.
[6] H.-J. Chung, D. Kim, M. Kim, J. Park and H. Yoo: Arithmetic Chern-Simons theory II; in p-adic Hodge

theory, Simons Symp., Springer International Publishing, Cham, 2020, 81–128.
[7] R. Dijkgraaf and E. Witten: Topological gauge theories and group cohomology, Comm. Math. Phys. 129

(1990), 393–429.
[8] R.H. Fox: Covering spaces with singularities; in A symposium in honor of S. Lefschetz, Princeton Univer-

sity Press, Princeton, 1957, 243–257.
[9] M. Kim: Arithmetic Chern-Simons theory I; in Galois covers, Grothendieck-Teichmüller Theory and

Dessins d’Enfants-Interactions between Geometry, Topology, Number Theory and Algebra, Springer Proc.
Math. Stat. 330, Springer, Cham, 2020, 155–180.

[10] T. Kohno: Conformal field theory and topology, Translations of Mathematical Monographs 210, Iwanami
Series in Modern Mathematics, Amer. Math. Soc. Providence, RI, 2002.

[11] J. Lee and J. Park: Arithmetic Chern-Simons theory with real places, arXiv:1905.13610.
[12] J.S. Milne: Étale cohomology, Princeton Mathematical Series 33, Princeton University Press, Princeton,

1980.
[13] M. Morishita: Knots and primes, an introduction to arithmetic topology, Universitext, Springer, London,

2012.
[14] M. Morishita: A theory of genera for cyclic coverings of links, Proc. Japan Acad. Ser. A Math. Sci. 77

(2001), 115–118.
[15] H. Murakami, T. Ohtsuki and M. Okada: Invariants of three-manifolds derived from linking matrices of

framed links, Osaka J. Math. 29 (1992), 545–572.
[16] T. Ono: An introduction to algebraic number theory, The University Series in Mathematics, Plenum Press,

New York, 1990.
[17] A. Grothendieck: Revêtements étales et groupe fondamental, Séminaire de géométrie algébrique du Bois
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