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Abstract
Let a torus T act smoothly on a compact smooth manifold M. If the rational equivariant coho-

mology H∗T (M) is a free H∗T (pt)-module, then according to the Chang-Skjelbred Lemma, it can
be determined by the 1-skeleton consisting of the T -fixed points and 1-dimensional T -orbits
of M. When M is an even-dimensional, orientable manifold with 2-dimensional 1-skeleton,
Goresky, Kottwitz and MacPherson gave a graphic description of the equivariant cohomology.
In this paper, first we revisit the even-dimensional GKM theory and introduce a notion of GKM
covering, then we consider the case when M is an odd-dimensional, possibly non-orientable
manifold with 3-dimensional 1-skeleton, and give a graphic description of its equivariant coho-
mology.

1. Introduction

1. Introduction
Let a torus T act smoothly on a compact smooth manifold M. We use Q coefficients

for cohomology throughout the paper. The T -equivariant cohomology of M is defined
via the Borel construction H∗T (M) � H∗((M × ET )/T ), where ET is the universal bundle
of T . Fixing an identification T � (S1)k, we have ET � (S∞)k and H∗T (pt) � H∗(ET/T ) �
H∗((CP∞)k) = Q[α1, . . . , αk], where α1, . . . , αk of cohomological degree 2 are the first Chern
classes of the universal line bundles over (CP∞)k. These αi’s can be identified as a basis of
the integral weight lattice t∗

Z
of the rational dual Lie algebra t∗

Q
, hence the polynomial ring

Q[α1, . . . , αk] can be identified as St∗
Q

, the symmetric power of t∗
Q

. The trivial map M → pt
induces a homomorphism H∗T (pt)→ H∗T (M) and gives H∗T (M) an H∗T (pt)-algebra structure.

For p ∈ M, denote its T -orbit by p. Set the i-th skeleton Mi = {p ∈ M | dimp � i},
then we have a T -equivariant filtration of closed subsets M0 ⊆ M1 ⊆ · · · ⊆ Mdim T = M,
where the 0-skeleton M0 is the fixed-point set MT .

If H∗T (M) is a free H∗T (pt)-module, Chang and Skjelbred [10] proved that the equivari-
ant cohomology H∗T (M) can be described as a sub-ring of H∗T (MT ), subject to certain re-
lations determined by the 1-skeleton M1. Goresky, Kottwitz and MacPherson [16] con-
sidered certain torus actions on complex projective manifolds such that the fixed-point
set MT is finite and the 1-skeleton M1 is a finite union of S2’s. They proved that the
cohomology H∗T (M) can be described in terms of congruence relations on a graph deter-
mined by the 1-skeleton M1. Since then, various GKM-type theorems were proved, for
instance, by Brion [9] on equivariant Chow groups, by Guillemin&Zara [21] on abstract
GKM graph theory, by Knutson&Rosu [32], Vezzosi&Vistoli [46] on equivariant K-theory,
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and by Guillemin&Holm [22] on certain Hamiltonian torus actions on symplectic manifolds
with non-isolated fixed points. Recent generalizations of GKM-type theorem were given by
Goertsches, Nozawa&Töben [15] on certain Cohen-Macaulay actions on K-contact mani-
folds, and by Goertsches&Mare [13] on actions of non-abelian groups.

In this paper, first we revisit the even-dimensional GKM theory and introduce a notion
of GKM covering, then we consider the case when M is an odd-dimensional, possibly non-
orientable manifold with 3-dimensional 1-skeleton, and give a graphic description of its
equivariant cohomology.

2. Torus actions and equivariant cohomology

2. Torus actions and equivariant cohomology
We will recall some definitions and classical theorems regarding torus actions and equi-

variant cohomology. For general reference, see [7, 29, 31, 2].

2.1. Torus actions.
2.1. Torus actions. Throughout the paper, unless otherwise mentioned, a manifold M is

assumed to be smooth, compact, connected and boundaryless, but possibly non-orientable.
Let a torus T act smoothly, effectively on a manifold M. If M is orientable, then we fix an
orientation and assume that the T -action preserves the orientation.

2.1.1. Fixed-point set and isotropy weights.
2.1.1. Fixed-point set and isotropy weights. For a point p in a connected T -fixed com-

ponent C ⊆ MT , there is the isotropy representation of T on the tangent space TpM, which
splits into weight spaces TpM = V0 ⊕ V[λ1] ⊕ · · · ⊕ V[λr] that holds for any p ∈ C. Each
nonzero weight [λi] ∈ t∗Z/{±1} is determined only up to sign, and we have V[λi] � Wi⊗RR2

[λi]
,

where Wi is a real vector space and R2
[λi]

is the irreducible real T -representation of weight
[λi].

Since M is assumed to be compact, there is a T -invariant Riemannian metric. The expo-
nential map at p, restricted to the subspace V0 ⊂ TpM, gives a local submanifold structure of
a fixed component C at p. Comparing the isotropy weight splitting with the tangent-normal
splitting TpM = TpC ⊕ NpC along C, we get TpC = V0 and NpC = V[λ1] ⊕ · · · ⊕ V[λr]. The
dimensions of M and C are of the same parity. If MT is non-empty, then for even dim M, the
smallest possible components of MT could be isolated points; for odd dim M, the smallest
possible components of MT could be isolated circles.

2.1.2. Orientations.
2.1.2. Orientations. Fixing a sign for [λi] as λi ∈ t∗Z is equivalent to identifying R2

[λi]
as

the irreducible complex T -representation Cλi . This gives a complex structure and hence an
orientation for V[λi]. From now on, we assume that, at every T -fixed component, a sign of
[λi] and hence an orientation of V[λi] have been chosen and we will write them as λi and Vλi .
If M has a T -invariant almost complex structure, then the signs of the isotropy weights are
canonically determined.

The orientations on Vλi’s give an orientation on NpC. If M is oriented, then the tangent-
normal splitting TpM = TpC ⊕ NpC induces an orientation on TpC. If we have prechosen
an orientation for C, then we can compare this prechosen orientation with the induced ori-
entation to get a sign. On the other hand, even if M is non-orientable, it is still possible to
have some orientable components C ⊆ MT .

2.1.3. Sub-actions and residual actions.
2.1.3. Sub-actions and residual actions. For any subtorus K of T , we get two more

actions automatically: the sub-action of K on M and the residual action of T/K on MK
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using the fact that T is abelian. Moreover, we have (MK)T/K = MT .

2.2. Some basics of equivariant cohomology.
2.2. Some basics of equivariant cohomology. Given an action T � M, one can com-

pare H∗T (M) with H∗T (MT ):

Theorem 2.1 (Borel Localization Theorem). The restriction map H∗T (M) −→ H∗T (MT ) is
an H∗T (pt)-module isomorphism modulo H∗T (pt)-torsions.

Definition 2.2. An action T � M is equivariantly formal if H∗T (M) is a free H∗T (pt)-
module.

For an equivariantly formal T -action, the restriction map embeds H∗T (M) into H∗T (MT ).

Corollary 2.3 (Existence of fixed points). If an action T � M is equivariantly formal,
then the fixed-point set MT is non-empty.

Moreover, the embedded image of H∗T (M) can be described in the following way:

Theorem 2.4 (Chang-Skjelbred Lemma, [10]). If an action T � M is equivariantly
formal, then the equivariant cohomology H∗T (M) only depends on the fixed-point set MT

and the 1-skeleton M1:

H∗T (M) � H∗T (M1) �
⋂

codim K=1

(
Im
(
H∗T (MK)→ H∗T (MT )

))

where the intersection is taken over all (finitely many) codim-1 subtori K that are also the
identity components of some stabilizers of the action T � M.

Remark 2.5. The above version of Chang-Skjelbred Lemma was due to Goresky, Kot-
twitz and MacPherson [16], also see Tolman and Weitsman [45], Goldin and Holm [20].

Remark 2.6. A more general result, the Atiyah-Bredon long exact sequence, appeared
earlier in Atiyah’s 1971 lecture notes [5] for equivariant K-theory and later in Bredon’s work
[8] for equivariant cohomology. Franz and Puppe [12] generalized the Chang-Skjelbred
Lemma to some other coefficient rings.

Equivariant formality is equivalent to the degeneracy at the E2 page of the Leray-Serre
spectral sequence of the fibration M ↪→ (M × ET )/T → BT . There is a useful criterion for
equivariant formality:

Theorem 2.7 (Total Betti numbers and equivariant formality, see [2, p. 210, Thm 3.10.4]).
If T acts on M, then

∑
i dim Hi(MT ) �

∑
i dim Hi(M), where the equality holds if and only if

the action is equivariantly formal.

Equivariant and ordinary cohomology can be calculated using Morse theory, for example
see [4]. A sufficient condition for equivariant formality in the presence of a Morse-Bott
function is that:

Proposition 2.8. If a T-manifold M has a T-invariant Morse-Bott function f such that
the critical submanifold Crit( f ) is the fixed-point set MT , then the action T � M is equiv-
ariantly formal and the function f is perfect (i.e.

∑
i dim Hi(M) =

∑
i dim Hi(Crit( f ))).
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Proof. Theorem 2.7 gives
∑

i dim Hi(MT ) �
∑

i dim Hi(M). The cohomology H∗(M)
can be computed from the Morse-Bott-Witten cochain complex generated on the critical
submanifold Crit( f ), hence

∑
i dim Hi(M) �

∑
i dim Hi(Crit( f )). By our assumption re-

garding the critical point set and the fixed-point set, we have the equality
∑

i dim Hi(MT ) =∑
i dim Hi(Crit( f )) which forces the previous two inequalities to be equalities and hence im-

plies the equivariant formality of T � M and the perfection of f . �

Example 2.9. When M is equipped with a symplectic form, a Hamiltonian T -action and
a moment map μ : M → t∗, then μξ gives a Morse-Bott function for any ξ ∈ t. Let ξ
be generic such that the one-parameter subgroup generated by ξ is dense in T , then we
have Crit(μξ) = MT . Hence the above Proposition implies Kirwan’s theorem that M is
T -equivariantly formal and μξ is perfect. Bozzoni and Goertsches [6] observed that this ar-
gument also works for certain class of Hamiltonian torus actions on cosymplectic manifolds.

Restricting to any subtorus K of T acting on M, we get

Proposition 2.10 (Inheritance of equivariant formality). An action T � M is equivari-
antly formal if and only if for any subtorus K of T , both the sub-action K � M and the
residual action T/K � MK are equivariantly formal.

Proof. The sub-action K � M gives the inequality
∑

i dim Hi(MK) �
∑

i dim Hi(M).
Since (MK)T/K = MT , the residual action T/K � MK gives the inequality

∑
i dim Hi(MT ) �∑

i dim Hi(MK). Thus, the equality
∑

i dim Hi(MT ) =
∑

i dim Hi(M) holds if and only if
both intermediate equalities

∑
i dim Hi(MK) =

∑
i dim Hi(M) and

∑
i dim Hi(MT ) =

∑
i dim

Hi(MK) hold, which is just a restatement of the proposition. �

Corollary 2.11 (Inheritance of fixed points). If an action T � M is equivariantly formal,
then for any subtorus K of T , every connected component of MK has T-fixed points.

Proof. By the inheritance of equivariant formality, the residual action of T/K on any
connected component C of MK is also equivariantly formal. Then by the existence of fixed
points, CT = CT/K is non-empty. �

3. GKM theory in even dimensions

3. GKM theory in even dimensions
Goresky, Kottwitz and MacPherson [16] originally considered their theory for certain

complex projective manifolds with torus actions. Goertsches and Mare [13] observed that
those ideas also work for certain possibly non-orientable, even-dimensional manifolds with
torus action.

3.1. GKM condition in even dimensions.
3.1. GKM condition in even dimensions. Goresky, Kottwitz and MacPherson [16] con-

sidered the smallest possible fixed-point set and 1-skeleton.

Definition 3.1 (GKM condition in even dimensions). An action T � M2n is GKM if it
is equivariantly formal and the following is satisfied

(1) The fixed-point set MT is a non-empty set of isolated points.
(2) The 1-skeleton M1 is 2-dimensional. Or equivalently, at each fixed point p ∈ MT ,

the non-zero weights λ1, . . . , λn ∈ t∗Z of the isotropy T -representation T � TpM are
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pair-wise linearly independent.

By Condition (1), we get H∗T (MT ) =
⊕

p∈MT St
∗
Q

.
By Condition (2), for any isotropy weight λ at a fixed point p, if we set Tλ as the

codimension-1 subtorus of T with the Lie subalgebra Ker λ ⊂ t, then the component Cλ

of MTλ containing p is 2-dimensional and has an effective residual action of T/Tλ. Choose
a ξ ∈ t such that λ(ξ) > 0, then ξ generates a non-vanishing tangent vector field on T/Tλ.
This gives an orientation on T/Tλ and identifies it as an S1.

3.2. Geometry and equivariant cohomology of 2d S1-manifolds.
3.2. Geometry and equivariant cohomology of 2d S1-manifolds. There is a well known

classification of S1-actions on compact surfaces with non-empty fixed-point sets. The fol-
lowing result, that the author learned from Audin’s book [3] but could be traced back much
earlier, can be proved by the differentiable slice theorem and other methods.

Lemma 3.2 (cf. [3] p. 20). If S1 acts effectively on a closed surface M with a non-empty
fixed-point set, then M is S1-equivariantly diffeomorphic to one of the following two:

• S2 with two fixed points;
• RP2 with one fixed point, and an exceptional orbit S1/Z2

where RP2 as the Z2-quotient of S2, has an induced S1-action from S2.

Write H∗S1 (pt) � H∗(BS1) � H∗(CP∞) � Q[α] as a polynomial ring in the degree-2
variable α. Using the equivariant Mayer-Vietoris sequence of S2 viewed as the union of the
north and the south hemispheres, we get

H∗S1 (S2) �
{
( fN , fS) ∈ Q[α] ⊕ Q[α] | fN(0) = fS(0)

}
.

The antipodal covering map Z2 → S2 → RP2 induces a Z2-action on H∗S1 (S2) that swaps the
tuple ( fN , fS) to ( fS, fN). Then we have

H∗S1 (RP2) � H∗S1 (S2)Z2 �
{
( f , f ) ∈ Q[α] ⊕ Q[α]

}
� Q[α].

The S1-actions on S2 and RP2 are both equivariantly formal.
Back to the component Cλ of MTλ with the residual action of the circle T/Tλ, it can only

be a sphere or a projective plane, denoted by S2
λ or RP2

λ, such that the codim-1 subtorus Tλ
acts on it trivially and the residual circle T/Tλ acts on it equivariantly formally. We have

H∗T (S2
λ) � H∗T/Tλ(S

2
λ) ⊗ H∗Tλ(pt) �

{
( fN , fS) ∈ St∗Q ⊕ St∗Q | fN ≡ fS mod λ

}
(∗)

H∗T (RP2
λ) � H∗T/Tλ(RP2

λ) ⊗ H∗Tλ(pt) � St∗Q

where the congruence relation fN ≡ fS mod λ means that fN − fS is divisible by λ.

3.3. GKM graphs and the GKM theorem in even dimensions.
3.3. GKM graphs and the GKM theorem in even dimensions. In the 1-skeleton M1,

each S2 has two fixed points, and each RP2 has one fixed point. This observation leads to
a graphic representation of the relations between MT and M1, given by Goresky, Kottwitz
and MacPherson in the orientable case and by Goertsches and Mare in the possibly non-
orientable case.

Definition 3.3. The GKM graph of a GKM action T � M2n consists of:
Vertices: There are two types of vertices:
•: for each fixed point in MT ,
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�: for each RP2 ∈ M1.
Edges & Weights: For each S2

λ, a solid edge with weight λ joins the two •’s that rep-
resent its two fixed points. For each RP2

μ, a dotted edge with weight μ joins its � to
the • that represents its fixed point.

The following notion was introduced by Guillemin and Zara [21].

Definition 3.4. Let T � M2n be a GKM action with the GKM graph  consisting of the
vertex set V = MT and the weighted edge set E. The cohomology ring of the GKM graph
, denoted by H∗(), is the set

{
f : V → St∗Q | fp ≡ fq mod λ for each solid edge pq with weight λ in E

}

which has a canonical St∗
Q

-algebra structure.

Combining the Chang-Skjelbred Lemma and the equivariant cohomology of S2 and RP2

as in (∗), we see:

Theorem 3.5 (GKM theorem in even dimensions, [16, p. 26 Thm 1.2.2], [13, p. 7 Thm
3.6]). If an effective T-action on an even-dimensional, possibly non-orientable manifold
M2n is GKM with the graph , then there is an St∗

Q
-algebra isomorphism:

H∗T (M) � H∗().

Remark 3.6. The RP2’s in the 1-skeleton M1 do not contribute to the congruence rela-
tions. We can erase all the dotted edges in the GKM graph, and call the remaining graph an
effective GKM graph. However, if we want to get a GKM-type theorem for much subtler
coefficient rings like Z, the RP2’s in the 1-skeleton M1 and their corresponding dotted edges
in the GKM graph are as crucial as the S2’s and their corresponding solid edges.

Remark 3.7. The notion of GKM bundles introduced by Guillemin, Sabatini and Zara
[19] can be naturally generalized to the possibly non-orientable case.

Example 3.8. For the sphere S2n = {(x, z1, . . . , zn) ∈ R⊕Cn | x2 + ||z1||2 + · · ·+ ||zn||2 = 1},
let T n act on it by (eiθ1 , . . . , eiθn) · (x, z1, . . . , zn) = (x, eiθ1z1, . . . , eiθnzn) with the fixed-point
set (S2n)T n

= {(±1, 0, . . . , 0)}. Since dim H∗((S2n)T n
) = 2 = dim H∗(S2n), the T n-action on

S2n is equivariantly formal by the Formality Criterion Theorem 2.7. Let α1, . . . , αn be the
standard integral basis of t∗

Z
= Zn. Both fixed points have the isotropy weights α1, . . . , αn.

This means the action is GKM and the GKM graph consists of two •-vertices joined via n
edges of weights α1, . . . , αn. The equivariant cohomology ring is

H∗T n(S2n) = {( f , g) ∈ St∗Q ⊕ St∗Q | f ≡ g mod
n∏

i=1

αi}.

For every such pair ( f , g) satisfying f ≡ g mod
∏n

i=1 αi, we can write f − g = h ·∏n
i=1 αi

for an h ∈ St∗
Q

, hence f = ( f + g)/2 + (h/2) ·∏n
i=1 αi and g = ( f + g)/2 − (h/2) ·∏n

i=1 αi.
Let e = (

∏n
i=1 αi,−∏n

i=1 αi) ∈ St∗Q ⊕St∗Q, then {(1, 1), e} is an St∗
Q

-module basis for H∗T n(S2n),
and satisfies the relation e2 = (

∏n
i=1 α

2
i ) · (1, 1). Write St∗

Q
= Q[α1, . . . , αn], we have a ring

isomorphism
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H∗T n(S2n) �
Q[α1, . . . , αn; e]
〈e2 =

∏n
i=1 α

2
i 〉
.

If we replace e by another generator e′ = (
∏n

i=1 αi, 0) which satisfies e′2 = (
∏n

i=1 α
2
i , 0) =

(
∏n

i=1 αi) · e′, we then have another ring isomorphism

H∗T n(S2n) �
Q[α1, . . . , αn; e′]
〈e′2 = (

∏n
i=1 αi) · e′〉

.

Remark 3.9. The 2n-dimensional sphere S2n under the standard T n-action can be viewed
as a torus manifold as defined by Hattori and Masuda [24]. The general results of integral
equivariant cohomology rings of torus manifolds were given by Masuda and Panov [37],
and its GKM theory were given by Maeda, Masuda and Panov [36].

Example 3.10. RP2n is the quotient of S2n by the Z2-action eπi · (x, z1, . . . , zn) = (−x,
−z1, . . . ,−zn). It inherits a T n-action from S2n. The fixed-point set is (RP2n)T n

= {(±1, 0, . . . ,
0)}/Z2, a single point. Since dim H∗((RP2n)T n

) = 1 = dim H∗(RP2n), the T n action on RP2n

is equivariantly formal by the Formality Criterion Theorem 2.7 with the isotropy weights
α1, . . . , αn at the only fixed point. This means the action is GKM and the GKM graph con-
sists of a • joined via n dotted edges of weights α1, . . . , αn to n�’s. The effective GKM graph
is a single • without edges. The equivariant cohomology is then H∗T n(RP2n) � H∗T n(pt) =
St∗
Q

. This example was due to [13] p.7 Example 3.7.

3.4. GKM covering.
3.4. GKM covering. Let M̃2n → M2n be a T -equivariant covering with a finite cover-

ing group Γ. See [7, Sec. I.9] for a general discussion on equivariant covering. If the
T -action on M̃ is GKM, then according to the even GKM Theorem 3.5, the equivariant co-
homology H∗T (M̃) concentrates in even degrees, so does its ordinary cohomology H∗(M̃).
Since H∗(M) � H∗(M̃)Γ, the ordinary cohomology H∗(M) also concentrates in even de-
grees, which implies the collapse of the Leray-Serre spectral sequence of the fibration
M ↪→ (M × ET )/T → BT at the E2 page H∗(BT ) ⊗ H∗(M). Therefore, the T -action on
M is equivariantly formal. The isotropy weights at the T -fixed points of M are inherited
from M̃, hence the T -action on M is also GKM. Restricting the covering to the fixed points
and 1-skeleta we get the coverings:

Γ −→ M̃T −→ MT , Γ −→ M̃1 −→ M1.

Definition 3.11 (Finite coverings/quotients of GKM graphs). Given a T -equivariant fi-
nite covering Γ→ M̃2n → M2n of GKM manifolds, denote their GKM graphs by ̃, , then
there is a Γ-action on ̃ and we can view  as a quotient graph ̃/Γ in the following sense:

(1) The Γ-orbits of • vertices in ̃ one-to-one correspond to the • vertices in .
(2) The free Γ-orbits of solid edges in ̃ one-to-one correspond to solid edges in .
(3) The Γ-orbits of � vertices and dotted edges in ̃ form a part of the � vertices and

dotted edges in .
(4) The non-free Γ-orbits of solid edges in ̃ form the remaining � vertices and dotted

edges in .
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Remark 3.12. The (1), (2), (3) are natural. To understand (4), suppose a solid edge in ̃

has a nontrivial Γ-stabilizer, then the represented S2 will be folded by that stabilizer to form
a RP2 which produces a � and a dotted edge in .

Remark 3.13. We have the equivalences H∗T (M) � H∗() � H∗T (M̃)Γ � H∗(̃)Γ.

Remark 3.14. The above definition also makes sense for finite coverings/quotients of
abstract GKM graphs that do not necessarily come from actual GKM manifolds.

Remark 3.15. Another idea of obtaining symmetry on GKM graph has been given by
Kaji [30] on GKM T -manifolds with extended Lie group actions.

As an application of the notion of GKM covering, we can extend Guillemin, Holm and
Zara’s GKM descriptions [23, p. 28 Thm 2.4] of a certain class of homogeneous spaces to a
slightly larger class.

Let G be a compact, possibly non-connected Lie group with a maximal torus T , and K be
a closed subgroup of G containing T . Denote the sets of positive roots of G and K by �+G and
�+K . We use the definition of the Weyl group WG � NG(T )/T , where NG(T ) is the normalizer
of T in G. Let G0 be the identity component of G. Since the inclusion G0 ⊆ G is normal, the
quotient G/G0 is a finite group. The exact sequence of groups G0 ↪→ G � G/G0 descends
to the exact sequence of finite groups WG0 ↪→ WG � G/G0 using the conjugacy properties
of T in G. We see that the Weyl group WG is generated not only by the Weyl reflections
σλ, λ ∈ �+G, but also by G/G0.

Proposition 3.16. The natural left action T � G/K is GKM with a GKM graph G/K

such that

(1) The vertex set is WG/WK.
(2) The labelled S2-edges at any [w] ∈ WG/WK are

for all λ ∈ �+G � �+K with σλ � WK.
(3) The labelled RP2-edges at any [w] ∈ WG/WK are

for all μ ∈ �+G � �+K with σμ ∈ WK.

Proof. (Sketch) Guillemin, Holm and Zara [23] assumed that G is semisimple, connected,
and K is connected, but also suggested dropping that assumption using covering space ar-
guments. Following the proof in [23], it can be similarly verified that (G/K)T = WG/WK ,
and that the tangent space at the identity coset eK ∈ G/K is a T -representation TeKG/K =⊕

λ∈�+G��+K Cλ. Hence we get the vertex set and the labelled edge set of the GKM graph of

G/K. As for the determination of an edge as either an S2 or RP2, it depends on whether
the edge formed from a reflection σλ is folded when taking the quotient of WG by WK , i.e.
whether σλ is actually an element of WK . �
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Example 3.17. Denote the real and oriented Grassmannians of k-dimensional subspaces
in n-dimensional real spaces by Gk(Rn) and G̃k(Rn). They are of the dimension k(n − k).
There is a natural Z2-cover G̃k(Rn) → Gk(Rn) by forgetting the orientations of the ori-
ented k-dimensional subspaces. When these Grassmannians are even-dimensional, they are
equipped with canonical GKM torus actions which are compatible with the Z2-covering
map. For instance, let T 2 act on R5 such that each S1-factor of T 2 respectively rotates each
R2-summand of R5 = R2

1⊕R2
2⊕R. This real T 2-representation induces a canonical T 2-action

on the 6-dimensional Grassmannian G2(R5) such that for t ∈ T 2 and V ∈ G2(R5), we define
t · V as the image t(V) of the isomorphism t : R5 → R5. The fixed-points are the real 2-
dimensional T 2-subrepresentations of the representation T 2 � R5, i.e. G2(R5)T 2

= {R2
1,R

2
2}.

We denote these two R2-summands by V1,V2. Similarly, we get a canonical T 2-action on
G̃2(R5) with the fixed-point set G̃2(R5)T 2

= {V1+ ,V1− ,V2+ ,V2−}, where the underlying space
of Vi± is Vi. To understand the 1-skeleta, one can go further to consider the 2-dimensional
real S1-subrepresentations of R5. Let α1, α2 be the standard integral basis of the dual Lie
algebra of T 2. The following Figure 1 shows the GKM graphs of G2(R5) ([13] p.8 Example
3.8, [26] p.12 (3A)) and G̃2(R5) ([26] p.23 (3B)) under the canonical T 2-actions. To see the
Z2-covering of GKM graphs: the dotted edge of Vi in the GKM graph of G2(R5) corresponds
to the folding of the solid edge that joins the pair (Vi+ ,Vi−) in the GKM graph of G̃2(R5).

Fig.1. A 2-cover between GKM graphs of the T 2-actions on the 6d Grassmannians.

The details of the 1-skeleta and the localization of the equivariant cohomology rings of the
even-dimensional real and oriented Grassmannians can be found in [26].

4. A GKM-type theorem in odd dimensions

4. A GKM-type theorem in odd dimensions
With the even-dimensional GKM theory well established, it is natural to ask whether

there is a parallel odd-dimensional analogue. Goertsches, Nozawa and Töben [15] devel-
oped a GKM-type theory for a certain class of Cohen-Macaulay torus actions, including an
application to certain K-contact manifolds. In this section, we introduce a GKM-type lo-
calization result for certain equivariantly formal torus actions on odd-dimensional, possibly
non-orientable manifolds.

4.1. GKM condition in odd dimensions.
4.1. GKM condition in odd dimensions. As we have seen in the even-dimensional case,

we need the 1-skeleton to be nonempty and of the smallest possible dimension.
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Definition 4.1. An action T � M2n+1 is odd GKM (or has minimal 1-skeleton in odd
dimension) if it is equivariantly formal and the following is satisfied

(1) The fixed-point set MT is a nonempty union of isolated circles.
(2) The 1-skeleton M1 is 3-dimensional. Or equivalently, at any point p on a fixed

circle γ ⊂ MT , the non-zero integral weights λ1, . . . , λn ∈ t∗Z of the isotropy T -
representation T � TpM � R ⊕ Vλ1 ⊕ · · · ⊕ Vλn are pair-wise linearly independent.
Using a continuity argument, one can show that the integral weights λ1, . . . , λn de-
pend on γ, not on the specific choice of p ∈ γ.

Remark 4.2. One of the anonymous referees suggested the following useful observation.
Note T M|γ � Tγ ⊕ Nγ � (γ × R) ⊕ Nγ where Nγ is the normal bundle of γ. Because a R2n-
vector bundle over S1 is determined by an element in π1(BO(2n)) � π0(O(2n)) � Z2, there
are only two types of Nγ up to bundle isomorphism, i.e. Nγ � S1×R2n or (S1×Z2 R)×R2n−1.
If there is a global torus action on this vector bundle whose fixed-point set is the base space
S1, then Nγ must be the trivial bundle γ × R2n. Since R2n � Vλ1 ⊕ · · · ⊕ Vλn , then Nγ
decomposes into γ × (Vλ1 ⊕ · · · ⊕ Vλn). Set Tλi as the codimension-1 subtorus of T with the
Lie subalgebra Ker λi ⊂ t, we have T MTλi |γ = γ × (R ⊕ (⊕ jVλ j)

)
where the ⊕ j is taken over

all λ j’s that are linear multiples of λi. This observation helps to see the equivalence between
the condition that M1 is 3d and the condition of pairwise independence of λi’s.

By Condition (1), the fixed-point set MT consists of circles. We fix a unit orientation form
θγ for each circle γ, and write

H∗T (MT ) =
⊕

γ⊂MT

(
H∗T (pt) ⊗ H∗(S1

γ)
)
=
⊕

γ⊂MT

(
St∗Q ⊕ St∗Qθγ

)
.

By Condition (2), for any isotropy weight λ along a fixed circle γ ⊂ MT , the component
Cλ of MTλ containing γ is 3-dimensional and has an effective residual action of the circle
T/Tλ.

4.2. Geometry and equivariant cohomology of 3d S1-manifolds.
4.2. Geometry and equivariant cohomology of 3d S1-manifolds. 3-dimensional S1-

manifolds without fixed points are the Seifert manifolds. The case of 3-dimensional S1-
manifolds with or without fixed points, also called generalized Seifert manifolds, was clas-
sified by Orlik and Raymond.

Briefly speaking, the equivariant diffeomorphism type of a 3-dimensional S1-manifold
M is determined by the orbifold type of the quotient space M/S1, the numerical data of
the Seifert fibres over the orbifold points of M/S1, and the orbifold Euler number b of the
“fibration” M → M/S1.

Let us write ε = o (orientable) or n (non-orientable) for the orientability of the orbifold
surface M/S1, and g for its genus. Write f for the number of connected components in the
fixed-point set MS1

= ∪ f
i=1γi, write s for the number of connected components of special

exceptional orbits whose normal spaces viewed as isotropy representations are Z2
reflect
� R2

such that exp(π
√−1) · (x, y) = (x,−y) for any (x, y) ∈ R2, and record a coprime integer

pair (μ j, ν j) for each Seifert fiber in MZ/μ j whose 2-dimensional normal space viewed as

an isotropy representation is Zμ j

rotate
� R2 such that exp( 2π

√−1
μ j

) · z = exp( 2πν j
√−1
μ j

)z for any
z ∈ R2 � C.
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The non-orientability of M is equivalent to either ε = n (the quotient M/S1 is non-
orientable) or s > 0 (there are special exceptional orbits).

All the above mentioned data together gives a numerical criterion of classifying 3-dimen-
sional S1-manifolds.

Theorem 4.3 (Orlik-Raymond classification of closed 3d S1-manifolds, [42, 41]). Let
S1 act effectively and smoothly on a closed, connected smooth 3-dimensional manifold M.
Then the orbit invariants

{
b; (ε, g, f , s); (μ1, ν1), . . . , (μr, νr)

}

subject to certain conditions, determine M up to equivariant diffeomorphism.

The proof of this theorem is by equivariant cutting and pasting, and furthermore inspires
us to compute the equivariant cohomology using Mayer-Vietoris sequences and classify
equivariantly formal S1-actions on 3-dimensional manifolds.

Theorem 4.4 (Equivariantly formal 3d S1-manifold, [25] p. 258 Thm 4.8). A closed 3-
dimensional S1-manifold M =

{
b; (ε, g, f , s); (μ1, ν1), . . . , (μr, νr)

}
is S1-equivariantly formal

if and only if f > 0, b = 0 and one of the following three constraints holds
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε = o, g = 0, s = 0

ε = o, g = 0, s = 1

ε = n, g = 1, s = 0.

In the author’s proof of the above theorem on equivariantly formal 3-dimensional S1-
manifold, it was shown that the elements of the equivariant cohomology H∗S1 (M) have the

following expression when localized to H∗S1 (MS1
) =
⊕ f

i=1(H∗S1 (pt)⊗H∗(γi)) =
⊕ f

i=1(Q[α]⊗
H∗(γi)):

f∑

i=1

(
Pi(α)δi + Qi(α)θi

) ∈
f⊕

i=1

(
Q[α] ⊗ H∗(γi)

)

where Pi, Qi ∈ Q[α] are polynomials and δi, θi are generators of H0(γi,Z),H1(γi,Z). More-
over,

(1) in the case of ε = o, g = 0, s = 0 such that the 3d manifold M is orientable and the
S1-action preserves an orientation (we will call this case S1-orientable), those Pi,Qi

are subject to two relations:

P1(0) = P2(0) = · · · = Pf (0) and
f∑

i=1

Qi(0) = 0

where the second one is obtained under the assumption that after fixing an orien-
tation on M, the θi’s represent the induced orientations on γi’s (see Subsubsection
2.1.2).

(2) in the two cases of ε = o, g = 0, s = 1 and ε = n, g = 1, s = 0 such that M is either
non-orientable, or orientable but the S1-action does not preserve an orientation (we
will call these cases non-S1-orientable), those Pi,Qi are subject to the relation:
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P1(0) = P2(0) = · · · = Pf (0).

Back to an odd GKM action T � M2n+1, let Cλ be a component of weight λ in the
1-skeleton M1. The codimension-1 subtorus Tλ acts on Cλ trivially and the residual circle
T/Tλ acts equivariantly formally. The elements of the equivariant cohomology H∗T (Cλ) can
be localized to the fixed-point set ∪ f

i=1γi in the form:

f∑

i=1

(
Piδi + Qiθi

) ∈
f⊕

i=1

(
St∗Q ⊗ H∗(γi)

)

where δi, θi are generators of H0(γi,Z),H1(γi,Z). Since Tλ acts trivially on Cλ, we have
H∗T (Cλ) � H∗T/Tλ(Cλ) ⊗ H∗Tλ(pt):

(1) when Cλ is T/Tλ-oriented and θi’s represent the induced orientations on γi’s, the
polynomials Pi, Qi ∈ St∗Q are subject to two congruence relations:

(†) P1 ≡ P2 ≡ · · · ≡ Pf and
f∑

i=1

Qi ≡ 0 mod λ;

(2) when Cλ is non-T/Tλ-orientable, the polynomials Pi, Qi ∈ St∗Q are subject to the
congruence relation:

(‡) P1 ≡ P2 ≡ · · · ≡ Pf mod λ.

In the next three subsubsections, firstly we show that the vast possibilities of S1-
equivariantly formal, closed 3d manifolds can be considerably reduced if we impose ex-
tra structures, then we give a method of constructing all the 3d closed, equivariantly formal,
S1-manifolds.

4.2.1. Mapping tori of 2d S1-manifolds.
4.2.1. Mapping tori of 2d S1-manifolds. Up to S1-diffeomorphisms, (see [3] p. 18-20)

there are two orientable 2-dimensional S1-manifolds: the rank-2 torus T 2 = S1 × S1 with S1

acting on the first factor, the 2-sphere S2 with the standard S1-action; their non-orientable
Z2-quotients: the Klein bottle K = S1 × S1/(z1, z2) ∼ (−z1, z̄2) and the real projective plane
RP2 = S2/Z2 with the induced S1-actions.

Let N be one of the four 2d S1-manifolds, and φ be an S1-automorphism on N. We form
the S1-equivariant mapping torus

Nφ �
N × [0, 1]

N × {0} ∼φ N × {1}
whose S1-diffeomorphism type is determined by the S1-isotopy type of φ.

For N = T 2, an S1-automorphism φ induces an automorphism on the orbit space: φ/S1 :
{1} × S1 → {1} × S1 which is isotopic to the identity map z �→ z or the inverse map z �→ z−1

where z ∈ S1 ⊂ C. In addition to φ/S1, the S1-isotopy type of φ is determined by the number
of times that φ({1} × S1) wraps along the direction of S1 × {1}, i.e. the mapping degree of
pr1 ◦ φ : {1} × S1 → S1 × {1} where pr1 projects T 2 to its first factor. Up to S1-isotopy, we
have φ : T 2 → T 2 : (z1, z2) �→ (z1zk

2, z2) or (z1zk
2, z
−1
2 ) for some integer k. However, those

mapping tori T 2
φ do not have S1-fixed points.

For N = S2, K, RP2, the orbit space N/S1 is an interval [0, 1]. There is a cross section for
the projection N → N/S1 = [0, 1], hence the S1-isotopy type of φ : N → N is determined by
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the isotopy type of φ/S1 : [0, 1] → [0, 1]. If N = S2, K, the two end points of N/S1 = [0, 1]
represent two S1-fixed points or two S1/Z2 orbits respectively. Therefore, up to isotopy, the
automorphism φ/S1 : [0, 1] → [0, 1] is either the identity t �→ t or t �→ 1 − t swapping the
two end pints. If N = RP2, one end point of RP2/S1 = [0, 1] represents an S1-fixed point
and the other one represents an S1/Z2 orbit. Therefore, up to isotopy, the automorphism
φ/S1 : [0, 1]→ [0, 1] is the identity map.

If a mapping torus Nφ is S1-equivariantly formal, then it must have S1-fixed points, hence
N = S2, RP2. For N = S2 and φ = id, we have Nφ = S2 × S1. This is a 3d S1-orientable,
equivariantly formal manifold

(
b = 0; (ε = o, g = 0, f = 2, s = 0)

)
with two S1-fixed circles.

We have

H∗S1 (S2 × S1) � H∗S1 (S2) ⊗ H∗(S1)

�
{(

PN(α),QN(α)θ; PS(α),QS(α)θ
) | PN(0) = PS(0), QN(0) = QS(0)

}
.

For N = S2 and φ being the antipodal map that swaps the north pole with the south pole,
we have Nφ = S2 ×Z2 S1. This is a 3d non-S1-orientable, equivariantly formal manifold(
b = 0; (ε = n, g = 1, f = 1, s = 0)

)
with one S1-fixed circle. We have

H∗S1 (S2 ×Z2 S1) �
{(

P(α),Q(α)θ
)}
� H∗S1 (pt) ⊗ H∗(S1).

For N = RP2 and φ = id, we have Nφ = RP2 × S1. This is a 3d non-S1-orientable, equiv-
ariantly formal manifold

(
b = 0; (ε = o, g = 0, f = 1, s = 1)

)
with one S1-fixed circle. We

have

H∗S1 (RP2 × S1) � H∗S1 (RP2) ⊗ H∗(S1) �
{(

P(α),Q(α)θ
)}
� H∗S1 (pt) ⊗ H∗(S1).

4.2.2. Extendible S1-actions on 3d manifolds.
4.2.2. Extendible S1-actions on 3d manifolds. We say an effective action S1 � M3

is extendible if it is a subaction of an effective action G � M3 where G is a compact
connected Lie group properly containing S1. If S1 is a maximal torus of G, then G is an
SU(2) or SO(3). Otherwise, S1 is contained as the first factor S1 × {1} of a rank-2 subtorus
T 2 ⊆ G. Now we assume the extended group G is one of SU(2), SO(3), T 2 and note that
dim M3/G < dim M3/S1 = 2.

If dim M3/G = 0, then G is SU(2) � S3 or SO(3) � RP3 � S3/Z2, hence M is S3/Γ for a
finite subgroup Γ ⊂ SU(2). On one hand, M is a rational homology 3-sphere. On the other
hand, the S1-action on M is induced from SU(2) � S3 which has at least an S1-fixed circle.
Then dim H∗(M) = 2 and dim H∗(MS1

) � 2. By the Formality Criterion 2.7, the S1-action
on M is equivariantly formal. We have the H∗S1 (pt)-module isomorphisms

H∗S1 (M) � H∗S1 (pt) ⊗ H∗(M) � H∗S1 (pt) ⊗ H∗(S3)

which are also H∗S1 (pt)-algebra isomorphisms because the degree-3 generator must have zero
square. The localized expression is

H∗S1 (M) � H∗S1 (S3) �
{(

P(α),Q(α)θ
) | Q(0) = 0

}
.

If dim M3/G = 1, Neumann ([39] p. 221) showed that G is SO(3) or T 2. The types S4-10
of Neumann’s classification have S1-fixed points and can be verified to be S1-equivariantly
formal using Theorem 2.7 or 4.4:

• If G is T 2, we have the types S4 = RP2 ×S1, S5 = S2 ×Z2 S1, S6 = S2 ×S1 whose S1-
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equivariant cohomology has been given in the previous discussion about mapping
tori. For coprime integers 0 < q < p, the 3d lens spaces S7 = L(p, q) � S3/Zp

(including S3 = L(1, 0)), have the S1-equivariant cohomology

H∗S1 (L(p, q)) � H∗S1 (S3) �
{(

P(α),Q(α)θ
) | Q(0) = 0

}
.

• If G is SO(3), the types S8 = RP2 × S1, S9′ = S2 ×Z2 S1, S9 = S2 × S1 have appeared
as the mapping tori of 2d SO(3)-manifolds. The types S10 = RP3#RP3, S11 =
S3, S12 = RP3 are rational homology 3-spheres and have the S1-equivariant coho-
mology

H∗S1 (RP3#RP3) � H∗S1 (RP3) � H∗S1 (S3) �
{(

P(α),Q(α)θ
) | Q(0) = 0

}
.

4.2.3. Constructing the 3d closed equivariantly formal S1-manifolds.
4.2.3. Constructing the 3d closed equivariantly formal S1-manifolds. Using connect-

ed sums, Raymond gave a construction of all 3d closed S1-manifolds that have non-empty
fixed-point sets. In particular, we can apply his results to construct the 3d equivariantly
formal S1-manifolds. By [42, p. 58-59, Thm 1.(ii)], the orbit data

{
b = 0; (ε = o, g = 0, f >

0, s = 0)
}
,
{
b = 0; (ε = o, g = 0, f > 0, s = 1)

}
and
{
b = 0; (ε = n, g = 1, f > 0, s = 0)

}
respectively can be realized as

S3#
(
# f−1(S2 × S1)

)
S3#
(
# f−1(S2 × S1)

)
#(RP2 × S1) (S2 ×Z2 S1)#

(
# f−1(S2 × S1)

)

where # f−1 means taking connected sum of f − 1 copies. Let M′ be one of the above three
types. By [42, p. 72, Thm 4], we can additionally realize the orbit invariants (μi, νi) by
taking connected sum with a 3d Lens space L(μi, νi) with an S1-action given in [42, p. 70-
71, Sec. 7]. All the 3d closed equivariantly formal S1-manifolds satisfying the condition in
Theorem 4.4 can be constructed as

M′#
(
#r

i=1L(μi, νi)
)
.

For details of equivariant connected sum, see [42, p. 71-72, Sec. 8].
Another idea of constructing the 3d equivariantly formal S1-manifolds was suggested by

one of the anonymous referees. We elaborate on that idea and give the details as follows.
Let M1, M2 be 3d closed S1-manifolds such that one of them has a non-empty fixed-point

set, we will define a new 3d closed S1-manifold M1�M2 with a non-empty fixed-point set.
First, we delete an S1-invariant neighbourhood of a free S1-orbit from each of Mi. Such a
neighbourhood is S1-diffeomorphic to a solid torus S1 × D2 with an S1-action concentrating
on the S1-factor. Then, we glue Mi � (S1 × D2), i = 1, 2 along the boundary tori S1 × S1 via
an S1-equivariant automorphism ϕ on S1 × S1, and denote the glued manifold by M1�ϕM2.
If Mi’s are both S1-orientable, the automorphism has to be orientation-reversing in order
to make the glued manifold orientable. As we observed in Subsubsection 4.2.1, the S1-
equivariant automorphism ϕ on S1 × S1 is not unique. Note that, at the level of orbit space,
we have

(M1�ϕM2)/S1 = (M1/S1)#(M2/S1).

Using Raymond and Orlik’s local analysis of S1-manifolds [42, 41], with different ϕ, the
orbit data of the glued manifolds M1�ϕM2 will at most differ on the Euler number b. Also
note that
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(M1�ϕM2)S1
= MS1

1 ∪ MS1

2 .

If one of Mi has non-empty fixed-point set, then that Euler number b of M1�ϕM2 vanishes
[42, p. 69, Cor 2a]. Hence the S1-diffeomorphism type of M1�ϕM2 is independent of ϕ, and
we will denote it by M1�M2.

Let S3 ⊂ C2 be induced with the standard S1-action on the first coordinate. Then S3

realizes the orbit data
{
b = 0; (ε = o, g = 0, f = 1, s = 0)

}
. In Subsubsection 4.2.1, we have

seen that RP2 × S1 and S2 ×Z2 S1 with S1-actions on the first factors respectively realize the
orbit data

{
b = 0; (ε = o, g = 0, f = 1, s = 1)

}
,
{
b = 0; (ε = n, g = 1, f = 1, s = 0)

}
. Using

the previous observations (M1�M2)/S1 = (M1/S1)#(M2/S1), (M1�M2)S1
= MS1

1 ∪MS1

2 , we can
realize the orbit data

{
b = 0; (ε = o, g = 0, f > 0, s = 0)

}
,
{
b = 0; (ε = o, g = 0, f > 0, s = 1)

}
and
{
b = 0; (ε = n, g = 1, f > 0, s = 0)

}
respectively as

� f S3 (RP2 × S1)�(� f−1S3) (S2 ×Z2 S1)�(� f−1S3)

where � f−1 means taking the � construction of f −1 copies. Let M′ be one of the above three
types. Let M′′ be a Seifert manifold that realizes the orbit data

{
b = 0; (ε = o, g = 0, f =

0, s = 0); (μ1, ν1), . . . , (μr, νr)
}
. A 3d closed equivariantly formal S1-manifolds satisfying

the condition in Theorem 4.4 can also be constructed as

M′�M′′.

4.3. GKM graphs and a GKM-type theorem in odd dimensions.
4.3. GKM graphs and a GKM-type theorem in odd dimensions. We will construct

GKM graphs for odd-dimensional GKM manifolds and give a graph-theoretic computation
of their equivariant cohomology rings.

In the even-dimensional case, each S2 or RP2 in the 1-skeleton gives an edge connecting
two vertices in a GKM graph. However, in the odd-dimensional case, as we have seen in
the previous discussions, a component in the 1-skeleton could contain any positive number
of fixed circles, in contrast to the exactly two fixed points of S2. Due to this difference, the
construction of the graphs in odd dimensions will be slightly more complicated.

Definition 4.5. The odd GKM (1-skeleton) graph for an odd GKM action T � M2n+1

consists of:
Vertices & Weights: There are two types of vertices:

◦ for each fixed circle γ ⊂ MT ,
� for each 3-dimensional component C in MTλ of some codimension-1 subtorus

Tλ. The � is weighted by (λ, ε) where ε = O (orientable) or N (non-orientable)
for the T/Tλ-orientability of C. If the T/Tλ-orientability of C is known in the
context, then we might drop the symbol ε.

Edges: If a 3-dimensional component C contains a fixed circle γ, then an edge joins a
� that represents C to a ◦ that represents γ. No edges directly join ◦ to ◦, nor � to �.

Remark 4.6. We point out some comparisons between the even GKM graphs and odd
GKM graphs.

• In contrast to labelling weights on the edges of an even GKM graph, we label
weights on the � vertices of an odd GKM graph. The seemly difference is actu-
ally in the same spirit, because the weights are associated to the components of
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the 1-skeleton, which are represented by edges in an even GKM graph while by �
vertices in an odd GKM graph.
• By the odd-dimensional GKM condition 4.1, a fixed circle has exactly n pair-wise

independent weights. Thus each ◦, representing a fixed circle, is joined via exactly
n edges to n �’s. A 3-dimensional component C ⊆ M1 can contain any positive
number of fixed circles, thus a � can be joined via any positive number of edges to
◦’s.

Example 4.7. All the 3d closed equivariantly formal S1-manifolds, that we used in The-
orem 4.4, are the building blocks of the odd-dimensional GKM theory. See Subsubsec-
tion 4.2.3 for the two constructions of the 3d equivariantly formal S1-manifolds. For the
equivariantly formal, S1-orientable manifolds M3 =

{
b = 0; ε = o, g = 0, f > 0, s =

0; (μ1, ν1), . . . , (μr, νr)
}
, the odd GKM graph (Figure 2) consists of a unique �-vertex of

weight α, and f edges joining that one �-vertex with f ◦-vertices. It is worth noting that
the existence of the invariants (μi, νi) does not affect the odd GKM graph nor the rational
equivariant cohomology.

Fig.2. Odd GKM Graph of a 3d equivariantly formal S1-manifold.

The equivariant cohomology is H∗S1 (M) =
{
(P1,Q1θ; . . . ; Pf ,Qf θ) ∈ (Q[α] ⊕ Q[α]θ)⊕ f |

P1(0) = · · · = Pf (0),
∑ f

i=1 Qi(0) = 0
}
. For the equivariantly formal, non-S1-orientable mani-

folds M3 =
{
b = 0; ε = o, g = 0, f > 0, s = 1; (μ1, ν1), . . . , (μr, νr)

}
or{

b = 0; ε = n, g = 1, f > 0, s = 0; (μ1, ν1), . . . , (μr, νr)
}
, the odd GKM graph looks the

same as the oriented case, but the � represents an un-orientable 3-dimensional manifold,
whose equivariant cohomology is H∗S1 (M) =

{
(P1,Q1θ; . . . ; Pf ,Qf θ) ∈ (Q[α] ⊕ Q[α]θ)⊕ f |

P1(0) = · · · = Pf (0)
}
.

Let us describe a GKM-type theorem for the equivariant cohomology H∗T (M2n+1) in a
graph-theoretic way. First, if a 3-dimensional component C ⊆ M1 is orientable, then we
choose its orientation in advance. We also choose an orientation θγi for each fixed circle
γi ⊆ MT . We drop the subscript of θγi and simply write θ universally for every γi.

Definition 4.8. Let T � M2n+1 be an odd GKM action with the odd GKM graph 

consisting of two types of vertex sets V◦ and V� and the edge set E. The cohomology of the
odd GKM graph , denoted by H∗(), is the set of the following paired maps:

(P,Qθ) : V◦ −→ St∗Q ⊕ St∗Qθ
where θ is a generator of H1(S1,Z), and P,Q satisfy the following congruence relations
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contributed from each (�, λ, ε) representing a 3-dimensional component C of MTλ , and its
neighbour ◦’s representing the fixed circles γ1, . . . , γk on C:

• if ε = O, i.e. C is T/Tλ-oriented, we have

Pγ1 ≡ Pγ2 ≡ · · · ≡ Pγk and
k∑

i=1

±Qγi ≡ 0 mod λ

where the sign for each Qγi is specified by comparing the prechosen orientation θi

with the induced orientation of C on γi (see Subsubsection 2.1.2);
• if ε = N, i.e. C is non-T/Tλ-orientable, we have

Pγ1 ≡ Pγ2 ≡ · · · ≡ Pγk mod λ.

Remark 4.9. If we reverse the prechosen orientations of the fixed circles γi or of the
3-dimensional orientable components C of MTλ , then we change the signs in front of Qγi

accordingly.

Remark 4.10. The St∗
Q

-algebra structure on H∗() is canonically induced from St∗
Q
⊕St∗

Q
θ.

Write an element (P,Qθ) as (Pγ + Qγθ)γ⊂MT . We have (Pγ + Qγθ)γ⊂MT + (P̄γ + Q̄γθ)γ⊂MT =

([Pγ+ P̄γ]+ [Qγ+ Q̄γ]θ)γ⊂MT . Note θ2 = 0, then (Pγ+Qγθ)γ⊂MT · (P̄γ+ Q̄γθ)γ⊂MT = ([PγP̄γ]+
[PγQ̄γ + P̄γQγ]θ)γ⊂MT . The St∗

Q
-module structure of H∗T (M) is that, for any polynomial

R ∈ St∗
Q

, we have R · (Pγ + Qγθ)γ⊂MT = (RPγ + RQγθ)γ⊂MT .

Theorem 4.11 (A GKM-type theorem in odd dimensions). If an effective T-action on
an odd-dimensional, possibly non-orientable manifold M2n+1 is odd GKM with the graph ,
then there is an St∗

Q
-algebra isomorphism:

H∗T (M) � H∗().

Proof. The odd-dimensional GKM condition 4.1 assumes that the fixed-point set MT is a
non-empty union of isolated circles, and that the 1-skeleton M1 is a union of 3-dimensional
manifolds with residual circle actions.

An element of H∗T (MT ) can be written as follows: to each fixed circle γ ⊂ MT , we
associate a pair of polynomials (Pγδγ,Qγθγ) ∈ St∗Q ⊗ H∗(γ), where δγ, θγ are the generators
of H0(γ,Z),H1(γ,Z). Equivalently, we have a paired map (P,Qθ) : V◦ −→ St∗Q ⊕ St∗Qθ.

By Proposition 2.10 on the inheritance of equivariant formality, the residual action of
the circle T/Tλ on a 3-dimensional component C ⊂ MTλ , represented by a � ∈ V�, is
also equivariantly formal. Then we can use the Classification Theorem 4.4 of equivariantly
formal S1-actions on closed 3-dimensional manifolds, and the congruence relations (†), (‡)
therein to describe the embedded image Im

(
H∗T (C)→ H∗T (MT )

)
.

The only modifications are the signs in
∑k

i=1 ±Qγi . Notice that in Theorem 4.4, when C
is oriented, the orientation forms θγi are induced from C, such that the isotropy weight at
each γi is equal to 1 under the effective residual action of the circle T/Tλ, or equivalently
its isotropy weight under the T -action is λ. However, if we have chosen orientations in
advance for the fixed circles γi, then we need to adjust the signs of Qγi in relation (†) for the
difference of the prechosen orientations and the induced orientations.

The set of paired maps (P,Qθ) : V◦ −→ St∗Q⊕St∗Qθ that satisfy all the specified congruence
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relations is exactly the set
⋂

λ

(
Im
(
H∗T (MTλ)→ H∗T (MT )

))

where the intersection is taken over all (finitely many) isotropy weights of the action T �
M2n+1. By the Chang-Skjelbred Lemma 2.4, we get the full description of H∗T (M). �

5. Examples

5. Examples
In this section, we construct some odd-dimensional GKM manifolds with certain addi-

tional geometric or topological structures and apply the odd GKM Theorem 4.11 to describe
the equivariant cohomology with graphs.

5.1. Product of an odd GKM manifold and an even GKM manifold.
5.1. Product of an odd GKM manifold and an even GKM manifold. Given an even

GKM action T k � M2m and an odd GKM action T l � N2n+1, we get the product action
T k × T l � M2m × N2n+1 which is odd GKM. Using T k × T l � T k+l, we identify the weights
of T k and T l as weights of T k+l. The odd GKM graph M×N can be obtained from the even
GKM graph M together with the odd GKM graph N . First, for each vertex p of M, we
place a copy of N and denote it by 

p
N . Second, for each solid edge pq of M that represents

an S2 of weight λ, we take each ◦-vertex of p
N and its corresponding ◦-vertex of q

N , then
join these two ◦-vertices via a new (�, λ) that represents an S2×S1 with the residual S1-action
concentrated on the S2-factor. Last, for each dotted edge at a vertex p of M that represents
a RP2 of weight μ, we join each ◦-vertex of p

N to a new (�, μ) that represents a RP2 × S1

with the residual S1-action concentrated on the RP2-factor.

Remark 5.1. More generally, it is possible to describe the GKM graphs of GKM bundles
with even dimensional GKM bases and odd dimensional GKM fibres, or with odd dimen-
sional GKM bases and even dimensional GKM fibres.

5.2. Odd GKM actions on contact and cosymplectic manifolds.
5.2. Odd GKM actions on contact and cosymplectic manifolds. The even GKM the-

ory has many applications to certain torus actions on symplectic manifolds. Here we give
some odd-dimensional analogues from contact and cosymplectic manifolds.

5.2.1. Odd GKM torus actions on contact manifolds.
5.2.1. Odd GKM torus actions on contact manifolds. Let (M2n+1, η) be a contact man-

ifold with a T -action that preserves the contact form η. For any ξ ∈ t, let ξM be the corre-
sponding vector field on M, then we have a Hamiltonian function μξ � η(ξM) ∈ C∞(M).

Unlike the symplectic case as in Example 2.9, we might not have the equality between
the fixed-point set MT and the critical set Crit(μξ) for a generic ξ in the contact case. The
perfection of μξ, the equivariant formality of T � M, and even the non-emptiness of MT

are not guaranteed. For instance, the contact toric actions T n+1 � (M2n+1, η) were shown
by Lerman ([33] p. 794, Lem 2.12) that MT = ∅, hence these actions can’t be equivariantly
formal.

Suppose an action T k � (M2n+1, η) satisfies the odd GKM condition 4.1 and denote its
odd GKM graph by M. Let λ ∈ tZ be an isotropy weight and pick any 3d component
Cλ ⊂ MTλ . It can be checked that, as a Tλ-fixed submanifold, (Cλ, η|Cλ

) is contact and
is preserved by the residue T/Tλ-action. Niederkruger ([40] p. 50, Thm IV.16) proved the
existence of invariant contact forms on any S1-orientable, closed 3d manifold that has non-
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empty fixed-points. Hence, the 3d contact T/Tλ-equivariantly formal manifold (Cλ, η|Cλ
)

can be any of the S1-orientable, equivariantly formal, closed 3d manifold M3 =
{
g = 0, ε =

o, f > 0, s = 0, (μ1, ν1), . . . , (μr, νr)
}
. If we want to reduce the possibilities of Cλ, we could

impose extra conditions.
Suppose an odd GKM action T k � (M2n+1, η) can be extended to a larger action T ′ =

T k+1 � (M2n+1, η) such that T k is identified as T k×{1} ⊂ T ′. Then the equivariantly formal,
orientation-preserving action T/Tλ � Cλ can be extended to a larger action T ′/Tλ � Cλ.
By the discussion in Subsubsection 4.2.2 on Neumann’s results of T 2-actions on orientable
3d manifolds, there are two possibilities for Cλ: S6 = S2 × S1 and Lens spaces S7 = L(p, q),
both of which have T 2-invariant contact structures by Lerman’s classification ([33] p. 796,
Thm 2.18) of toric contact manifolds. Each Cλ = S2 × S1 contributes to the GKM graph M

a � of weight λ joining to two ◦-vertices γ1, γ2, and contributes to H∗T (M) the congruence
relations on the tuple (Pγ1 ,Qγ1θ; Pγ2 ,Qγ2θ):

Pγ1 ≡ Pγ2 Qγ1 ≡ Qγ2 mod λ.

Each Cλ = L(p, q) contributes a � of weight λ joining to one ◦-vertex γ and a congruence
relation on the duple (Pγ,Qγθ):

Qγ ≡ 0 mod λ.

Example 5.2. S2n × S1 =
{
(r1eiφ1 , . . . , rneiφn , rn+1; eiφn+1 ) | r2

1 + · · · r2
n+1 = 1

}
has the contact

form η = r1dφ1+· · ·+rn+1dφn+1 invariant under the T n+1-action (eiψ1 , . . . , eiψn+1 )·(r1eiφ1 , . . . ,

rneiφn , rn+1; eiφn+1 ) = (r1ei(ψ1+φ1), . . . , rnei(ψn+φn), rn+1; ei(ψn+1+φn+1)). Since the action T n � S2n

has the even GKM graph consisting of two vertices with n edges of weights α1, . . . , αn as in
Example 3.8, the T n × {1}-action on S2n × S1 is a product of GKM actions and has the odd
GKM graph consisting of two ◦-vertices joined via n �-vertices representing S2 × S1’s of
weights α1, . . . , αn. We have the localized expression H∗T n(S2n × S1) �

{
(PN ,QNθ; PS,QSθ) |

PN ≡ PS, QN ≡ QS mod
∏n

j=1 α j
}

which is of course isomorphic to H∗T n(S2n) ⊗ H∗(S1).

Suppose moreover that the extended action T ′ = T k+1 � (M2n+1, η) is of Reeb type,
i.e. there exists ξ ∈ t′ � t such that η(ξM) = 1, ιξM dη = 0. It can be checked that, for each
3d component Cλ, the toric action T ′/Tλ � (Cλ, η|Cλ

) is also of Reeb type. By ([34] p. 5,
Prop 2.3), such a Cλ can only be a Lens space but excluding S2 × S1. Each Cλ, being a Lens
space, has one single T/Tλ-fixed circle which is also T -fixed. Hence, the odd GKM graph
M consists of a single ◦-vertex γ joined to n �’s of pairwise independent weights λ1, . . . , λn,
such that H∗(M) consists of the duples (Pγ,Qγθ) satisfying the congruence relations

Qγ ≡ 0 mod λ1, . . . , λn.

Therefore, we have the H∗T (pt)-algebra isomorphisms

H∗T (M2n+1) � H∗(M) =
{
(Pγ,Qγθ) | Qγ ≡ 0 mod

n∏

j=1

λ j
}
� H∗T (pt) ⊗ H∗(S2n+1).

Restricting to ordinary cohomology, we have H∗(M2n+1) � H∗(S2n+1), i.e. M2n+1 has to be a
rational homology sphere.
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Example 5.3. The sphere S2n+1 =
{
(r1eiφ1 , . . . , rneiφn , rn+1eiφn+1 ) | r2

1 + · · · r2
n+1 = 1

}
has the

contact form η = r1dφ1 + · · · + rn+1dφn+1 invariant under the T n+1-action (eiψ1 , . . . , eiψn+1 )·
(r1eiφ1 , . . . , rneiφn , rn+1eiφn+1 ) = (r1ei(ψ1+φ1), . . . , rnei(ψn+φn), rn+1ei(ψn+1+φn+1)). It is odd GKM un-
der the action of T n×{1} concentrating on the first n coordinates. Furthermore, given positive
integers 0 < q1, . . . , qn < p such that each q j is coprime to p, we consider the Lens space
L(p; q1, . . . , qn) defined as the quotient of a Z/pZ-action on S2n+1: e2πi/p·(r1eiφ1 , . . . , rneiφn ,

rn+1eiφn+1 ) = (r1e2πiq1/p · eiφ1 , . . . , rne2πiqn/p · eiφn , rn+1e2πi/p · eiφn+1 ). The lens space L(p; q1, . . . ,

qn) inherits from S2n+1 a contact form and a compatible effective T n+1-action whose T n×{1}-
subaction is odd GKM with the graph consisting of a single ◦-vertex γ joined to n �’s rep-
resenting the 3-dimensional Lens subspaces L(p; qi) of the fundamental T n-weights αi.

5.2.2. Odd GKM torus actions on cosymplectic manifolds.
5.2.2. Odd GKM torus actions on cosymplectic manifolds. Tischler [44] proved that

if a compact manifold has a nonvanishing closed one-form, then the manifold is a mapping
torus. An odd-dimensional compact manifold M2n+1 is a cosymplectic manifold if there are
a closed one-form η and a closed two-form ω such that η ∧ ωn is a volume form. H.-J. Li
[35] proved that a cosymplectic manifold is a mapping torus of a symplectic manifold.

Suppose a cosymplectic manifold (M, η, ω) is acted by a torus T that preserves the closed
forms η, ω. For every ξ ∈ t, let ξM be the vector field generated by ξ on M. Let R be the
Reeb vector field on M defined by η(R) = 1 and ιRω = 0. Following Albert [1], Guillemin-
Miranda-Pires-Scott [17, 18] and Bozzoni-Goertsches [6], we call the action T � (M, η, ω)
to be Hamiltonian if

• η(ξM) = 0,
• there exists a moment map μ : t → C∞(M) such that for every ξ ∈ t, the function
μξ � μ(ξ) satisfies:

– ιξMω = dμξ;
– μξ is T -invariant;
– μξ is Reeb-invariant, i.e. R(μξ) = 0 where R is the Lie derivative along R.

Assuming there is a compact leaf of the foliation defined by η, Guillemin-Miranda-Pires-
Scott showed that a T -Hamiltonian cosymplectic manifold is a mapping torus of a
T -Hamiltonian symplectic manifold. When the action is toric, i.e. 2 dim T + 1 = dim M,
they showed that the cosymplectic manifold is a product of S1 with a toric symplectic man-
ifold. Bozzoni-Goertsches gave a new proof of the product structure of a toric cosymplectic
manifold without the compactness assumption.

For a non-toric T -Hamiltonian cosymplectic manifold (M, η, ω), suppose M has only
isolated T -fixed circles, the argument of Bozzoni-Goertsches([6] Prop 3.4 and Thm 3.7) still
works. Hence the action T � M is equivariantly formal, b1(M) = 1 and there is a T -
equivariant cosymplectomorphism

M � Nφ =
N × [0, r]

N × {0} ∼φ N × {r}
where N is a compact connected manifold equipped with a symplectic form ω′ and a Hamil-
tonian T -action; φ : N → N is a T -Hamiltonian symplectomorphism; r is a positive real
number. We identify N as the submanifold N × {0} in M � Nφ. Since M has only isolated
T -fixed circles, then N has only isolated T -fixed points.

Suppose further that the 1-skeleton M1 is 3-dimensional, i.e. the action T � M is odd
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GKM, then the 1-skeleton N1 is 2-dimensional, i.e. the action T � N is even GKM. The T -
Hamiltonian symplectomorphism φ on N naturally induces an automorphism φ̃ on the even
GKM graph N .

Lemma 5.4. The automorphism φ̃ on N is the identity map.

Proof. Because of M � Nφ and the requirement that μ is Reeb-invariant, the moment map
μ essentially lives on the leaf N. The restriction μ|N , also denoted μN , is the moment map
for the T -Hamiltonian action on (N, ω). Since N has only isolated fixed points, then by the
Atiyah-Guillemin-Sternberg convexity theorem, there is a generic X ∈ t such that μX

N attains
its minimum at a single fixed point pmin of N and its maximum at a single fixed point pmax.
The T -Hamiltonian symplectomorphism φ preserves μN , then φ(pmin/max) = pmin/max on N
and φ̃(pmin/max) = pmin/max on the graph N . Next, let p ∈ NT be a vertex of N joined to
pmin via a unique edge pmin p of weight α. Since φ is T -equivariant, then φ̃ preserves the
weights of the edges on N . We already have φ̃(pmin) = pmin, then φ̃(pmin p) = pmin p, hence
φ̃(p) = p. Let pmin p1 · · · pl pmax be a path in N , then we will have φ̃(pmin p1 · · · pl pmax) =
pmin p1 · · · pl pmax. Note N is connected, then N is connected, hence every edge appears in
some path between pmin and pmax. Therefore, φ̃ fixes every edge and every vertex of N .

�

The lemma is equivalent to saying that φ restricted on the 1-skeleton N1 is isotopic to the
identity map idN1 . Then we have M1 � (N1)φ � (N1)id = N1 × S1. Therefore, the odd GKM
graphs of M and N × S1 are the same, and so are their T -equivariant cohomology rings:

M � N×S1 H∗T (M) � H∗T (N × S1) � H∗T (N) ⊗ H∗(S1).

Remark 5.5. Without assuming the cosymplectic structure, we can consider the mapping
tori of even GKM manifolds directly. Let φ : N → N be an equivariant diffeomorphism on
an even GKM, possibly non-orientable, T -manifold N. The manifold N does not have to
be orientable, neither does the mapping torus Nφ nor its 3d 1-skeleton (Nφ)1 = (N1)φ. By
Subsubsection 4.2.1 on mapping tori of 2d S1-manifolds, a component of (N1)φ could be of
the orientable type S2 × S1, or the non-orientable types S2 ×Z2 S1, RP2 × S1.

5.3. Odd-dimensional Grassmannians.
5.3. Odd-dimensional Grassmannians. The Grassmannians G2k+1(R2n+2) and

G̃2k+1(R2n+2) are of the odd dimension (2k+ 1)(2n− 2k+ 1). They are equipped with certain
canonical odd GKM T n-actions that commute with the Z2-cover Z2 → G̃k(Rn)→ Gk(Rn). It
turns out that the odd GKM graphs of G2k+1(R2n+2) and G̃2k+1(R2n+2) are the same, and are
closely related with the even GKM graph of certain canonical T n-action on G2k(R2n).

Example 5.6. Let T 2 act on R6 such that the two S1-factors of T 2 respectively rotate the
first two R2-summands of R6 = R2

1⊕R2
2⊕R2

0. This real T 2-representation induces a canonical
T 2-action on G3(R6) whose fixed-points are real 3-dimensional T 2-subrepresentations of the
representation T 2 � R6. The fixed points form two connected components γ1 = {R2

1 ⊕ L ∈
G3(R6) | L ∈ P(R2

0)}, γ2 = {R2
2 ⊕ L ∈ G3(R6) | L ∈ P(R2

0)}, both of which are parametrized
by a P(R2

0) = RP1 � S1. Similarly, there is an induced T 2-action on G̃3(R6) whose fixed
points also form two connected components γ̃1 = {R2

1 ⊕ L ∈ G̃3(R6) | L ∈ G̃1(R2
0)}, γ̃2 =

{R2
2 ⊕ L ∈ G̃3(R6) | L ∈ G̃1(R2

0)}, both of which are parametrized by a G̃1(R2
0) = S1. To
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understand the 1-skeleta, one can consider the 3-dimensional real S1-subrepresentations of
R6. The construction is straightforward though tedious, see [26]. Let α1, α2 be the standard
integral basis of the dual Lie algebra of T 2. It turns out that the odd GKM graphs of G3(R6)
and G̃3(R6) (Figure 3) are the same. For the graph of G̃3(R6), the four corner �’s represent
S3 and the two middle �’s represent S2×S1 ([26] p.22 Prop 6.6 (4)). For the graph of G3(R6),
these �’s represent RP3 and S2 × S1 respectively ([26] p.11 (3)).

Fig.3. Odd GKM Graphs of odd-dim real and oriented Grassmannians.

By Theorem 4.11, every equivariant cohomology class of G̃3(R6), G3(R6) is a tuple ( f1, g1θ;
f2, g2θ) where fi, gi ∈ Q[α1, α2] satisfy the congruence relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 ≡ 0 g2 ≡ 0 mod α1

g1 ≡ 0 g2 ≡ 0 mod α2

f1 ≡ f2 g1 ≡ g2 mod α2 + α1

f1 ≡ f2 g1 ≡ g2 mod α2 − α1.

The first two congruence relations mean that we can write g1 = h1α1α2, g2 = h2α1α2 for
h1, h2 ∈ Q[α1, α2]. Since α1α2 is coprime with α2 ± α1, after plugging the h-expressions of
g1, g2 into the last two congruence relations, we see that h1, h2 share the same congruence
relations with f1, f2, which can be shown to be exactly the congruence relations of certain
canonical even GKM T 2-action on G2(R4). Therefore the correspondence ( f1, g1θ; f2, g2θ)
�→ ( f1, f2; h1α1α2θ, h2α1α2θ) gives a ring isomorphism H∗T 2 (G̃3(R6)) � H∗T 2 (G3(R6)) �
H∗T 2 (G2(R4))[r]/r2 where r = α1α2θ is of degree 5.

For the general odd-dimensional real and oriented Grassmannians, the details of localiz-
ing the equivariant cohomology rings can be found in [26].

5.4. Torus subaction of certain cohomogeneity-one action.
5.4. Torus subaction of certain cohomogeneity-one action. An action G � M is of

cohomogeneity one if the quotient space M/G is one-dimensional. In the following, we
suppose M/G is an interval [−1, 1]. By the differentiable slice theorem, Mostert [38] proved
that, over the open interval (−1, 1) we have an open cylinder G/H × (−1, 1), and over the
two endpoints {±1} we have G/K± such that K± ⊇ H and K±/H are spheres. Conversely,
any sequence of compact Lie groups G ⊇ K± ⊇ H such that K±/H are spheres Sn± produce
a cohomogeneity-one G-manifold with an interval orbit space by forming M = G/K− ∪π−
(G/H × (−1, 1))∪π+ G/K+ where the gluing takes place at the two ends via the K±/H � Sn±-
bundle projections π± : G/H × {±1} → G/K±.

Let us assume rank G = rank H. Such a cohomogeneity-one manifold M = (G,K+,K−,H)
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is odd dimensional and is equivariantly formal with respect to the subaction of a maxi-
mal torus T ⊆ H by the results of Goertsches and Mare ([14] p. 37, Cor 1.3). Note that
T � G/H is even GKM. Moreover, for the open dense part G/H × (−1, 1) ⊂ M, the T -
fixed-point set (G/H × (−1, 1))T = (G/H)T × (−1, 1) consists of finite number of intervals
whose isotropy weights are inherited from the GKM data of weights of (G/H)T as in [23,
p. 28 Thm 2.4] and Prop. 3.16. These intervals in (G/H)T × (−1, 1) are glued at the singu-
lar part M � (G/H × (−1, 1)) = G/K− ∪G/K+, whose T -actions are also even GKM since
rank G = rank K±. Therefore, the T -action on M is odd GKM. This observation was kindly
pointed out by Goertsches and Mare to the author.

By ([23] p. 28, (2.9)), in the 1-skeleton of G/H, each 2d component with isotropy weight
α is acted transitively by a rank-1 semisimple subgroup Gα ⊆ G which is isomorphic to
either SU(2) or SO(3). Hence each 3d component in the 1-skeleton of M is acted by an
SU(2) or SO(3) nontrivially and nontransitively. By the discussions in Subsubsection 4.2.2,
such an action of SU(2) or SO(3) can be reduced to an effective cohomogeneity-one action
of SO(3), and the 3d component is of one of the six equivariant diffeomorphism types:
S8 = RP2 × S1, S9′ = S2 ×Z2 S1, S9 = S2 × S1 and S10 = RP3#RP3, S11 = S3, S12 = RP3.

Example 5.7. Consider the 7-dimensional cohomogeneity-one manifold (G = U(3),K− =
K+ = U(2)×U(1),H = U(1)3), which is actually the manifold N7

G in Hoelscher’s classifica-
tion ([28] p.131, [27] p.170). By the above discussion, we need to understand the 1-skeleta
and the GKM graphs of G/H = Fl(3) and G/K± = CP2 under the canonical U(1)3 = T 3-
actions of left multiplications. Though the T 3-actions are not effective, we can still apply
the GKM theories. Let α1, α2, α3 be the standard integral basis of the dual Lie algebra of T 3.
By the results of [23] and with more details in Sabatini’s PhD thesis [43] p.48-49, the GKM
graph of G/H = Fl(3) has the symmetric group S3 as vertex set. If two permutations differ
by a transposition (i, j), then they are joined via an edge of weight α j−αi. The GKM graph of
G/K± = CP2 has {1, 2, 3} as vertex set. The vertices i and j are joined via an edge of weight
α j − αi. The fibration projection from the GKM graph of Fl(3) to that of CP2 is (our nota-
tions are slightly different from [43]): the edge joining (i, j, k) to ( j, i, k) projects to the point
k (see the three thick edges in Figure 4 (A)); the other edges project accordingly to edges.
The GKM bundles K±/H → G/H → G/K± are both of the form CP1 → Fl(3)

π→ CP2.

Fig.4. GKM Graphs of G/H = Fl(3) and G/K± = CP2.

The 1-skeleton of N7
G is understood as follows. First, the manifold N7

G is formed by tak-



632 C. He

ing the cylinder Fl(3) × [−1, 1] and collapsing the two ends Fl(3) × {±1} to two CP2’s via
the map π above. Second, let Fl(3)1 be the 1-skeleton of Fl(3). The 1-skeleton of N7

G is
formed from the cylinder Fl(3)1 × [−1, 1] by projecting the two ends Fl(3)1 × {±1} via π.
Third, take an S2 in the 1-skeleton of Fl(3), then it lifts to an S2 × [−1, 1] in the 1-skeleton
of Fl(3) × [−1, 1]. If this S2 projects to an S2 in the 1-skeleton of CP2, then the two ends
S2×{±1} ⊂ S2× [−1, 1] survive in M after projections. Hence the corresponding S2× [−1, 1]
is glued with another S2 × [−1, 1] at the two ends to form an S2 × S1 in M. If this S2 projects
to a fixed point of CP2, then the corresponding S2 × [−1, 1] gets collapsed at the two ends
S2 × {±1} to two points and results in an S3 in M. The 1-skeleton graph of N7

G is drawn in
the following Figure 5. The ◦ labelled with k is resulted from the pair of vertices (i jk), ( jik)
of Fl(3). The inner three �’s represent S2 × S1, and the outer three �’s represent S3. By The-

Fig.5. 1-skeleton Graph of N7
G.

orem 4.11, every T 3-equivariant cohomology class of N7
G is a tuple ( f1, g1θ; f2, g2θ; f3, g3θ)

where fi, gi ∈ Q[α1, α2, α3] and satisfy the congruence relations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 ≡ 0 mod α3 − α2

g2 ≡ 0 mod α3 − α1

g3 ≡ 0 mod α2 − α1

f1 ≡ f2 g1 ≡ g2 mod α2 − α1

f2 ≡ f3 g2 ≡ g3 mod α3 − α2

f1 ≡ f3 g1 ≡ g3 mod α3 − α1.

The first three congruence relations mean that we can write g1 = h1(α3 − α2), g2 = h2(α3 −
α1), g3 = h3(α2 −α1) for h1, h2, h3 ∈ Q[α1, α2, α3]. Plugging the h-expressions of g1, g2 into
the forth congruence relation, and noting that α3 −α2, α3 −α1, α2 −α1 are pairwise coprime
and α3 − α2 ≡ α3 − α1 mod α2 − α1, we then get h1 ≡ h2 mod α2 − α1. Likewise, we
can plug g1, g2, g3 into the fifth and the sixth congruence relations and will see that h1, h2, h3

satisfy the same congruence relations as f1, f2, f3, which is based on the GKM graph of CP2.
The correspondence ( f1, g1θ; f2, g2θ; f3, g3θ) �→ ( f1, f2, f3; h1r, h2r, h3r), where r is of degree
3, gives ring isomorphisms H∗T 3 (N7

G) � H∗T 3 (CP2)[r]/r2 � H∗T 3 (CP2) ⊗ H∗(S3) matching
Hoelscher’s description ([28] p. 131) of the group structure of H∗(N7

G,Z).

Remark 5.8. One of the anonymous referees suggested viewing the above discussed
cohomogeneity-one manifold (G = U(3),K− = K+ = U(2) × U(1),H = U(1)3) as
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U(3) ×U(2)×U(1) S3. This very useful observation actually applies to any compact
cohomogeneity-one manifold of the type (G,K− = K+,H) as follows (without assuming
rank G = rank H). Note that K±/H � Sn± . Since K− = K+, we denote K± by K0 and n± by
n0. For the construction M = G/K− ∪π− (G/H× (−1, 1))∪π+ G/K+, we have G/H× (−1, 1) �
G ×K0 K0/H × (−1, 1) � G ×K0 Sn0 × (−1, 1), while gluing G/H × (−1, 1) at its two ends to
G/K−∪G/K+ means we shall collapse

(
G×K0 Sn0 ×{−1})∪ (G×K0 Sn0 ×{1}) to G/K0∪G/K0.

Therefore, we have

M � G ×K0 Sn0+1

where Sn0+1 is formed from Sn0×[−1, 1] by collapsing the two ends to two points, and the K0-
action on Sn0+1 is induced from Sn0 × [−1, 1] � K0/H × [−1, 1]. As a result, we immediately
see H∗G(M) � H∗G(G×K0 Sn0+1) � H∗K0

(Sn0+1). However, the method of odd GKM theory does
not assume K− = K+.

For the general case of a cohomogeneity-one G-manifold M with rank G = rank K± =
rank H, we can also carefully analyse the 1-skeleta and apply the odd GKM theory to lo-
calize the equivariant cohomology rings. For the more general case of cohomogeneity-one
G-manifolds regardless of the ranks and equivariant formality, in a joint work with Carlson,
Goertsches and Mare [11], we described the equivariant cohomology rings using the repre-
sentation theory of finite dihedral groups. The joint paper assumes certain orientability [11,
p. 212 Rmk 4.5, p. 216 Rmk 5.4], while the method of odd GKM theory does not.
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