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Abstract
Aguiar and Ardila defined the Hopf monoid GP of generalized permutahedra and showed that

it contains many submonoids that correspond to combinatorial objects. They also give a basic
polynomial invariant of generalized permutahedra, which then specializes to submonoids. We
define the Hopf monoid of directed graphs and show that it also embeds in GP. The resulting
basic invariant coincides with the strict chromatic polynomial of Awan and Bernardi.

1. Introduction

1. Introduction
A Hopf monoid is an algebraic structure defined by Aguiar and Mahajan [2]. Hopf

monoids may be applied in the study of combinatorial objects, in a spirit similar to ear-
lier work [9, 10, 12, 16]. They provide an useful structure to many combinatorial families
by matching the product to merging and the coproduct to splitting operations. On the other
hand, Postnikov [11], Stanley [14] and others constructed polyhedral models to study com-
binatorial objects. For example, generalized permutahedra are equivalent to polymatroids
and submodular functions.

In [1], Aguiar and Ardila investigate combinatorial objects by combining these two points
of view. They examine generalized permutahedra using a Hopf algebraic structure, which
they call the Hopf monoid of generalized permutahedra GP. They also show that GP con-
tains many other Hopf monoids of combinatorial objects, such as graphs and posets. In
other words, if we construct a generalized permutahedron (or a submodular function) from
a combinatorial object, we investigate our combinatorial object using GP. One application
of this idea is the polynomial invariant χx(n). For each element x of a Hopf monoid, this
polynomial in n is defined using a so-called character ζ of the Hopf monoid. We call χx(n)
the AA polynomial of the character ζ. In many cases, the AA polynomial χx(n) associated
to a combinatorial object x is equivalent to some existing invariant. For example, we know
that the AA polynomial obtained from the so-called basic character of graphs is the chro-
matic polynomial. In particular, it satisfies Stanley’s reciprocity theorem for graphs [15]. In
[1], a reciprocity theorem is established for any AA polynomial. The reciprocity theorem is
formulated in terms of the antipode of the Hopf monoid, which is analogous to the inverse
in a group.

In this paper, we introduce and investigate the Hopf monoid of directed graphs. We will
denote by DG[I] the set of all directed graphs with vertex set I. We define the Hopf monoid
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structure for directed graphs using directed cuts. For technical reasons this has to be done
so that the result is a Hopf monoid in vector species, see Section 2, and the notation changes
to DG.

Next, we define the submodular function zg on the ground set I obtained from the directed
graph g, and the generalized permutahedron (zg) obtained from zg (see Section 3). We
show that (zg) represents the structure of the directed graph g in the following sense.

Theorem 1.1. For any directed graph g with vertex set I, we have

(zg) = Cone{ ei − e j | the edge ( j, i) is in g } ⊂ RI,

where Cone means convex cone and for each i ∈ I, the vector ei is a standard generator of
the vector space RI.

The cover relation of a partially ordered set gives it a directed graph structure. In that
sense, our Hopf monoid DG generalizes Aguiar and Mahajan’s Hopf monoid P of posets [2,
Section 13.1.1]. On the other hand, DG is essentially a submonoid of the Hopf monoid of
preposets [2, Section 13.1.6] because the transitive closure of a directed graph is a preposet1.
In addition, Theorem 1.1 is a generalization of [1, Proposition 15.1]. We prove it by an
application of the max-flow min-cut theorem.

Furthermore, (zg) provides a morphism from the Hopf monoid of directed graphs to
the Hopf monoid of generalized permutahedra. From Theorem 1.1, we derive that the AA
polynomial obtained from the basic character of directed graphs is equivalent to the strict-
chromatic polynomial π>g (n) [3]. In addition, this theorem is a generalization of [1, Proposi-
tion 18.5].

Theorem 1.2 (main theorem). Let ζ be the character on the Hopf monoid of directed
graphs DG defined by

ζ(g) =

⎧⎪⎪⎨⎪⎪⎩
1 ( if g has no edges ),

0 ( otherwise ).

Let χg(n) be the AA polynomial obtained from ζ. For any directed graph g, we have

χg(n) = π>g (n).

The strict-chromatic polynomial is defined by Awan and Bernardi [3] to study properties
of directed graphs (see Section 2.6). From the reciprocity theorem of Hopf monoids, it fol-
lows that we have (−1)|I|π>g (−n) = π�g (n), where π�g (n) is the weak-chromatic polynomial
defined in [3] and I is the vertex set of g. This fact is already established in [3], but our proof
puts it in a new context. In [3], they also define a 3-variable polynomial invariant Bg(n, x, y)
for directed graphs g. We call this the B-polynomial. The strict- and weak-chromatic poly-
nomials are specializations of the B-polynomial. We also find another character involving a
parameter q which yields Bg(n, q, 0) as its AA polynomial (see Theorem 4.5).
Organization. In section 2, we recall some definitions and properties of Hopf monoids, as
well as polynomial invariants of directed graphs.In section 3, we introduce the Hopf monoid
of directed graphs and prove Theorem 1.1. In section 4, we introduce two characters for the
Hopf monoid of directed graphs and compute the associated AA polynomials. In particular,

1We thank the anonymous referee for this comment.
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in subsection 4.1, we prove Theorem 1.2.

2. Preliminaries

2. Preliminaries
In this section, we recall some definitions and facts about Hopf monoids that are contained

in [1].

2.1. Hopf monoids.
2.1. Hopf monoids. First, we will introduce Joyal’s notion of set species [5, 10].

Definition 2.1. A set species P satisfies the following conditions.
(1) For each finite set I, a set P[I] is given.
(2) For each bijection σ : I → J, there is an associated map P[σ] : P[I]→ P[J]. These

satisfy P[σ ◦ τ] = P[σ] ◦ P[τ] and P[id] = id.

Definition 2.2. A morphism f : P → Q between set species P and Q is a collection
of maps fI : P[I] → Q[I] which satisfy the following naturality axiom: for each bijection
σ : I → J, we have fJ ◦ P[σ] = Q[σ] ◦ fI .

A decomposition is a partition where the parts may be empty and are ordered. We note
that the decompositions I = S � T and I = T � S are distinct unless I = S = T = ∅. A
composition is a decomposition where no subset is empty.

Definition 2.3. A connected Hopf monoid in set species consists of the following data.
(1) A set species H such that the set H[∅] is a singleton.
(2) For each finite set I and each decomposition I = S�T , product and coproduct maps

μS,T : H[S] × H[T ]→ H[I] and ΔS,T : H[I]→ H[S] × H[T ]

satisfying the naturality, unitality, and compatibility axioms given in [1, Section
2.2].

Fix a decomposition I = S � T . For x ∈ H[S], y ∈ H[T ], and z ∈ H[I], we write

μS,T : (x, y) �→ x · y and ΔS,T : z �→ (z|S, z/S).

We call x · y ∈ H[I] the product of x and y. We call z|S ∈ H[S] the restriction of z to S and
z/S ∈ H[T ] the contraction of S from z.

Definition 2.4. A morphism f : H → K between Hopf monoids H and K is a morphism
of species which respects products, restrictions, and contractions; that is, we have

fJ(H[σ](x)) = K[σ]( fI(x)) for all bijections σ : I → J and all x ∈ H[I],
fI(x · y) = fS(x) · fT (y) for all I = S � T and all x ∈ H[S], y ∈ H[T ],
fS(z|S) = fI(z)|S, fT (z/S) = fI(z)/S for all I = S � T and all z ∈ H[I].

Next, we introduce Hopf monoids in vector species. All vector spaces and tensor products
below are over a fixed field .

Definition 2.5. A vector species P satisfies the following conditions.
(1) For each finite set I, a vector space P[I] is given.
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(2) To each bijection σ : I → J, there is an associated map P[σ] : P[I]→ P[J].

These satisfy the same axioms as in Definition 2.1. A morphism of vector species f :
P → Q is a collection of linear maps fI : P[I] → Q[I] satisfying the naturality axiom of
Definition 2.2.

Definition 2.6. A connected Hopf monoid in vector species is a vector species H with
H[∅] = that is equipped with linear maps

μS,T : H[S] ⊗H[T ]→ H[I] and ΔS,T : H[I]→ H[S] ⊗H[T ]

for each decomposition I = S � T , subject to the same axioms as in Definition 2.3. We use
similar notations as for Hopf monoids in set species;

μS,T (x ⊗ y) = x · y and ΔS,T (z) =
∑

z|S ⊗ z/S.

The following is a consequence of the associativity axiom. For any decomposition I =
S1 � · · · � Sk with k ≥ 2, there are unique maps

μS1,...,Sk : H[S1] ⊗ · · · ⊗H[Sk]→ H[I]

ΔS1,...,Sk : H[I]→ H[S1] ⊗ · · · ⊗H[Sk]

obtained by respectively iterating the product maps μ or the coproduct maps Δ in any mean-
ingful way. These maps are well-defined and we refer to them as the higher products and
coproducts of H.

Consider the linearization functor Set→ Vec which sends a set to the vector space with
basis the given set. Applying the linearization functor to a set species P gives a vector
species, which we denote with P. If H is a Hopf monoid in set species, then its linearization
H is a Hopf monoid in vector species. When H is the linearization of a Hopf monoid H in
set species, then higher products and higher coproducts take the form

μS1,...,Sk (x1 ⊗ · · · ⊗ xk) = x1 · · · · · xk,

ΔS1,...,Sk (z) = z1 ⊗ · · · ⊗ zk

whenever xi ∈ H[Si] for i = 1, . . . , k and z ∈ H[I], respectively. We refer to zi ∈ H[Si] as the
i-th minor of z corresponding to the decomposition I = S1 � · · · � Sk.

2.2. The Hopf monoid of generalized permutahedra.
2.2. The Hopf monoid of generalized permutahedra. In this section, we will introduce

generalized permutahedra, following Postnikov [11]. We remark that they are equivalent to
polymatroids, which were defined earlier by Edmonds [7]. In this paper, we use the same
notation as in [1, Section 4].

Definition 2.7. A generalized permutahedron p ⊆ RI is a polyhedron whose normal fan
p is a coarsening of the braid arrangement I = πI in RI , where πI ⊂ RI is the standard
permutahedron.

Definition 2.8. An extended generalized permutahedron p ⊆ RI is a polyhedron whose
normal fan p is a coarsening of a subfan of the braid arrangement I =πI in RI .
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Next, we give generalized permutahedra the structure of a Hopf monoid in vector species.
In order to do this, we recall two propositions.

Proposition 2.9. [1, Proposition 5.1] Let I = S � T be a decomposition. If p ⊆ RI and
q ⊆ RT are bounded generalized permutahedra, then p × q ⊆ RI is a bounded generalized
permutahedron.

Proposition 2.10. [8, Theorem 3.15] Let p ⊂ RI be a generalized permutahedron and
I = S�T be a decomposition. By definition, the linear function 1S =

∑
i∈S 1i is maximized at

the face pS,T of p. Then there exist generalized permutahedra p|S ⊂ RS and p/S ⊂ RT such
that

pS,T = p|S × p/S.

We call p|S and p/S the restriction and contraction of p with respect to S, respectively.

Theorem 2.11. [1, Theorem 5.6] Let GP+[I] be the vector space spanned by the extended
generalized permutahedra on I. Define a product and a coproduct as follows.

For extended generalized permutahedra p ∈ GP[S] and q ∈ GP[T ], their product is given
by

p · q := p × q ∈ GP+[I].

For an extended generalized permutahedron p ∈ GP+[I], its coproduct with respect to
S � T is given by

ΔS,T (p) =
{
p|S ⊗ p/S ( if p is bounded in the direction of 1S ),

0 ( otherwise ),

where the restriction p|S and contraction p/S are defined in Proposition 2.10.
These operations turn the vector species GP+ into a Hopf monoid.

2.3. Submodular functions and generalized permutahedra.
2.3. Submodular functions and generalized permutahedra. Let 2I be the power set of

a finite set I. A Boolean function on I is a function z : 2I → R such that z(∅) = 0. Let
BF[I] be the vector space generated freely by Boolean functions on I. If we define a product
and a coproduct as in [1, Section 12.1] (cf. the definition in Theorem 2.13 below), then we
obtain the Hopf monoid BF in vector species. A Boolean function z on I is submodular
if z(A ∪ B) + z(A ∩ B) ≤ z(A) + z(B) for every A, B ⊆ I. Let SF[I] be the vector space
spanned freely by submodular functions on I. Then SF is a Hopf submonoid of BF. Next,
we introduce extended submodular functions, which are related to extended generalized
permutahedra.

Definition 2.12. Let z : 2I → R ∪ {∞} be an extended Boolean function with z(∅) = 0
and z(I) � ∞. We say that z is submodular if

z(A ∪ B) + z(A ∩ B) ≤ z(A) + z(B)

for all A, B ⊆ I.

Theorem 2.13. [1, Section 12.4] Let SF+[I] be the vector space spanned freely by ex-
tended submodular functions on I. Fix a decomposition I = S � T. Define a product and a
coproduct as follows.
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If u ∈ SF+[S] and v ∈ SF+[T ], define their product μS,T (u ⊗ v) ∈ SF+[I] to be

μS,T (u ⊗ v)(E) = u(E ∩ S) + v(E ∩ T ) for E ⊆ I.

If z ∈ SF+[I], define its coproduct ΔS,T (z) ∈ SF+[S] ⊗ SF+[T ] to be

ΔS,T (z) =
{

z|S ⊗ z/S ( if z(S) � ∞ ),
0 ( if z(S) � ∞ ),

where the restriction z|S and contraction z/S are defined by

z|S(E) := z(E) for E ⊆ S

and

z/S(E) := z(E ∪ S) − z(S) for E ⊆ T.

These operations turn SF+ into a Hopf monoid in vector species.

Next, we will introduce the isomorphism between the Hopf monoid of extended submod-
ular functions SF+ and the Hopf monoid of generalized permutahedra GP+. For x ∈ RI and
A ⊆ I, we denote

x(A) =
∑
i∈A

xi.

Definition 2.14. The base polyhedron of a given extended Boolean function z : 2I →
R ∪ {∞} is the set

(z) :=

⎧⎪⎪⎨⎪⎪⎩x ∈ RI

∣∣∣∣∣∣
∑
i∈I

xi = z(I) and
∑
i∈A

xi ≤ z(A) for all A ⊆ I

⎫⎪⎪⎬⎪⎪⎭ .
Theorem 2.15. For a polyhedron p in RI, the following are equivalent.

(1) The polyhedron p is an extended generalized permutahedron.
(2) There exists an extended submodular function z : 2I → R ∪ {∞} such that p = (z).

This theorem is compiled from results in [8, 11, 13] by Aguiar and Ardila [1, Theorem
12.3].

Theorem 2.16. [1, Theorem 12.7] The collection of maps

SF+[I]→ GP+[I], z �→ (z)

is an isomorphism of Hopf monoids in vector species SF+ � GP+.

2.4. The AA polynomial invariant of a character.
2.4. The AA polynomial invariant of a character. Next, we will introduce a polynomial

obtained from a character of the Hopf monoid, which we call the AA polynomial.

Definition 2.17. Let H be a connected Hopf monoid in vector species. A character ζ on
H is a collection of linear maps ζI : H[I] → for each finite set I satisfying the following
axioms.

(1) Naturality. For each bijection σ : I → J and x ∈ H[I], we have ζJ(H[σ](x)) = ζI(x).
(2) Multiplicativity. For each I = S � T , x ∈ H[S], and y ∈ H[T ], we have ζI(x · y) =

ζS(x)ζT (y).
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(3) Unitality. The map ζ∅ : H[∅]→ sends 1 ∈ = H[∅] to 1 ∈ .

Definition 2.18. Let H be a connected Hopf monoid and ζ : H→ be a character of H.
Define, for each element x ∈ H[I] and each natural number n ∈ N,

χx(n) :=
∑

I=S1�···�Sn

(ζS1 ⊗ · · · ⊗ ζSn) ◦ ΔS1,··· ,Sn(x),

summing over all decompositions of I into n disjoint subsets which are allowed to be empty.

Remark 2.19. For a set I and an element x ∈ H[I], the function χx is defined on N and
takes values in . If we take n = 0, we have

χx(0) =

⎧⎪⎪⎨⎪⎪⎩
ζ∅(x) ( if I = ∅ ),

0 ( otherwise ).

Furthermore we note that χx(1) = ζI(x).

Recall that a composition of a finite set I � ∅ is a decomposition I = S1�· · ·�Sk in which
each subset Si is nonempty. We write compositions as I |=(S1, . . . , Sk).

Proposition 2.20. [1, Proposition 16.1] Let H be a connected Hopf monoid in vector
species, ζ : H → be a character, and let χ be defined by Definition 2.18. Fix a finite set I
and an element x ∈ H[I].

For each n ∈ N, it holds that

χx(n) =
|I|∑

k=0

χ(k)
x

(
n
k

)

where, for each k = 0, . . . , |I|, we have

χ(k)
x =

∑
I

|=

(T1,...,Tk)

(ζT1 ⊗ · · · ⊗ ζTk ) ◦ ΔT1,...,Tk (x) ∈ ,

summing over all compositions (T1, . . . , Tk) of I. Therefore χx is a polynomial function of n
of degree at most |I|.

Let σ : I → J be a bijection, x ∈ H[I] and y := H[σ](x) ∈ H[J]. Then χx = χy.

Proposition 2.21. [1, Proposition 16.3] Let H and K be two Hopf monoids in vector
species. Suppose ζH is a character on H and ζK is a character on K. We will denote by
f : H→ K a morphism of Hopf monoids such that

ζK( f (x)) = ζH(x)

for any I and x ∈ H[I]. Let χH and χK be the polynomial invariants corresponding to ζH

and ζK, respectively. Then

χK
f (x) = χ

H
x

for any I and x ∈ H[I].

Definition 2.22. Let H be a connected Hopf monoid in vector species. The antipode of
H is the collection of maps sI : H[I]→ H[I] given by s∅ = id and, for each finite set I � ∅,
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sI =
∑

I |=(S1 ,...,Sk )
k≥1

(−1)kμS1,...,Sk ◦ ΔS1,...,Sk .

We call this equation Takeuchi’s formula.

Proposition 2.23 (Reciprocity for polynomial invariants). [1, Proposition 16.5] Let H be
a connected Hopf monoid, ζ : H→ be a character, and χ be the AA polynomial invariant
obtained from ζ. Let s be the antipode of H. Then

χx(−1) = ζI(sI(x)).

More generally, for every n ∈ N, we have

χx(−n) = χsI (x)(n).

2.5. The basic character and the basic invariant of GP.
2.5. The basic character and the basic invariant of GP. We introduce the basic char-

acter β and its associated AA invariant χ on the Hopf monoid of generalized permutahedra
GP. We call χ the basic invariant. The property of GP which we introduce in this section,
also holds for extended generalized permutahedra GP+.

Definition 2.24. The basic character β of GP is defined by

β(p) =

⎧⎪⎪⎨⎪⎪⎩
1 ( if p is a point ),

0 ( otherwise ),

for a generalized permutahedron p ⊂ RI. The basic invariant χ of GP is the AA polynomial
obtained from the basic character β.

Given a generalized permutahedron p ⊂ RI and a linear functional y ∈ RI , the generalized
permutahedron p is called directionally generic in the direction of y if the y-maximal face
py is a point. In this case, we will also say that y is p-generic and that p is y-generic.

Proposition 2.25. [1, Proposition 17.3] At a natural number n, the basic invariant χ of a
generalized permutahedron p ⊂ RI is given by

χp(n) = (number of p-generic functions y : I → [n]).

Here, we call y : I → [n] p-generic if its linear extension to an element of RI is p-generic.

Proposition 2.26. [1, Proposition 17.4] At a negative integer −n, the basic invariant χ of
a generalized permutahedron p ⊂ RI is given by

(−1)|I|χp(−n) =
∑

y:I→[n]

(number of vertices of py).

Propositions 2.25 and 2.26 were first proved in [6], using Stanley’s combinatorial reci-
procity theorem. Aguiar and Ardila give Hopf theoretic proofs of these results in [1].

2.6. Awan–Bernardi’s polynomial invariant for directed graphs.
2.6. Awan–Bernardi’s polynomial invariant for directed graphs. Awan and Bernardi

investigate polynomial invariants for directed graphs [3]. In particular, they define the chro-
matic polynomial of a directed graph. A directed graph with vertex set I consists of directed
edges. Let us denote by (i, j) the directed edge from i ∈ I to j ∈ I. From here on, we
assume that our directed graphs do not contain parallel edges. The presence of such would
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not change any of our constructions. We will denote by g = (I, E) the directed graph g with
vertex set I and directed edge set E.

Definition 2.27. [3, Definition 5.1] Let g = (I, E) ∈ DG[I] be a directed graph where E
is the directed edge set of g. The strict-chromatic polynomial π>g (n) of g is defined by

π>g (n) = |{ f : I → [n] | f (u) < f (v) for any (u, v) ∈ E}|.
We call such functions f : I → [n] the order-preserving maps.

The weak-chromatic polynomial π�g (n) of g is defined by

π�g (n) = |{ f : I → [n] | f (u) ≤ f (v) for any (u, v) ∈ E}|.
Awan and Bernardi use Ehrhart theory to study these polynomials. In particular, they

show that these polynomials are given by counting lattice points in integer multiple a certain
polytope [3, Section 6].

Next, we will define a three variable polynomial invariant for directed graphs.

Definition 2.28. Let g = (I, E) be a directed graph with vertex set I. The B-polynomial
of g is defined by

Bg(n, y, z) =
∑

f :V→[n]

y|{(u,v)∈E| f (v)> f (u)}|z|{(u,v)∈E| f (v)< f (u)}|.

The strict- and weak-chromatic polynomials are obtained from this B-polynomial.

Proposition 2.29. Let g = (I, E) be a directed graph with vertex set I. Then we have

π>g (n) = the coefficient of y|E| in Bg(n, y, 1),

and

π�g (n) = Bg(n, 1, 0).

Example 2.30. Let I = {0, 1, 2} and let g be the directed graph with vertex set I in Figure
1. We get

Bg(n, y, z) =
(
n
1

)
+ (2y2 + 2z2 + 2yz)

(
n
2

)
+ (y3 + z3 + 2yz(y + z))

(
n
3

)
.

Moreover, we have

π>g (n) =
(
n
3

)
and π�g (n) =

(
n
1

)
+ 2

(
n
2

)
+

(
n
3

)
.

Fig.1. The directed graph g
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3. The Hopf monoid of directed graphs

3. The Hopf monoid of directed graphs
Let DG[I] denote the vector space spanned by directed graphs with vertex set I. We use

a bijection σ : I → J to relabel the vertices of a directed graph g ∈ DG[I] and turn it into a
graph DG[σ](g) ∈ DG[J]. Thus DG is a vector species.

We claim that DG is a Hopf monoid in vector species with the following operations. Let
I = S � T be a decomposition. The product μS,T : DG[S] ⊗ DG[T ]→ DG[I] is given by

μS,T (g1 ⊗ g2) = g1 · g2,

where the graph g1 · g2 is the disjoint union of g1 and g2. So an edge of g1 · g2 is an edge
of g1 or g2. The restriction g|S ∈ DG[S] is the induced subgraph on S, which consists of the
edges whose ends are in S.

We say S is a lower half of the directed graph g if every directed edge which connects S
and T is oriented from S. The coproduct ΔS,T : DG[I]→ DG[S] ⊗ DG[T ] is given by

ΔS,T (g) =

⎧⎪⎪⎨⎪⎪⎩
g|S ⊗ g|T ( if S is a lower half of g ),

0 ( otherwise ).

We may easily check that the Hopf monoid axioms hold.

Example 3.1. For I = {0, 1, 2, 3, 4}, let S = {0, 1} and T = {2, 3, 4}. With this decomposi-
tion I = S � T , we have, for example,

Example 3.2. We consider the antipode of the Hopf monoid of directed graphs. We let
I = {0, 1, 2} and we define g ∈ DG[I] as in Figure 1. The lower halves in this directed graph
are {0, 1, 2}, {0}, and {0, 1}. So we get the antipode sI(g) ∈ DG[I] of g from Takeuchi’s
formula in Definition 2.22 as follows.

As we noted in the introduction, directed graphs (via their transitive closures) are special
cases of so-called preposets. Indeed, DG embeds into the Hopf monoid of preposets [2,
Section 13.1.6]

For any set A ⊂ I and any directed graph g ∈ DG[I], let us define the function zg by

(3.1) zg(A) =

⎧⎪⎪⎨⎪⎪⎩
0 ( A is a lower half of g ),

∞ ( otherwise ).

We note that I is always a lower half of g and hence zg(I) = 0.
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Lemma 3.3. For any g ∈ DG[I], the extended Boolean function zg is submodular.

Proof. If A, B ⊆ I are lower halves of g, then A ∪ B and A ∩ B are also lower halves of g.
From the definition of zg, if zg(A) = zg(B) = 0, then the subsets A, B are lower halves of g.
Therefore if zg(A) = zg(B) = 0, then we also have zg(A ∩ B) = zg(A ∪ B) = 0. Hence zg is a
submodular function. �

Before the proof of Theorem 1.1, we recall the max-flow min-cut theorem. For this, we
need the notion of a flow of a directed graph. For any vertex v of the directed graph g, we let
E+(v) (resp. E−(v)) be the set of incoming (resp. outgoing) edges from (resp. to) v in g. We
call the vertex a sink (resp. source) if the vertex has only incoming (resp. outgoing) edges.

Definition 3.4. Let g = (I, E) be a directed graph with vertex set I, which has a source
vertex α and a sink vertex ω. We fix an arbitrary function c : E → R≥0 and call it the
capacity function of the directed graph g. The function f : E → R≥0 is a flow if f satisfies
the following conditions.

(1) For any edge e ∈ E, we have f (e) ≤ c(e).
(2) For any vertex i ∈ I except α and ω, we have∑

e∈E+(i)

f (e) =
∑

e∈E−(i)

f (e).

For any flow f of g, the value [ f ] is defined by

[ f ] =
∑

e∈E+(ω)

f (e) =
∑

e∈E−(α)

f (e).

The decomposition I = S � T is a cut of g if the source α of g is in S and the sink ω of g
is in T . We define the capacity of the cut I = S � T by

c(S, T ) =
∑
i∈S

∑
j∈T

c((i, j)),

where (i, j) is a directed edge in g.

Theorem 3.5 (max-flow min-cut theorem). Let g ∈ DG[I] be a directed graph with vertex
set I, which has source vertex and sink vertex. Let c : E → R+ be a capacity function of g.
The maximal value of a flow is equal to the minimal capacity of a cut. That is, we have

max
f :flow

[ f ] = min
I=S�T :cut

c(S, T ).

Now we are in a position to prove Theorem 1.1.
Proof of Theorem 1.1. Let us write (g) = Cone{ ei − e j | the edge ( j, i) is in g } for any

directed graph g = (I, E). We will prove that, for any directed graph g, we have (zg) =
(g).

First, we will prove that (zg) ⊃ (g). It suffices to prove that the generators ei−e j satisfy
the conditions of Definition 2.14 for z = zg. For any lower half A of g, the a-th coordinates
(a ∈ A) of ei − e j are equal to 0 or −1. We have (ei − e j)(A) ≤ 0 = zg(A). We may easily
check that (ei − e j)(I) = 0. So we have (ei − e j) ∈ (zg). Therefore we have (zg) ⊃ (g).

Conversely, we will show (zg) ⊂ (g). We take x ∈ (zg). That is, for any lower half
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S of g, we have x(S) ≤ 0 and we have x(I) = 0. For any g ∈ DG[I], we will construct a
new directed graph g′ from g. The vertex set of g′ is defined to be I ∪ {α, ω}. For any vertex
i ∈ I, we add at most one new edge to form the edge set E′ of g′. If the i-th coordinate of x
is positive, we add a new edge from i to ω. If the i-th coordinate of x is negative, we add a
new edge from α to i. See Figure 2. For any edge e of g′, we will define the capacity c(e).
If e is an old edge (i.e., e ∈ E), the capacity of the edge is defined to be c(e) = ∞. For a
new edge e incident to the vertex i ∈ I, if the i-th coordinate of x is positive, the capacity of
the edge is defined to be c(e) = x(i). If the i-th coordinate of x is negative, the capacity of
the edge is defined to be c(e) = −x(i). Our graph g′ has two trivial directed cuts, formed by
separating either α or ω from the rest of the vertices. Since x(I) = 0, both these cuts have
the same capacity ∑

i∈I : x(i)>0

x(i) =
∑

i∈I : x(i)<0

(−x(i)).

Fig. 2. The black graph is the old graph g. We construct a new graph g′

from g by connecting each old vertex to at most one of the new vertices α
and ω.

Next, we show that the two cuts just mentioned are minimal in the directed graph g′ with
the capacity function c : E′ → R≥0. For any cut I∪{α, ω} = A�B (where α ∈ A and ω ∈ B),
the sum of the capacities of the edges from A to B is finite if and only if there are no edges
which go from A \ {α} to B \ {ω} in g. That means that I = A \ {α} � B \ {ω} is a directed cut
in g so that B \ {ω} is its lower half. Let us denote the set of edges from A to ω by A+ and
the set of edges from α to A by A−. We define the sets of edges B+, B− in a similar way, see
Figure 3. Then, the capacity of the cut I ∪ {α, ω} = A � B equals∑

e∈A+
c(e) +

∑
e∈B−

c(e).
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Fig.3. The black regions represent the old graph g and the red edges are the
new edges. The left subset B \ {ω} is a lower half of g.

Since B \ {ω} is a lower half of g, we have x(B \ {ω}) ≤ 0. That implies∑
e∈B+

c(e) −
∑
e∈B−

c(e) ≤ 0.

Therefore, we get ∑
e∈A+

c(e) +
∑
e∈B−

c(e) ≥
∑
e∈A+

c(e) +
∑
e∈B+

c(e).

The right hand side of this inequality is the capacity of the cut (I ∪ {α}) ∪ {ω}. Hence, we
see that this value M is indeed minimal.

Using Theorem 3.5, we may take a flow f on g′ such that

[ f ] =
∑

e∈E−(α)

f (e) =
∑

e∈E+(ω)

f (e) = M.

Notice that, for [ f ] to reach the capacity of the trivial cuts, the value of f has to be exactly
the capacity on all of our new edges in E′ \ E. So, for any vertex i ∈ I with incoming and
outgoing edges E±(i), we have

∑
e∈E+(i)

f (e) −
∑

e∈E−(i)

f (e) =

⎧⎪⎪⎨⎪⎪⎩
f ((i, ω)) ( if x(i) > 0 ),

− f ((α, i)) ( if x(i) < 0 ),

=

⎧⎪⎪⎨⎪⎪⎩
c((i, ω)) ( if x(i) > 0 ),

−c((α, i)) ( if x(i) < 0 ),

= x(i)

That is, if we take λi j = f (( j, i)) ≥ 0 for any edge (i, j), we have x =
∑
λi j(ei − e j). Hence,

we have x ∈ (g), i.e., we have (zg) ⊂ (g).
Therefore, we have (zg) = (g), which proves the theorem. �

We will see in the next section how the proof of the main theorem relies on Theorem
1.1. But before that, we need another essential ingredient which is an extension of [1,
Proposition 15.6]. It in fact follows from [1, Proposition 15.11] but we give a short proof
for completeness.

Recall that the Hopf monoid DG[I] in vector species of directed graphs is the vector space
spanned freely by directed graphs with vertex set I. For a directed graph g ∈ DG[I], let us
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rename the extended submodular function zg of (3.1) as lowg. That is, for a directed graph
g, lowg : 2I → R ∪ {∞} is defined by

lowg(S) =

⎧⎪⎪⎨⎪⎪⎩
0 ( if S is a lower half of g ),

∞ ( otherwise ).

Proposition 3.6. The map low : DG → SF+ is a morphism of Hopf monoids in vector
species.

Proof. First, we examine products. Let I = S � T be a decomposition. Let g1 ∈ DG[S],
g2 ∈ DG[T ] be directed graphs. We denote by g1 · g2 the disjoint union of g1 and g2. For
any subset J ⊆ I, the subset J is a lower half of g1 · g2 if and only if J ∩ S is a lower half of
g1 and J ∩ T is a lower half of g2. Therefore we have

lowg1·g2 (J) = lowg1 (J ∩ S) + lowg2 (J ∩ T )

= (lowg1 · lowg2 )(J).

Next, we look at coproduct in the Hopf monoid. For a decomposition I = S � T and a
directed graph g ∈ DG[I], we will prove that ΔS,T (lowg) = lowΔS,T (g). I.e., we have (lowg)|S =
(lowg|S ) and (lowg)/S = (lowg/S ).

Suppose S is not a lower half of g. Then we have ΔS,T (g) = 0 and thus lowΔS,T (g) = 0. On
the other hand, we have lowg(S) = ∞. From the definition of the coproduct of submodular
functions, we obtain ΔS,T (lowg) = 0. Therefore we get ΔS,T (lowg) = lowΔS,T (g).

Suppose S is a lower half of g. Then we have lowg(S) = 0. To see that low is compatible
with restriction, we note that, for any R ⊆ S,

lowg|S (R) =

⎧⎪⎪⎨⎪⎪⎩
0 ( if R is a lower half of g|S ),

∞ ( otherwise ),

and we have

(lowg)|S(R) = lowg(R)

=

⎧⎪⎪⎨⎪⎪⎩
0 ( if R is a lower half of g ),

∞ ( otherwise ).

Since R is a lower half of g|S if and only if R is a lower half of g, we have lowg|S = (lowg)|S.
To see that low is compatible with contraction, we note that, for any R ⊆ T ,

lowg/S (R) = lowg|T (R)

= lowg(R)

=

⎧⎪⎪⎨⎪⎪⎩
0 ( if R is a lower half of g|T ),

∞ ( otherwise ),

and we have

(lowg)/S(R) = lowg(R � S) − lowg(S)

= lowg(R � S)
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=

⎧⎪⎪⎨⎪⎪⎩
0 ( if R � S is a lower half of g ),

∞ ( otherwise ).

Since R is a lower half of g|T if and only if R � S is a lower half of g, we have lowg/S =

(lowg)/S.
Therefore, we conclude that low is a morphism of Hopf monoids. �

4. Polynomial invariants of directed graphs from characters

4. Polynomial invariants of directed graphs from characters
In this section, we introduce two characters and their associated AA polynomials χ.

Moreover we obtain combinatorial formulae for χ(n) and χ(−n) for n ∈ N.

4.1. Basic invariant.
4.1. Basic invariant. First, we introduce the basic character β of the Hopf monoid DG

and its associated AA polynomial χ(x), called basic invariant.

Definition 4.1. The basic character ζ of DG is given by

ζI(g) =

⎧⎪⎪⎨⎪⎪⎩
1 ( if g has no edges ),

0 ( otherwise ).

for a directed graph g ∈ DG[I]. The basic invariant χ of DG is the AA polynomial obtained
from ζ.

Now, we are in a position to prove our main theorem.
Proof of Theorem 1.2. First, we get a morphism DG → SF+ → GP+ of Hopf monoids

using Theorem 2.16 and Proposition 3.6. Let g be a directed graph on the vertex set I.
The directed graph cone (g) is a point if and only if g has no edges. Therefore, when we

restrict the basic character β of GP+ to directed graph cones, we obtain the basic character
ζ of directed graphs. From Proposition 2.21, we have χg(n) = χ(g)(n), where χ(g)(n) is the
AA polynomial of the directed graph cone (g) ∈ GP+[I] obtained from the basic character
β of the Hopf monoid of extended generalized permutahedra. Using Proposition 2.25, it
follows that χg(n) is the number of (g)-generic functions y : I → [n]. Now, thanks to
Theorem 1.1, the normal fan to (g) is a single cone cut out by inequalities y(i) ≤ y( j) for
the vertices i, j ∈ I so that g has a directed edge from i to j. So the (g)-generic functions
are the strictly order-reversing maps in g. We remark that there is a natural bijection between
strictly order-reversing maps I → [n] and strictly order-preserving maps I → [n], and the
proof is complete. �

Furthermore, this polynomial satisfies a reciprocity rule.

Theorem 4.2. Let g be an acyclic directed graph with vertex set I and n ∈ N. If the
polynomial χg(n) is the basic invariant for the Hopf monoid DG[I], then we have

(−1)|I|χg(−n) = π�g (n),

where π�g (n) is the weak-chromatic polynomial of g.

Proof. We will show the theorem using Proposition 2.26. The directed graph cone (g)
is pointed if and only if the directed graph g has no directed cycles. If y : I → [n] is order-
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reversing, then there is a y-maximum face (g)y, and it contains that single vertex. If y is not
order reversing, then (g) is unbounded from above in the direction of y. So the left hand
side, by Proposition 2.26, is the number of order-reversing maps. These are bijective with
order-preserving maps, whose number is the right hand side. �

Corollary 4.3. For any acyclic directed graph g with vertex set I and for any n ∈ N, we
have

(−1)|I|π>g (−n) = π�g (n).

This corollary is equivalent to the acyclic version of [3, Lemma 6.5]. Here we get the
proof without invoking Ehrhart reciprocity.

Example 4.4. Let g be the directed graph of Figure 1. The basic invariant χg(n) of g is

χg(n) = π�g (n) =
(
n
3

)
.

4.2. Edge character.
4.2. Edge character. Next, we introduce another character and its associated AA poly-

nomial. This AA polynomial turns out to be a specialization of Awan–Bernardi’s B-polyno-
mial.

Theorem 4.5. For a directed graph g = (I, E) ∈ DG[I], let the character η be defined
by η(g) = q|E|. Let ψg(n) be the AA polynomial obtained from η. For any directed graph
g = (I, E), we have

ψg(n) = q|E|Bg(n, 1/q, 0).

Proof. First, we may easily check that η is a character of the Hopf monoid of directed
graphs.

Let I = S1 � · · · � Sn be a decomposition. The coloring f : I → [n] is defined by f (i) = k
for i ∈ Sk. In this coloring, if ΔS1�···�Sn(g) = 0, then there is an edge (i, j) in g such that
f ( j) < f (i). If ΔS1�···�Sn � 0, any edge of the directed graph μ(ΔS1�···�Sn(g)) is an edge (i, j)
such that f (i) = f ( j). Furthermore, the edges of g which did not remain in μ(ΔS1�···�Sn(g))
are the edges (i, j) such that f (i) < f ( j).

From these observations, we have

ψg(n) =
∑
f :I→[n]

�(i, j)∈E s.t. f ( j)< f (i)

q|{(i, j)∈E| f (i)= f ( j)}|

= q|E|
∑
f :I→[n]

�(i, j)∈E s.t. f ( j)< f (i)

(
1
q

)|{(i, j)∈E| f (i)> f ( j)}|

= q|E|Bg(n, 1/q, 0).

�

Example 4.6. Let g be the directed graph of Figure 1. We compute ψg(n), which is the
AA polynomial obtained from the edge character η, from Theorem 4.5 and Example 2.30 as
follows:



The HopfMonoid of Directed Graphs 607

ψg(n) = q3
(
n
1

)
+ 2q

(
n
2

)
+

(
n
3

)
.

Finally, we get a reciprocity theorem from Theorem 2.23. Let E(g) be the set of edges of
the directed graph g. For any directed graph g = (I, E) with vertex set I, we call a partition
I = S1 � · · · � Sk order preserving if any edge between Si and S j (i < j) is oriented from Si

to S j.

Corollary 4.7. Let Bg(n, x, y) be Awan–Bernardi’s B-polynomial of the directed graph
g = (I, E) with vertex set I. Then we have

q|E|Bg(−1, 1/q, 0) =
∑

I=S1�...�Sk
order preserving

(−1)kq|E(g|S1 )|+···+|E(g|Sk )|.

More generally, for every n ∈ N, we have

q|E|Bg(−n, 1/q, 0) =
∑

I=S1�...�Sk
order preserving

(−1)k
n∏

i=1

q|E(g|Si )|Bg|Si
(n, 1/q, 0).

Proof. We will show the second formula. Using Theorem 2.23, we have ψg(−n) =
ψsI (g)(n). From Theorem 4.5, we have

q|E|Bg(−n, 1/q, 0) = ψg(−n)

= ψsI (g)(n)

=
∑

I |=(S1 ,...,Sk )
k≥1

(−1)kψμS1 ,...,Sk◦ΔS1 ,...,Sk (g)(n)

For a composition I |=(S1, . . . , Sk), the partition I = S1�· · ·�Sn is order preserving if and only
if μS1,...,Sk ◦ ΔS1,...,Sk (g) � 0. Moreover, for a disjoint union g1 ∪ g2, we have Bg1∪g2 = Bg1 Bg2 .
The statement follows. �
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