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Abstract
We construct a genus zero PALF structure on each of plugs introduced by Akbulut and Yasui

and describe the monodromy as a positive factorization in the mapping class group of a fiber.

1. Introduction

1. Introduction
The problem of classifying all differential structures defined on a given 4-manifold is an

important problem in understanding the overall picture of a 4-manifold.
Akbulut and Yasui [4] introduced corks and plugs. Corks and plugs are compact Stein sur-

faces. Matveyev, Curtis-Freedman-Hsiang-Stong, and Akbulut-Matveyev’s theorem show
that the study of exotic manifold pairs constructed using cork is important for the classifica-
tion problem of the differential structure of 4-manifolds.

Theorem 1.1 (Matveyev [12], Curtis-Freedman-Hsiang-Stong [7], Akbulut-Matveyev
[2]). For every homeomorphic but non-diffeomorphic pair of simply connected closed 4-
manifolds, one is obtained from the other by removing a contractible 4-manifold and gluing
it via an involution on the boundary. Such a contractible 4-manifold has since been called
a Cork. Furthermore, corks and their complements can always be made compact Stein
4-manifolds.

It is shown by Akbulut and Yasui [6] using cork that an infinite number of exotic Stein
surface pairs embedded in X exist for any four-dimensional two-handle body X with b2(X) ≥
1.

The plug generalizes the Gluck twist. The plug is also used to make exotic manifolds, as
well as cork.

On the other hand, Loi and Piergallini [11] proved that every compact Stein surface ad-
mits a positive allowable Lefschetz fibration over D2 (a PALF for short). Therefore we
can investigate compact Stein surfaces in terms of positive factorizations in mapping class
groups (see also Akbulut and Ozbagci [3], Akbulut and Arikan [1]).

Since corks and plugs are Stein surfaces, the study of the relationship between Stein
surfaces and mapping class groups using PALFs plays an important role in classifying dif-
ferential structures on 4-manifolds.

If a PALF is created from a Stein surface by the existing method ( [11], [3], [1] ), its
genus will be large, and it will be complicated and difficult to handle as a mapping class
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group element.
Gompf [8] indicates that the Stein surface is compatible with Kirby calculus. In this paper,

we use Kirby calculus to construct PALFs on Akbulut-Yasui plugs realizing the smallest
possible fiber genera.

One planar (i.e. genus zero) PALF on the Akbulut cork was made in the previous paper
of the author [14], but in this paper, we made an infinite number of planar PALFs on the
Akbulut-Yasui plugs. Being planar is also playing an important role in [10].

In this paper, we construct a genus zero PALF structure on each of plugs introduced
by Akbulut and Yasui [4] and describe the monodromy as a positive factorization in the
mapping class group of a fiber.

Theorem 1.2. For any m ≥ 1, n ≥ 2, the Akbulut-Yasui plug (Wm,n, fm,n) admits a
genus zero PALF structure. The monodromy of the PALF is described by the factoriza-
tion tα2n+m · · · tα1 , where tα is a right-handed Dehn twist along a simple closed curve α on a
fiber and α2n+m, . . . , α1 are simple closed curves shown in Figure 2.

Fig.1. Kirby diagram for Wm,n

Fig.2. Vanishing cycles of a genus zero PALF on Wm,n.

Note that the genus of a PALF on the manifold Wm,n in a known way (cf. [3] and [1])
is much more than zero. We obtained similar results for the Akbulut cork W1 [14]. In the
present paper, we construct a genus zero PALF on an infinite number of the Akbulut-Yasui
plugs.
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2. Preliminaries

2. Preliminaries2.1. Mapping class groups.
2.1. Mapping class groups. In this subsection, we review a precise definition of the

mapping class groups of surfaces with boundary and that of Dehn twists along simple closed
curves on surfaces.

Definition 2.1. Let F be a compact oriented connected surface with boundary. Let
Diff+(F, ∂F) be the group of all orientation-preserving self-diffeomorphisms of F fixing
the boundary ∂F point-wise. Let Diff+0 (F, ∂F) be the subgroup of Diff+(F, ∂F) consisting of
self-diffeomorphisms isotopic to the identity. The quotient group Diff+(F, ∂F)/ Diff+0 (F, ∂F)
is called the mapping class group of F and it is denoted by Map(F, ∂F).

Definition 2.2. A positive (or right-handed) Dehn twist along a simple closed curve α,
tα : F → F is a diffeomorphism obtained by cutting F along α, twisting 360◦ to the right
and regluing.

2.2. PALF.
2.2. PALF.

Definition 2.3. Let M4 and B2 be compact oriented smooth manifolds of dimensions 4
and 2. Let f : M → B be a smooth map. f is called a positive Lefschetz fibration over B if
it satisfies the following conditions (1) and (2):

(1) There are finitely many critical values b1, . . . , bm of f in the interior of B and there
is a unique critical point pi on each fiber f −1(bi), and

(2) The map f is locally written as f (z1, z2) = z2
1+z2

2 with respect to some local complex
coordinates around pi and bi compatible with the orientations of M and B.

Definition 2.4. A positive Lefschetz fibration is called allowable if its all vanishing cy-
cles are homologically non-trivial on the fiber. A positive allowable Lefschetz fibration over
D2 with bounded fibers is called a PALF for short.

The following Lemma is useful to prove Theorem 1.2.

Lemma 2.5 (cf. Akbulut-Ozbagci [3, Remark 1]). Suppose that a 4-manifold X admits a
PALF. If a 4-manifold Y is obtained from X by attaching a Lefschetz 2-handle, then Y also
admits a PALF.

The Lefschetz 2-handle is defined as follows.

Definition 2.6. Suppose that X admits a PALF. A Lefschetz 2-handle is a 2-handle at-
tached along a homologically non-trivial simple closed curve in the boundary of X with
framing −1 relative to the product framing induced by the fiber structure.

2.3. Stein surfaces.
2.3. Stein surfaces. In this subsection, we recall a definition of the Stein surfaces. The

question of which smooth 4-manifolds admit Stein structures can be completely reduced to
a problem in handlebody theory.

Definition 2.7. A complex manifold is called a Stein manifold if it admits a proper bi-
holomorphic embedding to Cn.
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Definition 2.8. Let W be a compact manifold with boundary. The manifold W is called a
Stein domain if it satisfies following condition: There is a Stein manifold X and a plurisub-
harmonic function ϕ : X → [0,∞) such that W = ϕ−1([0, a]) for a regular value a of ϕ.

Definition 2.9. A Stein manifold or a Stein domain is called a Stein surface if its complex
dimension is 2.

2.4. Plugs.
2.4. Plugs. In this subsection, we give the definition of the plug.

Definition 2.10 (Akbulut-Yasui [4, Definition 2.2.]). Let P be a compact Stein
4-manifold with boundary and τ : ∂P → ∂P an involution on the boundary, which can-
not extend to any self-homeomorphism of P. We call (P, τ) a Plug of X, if P ⊂ X and X
keeps its homeomorphism type and changes its diffeomorphism type when removing P and
gluing it via τ. We call (P, τ) a Plug if there exists a smooth 4-manifold X such that (P, τ) is
a plug of X.

Definition 2.11 (Akbulut-Yasui [4, Definition 2.3.]). Let Wm,n be a smooth 4-manifold
given by Figure 1. Let fm,n : ∂Wm,n → ∂Wm,n be the obvious involution obtained from first
surgering S1 × D3 to D2 × S2 in the interiors of Wm,n, then surgering the other imbedded
D2 × S2 back to S1 × D2 (i.e. replacing the dot in Figure 1).

Theorem 2.12 (Akbulut-Yasui [4, Theorem 2.5(2)]). For m ≥ 1 and n ≥ 2, the pair
(Wm,n, fm,n) is a plug.

3. Proof of Theorem 1.2.

3. Proof of Theorem 1.2.
In this section, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let Fm,n be the compact oriented surface of genus zero with
2n + m boundary components and α1, . . . , α2n+m the curves on Fm,n shown in Figure 4 (a).
Note that Figure 2 and Figure 4 (a) show the same PALF. We denote the right-handed Dehn
twists along α1, . . . , α2n+m by tα1 , . . . , tα2n+m , respectively. Let f : Xm,n → D2 be a Lefschetz
fibration over D2 with monodromy representation (tα2n+m , . . . , tα1 ). Since each curve αi is
homologically non-trivial on Fm,n, we see that f is a PALF with fiber Fm,n.

We now show that Xm,n is diffeomorphic to Wm,n.
The Kirby diagram for Xm,n corresponding to the monodromy representation (tα2n+m , . . . ,

Fig.3
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Fig.4
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tα1 ) is given by Figure 4 (b). We slide the −1-framed 2-handles over −1-framed 2-handles
and erase canceling 1-handle/2-handle pairs to get Figure 4 (c). We get Figure 4 (d) by
sliding the −m-framed 2-handle over −1-framed 2-handles and sliding the −n-framed 2-
handle over −1-framed 2-handles and erasing canceling 1-handle/2-handle pairs.

The Kirby diagram for Wm,n is given by Figure 3 (a). We slide the 0-framed 2-handle
under the 1-handle to get Figure 3 (b).

Since Figure 3 (b) and Figure 4 (d) are the same, we conclude that Xm,n is diffeomorphic
to Wm,n, which implies the theorem. �
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