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Abstract
We analyse analytic properties of nonlocal transition semigroups associated with a class of sto-

chastic differential equations (SDEs) in Rd driven by pure jump–type Lévy processes. First, we
will show under which conditions the semigroup will be analytic on the Besov space Bm

p,q(Rd)
with 1 ≤ p, q < ∞ and m ∈ R. Secondly, we present some applications by proving the strong
Feller property and give weak error estimates for approximating schemes of the SDEs over
the Besov space Bm∞,∞(Rd). The choice of Besov spaces is twofold. First, observe that Besov
spaces can be defined via the Fourier transform and the partition of unity. Secondly, the space
of continuous functions can be characterised by Besov spaces.

1. Introduction

1. Introduction
The purpose of the article is to show smoothing properties for the Markovian semigroup

generated by stochastic differential equations driven by pure jump–type Lévy processes. To
be more precise, let L = {L(t) : t ≥ 0} be a family of Lévy processes. Let us consider the
stochastic differential equations of the form{

dXx(t) = b(Xx(t−)) dt + σ(Xx(t−))dL(t),
Xx(0) = x, x ∈ Rd,

(1.1)

where σ : Rd → L(Rd,Rd) and b : Rd → Rd are Lipschitz continuous. Under this assump-
tion, the existence and uniqueness of a solution to equation (1.1) is well established, see for
e.g. [2, p. 367, Theorem 6.2.3]. Let (t)t≥0 be the Markovian semigroup associated to X
defined by

(t f ) (x) := E
[
f (Xx(t))

]
, t ≥ 0, x ∈ Rd.(1.2)

Then, it is known that (t)t≥0 is a Feller semigroup (see [2,Theorem 6.7.2]) and its infini-
tesimal generator is given by

Au(x) =
∫
Rd

eixT ξa(x, ξ)(u)(ξ) dξ u ∈ (Rd),

where u denotes the Fourier transform of u, (Rd) denotes the Schwartz space of infinite
often differentiable functions, where all derivatives decrease faster than any power of |x| as
|x| tends to infinity, and the symbol a is defined by
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a(x, ξ) := − lim
t↓0

1
t
E

[
ei(Xx(t)−x)T ξ − 1

]
, x ∈ Rd, ξ ∈ Rd.(1.3)

In [15], the first two named authors investigate the analytic properties of the Markovian
semigroup generated by an SDE driven by a Lévy process (see Theorem 2.1 in [15]). These
type of results are used to solve several applications which arise in fields related to proba-
bility theory such as nonlinear filtering theory [14], or stochastic numerics (see section (6)).
In [16], the author introduced a so-called Sobolev index and showed that the evolution prob-
lem associated with a Lévy process with Sobolev index α has a unique weak solution in the
Sobolev space Hα/2. In this article, we put a further step and investigate under which con-
straints the corresponding Markovian semigroup (t)t≥0 driven by an SDE with pure jump
noise forms an analytic semigroup in the Besov spaces Bm

p,q(Rd) with 1 ≤ p, q < ∞ and
m ∈ R. Here, we used Besov-spaces due to two reasons. First, Besov spaces are quite
general; one covers on one side the space of continuous functions and on the other side the
scale of Hilbert spaces L2(Rd) and Hs

2(Rd), s ∈ R (see [49, 2.3.5] or [38, p. 14]). Even, if we
exclude in our results the case where q = ∞ or p = ∞, by embedding Theorems (see [38, p.
30-31]), one gets easily good estimates for Bs∞,∞(Rd), s � N, a space which coincides with
Cs

b(Rd). In this way, we can use the analyticity property of the Markovian semigroup (t)t≥0

in Besov spaces to obtain the strong Feller property of (t)t≥0. The strong Feller property
of the Markovian semigroup associated with Rd-valued SDEs plays an important role in the
long time behaviour or within the proof of the uniqueness of an invariant measure of solution
processes. So, our first motivation for this paper was to study the regularity of the Markov-
ian semigroup (t)t≥0 (e.g. see Corollary (5.1) and Corollary (5.4)) associated with equation
(1.1). In particular, we were interested in getting weak assumptions on the coefficients b and
σ. The second motivation was to study the Monte-Carlo error of an approximation of an
SDE driven by Lévy noise. To be more precise, it enables us to obtain an explicit estimate
of the distance between the semigroup associated with the original problem (1.1) and the
semigroup associated with certain approximations of the original problem.

In [22, Theorem 2.2] and [36], the authors derive some estimates on the density of the
solution of an SDE driven by a Lévy process. These estimates are uniform in space and are
related to our results, see Corollary 5.2. In [28], the authors consider the non-symmetric
jump processes and construct the heat kernel. For this heat kernel, the authors deduce some
upper bound as well estimates for its fractional derivative and estimates of its gradient.
In [5], the authors represent their main result as the propagation of the regularity of the
Markovian semigroups induced by the solution process of an SDE driven by a Brownian
motion and a Lévy process. In particular, they show that for all k ∈ N there exists a constant
C > 0 depending on the operator a and T > 0 such that

sup
0<t≤T

‖t f ‖Wk∞ ≤ C‖ f ‖Wk∞ ,

for all f ∈ Ck
b(Rd). Here ‖ f ‖k,∞ is the supremum norm of f and its first k derivatives.

In the case of k = 0, this means that the semigroup (t)t≥0 is a Feller semigroup. Kühn,
[33], investigates the Feller property of the Markovian semigroup for unbounded diffusion
coefficients, see also [40] and [41] for related works by the authors. In [31], the analyticity of
the Markovian semigroup (t)t≥0 is proven for SDEs with only additive noise; the noise has
to have a very special form. Notice also that in [12], the authors derive a Bismuth-Elworthy-
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Li type formula for Lévy processes in Hilbert spaces. In [23], the authors get nice estimates
on the density of solution processes driven by pure Lévy processes. They investigated the
case in Rd, d > 1, where the Lévy measure is only supported by the axes and have different
exponents. Also, they give some short time estimates for the density.

The paper is organised as follows. In section 2, we give a short review of the symbols
associated with the SDEs driven by Lévy processes and introduce some notations. In section
3, we give a short introduction to pseudodifferential operators and fix the notation. In sec-
tion 4, we study under which conditions on the symbol, the semigroup (t)t≥0 is an analytic
semigroup in a general Besov space Bm

p,q(Rd), 1 ≤ p, q < ∞. The motivation for our main
results, i.e. the two applications to solution processes of stochastic differential equations, are
presented in section 5 and 6. As the first application, we verify under which constrains the
semigroup (t)t≥0 is strong Feller. As a second application, we calculate the rate of con-
vergence for the Monte Carlo error for SDEs driven by a pure Lévy process; the theoretical
result is also verified by some numerical experiments. Finally, in section A, we give a short
overview of pseudo-differential operators and investigate under which condition the operator
of a symbol is invertible.

Notation 1.1. For a multi-index α = (α1, α2, . . . , αn) ∈ Nn let |α| = α1 + · · · + αn and
α! = α1! · · ·αn!. For an element ξ ∈ Rn, let ξα be defined by ξα1

1 ξ
α2
2 · · · ξαn

n . Moreover for a
function f : Rd → C we write ∂αx f (x) for

∂α

∂x1∂x2 · · · ∂xd
f (x).

In addition, let us define the brackets 〈 · 〉 : R � ξ �→ 〈ξ〉ρ := (1 + |ξ|2)
ρ
2 ∈ R. Following

inequality, also called Peetres inequality, is used on several places

〈x + y〉s ≤ cs〈x〉s〈y〉|s|, x, y ∈ Rd, s ∈ R.

Let X be a non empty set and f , g : X → [0,∞). We set f (x) � g(x), x ∈ X, iff there
exists a C > 0 such that f (x) ≤ Cg(x) for all x ∈ X. Moreover, if f and g depend on a
further variable z ∈ Z, the statement for all z ∈ Z, f (x, z) � g(x, z), x ∈ X means that for
every z ∈ Z there exists a real number Cz > 0 such that f (x, z) ≤ Czg(x, z) for every x ∈ X.
Also we set f (x) 
 g(x), x ∈ X, iff f (x) � g(x) and g(x) � f (x) for all x ∈ X. Finally, we
say f (x) � g(x), x ∈ X, iff g(x) � f (x), x ∈ X. Similarly as above, we handle the case if the
functions depend on a further variable.

Let (Rd) be the Schwartz space of infinite often differentiable functions where all deriva-
tives decrease faster than any power of |x|, as |x| tends to infinity. Let  ′(Rd) be the dual of
(Rd).

If m ∈ N we define

Cm
b (Rd) :=

{
f ∈ C0

b(Rd) : Dα f ∈ C0
b(Rd), |α| ≤ m

}
endowed with the norm

| f |Cm
b

:=
∑
|α|≤m

|Dα f |C0
b
.

Let s ∈ R \ N, then we put s = [s] + {s}, where [s] is an integer and 0 ≤ {s} < 1. Then



18 P.W. Fernando, E. Hausenblas and K. Fahim

Cs
b(Rd) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ f ∈ C[s]
b (Rd) :

∑
|α|=[s]

sup
x�y

|Dα f (x) − Dα f (y)|
|x − y|{s} < ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
equipped with the norm

| f |Cs
b

:= | f |C[s]
b
+

∑
|α|=[s]

sup
x�y

|Dα f (x) − Dα f (y)|
|x − y|{s} .

In order to define Besov spaces as given in [38, Definition 2, pp. 7-8] (compare also to [48])
let us choose first a function ψ ∈ (Rd) such that 0 ≤ ψ(x) ≤ 1, x ∈ Rd and

ψ(x) =
{

1, if |x| ≤ 1,
0 if |x| ≥ 3

2 .

Then, let us put ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ0(x) = ψ(x), x ∈ Rd,

φ1(x) = ψ( x
2 ) − ψ(x), x ∈ Rd,

φ j(x) = φ1(2− j+1x), x ∈ Rd, j = 2, 3, . . . .

Since we need it later on let

1 = supp(φ1).(1.4)

We will use the definition of the Fourier transform  = +1 and its inverse −1 as [38, p.
6]. In particular, with 〈·, ·〉 being the scalar product in Rd, we put

(±1 f )(ξ) := (2π)−d/2
∫
Rd

e∓i〈x,ξ〉 f (x) dx, f ∈ (Rd), ξ ∈ Rd.

With the choice of φ = {φ j}∞j=0 as above and  and −1 being the Fourier and the inverse
Fourier transformations (acting on the space  ′(Rd) of Schwartz distributions) we have the
following definition.

Definition 1.1. Let s ∈ R, 0 < p ≤ ∞ and f ∈  ′(Rd). If 0 < q < ∞ we put

| f |Bs
p,q
=

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=0

2s jq
∣∣∣∣−1

[
φ j f

]∣∣∣∣q
Lp

⎞⎟⎟⎟⎟⎟⎟⎠
1
q

=
∥∥∥∥(2s j

∣∣∣∣−1
[
φ j f

]∣∣∣∣
Lp

)
j∈N

∥∥∥∥
lq
.

2. Symbols, their definitions and properties

2. Symbols, their definitions and properties
In this section, we give a short review of symbols coming up as Hoh’s and Lévy’s symbols

while dealing with processes generated by Lévy processes. Besides, we introduce some
notations. Throughout the remaining article, let L = {Lx(t) : t ≥ 0, x ∈ Rd} be a family
of Lévy processes Lx, where Lx is a Lévy process starting at x ∈ Rd. Then L generates a
Markovian semigroup (t)t≥0 on Cb(Rd) by

t f (x) := E f (Lx(t)), f ∈ Cb(Rd).

Let A be the infinitesimal generator of (t)t≥0 acting on C2
b(Rd) defined by
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A f := lim
h→0

1
h

(h − 0) f , f ∈ C2
b(Rd).(2.1)

Another way of defining A is done by Lévy symbols (see [20, 16]). In particular, let

ψ(ξ) =
1
t

ln(Eei〈ξ,L(t)〉) , ξ ∈ Rd.

Observe that we have (see e.g. [2, p. 42] and [39])

ψ(ξ) =
∫
Rd\{0}

(
ei〈ξ,z〉 − 1 − i〈ξ, x〉1{|z|≤1}

)
ν(dz), ξ ∈ Rd.

If L is a pure jump process with symbol ψ, then the infinitesimal generator defined by (2.1)
can also be written as

(A f )(x) = −
∫
Rd

ei〈ξ,x〉ψ(ξ)( f )(ξ) dξ, f ∈ (Rd).(2.2)

The operator A, usually denoted in the literature by ψ = ψ(D), is well defined in C2
b(Rd),

has values in b(Rd) (bounded Borel functions in Rd) and satisfies the positive maximum
principle (see e.g. [24, Theorem 4.5.13 ]). Therefore, A generates a Feller semigroup on
C∞b (Rd) and a sub–Markovian semigroup on L2(Rd) (see e.g. [25, Theorem 2.6.9 and Theo-
rem 2.6.10]). To characterise the symbol, we introduce the generalised Blumenthal–Getoor
index (see [7]).

Definition 2.1. Let L be a Lévy process with symbol ψ and ψ ∈ Ck
b(Rd \ {0}) for some

k ∈ N0. Then the Blumenthal–Getoor index of order k is defined by

s := inf
λ>0
|α|≤k

⎧⎪⎨⎪⎩λ : lim
ξ→∞
|∂αξ ψ(ξ)|
|ξ|λ−|α| = 0

⎫⎪⎬⎪⎭ .
Here α denotes a multi-index. If k = ∞ then Blumenthal–Getoor index of infinity order is

defined by

s := inf
λ>0

α is a multi–index

⎧⎪⎨⎪⎩λ : lim
|ξ|→∞

|∂αξ ψ(ξ)|
|ξ|λ−|α| = 0

⎫⎪⎬⎪⎭ .
Remark 2.1. For a function ψ : Rd → R, the limit limξ→∞ ψ(ξ) is a sloppy formulation

and means actual

sup
ξ∈1

lim
λ→∞ψ(λξ),

where 1 defined in (1.4). This can be easily seen by analysing, e.g. the proof of the bound-
edness of the corresponding operator and realizing that the estimate comes up in analysing
the summands after decomposing the operator in its dyadic partition of the unity.

Remark 2.2. The Blumenthal–Getoor index of order infinity is defined for the sake of
completeness. We are interested in weakening the assumption on the symbol, i.e., reducing
the order k.

To analyse properties of the Markovian semigroup (t)t≥0 and to define the resolvent of
the associated operator ψ(D), the range of the symbol is of importance.
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Definition 2.2. Let Rg(ψ) be the essential range of ψ, i.e.

Rg(ψ) := {y ∈ C | Leb({s ∈ Rd : |ψ(s) − y| < ε}) > 0 for each ε > 0}1.
Finally, to characterize the spectrum of the associated operator, one can introduce the type

of a symbol.

Definition 2.3. We call a symbol ψ is of type (ω, θ), ω ∈ R, θ ∈ (0, π2 ), iff

−Rg(ψ) ⊂ C \ {ω} + Σθ+ π2 , where Σr := {z ∈ C \ {0} : | arg(z)| < δ}, δ ∈ [0, π].

Remark 2.3. If a symbol ψ is of type (0, θ), then there exists a constant c > 0 such that

|�(ψ(ξ))| ≤ c�ψ(ξ), ξ ∈ Rd.

The condition above is often called sector condition of the symbol ψ.

Before presenting a typical example, we introduce stable processes, compare [39, Chapter
3].

Definition 2.4. A probability measure μ on Rd is infinitely divisible, if for any positive
integer n ∈ N, there exists a probability measure μn on Rd such that μ = μ(n)∗

n .2

Observe, due to the independent increments of a Lévy process, the distribution function
L(t), t > 0, for any Lévy process is an infinitely divisible probability measure.

Definition 2.5 (see Sato [39, Chapter 3]). An infinite divisible probability measure μ is
stable, if for any a > 0, there exist numbers b > 0 and c ∈ Rd such that

μ̂(z)a = μ̂(bz) ei〈c,z〉, z ∈ Rd.

Here, μ̂ denotes the characteristic function of the probability measure μ, i.e. μ̂(z) =∫
Rd ei〈z,x〉μ(dx), z ∈ Rd. The measure μ is called strictly stable, if for any a > 0 there ex-

ists a number b > 0 such that

μ̂(z)a = μ̂(bz), z ∈ Rd.

Definition 2.6. Let {X(t) : t ≥ 0} be a Lévy process on Rd. It is called a stable or strictly
stable process, if the distribution for X(1) is a stable, respectively, a strictly stable infinite
divisible measure.

Example 2.1. Let L be a one dimensional strictly α–stable process. In particular, L be a
real-valued Lévy process with initial value L0 = 0 that satisfies the self-similarity property

Lt/t
1
α

d
= L1, ∀t > 0.

Then, its symbol is given by ψ(ξ) = c |ξ|α, the parameter α is called the exponent of the
process (see [39, Section 14, p. 77]). Let σ and b be two Lipschitz continuous functions on
R. Then, for α > 1, the symbol

1Here, Leb denotes the Lebesgue measure.
2The symbol ∗ denotes the convolution of two probability measures.



The Analyticity ofMarkovian Semigroup 21

a(x, ξ) := |σ(x)ξ|α + ib(x)ξ

is of type (0, θ). If σ is bounded away from zero, then the generalized Blumenthal–Getoor
index is α.

Example 2.2. Let α ∈ (0, 2) and L be a symmetric α–stable process without drift. The
symbol ψ of L is given by

ψ(ξ) = |ξ|α,
the upper and lower index is α, and ψ is of type (0, δ) for any δ > 0.

Remark 2.4. Let H be a Hilbert space. For λ ∈ C \ Rg(ψ) := {ζ ∈ C : ∃ξ with ψ(ξ) = ζ}
we have (see Theorem 1.4.2 of [18])

|R(λ, ψ(D))|L(H,H) ≤ 1
dist(Rg(ψ), λ)

.

Moreover, the set Rg(ψ) equals the spectrum of the generator A.

For different examples of Lévy processes and their symbols, we refer to [6], [8], [15],
[32], or [44]. In case there is no dependence on the space variable, one can derive proper-
ties of the Markovian semigroup directly using the range of the symbol. Given a solution
process of an SDE, usually, the associated infinitesimal generator of the Markovian semi-
group depends on the space variable x. In particular, for x ∈ Rd let X = {Xx(t) : t ≥ 0}
be a Rd-valued solution of the SDE given in (1.1) and, as before let (t)t≥0 be the associ-
ated Markovian semigroup defined in (1.2). Let ψ be the Lévy symbol of the Lévy process
L = {L(t) : t ≥ 0}. Then, one can show (see Theorem 3.1 [43]), that the infinitesimal gen-
erator of the Markovian semigroup associated to Xx has the symbol a : Rd × Rd → C given
by

a(x, ξ) = ψ(σT (x) ξ), (x, ξ) ∈ Rd × Rd.(2.3)

Let a1(x, ξ) and a2(x, ξ) be two given symbols. Due to the dependence on x, the correspond-
ing operators a1(x,D) and a2(x,D) do not necessarily commute. Therefore, many techniques
working for operators induced by symbols being independent of the space variable x do not
work for operators induced by symbols depending on the space variable x. Especially, tricks
relying on the Bony’s paraproduct gets much more demanding.

In our main result Theorem 4.2 we show under which conditions on the symbol ψ and
on the coefficients σ and b the Markovian semigroup (t)t≥0 is an analytic semigroup in
general Besov spaces Bs

p,q(Rd). To be more precise, we show if σ is bounded away from
zero, σ and b are smooth enough, and ψ is of type (0, θ), θ < π

2 , sufficiently smooth, and
having Blumenthal-Geetor index δ ∈ (1, 2) of sufficiently high order, then the Markovian
semigroup is analytic on Bs

p,q(Rd) for p, q ∈ [1,∞).

The choice of Besov spaces is twofold. First, observe that Besov spaces can be defined
via the Fourier transform and the partition of the unity (see the paragraph notation or [38,
Definition 2, pp. 7-8]). Now, since the operator associated with the symbol a(x, ξ) can be
represented by a kernel of the form
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a(x,D) f (x) =
∫
Rd

k(x, x − y) f (y) dy, x ∈ Rd,

where the kernel is given by the inverse Fourier transform3

k(x, z) = ξ→z
[
a(x, ξ)

]
(z),

Besov spaces come up naturally. Secondly, the strong Feller property is defined via the space
of continuous functions Cs

b(Rd), which is related to the Besov space Bs∞,∞(Rd) for s � 0. So,
it suggests by itself to use Besov spaces and embedding Theorems to prove the strong Feller
property for (t)t≥0.

3. A short introduction to pseudo–differential operators

3. A short introduction to pseudo–differential operators
In this section, we shortly introduce the main definition of pseudo–differential operators

and their symbols. Also, we present the definitions and Theorems which are necessary for
our purpose. For a detailed introduction on pseudo–differential operators and their symbols
in the context of partial differential equations we recommend the books [1, 34, 45, 51, 47,
17], or the monograph of Kumano-go [30], in the context of Markov processes we recom-
mend the books [24, 25, 26] or the survey [9, 29]. Here, we closely follow the book of Abels
[1].

Definition 3.1. Let ρ, δ be two real numbers such that 0 ≤ ρ ≤ 1 and 0 ≤ δ ≤ 1. Let
Sm
ρ,δ(R

d × Rd) be the set of all functions a : Rd × Rd → C, where

◦ a(x, ξ) is infinitely often differentiable, i.e. a ∈ C∞b (Rd × Rd);
◦ for any two multi-indices α and β there exists a constant Cα,β > 0 such that∣∣∣∣∂αξ′∂βxa(x, ξ) |ξ′=ξγ

∣∣∣∣ ≤ Cα,β〈|γξ|〉m−ρ|α|〈|x|〉δ|β|, x ∈ Rd, ξ ∈ 1, γ ≥ 1.

We call any function a(x, ξ) belonging to ∪m∈RSm
0,0(Rd,Rd) a symbol. For many estimates,

one does not need that the function is infinitely often differentiable. It is often only necessary
to know the estimates with respect to ξ and x up to a particular order. For this reason, we
introduce the following classes.

Definition 3.2 (compare [51, p. 28]). Let m ∈ R. Let m
k1,k2;ρ,δ(R

d,Rd) be the set of all
functions a : Rd × Rd → C, where

◦ a(x, ξ) is k1–times differentiable in ξ and k2 times differentiable in x;
◦ for any two multi-indices α and β with |α| ≤ k1 and |β| ≤ k2, there exists a constant

Cα,β > 0 depending only on α and β such that∣∣∣∣∂αξ′∂βxa(x, ξ) |ξ′=ξγ
∣∣∣∣ ≤ Cα,β〈|γξ|〉m−ρ|α|〈|x|〉δ|β|, x ∈ Rd, ξ ∈ 1, γ ≥ 1.

Moreover, we introduce a semi–norm in m
k1,k2;ρ,δ(R

d,Rd) by

‖a‖m
k1 ,k2;ρ,δ

= sup
|α|≤k1,|β|≤k2

sup
(x,ξ)∈Rd×1×R

∣∣∣∣∂αξ ∂βxa(x, ξ) |ξ=ξ′γ
∣∣∣∣ 〈|γξ|〉ρ|α|−m〈|x|〉−δ|β|, a ∈ m

k1,k2;ρ,δ(R
d × Rd).

3ξ→z[a(x, ξ)](z) =
∫
Rd e−2πiξza(x, ξ) dξ.
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We have seen in the introduction that, given a symbol, one can define an operator. In case
the symbol ψ is a Lévy symbol, the operator defined by (2.2) is an infinitesimal generator
of a semigroup of a Lévy process. In case one has an arbitrary symbol, the corresponding
operator can be defined similarly.

Definition 3.3 (compare [51, p.28, Def. 4.2]). Let a(x, ξ) be a symbol. Then, a(x, ξ)
corresponds to an operator a(x,D) being defined by

(
a(x,D) u

)
(x) :=

∫
Rd

ei〈x,ξ〉a(x, ξ) û(ξ) dξ, x ∈ Rd, u ∈ (Rd)

and being called pseudo–differential operator.

In most applications, one is interested in inverting the operator a(x,D). Here, the symbol
has to be elliptic, a terminus being the subject of the next definition.

Definition 3.4 (compare [34, p. 35]). A symbol a ∈ Sm
ρ,δ(R

d×Rd) is called globally elliptic,
if there exists a number r > 0,

〈|γξ|〉m � |a(x, γξ)| , γ ≥ r, ξ ∈ 1, x ∈ Rd.

In the appendix, we will see that we need upper estimates not only for the symbol itself
but also for its derivatives. Therefore, we have to introduce a more sophisticated definition
of ellipticity.

Definition 3.5 (compare [34, p. 35]). Let m, ρ, δ be real numbers with 0 ≤ δ < ρ ≤ 1. The
class Hypm

k1,k2,ρ,δ
(Rd × Rd) consists of all functions a(x, ξ) such that

◦ a(x, ξ) is k1–times differentiable in ξ and k2 times differentiable in x;
◦ there exists some r > 0 such that

〈|γξ|〉m � |a(x, γξ)| , γ ≥ r, ξ ∈ 1, x ∈ Rd,

and for an arbitrary multi-indices α and β there exists a constant Cα,β > 0 with∣∣∣∣∂αξ′∂βxa(x, ξ′)
∣∣∣
ξ′=γξ

∣∣∣∣ ≤ Cα,β〈|γξ|〉m−ρ|α|〈|x|〉δ|β|,
for x ∈ Rd, ξ ∈ 1, γ ≥ r.

In addition, for k1, k2 ∈ N0, we define the following semi–norm given by

‖a‖Hypm
k1 ,k2;ρ,δ

= sup
|α|≤k1,|β|≤k2

sup
x∈Rd

lim sup
ξ∈1,γ→∞

∣∣∣∣∣∣∂αξ′∂βx
[

1
a(x, ξ′)

∣∣∣∣
ξ′=γξ

]∣∣∣∣∣∣ 〈|γξ|〉m+ρ|α|〈|x|〉δ|β|.
In appendix A, we present some theorems and corollaries being necessary for the proof.

4. Analyticity of the Markovian semigroup in general Besov spaces

4. Analyticity of the Markovian semigroup in general Besov spaces
Given a function space X over Rd we are interested under which conditions on the coeffi-

cients σ, b and the symbol ψ, the Markovian semigroup (t)t≥0 generates an analytic semi-
group on X. Here, one has first to verify that (t)t≥0 generates a strongly continuous semi-
group. The Hille–Yosida Theorem gives the necessary and sufficient conditions which have
to be satisfied by a semigroup to be strongly continuous. Let us assume that X is a Banach
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space. For an operator A, let ρ(A) represent the resolvent set, i.e. ρ(A) = {λ ∈ C : (λI − A) is
invertible } and σ(A) = C \ ρ(A). Now, if (A,D(A)) is closed, densely defined, and for any
λ ∈ C with �λ > 0 one has λ ∈ ρ(A) (compare [13, Theorem 3.5, p. 73], or [35, Theorem
1.5.2]) and

‖R(λ, A)‖L(X,X) ≤ 1
�λ,(4.1)

then A generates a strongly continuous semigroup on X. Secondly, to show that this strongly
continuous semigroup is analytic, one has to show either that (compare [13, Theorem 4.6,
p. 101])

M := sup
t>0
‖tAt‖L(X,X) < ∞,(4.2)

or that there exists a constant C > 0 such that

‖R(ϑ + iτ : A)‖L(X,X) ≤ C
|τ| , ϑ > 0, ϑ, τ ∈ R.(4.3)

Let S(A) = {〈x∗, Ax〉 : x ∈ D(A), x ∈ X∗, |x| = 1, |x∗| = 1, 〈x∗, x〉 = 1} be the numerical
range of an operator A. If X is a Hilbert space and σ constant, S(A) can be characterized
by the Rg(ψ) := {a(x, ξ) ∈ C : x, ξ ∈ Rd}, where a(x, ξ) := ψ(σT (x)ξ). Since the range of ψ
contains the numerical range S(A) of A, we have (see Remark 2.4)

‖R(λ, A)‖L(X,X) ≤ 1
dist(λ, S(A))

.(4.4)

Hence, for X = Hm
2 (Rd) and σ(x) = σ0, one can show by analysing the numerical range,

which is here given by

S(a(x,D)) =
{
〈x, a(x,D)x〉 : x ∈ dom(a(x,D)), |x|Hm

2 (Rd) = 1, 〈x, x〉Hm
2
= 1

}
,

and some purely geometric considerations, the analyticity of the semigroup (t)t≥0 in X.
Here 〈 , 〉 represents the inner product in Hm

2 (Rd). In fact, choosing a complex number
λ = ϑ + iτ with ϑ > 0 and τ ∈ R, and using that the symbol ψ is of type (0, θ), we obtain by
the following series of computations (see Theorem 3.9 [35, Chapter I])

‖R(λ, a(x,D))‖L(Hm
2 (Rd),Hm

2 (Rd)) = ‖R(ϑ + iτ, a(x,D))‖L(Hm
2 (Rd),Hm

2 (Rd))

≤ 1
dist(λ, S̄(a(x,D)))

≤ 1
dist(λ, ρ(a(x,D)))

≤ 1
dist(λ, ρ(a(x,D)))

=
1

dist(ϑ + iτ, ρ(a(x,D)))
≤ cos θ

|τ| =
C
|τ| ,

where C = cos θ. These calculations imply that (t)t≥0 in X is an analytic semigroup in X.

This result can be generalised to arbitrary Besov spaces. The motivation to analyse the
analyticity of the Markovian semigroup in Besov spaces comes from the aim to investi-
gate the strong Feller property of the Markovian semigroup. Since one has the embedding
Cs(Rd) ⊂ Bs∞,∞(Rd) (s � 0), it is natural to switch to Besov spaces. The disadvantage is,
abandoning the Hilbert space setting, the numerical range gets more complicated, and it is
better to use other methods.
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Remark 4.1. Using the abstract theory of classic books such as, e.g. [35, 13, 48], we
can prove the following two Theorems for the pseudo–differential operator induced by a
simple Lévy process by proving that all assumptions of the corresponding theorems (e.g.
Theorem 5.2 [35, Chapter II], Theorem 3.9 [35, Chapter I], Theorem 2.3.3 [48, p.48], etc.)
are satisfied. In our case, the underlying stochastic process is not a simple Lévy process,
but a solution of stochastic differential equations. Therefore, we apply the same method
to prove Theorem 4.1. In particular, we prove that all assumptions of the corresponding
theorems (Theorem 5.2 [35, Chapter II], Theorem 3.9 [35, Chapter I], Theorem 2.3.3 [48,
p.48], etc.) are satisfied.

Theorem 4.1. Let us assume that

◦ the symbol a(x, ξ) belongs to δ
2d+4,d+3;1,0(Rd × Rd), where 1 < δ < 2,

◦ the symbol a(x, ξ) belongs to Hypδ2d+4,d+3;1,0(Rd × Rd),
◦ and is of type (0, θ), 0 ≤ θ < π

2 .

Then, for all 1 ≤ p, q < ∞ and m ∈ R, the operator a(x,D) generates an analytic semigroup
(t)t≥0 in Bm

p,q(Rd).

Let L = {L(t) : t ≥ 0} be a family of Lévy processes and let us consider the stochastic
differential equations of the form{

dXx(t) = b(Xx(t−)) dt + σ(Xx(t−))dL(t),
Xx(0) = x, x ∈ Rd,

where σ : Rd → L(Rd,Rd) and b : Rd → Rd are Lipschitz continuous. Let (t)t≥0 be
the Markovian semigroup of X defined in (1.2). Applying Theorem 4.1 to the infinitesimal
generator of (t)t≥0 gives following Theorem.

Theorem 4.2. Let us assume that the symbol ψ is of type (0, θ), 0 ≤ θ < π
2 , and

ψ ∈ δ
2d+4,d+3;1,0(Rd × Rd) ∩ Hypδ2d+4,d+3;1,0(Rd × Rd),

where 1 < δ < 2 is the Blumenthal–Getoor index of order 2d + 4 of L. In addition, let us
assume that

◦ σ ∈ Cd+3
b (Rd),

◦ and b ∈ Cd+3
b (Rd),

◦ and that there exists a number c > 0 such that

inf
x∈Rd

σ(x) ≥ cI.

Then, for all 1 ≤ p, q < ∞ and m ∈ R, the Markovian semigroup (t)t≥0 defined in (1.2) is
analytic in Bm

p,q(Rd).

Remark 4.2. The restriction that p has to be strictly smaller than infinity comes from the
fact that the space of Schwarz functions (Rd) is not dense in Bm∞,∞(Rd).

Proof of Theorem 4.1:. For simplicity, let us denote Bm
p,q(Rd) by X. Let us assume

that the symbol ψ and the coefficients σ and b are infinitely often differentiable. We first
show that the operator (t)t≥0 generates a strongly continuous semigroup on X by proving
the required conditions in the Hille–Yosida Theorem. Theorem 2.3.3, p.48 in [48], gives us
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that the Schwarz space (Rd) is dense in X. In addition, it is straightforward to show that
(Rd) ⊂ dom(a(x,D)). This immediately gives that dom(a(x,D)) is dense in X.

Before starting, let us split the operator a(x,D) into two operators in the same way as it is
done in Theorem 7.1. Let R ∈ N sufficiently large such that

R ≥ 6 × ‖a‖
̃

1,1
2d+4,d+3;1,0

and 〈|ξ|〉δ � |a(x, ξ)| for all x ∈ Rd and ξ ∈ Rd with |ξ| ≥ R. In addition, let χ ∈ C∞b (R+0 ) such
that

χ(ξ) =

⎧⎪⎪⎨⎪⎪⎩0 if |ξ| ≤ 1,

1 if |ξ| ≥ 2,

and put b(x, ξ) := a(x, ξ)(1 − χ(ξ/R)) and ã(x, ξ) := a(x, ξ)χ(ξ/R). We will show that
Ã = ã(x,D) generates an analytic semigroup on X. Due to Theorem 2.1 [35, Chapter 3.2, p.
80] and since B = b(x,D) is bounded on X, it follows that A = Ã + B generates an analytic
semigroup on X.

First, we will show that (ã(x,D), dom(ã(x,D))) is closed in X. Let {vn : n ∈ N} ⊂
dom(ã(x,D)) be a sequence such that limn→∞ vn = v in dom(ã(x,D)) and limn→∞ ã(x,D)vn

= w in X. To show that (ã(x,D), dom(ã(x,D))) is closed in X, we have to show that
ã(x,D)v = w. Suppose that |ã(x,D)v − w|X � 0. In particular, there exists a constant Ĉ > 0
such that |ã(x,D)v−w|X ≥ Ĉ. There exists a number n0 ∈ N such that for all n ≥ n0, we have

|v − vn| dom(ã(x,D)) <
Ĉ

4‖ã(x,D)‖L( dom(ã(x,D)),X)

and

|ã(x,D)vn − w|X < Ĉ
4
.

Since ã(x,D) is a linear and bounded operator on dom(ã(x,D)), we have

|ã(x,D)v − w|X ≤ |ã(x,D)v − ã(x,D)vn|X + |ã(x,D)vn − w|X
≤ ‖ã(x,D)‖L( dom(ã(x,D)),X)|v − vn| dom(ã(x,D)) + |ã(x,D)vn − w|X < Ĉ

2
.

Since this is a contradiction, we conclude that w = ã(x,D)v. Next, we show that there exists
a constant C > 0 such that

‖R(λ, ã(x,D))‖L(X,X) ≤ C
|λ| , λ ∈ Σθ+ π2 .(4.5)

Here, we will apply Theorem 7.1 to get the estimate. In order to do this, first, note that the
norm of λ + ã(x, ξ) in ̃

κ,1
2d+4,d+3,;1,0(Rd × Rd) does not depend on λ. Hence,

‖λ + ã‖
̃
κ,1
2d+4,d+3;1,0

= ‖ã‖
̃
κ,1
2d+4,d+3;1,0

, λ ∈ Σθ+ π2 .
Next, we have to estimate the norm of the operator λ + ã(x, ξ) in Hypδ2d+4,d+3;1,0(Rd × Rd).
That means, for any multi-indices |α| ≤ 2d + 4 and |β| ≤ d + 3 we have to estimate

sup
λ∈Σθ+ π2

|λ|
∣∣∣∣∣∣∂αξ ∂βx

[
1

λ + ã(x, ξ)

]∣∣∣∣∣∣ .
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By straightforward calculations it can be shown that this entity is bounded. Here, it is
essential that a(x,D) satisfies the sectorial condition, i.e. that there exists a c > 0 such that
|�(ã(x, ξ))| ≤ c|�(ã(x, ξ))|. We will consider the case where |α| = |β| = 0. Separating the
real and imaginary part we set λ = λ1 + iλ2 and ã(x, ξ) = ψ1(x, ξ) + iψ(x, ξ). Now we have

1
λ + ã(x, ξ)

=
λ1 + ψ1(x, ξ)

(λ1 + ψ1(x, ξ))2 + (λ2 + ψ2(x, ξ))2 − i
λ2 + ψ2(x, ξ)

(λ1 + ψ1(x, ξ))2 + (λ2 + ψ2(x, ξ))2 .

In particular, simple calculations give
∣∣∣∣∣ 1
λ + ã(x, ξ)

∣∣∣∣∣ ≤
√

(λ1 + ψ1(x, ξ))2 + (λ2 + ψ2(x, ξ))2

(λ1 + ψ1(x, ξ))2 + (λ2 + ψ2(x, ξ))2 ≤
1
λ2
,

for λ1 ≥ 1. Next, we will consider the case where |α| = |β| = 1, that is let α = k and β = l
with k, l ∈ {1, . . . , d}. Then,

∂xl∂ξk

[
1

λ + ã(x, ξ)

]
= −

∂2
xlξk

ã(x, ξ)

(λ + a(x, ξ))2 +
2∂xla(x, ξ)∂ξk ã(x, ξ)

(λ + ã(x, ξ))3 .

For simplicity, we will not separate the real and imaginary part. In this way we get

|λ|
∣∣∣∣∣∣∂xl∂ξk

[
1

λ + ã(x, ξ)

]∣∣∣∣∣∣ ≤ |λ|
{

r−1

|λ + 1|2 +
r−1

|λ + 1|3
}
≤ C(r),

where in the Definition 3.5, it is only necessary that there exists some r > 0 such that
〈|ξ|〉m � |a(x, ξ)| for ξ ∈ Rd with |ξ| ≥ r. Similarly, we could get the bound for the general
case where for multi-indices satisfying only |α| ≤ 2d+4 and |β| ≤ d+3. By an application of
Theorem 7.1 we know that (4.5) is satisfied. In particular, that there exists a constant C > 0
such that

‖R(λ, ã(x,D))‖L(X,X) ≤ C
|λ| , λ ∈ Σθ+ π2 .(4.6)

Finally it remains to show that the semigroup (t)t≥0 is analytic over X. Now pick λ =

ϑ + iτ ∈ Σθ+ π2 such that ϑ > 0 and τ ∈ R. From the estimate (4.6), we easily see that,

‖R(ϑ + iτ, ã(x,D))‖L(X,X) ≤
Cd,s

|τ| , λ ∈ Σθ+ π2 .

Then by applying the Theorem 5.2 [35, Chapter II] we could conclude that the Markovian
semigroup is an analytic semigroup over X. �

By analysing the proof of [46, p. 58], it can be seen that the condition of the differentia-
bility at the origin can be relaxed. Here, it is essential to mention that the proof relies on the
Theorem 2.5 [21, p. 120] (see also Theorem 4.23 in [1]), from which we can see that the
extension of the Theorem 9.7 of [51] to symbols, whose derivatives have a singularity at {0}
is possible. Moreover, analysing line by line of the proof of Theorem 9.7 in [51], one can
give an estimate of the norm of the operator.

5. The first application: the strong Feller property

5. The first application: the strong Feller property
Let L = {L(t) : t ≥ 0} be a family of Lévy processes and let us consider the stochastic

differential equations of the following form
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{
dXx(t) = b(Xx(t−)) dt + σ(Xx(t−))dL(t),
Xx(0) = x, x ∈ Rd,

(5.1)

where σ : Rd → L(Rd,Rd) and b : Rd → Rd are Lipschitz continuous. By C0
b(Rd) we

denote the set of all real valued and uniformly continuous functions on Rd equipped with
the supremum–norm. A Markovian semigroup (t)t≥0 of a process is Feller, iff tu ∈ C0

b(Rd)
for all u ∈ C0

b(Rd) and t > 0, and is strongly continuous in zero, i.e. limt↓0 |tu − u|C0
b
= 0

for every u ∈ C0
b(Rd). The Markovian semigroup (t)t≥0 of a process is called strong Feller,

iff for all f ∈ b(Rd) and t > 0, t f ∈ C0
b(Rd). In this section we will prove under certain

assumptions the strong Feller property of the Markovian semigroup, see e.g. [42, p. 30].
Now, we can state our first result.

Theorem 5.1. Let L be a square integrable Lévy process with Blumenthal–Getoor index
δ ∈ (1, 2) of order 2d + 4 and bounded moments of all order. Let σ ∈ Cd+3

b (Rd), such that
σ is bounded away from zero (see Theorem 4.1) and b ∈ Cd+3

b (Rd). Then, for any γ ∈ R,
1 ≤ p < ∞ and 1 ≤ q < ∞, there exists a constant C > 0 such that we have

|tu|Bγp,q ≤
C
t
|u|Bγ−δp,q

, t > 0.(5.2)

The estimate (5.2) can be used to prove the strong Feller property of (t)t≥0.

Corollary 5.1. Let us assume that L is a square integrable Lévy process with Blumenthal–
Getoor index δ, δ ∈ (1, 2), of order 2d+ 4. Let σ ∈ Cd+3

b (Rd) is bounded away from zero and
b ∈ Cd+3

b (Rd). Then, the process defined by (5.1) is strong Feller. In particular, for all γ ≥ 0
and n = [ γ

δ
] + 1, we have

|tu|Cγ
b (Rd) ≤ (nC)n

tn |u|L∞(Rd) , t > 0.

Before presenting the proof of Corollary 5.1, we want to illustrate its applicability. Let us
define the density p : [0,∞) × Rd × Rd → R+0 for the process X by

P(Xx(t) ∈ A) =
∫

A
pt(x, y) dy, A ∈  (Rd), t > 0, and x ∈ Rd.

Observe, for any x, y ∈ Rd, we have

pt(x, y) = (tδx)(y).

By Corollary 5.1, we get also estimates for the density p of X.

Corollary 5.2. Let us assume that L is a square integrable Lévy process with Blumenthal–
Getoor index 1 < δ < 2 of order 2d + 4, σ ∈ Cd+3

b (Rd) is bounded away from zero, and
b ∈ Cd+3

b (Rd). Then, the density of the process is arbitrary often differentiable. In particular,
for any θ ∈ N there exists a number n = [ θ+d

δ
]+ 1 such that we have for any multi-index α of

length θ ∣∣∣∣∣∣∂
α

∂αy
pt(x, y)

∣∣∣∣∣∣ ≤ C(n, d)
tn .

Proof of Corollary 5.1. Fix n ∈ N and p ∈ [1,∞) such that γ < nδ − d
p . Fix 1 ≤ q < ∞

arbitrary. Then, we know for γ � N0 (see [38, p. 14])
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Cγ
b(Rd) = Bγ∞,∞(Rd).

Secondly, we apply the embedding B
γ+ d

p
p,q (Rd) ↪→ Bγ∞,∞(Rd) (see [38, Chapter 2.2.3], [1,

Section 6.4]), and, finally, we apply Theorem 5.1 n times to get,

|tu|Cγ
b
≤ |tu|Bγ∞,∞ ≤ |tu|

B
γ+ d

p
p,q

=
∣∣∣∣( t

n
)nu

∣∣∣∣
B
γ+ d

p
p,q

≤ (nC)n

tn |u|
B
γ+ d

p −nδ
p,q

.

By means of [1, Excercise 6.25, Corollary 6.14] we get for κ = d
p − nδ + γ

L∞(Rd) ↪→ Lp(Rd) ↪→ B0
p,p(Rd) ↪→ Bκp,1(Rd),

By fixing q = 1 we obtain

|tu|Cγ
b
≤ (nC)n

tn |u|
B
γ+ d

p −nδ

p,1

≤ (nC)n

tn |u|
B
γ+ d

p −nδ

p,1

≤ (nC)n

tn |u|L∞ .

The last line gives the assertion. �

Proof of Corollary 5.2. Fix p ∈ (1,∞). We know δx ∈ B
− d

p′
p,∞(Rd), where p′ is the

conjugate of p (see [10, Formula B.2]). Let θ ∈ N0. A function u is θ times continuous
differentiable, if u ∈ Cθ

b(Rd). Since Bγ1
p,q(Rd) ↪→ Cθ

b(Rd) for γ1 = θ +
d
p , we have to estimate

|tδx|Bγ1
p,q

. Let n ∈ N that large that nδ > θ + d. Then γ1 − nδ < −(d − d
p ). Now, we have

|tδx|Bγ1
p,q
≤

(C
t

)n

|δx|Bγ1−nδ
p,q
≤

(C
t

)n

|δx|B−γ2
p,1
,

where γ2 < −(d − d
p ). Since δx ∈ B

− d
p′

p,∞(Rd), the right-hand side is bounded. �

Proof of Theorem 5.1. First, note that by Proposition 2.1. [20, p. 793], the symbol ψ of
the Lévy process is infinitely often differentiable. If the coefficient σ is independent from
the space variable x, then it is possible to write the symbol of the semigroup (t)t≥0 directly
as (etψ(ξ))t≥0. If σ depends on the space variable x, such a nice representation of the symbol
of the semigroup does not exists. We overcome this obstacle by using the representation of
the semigroup (t)t≥0 in terms of the contour integral, since we have it already successfully
applied in [11] and [19]. Let θ′ ∈ (0, θ), ρ ∈ (0,∞), and let

Γθ′(ρ, M) = Γ(1,M)
θ′,ρ + Γ

(2,M)
θ′,ρ + Γ

(3)
θ′,ρ,

where Γ(1)
θ′,ρ and Γ(2)

θ′,ρ are the rays rei( π2+θ
′) and re−i( π2+θ

′), ρ ≤ r ≤ M < ∞, and Γ(3)
θ′,ρ = ρ

−1eiα,
α ∈ [−π2 − θ′, π2 + θ′]. It follows from [35, Theorem 1.7.7] and Fubini’s Theorem that for
t > 0 and v ∈ Bγp,q(Rd) we have

tu = lim
M→∞

1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : a(x,D))vdλ,

where R(λ : a(x,D)) denotes the inverse of a(x, λ,D) := λI + a(x,D). Due to Theorem
4.2 and the assumption of Theorem 5.1, we know that (t)t≥0 is an analytic semigroup in
Bγp,q(Rd). Therefore, for any element v ∈ Bγp,q(Rd), the limit exists and is well defined. Let
u ∈ Bγ−δp,q (Rd) and {vn : n ∈ N} be a sequence such that vn ∈ Bγp,q(Rd) and vn → u in Bγ−δp,q (Rd).
By a change of variables, we obtain
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lim
M→∞

∣∣∣∣∣∣ 1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : a(x,D))vndλ

∣∣∣∣∣∣
Bγp,q

≤ lim
M→∞

∣∣∣∣∣∣ 1
2πit

∫ M

ρ

ere−i( π2 +θ
′)

R(
r
t
e−i( π2+θ

′), a(x,D)) vnei( π2+θ
′)dr

∣∣∣∣∣∣
Bγp,q

+ lim
M→∞

∣∣∣∣∣∣ 1
2πit

∫ M

ρ

erei( π2 +θ
′)

R(
r
s
ei( π2+θ

′), a(x,D)) vne−i( π2+θ
′)dr

∣∣∣∣∣∣
Bγp,q

+

∣∣∣∣∣∣ 1
2πit

∫ π
2+θ

′

− π2−θ′
eρeiβ

R(
ρ

s
eiβ, a(x,D)) vnρ

−1eiβdβ

∣∣∣∣∣∣
Bγp,q

.

The Minkowski inequality gives

. . . ≤ 1
2tπ

∫ ∞

ρ

e−r sin θ′
∣∣∣∣∣R(

r
t
e−i( π2+θ

′), a(x,D))vn

∣∣∣∣∣
Bγp,q

dr(5.3)

+
1

2tπ

∫ ∞

ρ

e−r sin θ′
∣∣∣∣∣R(

r
t
ei( π2+θ

′), a(x,D))vn

∣∣∣∣∣
Bγp,q

dr

+
ρ−1

2tπ

∫ π
2+θ

′

− π2−θ′
eρ cos β

∣∣∣∣∣R(
ρ

t
eiβ, a(x,D))vn

∣∣∣∣∣
Bγp,q

dβ.

We analyse the right-hand side of the estimate above by analysing the operator R( ρt eiβ,

a(x,D)) and applying Theorem 7.1. Before doing that, we have to calculate the seminorm
of λ + a(x, ξ) in the space of hypoelliptic operators. In this way, we require the following
estimate. Similar to p. 11 in [15], we can see that for λ ∈ Σθ+ π2 ,

〈|λ| 1δ + |ξ|〉δ � |λ + a(x, ξ)|.
The above result is due to the fact that a ∈ Hypδd+1,0;1,0(Rd×Rd), the idenitity (2.3), and since
σ is bounded away from zero. Therefore, there exists a number r > 0 such that we know

|λ + a(x, ξ)|−1 � 〈|λ| 1δ + |ξ|〉−δ � 〈|ξ|〉−δ,
for all ξ ∈ Rd with r ≤ |ξ|. In this way we obtain∣∣∣∣∣ 1

λ + a(x, ξ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
λ + ψ(σ(x)Tξ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
λ + 〈σ(x)Tξ〉δ

∣∣∣∣∣ ≤ C(σ, δ) 〈|ξ|〉−δ.

Let k ∈ {1, . . . , d}. Then∣∣∣∣∣∣∂ξk

[
1

λ + a(x, ξ)

]∣∣∣∣∣∣ =
∣∣∣∣ ∂ξk a(x, ξ)
(λ + a(x, ξ))2

∣∣∣∣ ≤
∣∣∣∣∣∣ 〈|ξ|〉

δ−1

(λ + 〈|ξ|〉δ)2

∣∣∣∣∣∣ ≤ C(σ, δ) 〈|ξ|〉−δ−1.

Next, let k, l ∈ {1, . . . , d}. Then,

∂ξl∂ξk

[
1

λ + a(x, ξ)

]
= −

∂2
ξlξk

a(x, ξ)

(λ + a(x, ξ))2 +
2∂ξla(x, ξ)∂ξk a(x, ξ)

(λ + a(x, ξ))3 .

Hence, we have∣∣∣∣∣∣∂ξl∂ξk

[
1

λ + a(x, ξ)

]∣∣∣∣∣∣ ≤ C(σ, δ)
{ 〈|ξ|〉δ−2

(λ + 〈|ξ|〉δ)2
+
〈|ξ|〉δ−2

(λ + 〈|ξ|〉δ)2

}
≤ C(σ, δ)〈|ξ|〉−δ−2.

Let α = (α1, · · · , αk) be a multi-index. By observing the pattern of the above derivative we
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can identify the general derivative ∂αξ [ 1
λ+a(x,ξ) ] and get the following estimate. There exist

C1,C2, · · ·C|α| > 0 depending on σ and δ such that∣∣∣∣∣∣∂αξ
[

1
λ + a(x, ξ)

]∣∣∣∣∣∣ ≤ C1|λ + a|−|α|−1〈ξ〉δ|α|−|α|

+C2|λ + a|−|α|〈ξ〉δ(|α|−1)−|α| +C3|λ + a|−|α|+1〈ξ〉δ(|α|−2)−|α| + · · · +C|α||λ + a|−2〈ξ〉δ−|α|.
Therefore∣∣∣∣∣∣∂αξ

[
1

λ + a(x, ξ)

]∣∣∣∣∣∣ 〈ξ〉−δ+|α| ≤ C1|λ + a|−|α|−1〈ξ〉δ|α|−δ

+C2|λ + a|−|α|〈ξ〉δ|α|−2δ +C3|λ + a|−|α|+1〈ξ〉δ|α|−3δ + · · · +C|α||λ + a|−2.

Using the fact that there exists some r > 0 such that we have for all x ∈ Rd with |ξ| ≥ r

|λ + a(x, ξ)|−1 � 〈|λ| 1δ + |ξ|〉−δ � 〈|ξ|〉−δ,
we obtain∣∣∣∣∣∣∂αξ

[
1

λ + a(x, ξ)

]∣∣∣∣∣∣ 〈ξ〉−δ+|α| ≤ (C1 +C2 + . . .C|α|)〈|ξ|〉−2δ � 〈|ξ|〉−2δ ≤ C(σ, δ)R−2δ.

The last line shows that λ + a(x, ξ) ∈ Hypδd+1,0;1,0(Rd × Rd).
It remains to estimate the norm of the symbol λ + a(x, ξ) in ̃

1,1
k1,k2;1,0(Rd × Rd) with k1 =

2d+4, k2 = d+3. Due to the fact that one has to take at least once the derivative with respect
to ξ, the constant λ has no influence on the norm in ̃

1,1
k1,k2;1,0(Rd × Rd). Since, we have for

a ∈ δ
k1,k2;1,0(Rd × Rd) and

‖λ + a‖
̃
δ,1
k1 ,k2;1,0

= sup
1≤|α|≤k1,|β|≤k2

sup
(x,ξ)∈Rd×Rd

∣∣∣∣∂αx∂βξ(λ + a(x, ξ))
∣∣∣∣ 〈|ξ|〉|β|−δ,

where k1 = 2d + 4, k2 = d + 3, we can conclude that λ + a(x, ξ) ∈ ̃1,1
2d+4,d+3;1,0(Rd × Rd).

Going back to (5.3) we can conclude by our discussion before by

lim
M→∞

∣∣∣∣∣∣ 1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : a(x,D))vndλ

∣∣∣∣∣∣
Bγp,q

≤ C(σ, δ)
2tπ

∫ ∞

ρ

e−r sin θ′ |vn|Bγ−δp,q
dr +

C(σ, δ)
2tπ

∫ ∞

ρ

e−r sin θ′ |vn|Bγ−δp,q
dr

+
C(σ, δ)ρ−1

2tπ

∫ π
2+θ

′

− π2−θ′
eρ cos β |vn|Bγ−δp,q

dβ

≤ C(σ, δ)
2tπ

|vn|Bγ−δp,q
.

Taking the limit n→ ∞, we get

lim
M→∞

∣∣∣∣∣∣ 1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : a(x,D))udλ

∣∣∣∣∣∣
Bγp,q

≤ C(σ, δ)
2tπ

|u|Bγ−δp,q
,

which is the assertion. �

The following Corollary is a consequence of Theorem 5.1.
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Corollary 5.3. Let L be a square integrable Lévy process with Blumenthal–Getoor index
δ ∈ (1, 2) of order 2d + 4. Let σ ∈ Cd+3

b (Rd) be bounded away from zero and b ∈ Cd+3
b (Rd).

Let m(D) be a pseudo–differential operator such that m(ξ) ∈ Sκ1,0(Rd × Rd) with 0 ≤ κ ≤ 1.
Then, there exists a constant C > 0 such that for any 0 < γ < δ−κ

4 , γ � N, and t > 0 we have

|t m(D) u|Cγ
b (Rd) ≤ C

t
|u|L∞(Rd) .

Proof. The proof is a combination of the proof of Theorem 5.1 and Corollary 5.1. Due
to this reason, we include only the essential steps of the proof. We have already shown that

λ + a(x, ξ) ∈ Hypδd+1,0;1,0(Rd × Rd) ∩−1
2d+4,d+3;1,0(Rd × Rd).

As already observed in the proof of Theorem 5.1, we have the following representation of
the semigroup

|tm(D)u|
B
γ+ d

p
p,q

= lim
M→∞

∣∣∣∣∣∣ 1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : a(x,D))m(D)udλ

∣∣∣∣∣∣
B
γ+ d

p
p,q

.

Similarly as in the proof of Theorem 5.1 we can write

lim
M→∞

∣∣∣∣∣∣ 1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : a(x,D)) m(D) u dλ

∣∣∣∣∣∣
B
γ+ d

p
p,q

≤ lim
M→∞

∣∣∣∣∣∣ 1
2πit

∫ M

ρ

ere−i( π2 +θ
′)

R(
r
t
e−i( π2+θ

′), a(x,D)) m(D) u ei( π2+θ
′)dr

∣∣∣∣∣∣
B
γ+ d

p
p,q

+ lim
M→∞

∣∣∣∣∣∣ 1
2πit

∫ M

ρ

erei( π2 +θ
′)

R(
r
s
ei( π2+θ

′), a(x,D)) m(D) u e−i( π2+θ
′)dr

∣∣∣∣∣∣
B
γ+ d

p
p,q

+

∣∣∣∣∣∣ 1
2πit

∫ π
2+θ

′

− π2−θ′
eρeiβ

R(
ρ

s
eiβ, a(x,D)) m(D) u ρ−1eiβdβ

∣∣∣∣∣∣
B
γ+ d

p
p,q

≤ 1
2tπ

∫ ∞

ρ

e−r sin θ′
∣∣∣∣∣R(

r
t
e−i( π2+θ

′), a(x,D)) m(D) u
∣∣∣∣∣
B
γ+ d

p
p,q

dr

+
1

2tπ

∫ ∞

ρ

e−r sin θ′
∣∣∣∣∣R(

r
t
ei( π2+θ

′), a(x,D)) m(D) u
∣∣∣∣∣
B
γ+ d

p
p,q

dr

+
ρ−1

2tπ

∫ π
2+θ

′

− π2−θ′
eρ cos β

∣∣∣∣∣R(
ρ

t
eiβ, a(x,D)) m(D) u

∣∣∣∣∣
B
γ+ d

p
p,q

dβ.

Note again that the semi-norms

‖λ + a‖Hypδd+1,0;1,0(Rd×Rd) and ‖λ + a‖−1
2d+4,d+3;1,0

do not depend on λ. In this way, by separating m(D) and R( r
t ei( π2+θ

′), a(x,D)) and applying
Theorem (7.1) we get

· · · � 1
2tπ

∫ ∞

ρ

e−r sin θ′ |m(D) u|
B
γ+ d

p −δ
p,q

dr

+
1

2tπ

∫ ∞

ρ

e−r sin θ′ |m(D) u|
B
γ+ d

p −δ
p,q

dr +
ρ−1

2tπ

∫ π
2+θ

′

− π2−θ′
eρ cos β |m(D) u|

B
γ+ d

p −δ
p,q

dβ,
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�

⎡⎢⎢⎢⎢⎣ 1
tπ

∫ ∞

ρ

e−r sin θ′ dr +
1

2tπ

∫ π
2+θ

′

− π2−θ′
eρ cos β dβ

⎤⎥⎥⎥⎥⎦ |m(D) u|
B
γ+ d

p −δ
p,q

≤ C
t
|m(D) u|

B
γ+ d

p −δ
p,q

.

Since m(ξ) ∈ Sκ1,0(Rd × Rd) we get

C
t
|m(D) u|

B
γ+ d

p −δ
p,q

≤ C
t
‖m‖Sκ1,0 |u|Bγ+ d

p −δ+κ
p,q

�
C
t
|u|

B
γ+ d

p −δ+κ
p,q

.

Now we are following the same argument of the proof of Corollary 5.1 to complete the
argument. Fix γ < (n−1)δ−κ−d and let p ≥ 1 such that d

p < (n−1)δ−κ−γ. Fix 1 ≤ q < ∞
arbitrary. Then, we know, firstly (see [38, p. 14])

Cγ(Rd) = Bγ∞,∞(Rd), γ � N.

Secondly, we apply the embedding B
γ+ d

p
p,q (Rd) ↪→ Bγ∞,∞(Rd) (see [38, Chapter 2.2.3], [1,

Section 6.4]), and, finally, we apply Theorem 5.1 n times to get,

|t m(D) u|Cγ
b
≤ |t m(D) u|Bγ∞,∞(Rd) ≤ |t m(D) u|

B
γ+ d

p
p,q

(5.4)

=
∣∣∣∣( t

n
)n m(D) u

∣∣∣∣
B
γ+ d

p
p,q

≤ (nC)n

tn |u|
B
γ+ d

p −nδ+κ
p,q

.

By means of [1, Excercise 6.25, Corollary 6.14],

Bθp′,1(Rd) ↪→ B
d
p′
p′,1(Rd) ↪→ C0(Rd) ↪→ L∞(Rd),

where θ = nδ − d
p − γ + κ and p′ = p

p−1 . Now, applying [1, Lemma 6.5] and the duality
property of the Besov spaces give that

Bθp′,1(Rd) ↪→ L∞(Rd) ↪→ B−θp,∞(Rd) = B
γ+ d

p−nδ+κ
p,∞ (Rd) ↪→ B

γ+ d
p−(n−1)δ+κ

p,1 (Rd).

Finally by fixing q = 1 we get

|t m(D) u|Cγ
b
≤ (nC)n

tn |u|
B
γ+ d

p −nδ+κ

p,1

≤ (nC)n

tn |u|
B
γ+ d

p −(n−1)δ+κ

p,1

≤ (nC)n

tn |u|L∞ .

This completes the proof. �

If L is an α stable process, the problem appears that only the moments up to p < α are
bounded. Therefore, the symbol is not necessarily uniformly differentiable up to order d + 1
in any neighbourhood of ξ = 0. However, if α > 1, then this problem can be solved.

Corollary 5.4. Let L be a Lévy process L with Blumenthal–Getoor index 1 < δ < 2 of
order 2d + 4. Let σ ∈ Cd+3

b (Rd) be bounded away from zero and b ∈ Cd+3
b (Rd). Then, the

Markovian semigroup (t)t≥0 of the process defined by (5.1) is strong Feller.
Proof of Corollary 5.4. In order to deal with the large jumps we decompose the Lévy

process into a Lévy process recollecting the jumps smaller than one and a second Lévy
process, recollecting the jumps larger than one. In doing so, we split the Lévy measure. Let
ν0 be the Lévy measure defined by
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ν0 : (Rd) � U �→ ν(U ∩ Z0),

and ν1 be the Lévy measure defined by

ν1 : (Rd) � U �→ ν(U ∩ Z1),

where Z0 = {z ∈ Rd : |z| ≤ 1} and Z1 = {z ∈ Rd : |z| > 1}. Since the proof of this theorem
mainly rely on the analysis of the decomposition of the small and large jumps it is important
to decompose also the probability space A = (Ω, , {t}t∈[0,T ], P). Let η̃0 be a compensated
Poisson random measure on (Z0×R+,(Z0)⊗(R+)) over A0 = (Ω0,0, {0

t }t∈[0,T ], P
0) with

intensity measure ν0 where

0 = σ{η(B, [0, s]) : B ∈ (Z0), s ∈ [0, T ]}
and for 0 ≤ t ≤ T

0
t = σ{η(B, [0, s]) : B ∈ (Z0), s ∈ [0, t]}.

Furthermore, let η̃1 be a compensated Poisson random measure on (Z1 ×R+,(Z1)⊗(R+))
over A1 = (Ω1,1, {1

t }t∈[0,T ], P
1) with finite intensity measure ν1 where

1 = σ{η(B, [0, s]) : B ∈ (Z1), s ∈ [0, T ]}
and for 0 ≤ t ≤ T

1
t = σ{η(B, [0, s]) : B ∈ (Z1), s ∈ [0, t]}.

Let Ω := (Ω0 ×Ω1),  := 0 ⊗1, t := 0
t ⊗1

t , P = P0 ⊗ P1 and E = E0 ⊗E1. We denote
the to ν0 and ν1 associated Lévy processes by L0 and L1. It is clear by the independent
scattered property of a Poisson random measure, that L0 and L1 are independent. Since ν1 is
a finite measure, L1 can be represented as a sum over its jumps. In particular, let ρ = ν1(Rd),
{τn : n ∈ N} be a family of independent exponential distributed random variables with
parameter ρ,

Tn =

n∑
j=1

τ j, n ∈ N,(5.5)

and {N(t) : t ≥ 0} be the counting process defined by

N(t) :=
∞∑
j=1

1[T j,∞)(t), t ≥ 0.

Observe, for any t > 0, the random variable N(t) is a Poisson distributed random variable
with parameter ρt. Let {Yn : n ∈ N} be a family of independent, ν0/ρ distributed random
variables. Then the Lévy process L1 given by (see [37, Chapter 3])

L1(t) =
∫ t

0

∫
Z1

z η̃1(dz, ds), t ≥ 0,

can be represented as

L1(t) =

⎧⎪⎪⎨⎪⎪⎩−z0t for N(t) = 0,∑N(t)
j=1 Yj − z0t for N(t) > 0,
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where z0 =
∫
Rd z ν1(dz). Let (0

t ) the Markovian semigroup of the solution process Xx
0 given

by {
dXx

0(t) = b(X0(t−)) dt + σ(X0(t−))dL0(t),
Xx

0(0) = x, x ∈ Rd.
(5.6)

Now, we have for u(t) = Eφ(X(t)), where X is the solution to the original equation (5.1), the
following identity

u(t) = E(0
t φ)(x) + E

N(t)∑
i=1

0
t−Ti

BYiu(T−i ) −
∫ t

0
0

t−sDu(s)[z0] ds,(5.7)

where (Byφ)(x) = φ(x + y) − φ(x). To verify formula (5.7), observe that in the time interval
[0, T1) the solution of u is given by

u(t) = (0
t φ)(x) +

∫ t

0
0

t−sDu(s)[z0] ds, t ∈ [0, T1].

In particular, u solves on the time interval [0, T1) the equation{
u̇(t) = a(x,D)u(t) + Du(t)z0 , t ∈ [0, T1),
u(0) = φ.

(5.8)

Let us denote the solution of (5.8) on the first time interval [0, T1] by u1. At time T1 the first
large jump occurred. Hence, on the time interval [T1, T2), u solves{

u̇(t) = a(x,D)u(t) + Du(t)z0 , t ∈ (T1, T2),
u(T1) = Eu1(T1, · + Y1).

(5.9)

Let us denote the solution of (5.9) by u2. The variation of constant formula gives for t ∈
(T1, T2)

u2(t) = 0
t−T1

u2(T1) +
∫ t

T1

0
t−sDu2(s) z0 ds.

Let us put

u(t) :=

⎧⎪⎪⎨⎪⎪⎩u1(t), if t ∈ [0, T1),

u2(t), if t ∈ [T1, T2).

Since

u1(T1) = 0
T1
φ +

∫ T1

0
0

T1−sDu(s) z0 ds,

and u2(T1, x) = u1(T1, x + Y1), x ∈ Rd, it follows

u(t) = 0
t−T1

0
T1
φ + 0

t−T1

∫ T1

0
0

T1−sDu(s) z0 ds

+

∫ t

T1

0
t−sDu(s) z0 ds + E0

t−T1
u(T−1 , · + Y1) − E0

t−T1
u(T−1 , ·).

= 0
t φ +

∫ t

0
0

t−sDu(s) z0 ds + E0
t−T1

[
u(T−1 , · + Y1) − u(T−1 , ·)

]
.
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Repeating these calculations successively for all time intervals gives formula (5.7).

Since, given N(t) = k, the random variables {Y1, Y2, . . . , Yk} and {T1, T2, . . . , Tk} are mu-
tually independent and Ti, i = 1, . . . , k, are uniform distributed on [0, t], it follows that

E

N(t)∑
i=1

0
t−sBYiu(Ti) =

∞∑
k=1

P (N(t) = k) E

⎡⎢⎢⎢⎢⎢⎢⎣
N(t)∑
l=1

E
1
[
0

t−Tl
BYlu(Tl) | N(t) = k

]⎤⎥⎥⎥⎥⎥⎥⎦
=

∞∑
k=1

P (N(t) = k) E1

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

l=1

0
t−Tl

BYlu(Tl)

⎤⎥⎥⎥⎥⎥⎥⎦
=

∞∑
k=1

P (N(t) = k) E1
[∫ t

0
0

t−sBYu(s)
]
,

where Y is distributed as ν0/ρ. Thus, we get for γ ≤ δ − 1

|u(t)|Bγ∞,∞ =
∣∣∣∣∣∣0

t φ +C
∫ t

0
0

t−syu(s) ds +
∫ t

0
0

t−sDu(s)[z0] ds

∣∣∣∣∣∣
Bγ∞,∞

,

where (yφ)(x) =
∫
Rd [φ(x + y) − φ(x)] ν0(dy) and C is a constant depending on ρ and ν0. By

applying Minkowski inequality and Theorem 5.1, resp. Corollary 5.3 with m(D) = D and
m(D)u = yu, gives for some p > 1 with n > γ+1+d

δ
+ 1

|u(t)|Bγ∞,∞ ≤
1
t
|φ|B0∞,∞ +

∫ t

0

∣∣∣0
t−syu(s)

∣∣∣
Bγ∞,∞

ds + |z0|
∫ t

0

∣∣∣0
t−sDu(s)

∣∣∣
Bγ∞,∞

ds

≤ 1
t
|φ|B0∞,∞ + K1

∫ t

0
(t − s)−n |u(s)|Bγ∞,∞ ds + K2|z0|

∫ t

0
(t − s)−n |u(s)|Bγ∞,∞ ds

≤ 1
t
|φ|B0∞,∞ + K(1 + |z0|)

[∫ t

0
(t − s)−p ds

] 1
p
[∫ t

0
|u(s)|

p
p−1

Bγ∞,∞
ds

] p−1
p

≤ 1
t
|φ|B0∞,∞ +

C1

t
np−1

p

[∫ t

0
|u(s)|

p
p−1

Bγ∞,∞
ds

] p−1
p

.

Rearranging gives

|u(t)|
p

p−1

Bγ∞,∞
≤ 1

t
p

p−1
|φ|

p
p−1

B0∞,∞
+

C2

t
np−1
p−1

∫ t

0
|u(s)|

p
p−1

Bγ∞,∞
ds.

A simple application of Gronwall’s Lemma gives

|u(t)|Bγ∞,∞ ≤ C(t, p, n)|φ|B0∞,∞ .

By the definition of B0∞,∞(Rd), it follows that the process is strong Feller. �

6. The second application: Error Estimates for Monte-Carlo Simulation

6. The second application: Error Estimates for Monte-Carlo Simulation
Given the intensity (or Lévy) measure of a Lévy process, in most of the cases, one does

not know the distribution of L(t) for a fixed time point t ≥ 0. However, simulating sto-
chastic differential equations driven by a Lévy process using the explicit or implicit Euler-
Marayuama scheme, one has to simulate the increments Δn

τL := L(nτ)−L((n−1)τ) for τ > 0
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small. Here, one can apply several strategies to simulate the random variables Δn
τL, n ∈ N,

to generate a so-called Lévy walk. In general, the distribution of Δk
τL is not known, such

that Δk
τL cannot be simulated directly. One way is to cut off the jumps being smaller than

a given ε and to simulate the corresponding compound Poisson process directly. Now, one
has two possibilities, to neglect the small jumps or to replace the small jumps by a Gaussian
random variable. Doing so, one gets a new Lévy process, denoted by L̂ε. This method was
introduced by Tsuchiya [50]. Asmussen and Rosinki [3] investigated the process generated
only by the small jumps. They investigate under which conditions this process converges in
distribution to a Wiener process. Hence, one can improve the weak error by not neglecting
the small jumps and simulating instead of the small jumps a Wiener process. The second
advantage is that replacing the small jumps by a Wiener process leads to the fact that the
Markovian semigroup of the approximation is analytic. Therefore, the error for t small
improves. This we will present it in this section theoretically and verify practically.

To be more precise, let us cut off all jumps being in the unit ball with radius ε, denoted in
the following by Bε, i.e, let Bε = {z ∈ Rd : |z| ≤ ε}, | · | denotes a norm on Rd. Then, Δn

τL is the
sum over N random variables {Y1, . . . , YN}, where N is Poisson distributed with parameter
ν(Rd \ Bε) and the random variables {Y1, . . . , YN} are identical and mutually independent
distributed with

Yi
d
=
ν(· ∩ Bc

ε)
ν(Bc

ε)
, i = 1, . . .N.

Now, we can replace the neglected small jumps by increments of a Wiener process. Here,
the rate of convergence for the strong error will not be improved. However, calculating the
weak error the quality of the approximation will be improved. One of the reason is that the
Markovian semigroup of the approximation where the small jumps are approximated by a
Wiener process is analytic. To explain the implication of this, let us consider the function
φ : R � x �→ 1[a,∞)(x). Then, for t > 0 we know P

(
Xx0

t ≥ a
)
= E1[a,∞)(X

x0
t ), where X solves

the stochastic differential equation (b : Rd → Rd are Lipschitz continuous, σ > 0){
dXx0 (t) = b(Xx0 (t−)) dt + σ(Xx0 (t−)) dL(t),
Xx0 (0) = x0, x0 ∈ R.(6.1)

Let us denote the approximation of X, where we replaced the small jumps by a Wiener pro-
cess, by X̂. Then, the function φ : R � x0 �→ E1[a,∞)(X

x0
t ) is infinitely often differentiable and

we can use the Taylor approximation to get a nice error estimate. In this way, the analyticity
of the Markovian semigroup has a strong impact on the quality of the approximation.

Fix a truncation parameter 0 < ε < 1. Let us define the approximate Lévy measure

νε : (R) �  �→ ν
(
 ∩ Bc

ε

)
.

Let L̂ε be the Lévy process induced by truncating the small jumps. In particular, L̂ε is a Lévy
process having intensity νε. Not to neglect the small jumps, we generate at each time-step
k ∈ N a Gaussian random variable Δk

τWε , where

Δk
τWε ∼

(
0,Σ2(ε)τId

)
, with Σ2(ε) =

∫
Bε
〈y, y〉 ν(dy) ,(6.2)

where Id denotes the d-by-d identity matrix. Then, the increments of the Lévy process are
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approximated by(
Δ̂0
τLε,1 + Δ

0
τWε , Δ̂

1
τLε,1 + Δ

1
τWε , Δ̂

2
τLε,1 + Δ

2
τWε , . . . , Δ̂

k
τLε,1 + Δ

k
τWε , . . .

)
.

In the following we give an error estimate of the two processes Xx0 and X̂x0 , where Xx0 solves
(6.1) and X̂x0 solves{

dX̂x0
ε (t) = b(X̂x0

ε (t−)) dt + σ(X̂x0
ε (t−))dL̂ε(t) + σ(X̂x0

ε (t−))dWε(t),
Xx0 (0) = x0, x0 ∈ Rd.

(6.3)

Here Wε is a Wiener process with covariance Σ(ε). We suppose that the Lévy process is a
self–decomposable Lévy process. In particular, we assume that L(1) is self–decomposable.

Definition 6.1. A probability measure on Rd is self–decomposable, iff for any b > 1,
there exists a probability measure ρb on Rd such that

μ̂(z) = μ̂(b−1z)ρ̂b(z), z ∈ Rd.

By Theorem 15.10 of [39, p. 95], we know that there exists
◦ a finite measure λ on the sphere S = {x ∈ Rd : |x| = 1}
◦ and a measurable function k : S × R+ → R+0 , decreasing in the second variable,

such that the Lévy measure ν of L has the following representation

ν(B) =
∫
S

∫ ∞

0
1B(rx)k(r, x)

dr
r
λ(dx), B ∈ (Rd).

Again let us define the corresponding Markovian semigroups. Let (t)t≥0 be the Markovian
semigroup of the process (6.1), i.e.

tφ(x0) := Eφ(Xx0 (t)), t ≥ 0, x0 ∈ Rd,(6.4)

and let (̂ε
t )t≥0 be the Markovian semigroup of the process (6.3), i.e.

̂ε
t φ(x0) := Eφ(X̂x0

ε (t)), t ≥ 0, x0 ∈ Rd.(6.5)

The first proposition shows that the semigroup (̂ε
t )t≥0 of the approximation X̂ is analytic on

Bm
p,q(Rd).

Proposition 6.1. Let L be a Lévy process, such that L(1) has a self–decomposable distri-
bution. Let α ∈ (1, 2) be the Blumenthal-Getoor index of L. In particular, we assume that
there exists a finite measure λ on S and a measurable function k : S × R+ → R+0 , slowly
varying at zero and monotone decreasing for x→ ∞ in the second variable such that

ν(B) =
∫
S

∫ ∞

0
1B(rx)k(r, x)

dr
r1+α λ(dx), B ∈ (Rd).

Let us assume that there exists some c0 > 0 such that λ({|〈x, e j〉| > cos(π/4)}) ≥ c0 for
j = 1, . . . , d, where e j = (e1

j , e
2
j , . . . , e

d
j ) with ek

j = 0 iff j � k and e j
j = 1. Let us assume that

σ ∈ Cd+3
b (Rd) is bounded away from zero, i.e. σ(x) ≥ δI for all x ∈ RD, and b ∈ Cd+3

b (Rd).

◦ Then, for all 1 ≤ p, q < ∞, the Markovian semigroup (̂ε
t )t≥0 is an analytic semi-

group in Bm
p,q(Rd) for all m ∈ R.
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◦ Let ϑ(D) be a pseudo–differential operator with symbol ϑ(ξ), where ϑ ∈ Sκ1,0(Rd×Rd)
with κ ∈ R. Then, we have for u ∈ Bm

p,q(Rd)

∣∣∣̂ε
t ϑ(D)u

∣∣∣
Bm

p,q
≤ C

t
|u|Bm−α+κ

p,q .(6.6)

Remark 6.1. By Theorem 14.3 [39], the Lévy process L from Proposition 6.1 is α–stable
and the Blumenthal-Getoor index and α coincides.

As mentioned before, due to the fact that the Markovian semigroup is analytic, the weak
error can be improved.

Theorem 6.1. Let us assume that σ ∈ Cd+3
b (Rd) and b ∈ Cd+3

b (Rd). Let σ be bounded
away from zero and let α ∈ (1, 2) be the Blumenthal-Getoor index of L. Then, for δ =
2(α − 1), r1, r2 ∈ (0, 1) such that r1 + r2 > 1 and 2r1 > r2 with δ1 =

δr2
2 and δ2 = δ(r1 − r2

2 ),∥∥∥t − ̂ε
t

∥∥∥
L(B−δ2∞,∞,B

δ1∞,∞) ≤ Ct2(δ−1)(r1+r2)−1ε(2−δ).

To illustrate Theorem 6.1 we postponed the proofs of Theorem 6.1, Proposition 6.1, and
present the following simulations. Here, we took as underlying process{

dXx0 (t) = −aXx0 (t−)dt + dL(t),
Xx0 (0) = x0, x0 ∈ R,(6.7)

where a = 3 and (Lt)t≥0 is a strictly α–stable process, where we specify the value of α later
and let run α from one to two (see Figure 5). Note, α coincide with the Blumenthal-Getoor
index of L, compare Remark 6.1.

In addition, we compared the error for different α, i.e. we let run α from one to two (see
Figure 5). Summarizing, there is a significant improvement by adding a Wiener process. In
particular, we approximate this process once by cutting off the small jumps and replacing
the small jumps by an independent Wiener process described by{

dX̂x0
ε (t) = −aX̂x0

ε (t−)dt + dL̂ε(t) + dWε(t),
X̂x0
ε (0) = x0, x0 ∈ R,(6.8)

and secondly, by only cutting off the small jumps, i.e. by{
dX̄x0

ε (t) = −aX̄x0
ε (t−)dt + dL̂ε(t),

X̄x0
ε (0) = x0, x0 ∈ R.(6.9)

Let (t)t≥0 be the Markovian semigroup of the process (6.7), i.e.

tφ(x0) := Eφ(Xx0 (t)), t ≥ 0,(6.10)

let (̂ε
t )t≥0 be the Markovian semigroup of the process (6.8), i.e.

̂ε
t φ(x0) := Eφ(X̂x0

ε (t)), t ≥ 0,(6.11)

and, finally,

̄ε
t φ(x0) := Eφ(X̄x0

ε (t)), t ≥ 0,(6.12)
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be the Markovian semigroup of the process (6.9). We simulate the Markovian semigroup
for two different functions

φ1(x) := 1x≥0.5 and φ2(x) =
x2

1 + x2 , x ∈ R.

In Figure 1 and Figure 2, we simulate tφi(x0), ̂ε
t φi(x0), ̄ε

t φi(x0) and the absolute error
of approximations ̄ε

t φi(x0) and ̂ε
t φi(x0) for α = 1.05 and a sample size 6×107 with varying

ε. Here, one can observe that, if ε decreases, then the error also decreases. In Figure 3 and
Figure 4, we simulate tφi(x0), ̂ε

t φi(x0), ̄ε
t φi(x0) and the absolute error of approximations

̄ε
t φi(x0) and ̂ε

t φi(x0), i.e. |tφi(x0)− ̂ε
t φi(x0)| and |tφi(x0)− ̄ε

t φi(x0)| for ε = 0.1; sample
size 1.5×106; x0 = 0 and x0 = 0.45; i = 1, 2; and α = 1.05, 1.95. It is observed that replacing
the small jumps by a Wiener process improves the quality of the approximation. Especially,
if α is closed to two. This we could also verify by Figure 5, where we simulate the logarithm
of absolute error of ̂ε

1φi(x0) and ̄ε
1φi(x0) for i = 1, 2, x0 = 0 and x0 = 0.45.

Before presenting the proof, we want to give some remarks. Note, that (t)t≥0 has gener-
ator given by the symbol a(x, ξ) = ψ(σ(x)Tξ) and (̂t)t≥0 has generator given by the symbol
âε(x, ξ) = ψε(σ(x)Tξ) − 1

2Σ
2(ε)〈σ(x)Tξ, σ(x)Tξ〉, where

ψε(ξ) =
∫
Rd\Bε

(ei〈y,ξ〉 − 1 − i〈y, ξ〉)ν(dy), ξ ∈ Rd,

and

Σ2(ε) =
∫

Bε
〈y, y〉 ν(dy).

Proof of Proposition 6.1. Let us assume that the support of ν belongs to {x ∈ Rd | |x| ≤ 1}.
Since the large jumps are simulated precisely, this is no restriction. The symbol for the
approximation is given by

âε(x, ξ) = ψε(σ(x)Tξ) − 1
2
Σ2(ε)〈σ(x)Tξ, σ(x)Tξ〉,

where

ψε(ξ) :=
∫
S

∫ 1

ε

(
eir〈y,ξ〉 − 1 − ir〈y, ξ〉) k(r, y)

dr
r1+α λ(dy)

and

Σ2(ε) =
∫
S

∫ ε

0
〈ry, ry〉k(r, y)

dr
r1+α λ(dy).

The aim in the following calculations is to show that âε(x, ξ) belongs to Hypα2d+4,d+3;1,0(Rd ×
R

d). Throughout this proof, we denote by C a varying positive constant. First, we will show
that for any ξ ∈ 1 there exist some constants R > 0 and C > 0 such that

|âε(x, γξ)| = |ψε(σ(x)Tγξ) − γ
2

2
Σ2(ε)〈σ(x)Tξ, σ(x)Tξ〉| ≥ C|γ|α, ξ ∈ 1, γ ≥ R.

Let ξ ∈ 1 and ξ′ = γξ. By the Euler identity, we obtain
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Fig. 1. (A) The Markovian semigroups tφ1(x0), ̂ε
t φ1(x0) and the abso-

lute error of the approximations ̂ε
t φ1(x0) for x0 = 0 and ε is varying; (B)

the Markovian semigroups tφ1(x0), ̄ε
t φ1(x0) and the absolute error of the

approximations ̄ε
t φ1(x0) for x0 = 0 and ε varying; (C) the Markovian semi-

groups tφ2(x0) and ̂ε
t φ2(x0) and the absolute error of the approximations

̂ε
t φ2(x0) for x0 = 0 and ε varying; (D) the Markovian semigroups tφ2(x0)

and ̄ε
t φ2(x0) and the absolute error of approximations ̄ε

t φ2(x0) for x0 = 0
and ε varying.

|âε(x, ξ′)| =
∣∣∣∣∣∣
∫
S

∫ 1

ε

(1 − cos(r〈y, σ(x)Tξ′〉)) k(r, y)
dr

r1+α λ(dy)

+

∫
S

∫ 1

ε

i(− sin(r〈y, σ(x)Tξ′〉) + r〈y, σ(x)Tξ′〉) k(r, y)
dr

r1+α λ(dy)

+
1
2
Σ2(ε)〈σ(x)Tξ′, σ(x)Tξ′〉

∣∣∣∣∣∣.
Using the fact that |a + ib| > |a| and cos(a) ≤ 1 for all a, b ∈ R we obtain

|âε(x, ξ′)| ≥
∣∣∣∣∣∣
∫
S

∫ 1

ε

(1 − cos(r〈y, σ(x)Tξ′〉)) k(r, y)
dr

r1+α λ(dy)
∣∣∣∣
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+
1
2

∣∣∣∣Σ2(ε)〈σ(x)Tξ′, σ(x)Tξ′〉
∣∣∣∣

:= |ψ1
ε(σ(x)Tξ′)| + 1

2

∣∣∣∣Σ2(ε)〈σ(x)Tξ′, σ(x)Tξ′〉
∣∣∣∣.

Note, that there exists some constant c0 > 0 such that for all 1 ≤ j ≤ d we have λ({x ∈
S : |〈x, e j〉| > cos(π/4)}) ≥ c0. Let us write ξ′ = ξγ, where ξ ∈ 1. Then, due to the
shape of 1, there exists some j0 ∈ {1, . . . , d} and some c̃ > 0 with 〈ξ, x′〉 ≥ c̃ for all
x′ ∈ {x ∈ S : |〈x, e j〉| > cos(π/4)}. Next, we take into account that σ(x) ≥ δI for all x ∈ Rd.
For γ ∈ (2π, ε−1) we get

|ψ1
ε(σ(x)Tξ′)| ≥ Cδγα

∫
S

|〈y, ξ〉|α
∫ γ|〈y,ξ〉|

εγ|〈y,ξ〉|
(1 − cos(r))

dr
r1+α λ(dy)

Fig. 2. (A) The Markovian semigroups tφ1(x0), ̂ε
t φ1(x0) and the abso-

lute error of the approximations ̂ε
t φ1(x0) for x0 = 0.45 and ε varying; (B)

the Markovian semigroups tφ1(x0), ̄ε
t φ1(x0) and the absolute error of the

approximations ̄ε
t φ1(x0) for x0 = 0.45 and ε varying; (C) the Markovian

semigroups tφ2(x0) and ̂ε
t φ2(x0) and the absolute error of the approxima-

tions ̂ε
t φ2(x0) for x0 = 0.45 and ε varying; (D) the Markovian semigroups

tφ2(x0) and ̄ε
t φ2(x0) and the absolute error of approximations ̄ε

t φ2(x0)
for x0 = 0.45 and ε varying.
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Fig. 3. The Markovian semigroups tφ(x0), ̂ε
t φ(x0), and ̄ε

t φ(x0) and the
absolute error of the approximations ̄ε

t φ(x0) and ̂ε
t φ(x0) for ε = 0.1, x0 =

0, and (A) α = 1.05, φ = φ1; (B) α = 1.05, φ = φ2; (C) α = 1.95, φ = φ1;
(D) α = 1.95, φ = φ2
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Fig. 4. The Markovian semigroups tφ(x0), ̂ε
t φ(x0), and ̄ε

t φ(x0) and the
absolute error of the approximations ̄ε

t φ(x0) and ̂ε
t φ(x0) for ε = 0.1, x0 =

0.45 and (A) α = 1.05, φ = φ1; (B) α = 1.05, φ = φ2; (C) α = 1.95, φ = φ1;
(D) α = 1.95, φ = φ2.
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Fig. 5. The logarithm of the absolute error of the approximations ̂ε
1φ(x0)

and ̄ε
1φ(x0) for ε = 0.1 with sample size 1.5 × 106 and (A) φ = φ1, x0 = 0;

(B) φ = φ2, x0 = 0; (C) φ = φ1, x0 = 0.45; (D) φ = φ2, x0 = 0.45.

≥ Cδγα
∫
S

|〈y, ξ〉|α
∫ γ|〈y,ξ〉|

|〈y,ξ〉|
(1 − cos(r))

dr
r1+α λ(dy)

≥ Cc0δc̃αγα
∫ 2π

1
(1 − cos(r))

dr
r1+α ≥ Cc0δc̃αγα

2π − 1 + sin(1)
(2π)1+α .

For γ > ε−1 we have
∣∣∣∣Σ2(ε)〈σ(x)Tξ′, σ(x)Tξ′〉

∣∣∣∣ ≥ C
ε2−α

2 − α |ξ
′|2 ≥ C

γα

2 − α.
Hence, there exists a constant C > 0 such that we have for all ξ′ = γξ and ξ ∈ 1

|âε(x, ξ′)| ≥ C〈γ〉α.(6.13)

Now we will show that ∣∣∣∣∂βξ[âε(x, ξ)
]∣∣∣∣ ≤ C〈|ξ|〉α−|β|

with 1 ≤ |β| ≤ 2d + 4 and ξ ∈ R1 where R ≥ ε−1. Now, let us consider |β| = 1. We have for
1 ≤ j ≤ d∣∣∣∣∣∣ ∂∂ξ j

[
âε(x, ξ)

]∣∣∣∣∣∣ =
∣∣∣∣∣∣ d
dξ j

[
ψε(σ(x)Tξ) − 1

2
Σ2(ε)〈σ(x)Tξ, σ(x)Tξ〉

]∣∣∣∣∣∣



46 P.W. Fernando, E. Hausenblas and K. Fahim

=

∣∣∣∣∣
∫
Rd\Bε

d
dξ j

[
ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉

]
ν(dy)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Bε

d
dξ j

[
1
2
〈σT (x)ξ, σ(x)Tξ〉〈y, y〉

]
ν(dy)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd\Bε

d∑
k=1

iykσ jk(x)
[
ei〈y,σ(x)T ξ〉 − 1

]
ν(dy)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Bε

d∑
k=1

σ jk(x)

⎡⎢⎢⎢⎢⎢⎢⎣
d∑

l=1

σlk(x)ξl

⎤⎥⎥⎥⎥⎥⎥⎦ 〈y, y〉ν(dy)
∣∣∣∣∣

≤ C
[ ∫
Rd\Bε

|y| ν(dy) + |ξ|
∫

Bε
|y|2 ν(dy)

]
≤ C

[ ∫ 1

ε

r
dr

r1+α + |ξ|
∫ ε

0
|r|2 dr

r1+α

]

≤ C
[
(1 − ε1−α) + |ξ|ε2−α

]
≤ C

[
(1 + |ξ|2)

α−1
2 + |ξ| |ξ|α−2

]

≤ C〈|ξ|〉α−1.

We now investigate for |β| = 2 and then for 2 < |β| ≤ 2d + 4. Here, we get the following
sequence of calculations for 1 ≤ l, j ≤ d

(6.14)∣∣∣∣∣∣ ∂
( j,l)

∂ξ j∂ξl

[
âε(x, ξ)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∂
( j,l)

∂ξ j∂ξl

[
ψε(σ(x)Tξ) − 1

2
Σ2(ε)〈σT (x)ξ, σT (x)ξ〉

]∣∣∣∣∣∣ .
=

∣∣∣∣∣
∫
Rd\Bε

∂( j,l)

∂ξ j∂ξl

[
ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉

]
ν(dy)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Bε

∂( j,l)

∂ξ j∂ξl

[
1
2
〈σ(x)Tξ, σ(x)Tξ〉〈y, y〉

]
ν(dy)

∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
Rd\Bε

( d∑
k=1

(
ykσlk(x)

)( d∑
k=1

(
ykσ jk(x)

))
ei〈y,σ(x)T ξ〉ν(dy)

∣∣∣∣∣∣∣ + |C(σ, x)|
∫

Bε
|(y, y)| ν(dy)

≤ C
∫
Rd\Bε
|y|2 ν(dy) + |C(σ, x)|

∫
Bε
|(y, y)| ν(dy) ≤ C

[ ∫ 1

ε

r2 dr
r1+α + |ξ|

∫ ε

0
|r|2 dr

r1+α

]

≤ C
[
(1 − ε2−α) + ε2−α

]
≤ C

[
(1 + |ξ|2)

α−2
2 + |ξ|α−2

]

≤ C〈|ξ|〉α−2.

Now, let β = (β1, β2, . . . , βm) with m = |β| ∈ (3, 2d + 4). Then we get∣∣∣∣∣∣ ∂β

∂ξβ1
∂ξβ2

. . . ∂ξβm

[
âε(x, ξ)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∂γ

∂ξβ1
∂ξβ2

. . . ∂ξβm

[
ψε(σ(x)Tξ) − 1

2
Σ2(ε)〈σT (x)ξ, σT (x)ξ〉

]∣∣∣∣∣∣ .
Continuing, we get
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. . . =

∣∣∣∣∣
∫
Rd\Bε

∂γ

∂ξβ1
∂ξβ2

. . . ∂ξβm

[
ei〈y,σ(x)T ξ〉] ν(dy)

∣∣∣∣∣(6.15)

≤ C
∫
Rd\Bε

|y|mν(dy) ≤ C
[ ∫ 1

ε

rm dr
r1+α

]

≤ C
[
(1 − εm−α)

]
≤ C

[
(1 + ξ2)

α−m
2

]

≤ C〈|ξ|〉α−m.

Observe, due to σ ∈ Cd+3
b (Rd) we can write∣∣∣∣∂βξ∂�x[âε(x, ξ)

]∣∣∣∣ ≤ C〈|ξ|〉α−|β|(6.16)

with 1 ≤ |β| ≤ 2d + 4 and 1 ≤ |�| ≤ d + 3. Now we will show that∣∣∣∣∣∂βξ[ 1
âε(x, ξ)

]∣∣∣∣∣ ≤ C〈|ξ|〉−α−|β|

with 1 ≤ |β| ≤ 2d + 4. Let us consider |β| = 1, i.e. β = j for some 1 ≤ j ≤ d. We obtain∣∣∣∣∣∂βξ[ 1
âε(x, ξ)

]∣∣∣∣∣ ≤ C|âε(x, ξ)|−2

∣∣∣∣∣∣ ∂∂ξ j

[
âε(x, ξ)

]∣∣∣∣∣∣ ≤ 〈|ξ|〉−2α〈|ξ|〉α−|β| ≤ 〈|ξ|〉−α−|β|.

Next, let |β| = 2, i.e. β = (ξl, ξk) for k, l ∈ {1, . . . , d}. Then,

∂
β
ξ

[ 1
âε(x, ξ)

]
= ∂ξl∂ξk

[
1

âε(x, ξ)

]
=

2∂ξl âε(x, ξ)∂ξk âε(x, ξ)
âε(x, ξ)3 −

∂2
ξlξk

âε(x, ξ)

âε(x, ξ)2 .

Hence, we have∣∣∣∣∣∣∂βξ
[

1
âε(x, ξ)

]∣∣∣∣∣∣ ≤ C
{
|âε(x, ξ)|−3〈|ξ|〉2α−2 + |âε(x, ξ)|−2〈|ξ|〉α−2

}
≤ C

{
〈|ξ|〉−3α〈|ξ|〉2α−2 + 〈|ξ|〉−2α〈|ξ|〉α−2

}
≤ C〈|ξ|〉−α−2.

Again, let β = (ξl, ξk, ξ j) for j, k, l ∈ {1, . . . , d}. Then,

∂
β
ξ

[
1

âε(x, ξ)

]
= −6∂ξl âε(x, ξ)∂ξk âε(x, ξ)∂ξ j âε(x, ξ)

âε(x, ξ)4 −
∂3
ξlξkξ j

âε(x, ξ)

âε(x, ξ)2

+2
∂ξ j âε(x, ξ)∂2

ξlξk
âε(x, ξ) + ∂ξk âε(x, ξ)∂2

ξlξ j
âε(x, ξ) + ∂ξl âε(x, ξ)∂2

ξkξ j
âε(x, ξ)

âε(x, ξ)3 .

Thus we obtain∣∣∣∣∣∣∂βξ
[

1
âε(x, ξ)

]∣∣∣∣∣∣ ≤ C
{
|âε(x, ξ)|−4〈|ξ|〉3α−3 + |âε(x, ξ)|−3〈|ξ|〉2α−3 + |âε(x, ξ)|−2〈|ξ|〉α−3

}
≤ C

{
〈|ξ|〉−4α〈|ξ|〉3α−3 + 〈|ξ|〉−3α〈|ξ|〉2α−3 + 〈|ξ|〉−2α〈|ξ|〉α−3

}
≤ C〈|ξ|〉−α−3.

Now, let us consider β = (β1, β2, . . . , βm) where β is a multi-index with m = |β| ∈ (4, 2d +
4). By observing the pattern of the above derivative we can identify the general derivative
∂
β
ξ[

1
a(x,ξ) ] and get the following estimate
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[

1
âε(x, ξ)

]∣∣∣∣∣∣ � |âε(x, ξ)|−|β|−1〈|ξ|〉α|β|−|β| + |âε(x, ξ)|−|β|〈|ξ|〉α(|β|−1)−|β|

+ · · · + |âε(x, ξ)|−2〈|ξ|〉α−|β|
� 〈|ξ|〉−α−|β|.

Observe, due to σ ∈ Cd+3
b (Rd) we can write∣∣∣∣∣∂βξ∂�x[ 1

âε(x, ξ)

]∣∣∣∣∣ ≤ C〈|ξ|〉−α−|β|(6.17)

with 1 ≤ |β| ≤ 2d + 4 and 1 ≤ |�| ≤ d + 3. Therefore we can conclude that âε(x, ξ) belongs
to Hypα2d+4,d+3;1,0(Rd × Rd). Hence, for all 1 ≤ p, q < ∞, the Markovian semigroup (̂ε

t )t≥0

is an analytic semigroup in Bm
p,q(Rd) for all m ∈ R.

Now, we will prove (6.6). Let f = ϑ(D)u. We will use the representation of the semigroup
(̂ε

t )t≥0 in terms of the contour integrals which is already successfully applied in [11], [19],
or [13]. Let θ′ ∈ (0, θ), ρ ∈ (0,∞), and

Γθ′(ρ, M) = Γ(1)
θ′,ρ + Γ

(2)
θ′,ρ + Γ

(3)
θ′,ρ,

where Γ(1)
θ′,ρ and Γ(2)

θ′,ρ are the rays rei( π2+θ
′) and re−i( π2+θ

′), ρ ≤ r ≤ M < ∞, and Γ(3)
θ′,ρ = Meiη,

η ∈ [−π2 − θ′, π2 + θ′]. It follows from [35, Theorem 1.7.7] and Fubini’s Theorem that for
t > 0 and v ∈ Bm

p,q(Rd) we have

̂ε
t v = lim

M→∞
1

2πi

∫
Γθ′ (ρ,M)

eλtR(λ : âε(x,D))vdλ,

where R(λ : âε(x,D)) be the resolvent [λ + âε(x,D)]−1 of an operator âε(x,D). From the
previous result, we know that (̂ε

t )t≥0 is an analytic semigroup in Bm
p,q(Rd). Therefore, for

any element v ∈ Bm
p,q(Rd), the limit exists and is well defined. Let {vn : n ∈ N} be a sequence

such that vn ∈ Bm
p,q(Rd) and vn → f in Bm−κ

p,q (Rd). By a change of variables, we obtain

lim
M→∞

∣∣∣∣∣∣ 1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : âε(x,D))vndλ

∣∣∣∣∣∣
Bm

p,q

≤ lim
M→∞

∣∣∣∣∣∣ 1
2πit

∫ M

ρ

ere−i( π2 +θ
′)

R(
r
t
e−i( π2+θ

′), âε(x,D)) vnei( π2+θ
′)dr

∣∣∣∣∣∣
Bm

p,q

+ lim
M→∞

∣∣∣∣∣∣ 1
2πit

∫ M

ρ

erei( π2 +θ
′)

R(
r
t
ei( π2+θ

′), âε(x,D)) vne−i( π2+θ
′)dr

∣∣∣∣∣∣
Bm

p,q

+

∣∣∣∣∣∣ 1
2πit

∫ π
2+θ

′

− π2−θ′
eρeiβ

R(
ρ

t
eiβ, âε(x,D)) vnρ

−1eiβdβ

∣∣∣∣∣∣
Bm

p,q

.

The Minkowski inequality gives

. . . ≤ 1
2tπ

∫ ∞

ρ

e−r sin θ′
∣∣∣∣∣R(

r
t
e−i( π2+θ

′), âε(x,D))vn

∣∣∣∣∣
Bm

p,q

dr(6.18)

+
1

2tπ

∫ ∞

ρ

e−r sin θ′
∣∣∣∣∣R(

r
t
ei( π2+θ

′), âε(x,D))vn

∣∣∣∣∣
Bm

p,q

dr
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+
ρ−1

2tπ

∫ π
2+θ

′

− π2−θ′
eρ cos β

∣∣∣∣∣R(
ρ

t
eiβ, âε(x,D))vn

∣∣∣∣∣
Bm

p,q

dβ.

We analyse the right-hand side of the estimate above by analysing the operator R( ρt eiβ,

âε(x,D)) by applying Theorem 7.1. Using (6.13) we have

|λ + âε(x, ξ)| ≥ C〈|ξ|〉α, ξ ∈ R1.

In this way we obtain ∣∣∣∣∣ 1
λ + âε(x, ξ)

∣∣∣∣∣ ≤ C(σ, δ) 〈|ξ|〉−α.

Let k ∈ {1, . . . , d}. From (6.16), we obtain
∣∣∣∣∂ξk

[
1

λ + âε(x, ξ)

] ∣∣∣∣ = ∣∣∣∣ ∂ξk âε(x, ξ)
(λ + âε(x, ξ))2

∣∣∣∣ ≤
∣∣∣∣∣∣ 〈|ξ|〉

α−1

(λ + 〈|ξ|〉α)2

∣∣∣∣∣∣ ≤ C(σ, α) 〈|ξ|〉−α−1.

Next, let k, l ∈ {1, . . . , d}. Then,

∂ξl∂ξk

[
1

λ + âε(x, ξ)

]
= −

∂2
ξlξk

âε(x, ξ)

(λ + âε(x, ξ))2 +
2∂ξl âε(x, ξ)∂ξk âε(x, ξ)

(λ + âε(x, ξ))3 .

Hence, using (6.15) we have
∣∣∣∣∂ξl∂ξk

[
1

λ + âε(x, ξ)

] ∣∣∣∣ ≤ C(σ, α)
{ 〈|ξ|〉α−2

(λ + 〈|ξ|〉α)2 +
〈|ξ|〉α−2

(λ + 〈|ξ|〉α)2

}
≤ C(σ, α)〈|ξ|〉−α−2.

Let β = (β1, · · · , βm) be a multi-index with m = |β| ∈ (3, d + 1). By observing the pattern of
the above derivative we can identify the general derivative ∂βξ[

1
λ+âε(x,ξ) ] and get the following

estimate. There exist C1,C2, · · ·C|β| > 0 depending on σ and α such that∣∣∣∣∣∣∂βξ
[

1
λ + âε(x, ξ)

]∣∣∣∣∣∣ ≤ C1|λ + âε|−|β|−1〈ξ〉α|β|−|β|

+C2|λ + âε|−|β|〈ξ〉α(|β|−1)−|β| +C3|λ + âε|−|β|+1〈ξ〉α(|β|−2)−|β| + · · · +C|β||λ + âε|−2〈ξ〉α−|β|.
Therefore, we get∣∣∣∣∣∣∂βξ

[
1

λ + âε(x, ξ)

]∣∣∣∣∣∣ 〈ξ〉−α+|β| ≤ C1|λ + âε|−|β|−1〈ξ〉α|β|−α

+C2|λ + âε|−|α|〈ξ〉α|β|−2α +C3|λ + âε|−|β|+1〈ξ〉α|β|−3α + · · · +C|β||λ + âε|−2,

with 1 ≤ |β| ≤ d + 1. From the last line we obtain that λ + âε(x, ξ) ∈ Hypαd+1,0;1,0(Rd × Rd).
It remains to estimate the norm of the symbol λ + âε(x, ξ) in ̃

1,1
2d+4,d+3;1,0(Rd × Rd). Due to

the fact that one has to take at least once the derivative with respect to ξ, the constant λ has
no influence on the norm in ̃. From (6.16) we have âε ∈ α

k1,k2;1,0(Rd × Rd) and

‖λ + âε‖̃α,1
k1 ,k2;1,0

= sup
1≤|β|≤k1,|�|≤k2

sup
(x,ξ)∈Rd×Rd

∣∣∣∣∂βξ∂�x(λ + âε(x, ξ))
∣∣∣∣ 〈|ξ|〉|β|−α < ∞,

where k1 = 2d + 4 and k2 = d + 3. Therefore we can conclude that λ + âε(x, ξ) ∈


1,1
2d+4,d+3;1,0(Rd × Rd). Finally from Theorem 7.1 and (6.18) we can conclude that
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lim
M→∞

∣∣∣∣∣∣ 1
2πi

∫
Γθ′ (ρ,M)

eλtR(λ : âε(x,D))vndλ

∣∣∣∣∣∣
Bm

p,q

≤ C(σ, α)
2tπ

|vn|Bm−α
p,q .

Taking the limit n→ ∞ and using Theorem A.1 and the fact ϑ ∈ Sκ1,0(Rd × Rd), we get

∣∣∣̂ε
t ϑ(D)u

∣∣∣
Bm

p,q
≤ C(σ, α)

2tπ
| f |Bm−α

p,q ≤
C(σ, α)

2tπ
|u|Bm−α+κ

p,q ,

which is the assertion. �

Proof of Theorem 6.1. Firstly, we have to show that

|a(x, ξ) − âε(x, ξ)| ≤ |ξ|2 ε(2−δ).(6.19)

In particular, we have to show for any multi-index γ with |γ| ≤ d + 1, we have∣∣∣∣ ∂γ∂ξ [
a(x, ξ) − âε(x, ξ)

]∣∣∣∣ ≤ C ε|γ|−δ. By this we can then conclude that a(x, ξ) − âε(x, ξ) ∈
S2

1,0(Rd × Rd). Throughout this proof we denote by C a varying constant. Let us start with
γ = 0. Straightforward calculations give

|a(x, ξ) − âε(x, ξ)| =
∣∣∣∣∣ψ(σ(x)Tξ) − ψε(σ(x)Tξ) +

1
2
Σ2(ε)〈σ(x)Tξ, σ(x)Tξ〉

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd\{0}

[
ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉

]
ν(dy) −

∫
Rd\Bε

[
ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉

]
ν(dy)

+
1
2

∫
Bε
〈σ(x)Tξ, σ(x)Tξ〉〈y, y〉ν(dy)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Bε

[
ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉 + 1

2
〈σ(x)Tξ, σ(x)Tξ〉〈y, y〉

]
ν(dy)

∣∣∣∣∣.
The triangle inequality gives

≤
∫

Bε

∣∣∣∣∣ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉
∣∣∣∣∣ν(dy) +

1
2

∣∣∣〈σ(x)Tξ, σ(x)Tξ〉∣∣∣
∫

Bε
|y|2 ν(dy).

≤
∫

Bε

∣∣∣(y, σ(x)Tξ)
∣∣∣2 ν(dy) +C1(d)

∣∣∣(ξ, σ(x)Tξ)
∣∣∣2 ∫

Bε
|y|2 ν(dy)

≤ C
[
|ξ|2

∣∣∣σ(x)T
∣∣∣2 + |ξ|2 ∣∣∣σ(x)T

∣∣∣2] ∫
Bε
|y|2 ν(dy)

≤ C |ξ|2
∫

Bε
|y|2 ν(dy) ≤ C |ξ|2

∫
S

|η|2 λ(dη)
∫ ε

0
r2 dr

r1+δ ≤ C |ξ|2 ε2−δ,

where |y| =
√
y2

1 + · · · + y2
d. The second inequality from the top of the above estimate is due

to the first estimate in the proof of the Lemma 15.1.7 in [27]. Since ν is a δ-stable Lévy
measure, we can apply result 14.7 in p.79 [39] to get the last estimate.

Now, let us consider γ = 1. We have for 1 ≤ j ≤ d∣∣∣∣∣∣ d
dξ j

[
a(x, ξ) − âε(x, ξ)

]∣∣∣∣∣∣ =
∣∣∣∣∣∣ d
dξ j

[
ψ(σ(x)Tξ) − ψε(σ(x)Tξ) +

1
2
Σ2(ε)〈σ(x)Tξ, σ(x)Tξ〉

]∣∣∣∣∣∣
=

∣∣∣∣∣
∫

Bε

d
dξ j

[
ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉 + 1

2
〈σT (x)ξ, σ(x)Tξ〉〈y, y〉

]
ν(dy)

∣∣∣∣∣
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=

∣∣∣∣∣
∫

Bε

d∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎣iykσ jk(x)
[
ei〈y,σ(x)T ξ〉 − 1

]
+ σ jk(x)

⎡⎢⎢⎢⎢⎢⎢⎣
d∑

l=1

σlk(x)ξl

⎤⎥⎥⎥⎥⎥⎥⎦〈y, y〉
⎤⎥⎥⎥⎥⎥⎥⎦ ν(dy)

∣∣∣∣∣
≤

∫
Bε

d∑
k=1

[ ∣∣∣ykσ jk(x)
∣∣∣ ∣∣∣∣ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉

∣∣∣∣
+

∣∣∣ykσ jk(x)
∣∣∣ ∣∣∣〈y, σ(x)Tξ〉∣∣∣ + σ jk(x)

⎡⎢⎢⎢⎢⎢⎢⎣
d∑

l=1

σlk(x)ξl

⎤⎥⎥⎥⎥⎥⎥⎦〈y, y〉
]
ν(dy)

≤
∫

Bε

d∑
k=1

[ ∣∣∣ykσ jk(x)
∣∣∣ ∣∣∣〈y, σ(x)Tξ〉∣∣∣2 + ∣∣∣ykσ jk(x)

∣∣∣ ∣∣∣〈y, σ(x)Tξ〉∣∣∣

+σ jk(x)

⎡⎢⎢⎢⎢⎢⎢⎣
d∑

l=1

σlk(x)ξl

⎤⎥⎥⎥⎥⎥⎥⎦〈y, y〉
]
ν(dy)

≤
∫

Bε

d∑
k=1

∣∣∣ykσ jk(x)
∣∣∣ [∣∣∣〈y, σ(x)Tξ〉∣∣∣ + ∣∣∣〈y, σ(x)Tξ〉∣∣∣2] ν(dy) + |ξ|

∣∣∣σ(x)T
∣∣∣2 ∫

Bε
|y|2 ν(dy)

≤ C
3∑

n=2

∫
Bε
|ξ|n |y|n ν(dy) ≤ C

3∑
n=2

|ξ|n
∫
S

|η|n λ(dη)
∫ ε

0
rn dr

r1+δ ≤ C
3∑

n=2

|ξ|n εn−δ.

To get the last estimate we applied the similar steps as in previous estimate. Now we estimate∣∣∣∣∣ ∂γ

∂α1ξ1 . . . ∂αdξd

[
a(x, ξ) − âε(x, ξ)

]∣∣∣∣∣
first for |γ| = 2 and then for 2 < |γ| ≤ d + 1. Here, we get the following sequence of
calculations for 1 ≤ l, j ≤ d∣∣∣∣∣∣ ∂

( j,l)

∂ξ j∂ξl

[
a(x, ξ) − âε(x, ξ)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∂
( j,l)

∂ξ j∂ξl

[
ψ(σ(x)Tξ) − ψε(σ(x)Tξ) +

1
2
Σ2(ε)〈σT (x)ξ, σT (x)ξ〉

]∣∣∣∣∣∣
=

∣∣∣∣∣
∫

Bε

∂( j,l)

∂ξ j∂ξl

[
ei〈y,σ(x)T ξ〉 − 1 − i〈y, σ(x)Tξ〉 + 1

2
〈σ(x)Tξ, σ(x)Tξ〉〈y, y〉

]
ν(dy)

∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

Bε

( d∑
k=1

(
ykσlk(x)

)( d∑
k=1

(
ykσ jk(x)

))
ei〈y,σ(x)T ξ〉ν(dy)

∣∣∣∣∣∣∣ + |C(σ, x)|
∫

Bε
|(y, y)| ν(dy)

≤ C
∫

Bε
|y|2 ν(dy) + |C(σ, x)|

∫
Bε
|y|2 ν(dy) ≤ C

∫
S

|η|2 λ(dη)
∫ ε

0
r2 dr

r1+δ ≤ Cε2−δ.

Now, let γ = (α1, α2, . . . , αm) with m = |γ| ∈ (3, d). Then we get∣∣∣∣∣∣ ∂γ

∂ξα1
∂ξα2

. . . ∂ξαd

[
a(x, ξ) − âε(x, ξ)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∂γ

∂ξα1
∂ξα2

. . . ∂ξαm

[
ψ(σ(x)Tξ) − ψε(σ(x)Tξ) +

1
2
Σ2(ε)〈σT (x)ξ, σT (x)ξ〉

]∣∣∣∣∣∣
=

∣∣∣∣∣
∫

Bε

∂γ

∂ξα1
∂ξα2

. . . ∂ξαm

[
ei〈y,σ(x)T ξ〉] ν(dy)

∣∣∣∣∣
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≤ C
∫

Bε
|y|mν(dy) ≤ C

∫
Bε
|y|m ν(dy) ≤ C

∫
S

|η|m λ(dη)
∫ ε

0
rm dr

r1+δ ≤ Cεm−δ.

Observe, due to [35, Proposition 3.1.2, in p.77 ] we can write
[
t − ̂ε

t

]
u =

∫ t

0
̂ε

t−s [a(x,D) − âε(x,D)]su ds.

Now let r1, r2 ∈ (0, 1) such that r1 + r2 > 1 and 2r1 > r2. Then we get for u ∈ B−δ(r1− r2
2 )

∞,∞ (Rd)∣∣∣∣[t − ̂ε
t

]
u
∣∣∣∣
B
δr2
2∞,∞

≤
∫ t

0

∣∣∣̂ε
t−s [a(x,D) − âε(x,D)]su

∣∣∣
B
δr2
2∞,∞

ds.

Since ̂ε
t−s is bounded from Bρ∞,∞(Rd) into itself we can write∣∣∣∣[t − ̂ε

t

]
u
∣∣∣∣
B
δr2
2∞,∞

≤
∫ t

0

∥∥∥̂ε
t−s

∥∥∥
L
(

B
− δr2

2∞,∞ ,B
δr2
2∞,∞
) ‖a(x,D) − âε(x,D)‖

L
(

B
δr2
2∞,∞,B

− δr2
2∞,∞
)

× ‖s‖
L
(

B
−δ(r1−

r2
2 )

∞,∞ ,B
δr2
2∞,∞
) |u|

B
−δ(r1−

r2
2 )

∞,∞
ds

≤ ‖a(x,D) − âε(x,D)‖
L
(

B
δr2
2∞,∞,B

− δr2
2∞,∞
) |u|

B
−δ(r1−

r2
2 )

∞,∞

∫ t

0
(t − s)−δr2 s−δr1 ds.

Integrating gives∣∣∣∣[t − ̂ε
t

]
u
∣∣∣∣
B
δr2
2∞,∞

≤ tδ(r1+r2)−1 ‖a(x,D) − âε(x,D)‖
L
(

B
δr2
2∞,∞,B

− δr2
2∞,∞
) |u|

B
−δ(r1−

r2
2 )

∞,∞

∫ 1

0
(1 − s)−δr2 s−δr1 ds

≤ tδ(r1+r2)−1 ‖a(x,D) − âε(x,D)‖
L
(

B
δr2
2∞,∞,B

− δr2
2∞,∞
) |u|

B
−δ(r1−

r2
2 )

∞,∞
B(1 − δr1, 1 − δr2)

≤ Ctδ(r1+r2)−1 |u|
B
−δ(r1−

r2
2 )

∞,∞
.

For the last inequality we used the fact that we have already proven (6.19). Therefore, it
follows from Theorem 6.19 in [1] that for any m ∈ R

(a(x,D) − âε(x,D)) : B2+m
∞,∞(Rd)→ Bm

∞,∞(Rd)

is a bounded operator. Therefore we have

‖a(x,D) − âε(x,D)‖
L
(

B
δr2
2∞,∞,B

− δr2
2∞,∞
) ≤ Cε(2−δ).

Let δ1 =
δr2
2 and δ2 = δ(r1 − r2

2 ). Rewriting above gives∣∣∣∣[t − ̂ε
t

]
u
∣∣∣∣
C0

b

≤
∣∣∣∣[t − ̂ε

t

]
u
∣∣∣∣
Bδ1∞,∞
≤ tδ(r1+r2)−1ε(2−δ)|u|B−δ2∞,∞ ≤ tδ(r1+r2)−1ε(2−δ)|u|C0

b
.

�
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7. Invertibility of pseudo–differential operators

7. Invertibility of pseudo–differential operators
In this section, we study under which conditions the pseudo-differential operator is in-

vertible. To investigate the inverse of a pseudo-differential operator one has to introduce the
set of elliptic and hypoelliptic symbols. For the reader’s convenience, we define the elliptic
and hypoelliptic symbols in this section.

We are now interested, under which condition an operator a(x,D) is invertible. To be
more precise, we aim to answer the following questions. Given f ∈ Bs

p,r(R
d), does there

exists an element u ∈  ′(Rd) such that

a(x,D)u(x) = f (x), x ∈ Rd,(7.1)

and to which Besov space belongs u?
The invertibility is used for giving bounds of the resolvent of an operator a(x,D). Here,

one is interested not only in the invertibility of a(x,D) but also in the invertibility of λ +
a(x,D), λ ∈ ρ(a(x,D)). In particular, we are interested in the norm of the operator [λ +
a(x,D)]−1 uniformly for all λ belonging to the set of resolvents. However, executing a care-
ful analysis, we can see that certain constants depend only on the first or second derivative
on the symbol of λ+ a(x,D), which has the effect that this norm is independent of λ. Hence,
it is necessary to introduce the additional class ̃m,κ

k1,k2;ρ,δ(R
d × Rd).

Definition 7.1. Let ρ, δ be two real numbers such that 0 ≤ ρ ≤ 1 and 0 ≤ δ ≤ 1. Let
m ∈ R and κ ∈ N0. Let ̃m,κ

k1,k2;ρ,δ(R
d ×Rd) be the set of all functions a : Rd ×Rd → C, where

◦ a(x, ξ) is k1–times differentiable in ξ and k2 times differentiable in x;
◦ for any two multi-indices α and β, with |α| ≥ κ, there exists Cα,β such that∣∣∣∣∣∂αξ′∂βxa(x, ξ′)

∣∣∣∣
ξ′=γξ

∣∣∣∣∣ ≤ Cα,β〈|γξ|〉m−ρ|α|〈|x|〉δ|β|, x ∈ Rd, ξ ∈ 1, γ ≥ 1.

For k1, k2 ∈ N0, we also introduce the following semi–norm for a ∈ ̃m,κ
k1,k2;ρ,δ(R

d,Rd) by

‖a‖̃m,κ
k1 ,k2;ρ,δ

= sup
κ≤|α|≤k1,|β|≤k2

sup
(x,ξ,γ)∈Rd×1×[1,∞)

∣∣∣∣∣∂αξ′∂βxa(x, ξ′)
∣∣∣∣
ξ′=γξ

∣∣∣∣∣ 〈|γξ|〉ρ|α|−m〈|x|〉−δ|β| .

Now we are ready to state the main result of this section.

Remark 7.1. The outline of the proof of following theorem, i.e. Theorem (7.1) is quite
similar to the proof of Theorem 5.4 in [30], however there is an important difference. We
have to introduced a symbol class ̃

m,κ
k1,k2;ρ,δ(R

d × Rd), since we needed to construct the
parametrix of the resolvent of [λ + a(x,D)] of an operator a(x,D), where λ belongs to
ρ(a(x,D)) and can be quite large.

Theorem 7.1. Let k ≥ 0, m ∈ R, 1 ≤ p, r < ∞. Let a(x, ξ) be a symbol such that
a ∈ ̃1,1

2d+4,d+3;1,0(Rd × Rd) ∩ Hypκd+1,0;1,0(Rd × Rd) for κ = [k]. Let R ∈ N such that

R ≥ 10 × d × ‖a‖
̃

1,1
2d+1,d+1;1,0

‖a‖Hypκ2d+1,0;1,0
(7.2)

and
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〈|γξ|〉κ ≤ |a(x, γξ)|
|a|κ

0,0;1,0

for all x ∈ Rd and ξ ∈ 1 with γ ≥ R.(7.3)

Then, there exists a bounded pseudo–differential operator B : Bm
p,r(R

d) → Bm
p,r(R

d) with
symbol b(x,D), such that

◦ {(ξ, x) ∈ Rd × Rd : supx∈Rd b(x, ξ) > 0} ⊂ {|ξ| ≤ 2R},
◦ B has norm Rk on Bm

p,r(R
d) into itself,

◦ a(x,D) = A + B,

and, for any given f ∈ Bm
p,r(R

d), the problem

Au(x) = f (x), x ∈ Rd(7.4)

has a unique solution u belonging to Bm+κ
p,r (Rd). In addition, there exists a constant C1 > 0

such that for all f ∈ Bm
p,r(R

d) and u solving (7.4) we have

|u|Bm+κ
p,r ≤ C1 ‖a‖Hypκd+1,0;1,0

| f |Bm
p,r , f ∈ Bm

p,r(R
d).

Remark 7.2. Since a(x, ξ) is elliptic, we can find a number R > 0 satisfying (7.2) and
(7.3).

Remark 7.3. In fact, analysing the resolvent [λ+ a(x,D)]−1 of an operator a(x,D), it will
be important that in the estimate for R > 0 the norm of ̃m,1

k1,k2,ρ,δ
(Rd × Rd) and not the norm

of m
k1,k2,ρ,δ

(Rd × Rd) appears. As mentioned in Remark 7.1, the reason is that calculating
the norm in ̃

m,1
k1,k2,ρ,δ

(Rd × Rd) the first derivative has to be taken. Therefore, the norm in
̃

m,1
k1,k2,ρ,δ

(Rd × Rd) is independent of λ.

Proof. Note, that, for convenience for the reader, we summarized several definition and
results necessary for the proof in the appendix A. For simplicity, let E = Bm

p,r(R
d). Let

χ ∈ C∞b (R+0 ) such that

χ(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if |ξ| ≤ 1,

1 if |ξ| ≥ 2,

∈ (0, 1) if |ξ| ∈ (1, 2).

Let us put χR(ξ) := χ(ξ/R), ξ ∈ Rd. In addition, let us set

pR(x, ξ) := a(x, ξ)χR(ξ), b(x, ξ) := a(x, ξ)(1 − χR(ξ)), and qR(x, ξ) :=
1

a(x, ξ)
χR(ξ).

Due to the condition on R, the function qR(x, ξ) is bounded and as a symbol, it is well defined.

Let us consider the following problem: Given f ∈ Bm
p,r(R

d), find an element u ∈  ′(Rd)
such that we have

pR(x,D)u(x) = f (x), x ∈ Rd.(7.5)

Observe, that on one hand for a solution u of (7.5) we have[
q(x,D)pR(x,D)

]
u = q(x,D) f ,

and, on the other hand, by Remark A.2, the symbol for q(x,D) pR(x,D) is given by
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(q ◦ pR)(x, ξ) = q(x, ξ)pR(x, ξ)

+C(x, ξ) +
∑

|γ|=max(d−k+2,k)

Os–
�

e−i〈y,η〉ηγrγ(x, ξ, y, η) dy dη,

where

C(x, ξ) =
∑

1≤|ρ|≤max(d−k+1,k−1)

∂
ρ
ξq(x, ξ)∂ρx pR(x, ξ)(7.6)

and

rγ(x, ξ, y, η) =
∫ 1

0

[
∂
γ
ξ′q(x′, ξ′)

∣∣∣∣ ξ′=ξ−θη
x′=x

∂
γ
x′ pR(x′, ξ′)

∣∣∣∣ ξ′=ξ
x′=x−y

]
dθ.(7.7)

Observe, firstly, for ξ ∈ r1, r ≥ 1, we have

|∂ρξq(x, ξ)∂ρx pR(x, ξ)|
≤ 2|a|Hypκ|ρ|,0;1,0

〈|ξ|〉−κ−|ρ| |p|
̃
κ,1
0,ρ;0,0
〈|ξ|〉κ ≤ 2|a|Hypκ|ρ|,0;1,0

|p|
̃
κ,1
0,ρ;0,0
〈|ξ|〉−1.(7.8)

Observe, secondly, that by integration by part we have

Os–
�

e−i〈y,η〉ηγrγ(x, ξ, y, η) dy dη = −Os–
�

e−i〈y,η〉∂γζ rγ(x, ξ, ζ, η)
∣∣∣
ζ=y

dy dη.

Putting

mR(x, ξ) :=
∑
|γ|=1

Os–
�

e−i〈y,η〉∂γyrγ(x, ξ, y, η) dy dη,

one can verify that mR(x, ξ) ∈ ̃−1,1
d+1,0;1,0(Rd ×Rd). In fact, since a ∈ ̃κ,1

2d+4,d+3;1,0(Rd ×Rd) ∩
Hypκd+1,0;1,0(Rd × Rd), we know by Theorem A.2 that

∂
γ
yrγ(·, ·, x, ξ) ∈ −1

d+1,d+3;1,0(Rd × Rd) ∩0
d+1,0;1,0(Rd × Rd).

This can be seen by straightforward calculations. First, by the definition of the hypoelliptic
norm we have for any multi-index α and ξ ∈ δ1, δ > 1

∂
(γ,α)
ξ

[
1

pR(x, ξ)

]
≤ ‖a‖Hypκ|α|+|γ|,0;1,0

〈|ξ|〉−κ−|α|−|γ|.

Next, by the definition of the norm in ̃
κ,1
1,1;1,0(Rd × Rd) we have for any multi-index α

∂
(γ,α)
x pR(x, ξ) ≤ ‖a‖

̃
κ,1
|α|+|γ|,1;1,0

〈|ξ|〉κ, ξ ∈ δ1, δ > 1.

Going back to the operator mR(x,D). By Theorem 3.13 in [1, p. 50], we can interchange the
derivatives with the oscillatory integral. That is

∂αξmR(x, ξ) =
�

e−i〈y,η〉
∫ 1

0
∂αξ

[
∂
γ
ξ′q(x′, ξ′) | ξ′=ξ+θη

x′=x
∂
γ
x′ pR(x′, ξ′) | ξ′=ξ

x′=x+y

]
dθ dy dη.

Secondly, by the Young inequality for a product, we know for s > 0

〈ξ + θη〉−2s ≤ 〈ξ〉−s〈θη〉−s,

and by the Peetre inequality (see [1, Lemma 3.7, p. 44]), we know for s > 0
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〈ξ + θη〉s ≤ 〈ξ〉s〈θη〉s.
Next, straightforward calculations gives for s > d∫

Rd
〈η〉−s dη ≤ C.

Using ∂ρηe−i〈y,η〉 = (−y)ρe−i〈y,η〉, where ρ is a multi-index, and integration by parts, gives

∂αξmR(x, ξ)

=
∑ �

(−y)−ρe−i〈y,η〉
∫ 1

0
∂αξ ∂

ρ
η

[
∂
γ
ξ′q(x′, ξ′) | ξ′=ξ+θη

x′=x
∂
γ
x′ pR(x′, ξ′) | ξ′=ξ

x′=x+y

]
dθ dy dη

=
∑ �

(−y)−ρe−i〈y,η〉
∫ 1

0
∂αξ θ

d+1
[
∂
γ+ρ
ξ′ q(x′, ξ′) | ξ′=ξ+θη

x′=x
∂
γ
x′ pR(x′, ξ′) | ξ′=ξ

x′=x+y

]
dθ dy dη.

Here the sum runs over all multi-index of the form (d + 1, 0, . . . , 0), (0, d + 1, . . . , 0), · · · ,
(0, . . . , d + 1). Analysing the proof of Theorem 3.9 [1] we see that we have to estimate

|∂αξmR(x, ξ)| ≤
� ∫ 1

0
θd+1|y|−(d+1)

[
〈ξ + θη〉−(|γ|+|α|+κ+(d+1))〈ξ〉κ−|α|

]
dθ dy dη

≤
∫ ∫ 1

0
θd+1

[
〈ξ〉−|α|〈ξ〉− 1

2 (|γ|+κ+(d+1))〈θη〉− 1
2 (|γ|+κ+(d+1))〈ξ〉κ−|α|

]
dθ dη

≤ 〈ξ〉−2|α|−(d+1)
∫ ∫ 1

0
θd+1〈θη〉− 1

2 (|γ|+κ+(d+1)) dθ dη

≤ 〈ξ〉−2|α|−(d+1)
∫ ∫ 1

0
θ〈η〉− 1

2 (|γ|+κ+(d+1)) dθ dη.

The calculation above gives that for |γ| > d − k + 1, the integration with respect to η and θ is
finite. Taking into account Theorem A.2, we can verify for ξ ∈ δ1, δ > 1 that

sup
|α|≤d+1

∣∣∣∂αξmR(x, ξ)
∣∣∣ 〈|ξ|〉|α|+1

� sup
1≤|α|≤d+1
1≤|β|≤2d+1

∣∣∣∣∂αξ ∂βξ [
qR(x, ξ)

]∣∣∣∣ sup
|δ|≤d+1

∣∣∣∂δx pR(x, ξ)
∣∣∣ .

Hence, by the generalized Leibniz rule (see [1, p. 200, (A.1)]) we have

‖mR‖−1
d+1,0;1,0

≤ ‖qR‖Hypκ2d+1,0;1,0
‖pR‖̃κ,1

2d+1,2d+1;1,0
,

from what it follows that mR(x,D) is a bounded operator with from Bm
p,r(R

d) to Bm+1
p,r (Rd). In

addition, by the same analysis, we get

‖mR‖0
d+1,0;1,0

≤ ‖q‖Hypκ2d+1,0;1,0
‖pR‖̃κ−1,1

2d+1,2d+1;1,0
.

Observe, that

‖pR‖̃κ−1,1
2d+4,d+3;1,0

≤ 1
R
‖pR‖̃κ,1

2d+1,2d+1;1,0
.

Therefore, analysing the symbols, mR(x,D) is a bounded operator from Bm
p,r(R

d) to Bm
p,r(R

d)
having norm
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‖mR‖0
d+1,0;1,0

≤ 1
R
‖mR‖−1

d+1,0;1,0
.

Now, let us go back to a slightly modified problem to verify for a given f ∈ Bm
p,r(R

d), the
regularity of u, where u solves

pR(x,D)u(x) = f (x), x ∈ Rd.(7.9)

From before, we know that

(q ◦ pR)(x, ξ) = q(x, ξ)pR(x, ξ) +C(x, ξ) + mR(x, ξ) = I +C(x, ξ) + mR(x, ξ).

A careful analysis (see (7.8)) shows that C ∈ −1
d+1;0;1,0, and

‖C‖1
d+1;0,1,0

≤ 1
R
|C|−1

d+1;0;1,0
.

Due to the assumption on R we know that R is such large that
(
‖C‖1

d+1;0,1,0
+ ‖mR‖0

d+1,0;1,0

)
≤ 1

6
.

First, we will show that if f ∈ Bm
p,r(R

d), then it follows that u ∈ Bm
p,r(R

d). This we will
proof by contradiction. Suppose u is unbounded in Bm

p,r(R
d), in particular, suppose for any

M ∈ N we have |u|Bm
p,r ≥ M. Since, from before we know that

(I +C(x,D) + mR(x,D))u = q(x,D) f ,

we get

|(I +C(x,D) + mR(x,D))u|Bm
p,r ≥

∣∣∣∣∣|u|Bm
p,r −

1
R
|u|Bm

p,r

∣∣∣∣∣ ≥ 5
6
|u|Bm

p,r .

On the other side,

|(I +C(x,D) + mR(x,D))u|Bm
p,r
= |q(x,D) f |Bm

p,r
≤ ‖q‖0

d+1,0;1,0
| f |Bm

p,r < ∞,
which leads to a contradiction, since we assumed that for any M ∈ N we have |u|Bm

p,r ≥ M.
Hence, we know that u ∈ Bm

p,r(R
d). In the next step, we will show that we have even

u ∈ Bm+κ
p,r (Rd) and calculate its norm in this space. Using similar arguments as above, we

know by Theorem A.1 and Remark A.1 that

|q(x,D) f |Bm+κ
p,r ≤ ‖q‖−κd+1,0;1,0

| f |Bm
p,r

Similar as in the proof of Theorem 3.24 in [1, p. 59] we define

q̃(x,D) :=
k∑

j=0

(−1) j(C(x,D) + mR(x,D)) jq(x,D),

where

(C(x,D) + mR(x,D)) j = (C(x,D) + mR(x,D)) . . . (C(x,D) + mR(x,D))︸������������������������������������������������������︷︷������������������������������������������������������︸
j times

.

Since the right-hand side is an alternating sum, it follows by the identity

q(x,D)pR(x,D) = I +C(x,D) + mR(x,D)u(x)
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that

q̃(x,D)pR(x,D) = I + (−1)k+1(C(x,D) + mR(x,D))k+1.(7.10)

On the other side, since

u(x) = q(x,D) f (x) − (C(x,D) + mR(x,D))u(x),

we have

q(x,D) f (x) = q(x,D)pR(x,D)u(x) = (I +C(x,D) + mR(x,D)) u(x).

Since |mR(x, ξ)|0
d+1,0;1,0

≤ 1
6 , the sequence {uN : n ∈ N} defined by

uN(x) =

⎛⎜⎜⎜⎜⎜⎝I +
N∑

k=1

(−1)k(C(x,D) + mR(x,D))k

⎞⎟⎟⎟⎟⎟⎠ q(x,D) f (x),

is bounded and a Cauchy sequence. Therefore, there exists a u with uN → u strongly and
we can write

|u|Bm+κ
p,r � ‖q‖Hypκd+1,0;1,0

⎛⎜⎜⎜⎜⎜⎝1 +
∞∑

k=1

‖C(x,D) + mR‖k
̃
−1,1
d+1,0;1,0

⎞⎟⎟⎟⎟⎟⎠ | f |Bm
p,r

� ‖q‖Hypκd+1,0;1,0

⎛⎜⎜⎜⎜⎜⎝1 +
∞∑

k=1

(
1
6

)k⎞⎟⎟⎟⎟⎟⎠ | f |Bm
p,r

�
6
5
‖q‖Hypκd+1,0;1,0

| f |Bm
p,r .

This gives the assertion. �

Appendix A Some important facts about pseudo–differential operators

Appendix A. Some important facts about pseudo–differential operators
In this section, we introduce the definitions and theorems which are necessary for our

purpose. However, we suppose that the reader is familiar with the definitions already
introduced in section 3.

To start, let a(x, ξ) be a symbol. Clearly, a(x,D) is bounded from (Rd) into  ′(Rd). In
the following Corollary we will investigate its boundedness in Sobolev spaces.

Corollary A.1. Let u ∈ Hm
2 (Rd) for all m ∈ R. Then

a(x,D) u(x) :=
∫
Rd

ei〈x,ξ〉a(x, ξ) û(ξ) dξ,

is well defined with a(x,D) being a pseudo-differential operator.

Proof. Let v, φ ∈ (Rd). Then consider,

(a(x,D)v, φ)L2(Rd) =

∫
Rd

∫
Rd

ei〈x,ξ〉a(x, ξ) v̂(ξ) dξφ(x) dx

=

∫
Rd

∫
Rd

eixT ξa(x, ξ)φ(x) dx v̂(ξ) dξ.

=

∫
Rd
v̂(ξ)

∫
Rd

ei〈x,ξ〉a(x, ξ)φ(x) dx dξ,
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where we use the Fubini theorem and the fact that φ, v̂ ∈ (Rd). In Lemma 3.31 in [1]
showed that

w(ξ) =
∫
Rd

ei〈x,ξ〉a(x, ξ)φ(x) dx ∈ (Rd),

where a(x, ξ) ∈ Sm
1,0(Rd × Rd) with m ∈ R. Therefore we have,

(a(x,D)v, φ)L2(Rd) = (v, a∗(x,D)φ)L2(Rd),

such that a∗(x,D)φ ∈ (Rd). Now let u ∈ Hm
2 (Rd). There exist {un}n∈N ⊂ (Rd) such that

(see Corollary 3.42 in [1]),

lim
n→∞〈un − u, φ〉 = 0,

for any φ ∈ (Rd). Therefore due to the above facts we have

lim
n→∞〈a(x,D)un, φ〉 = lim

n→∞〈un, a∗(x,D)φ〉 = 〈u, a∗(x,D)φ〉 = 〈a(x,D)u, φ〉 < ∞.
Hence we conclude that the Fourier integral representation of a(x,D)u is well defined in
Hm

2 (Rd) with m ∈ R. See Theorem 3.41 in [1] as well. �

One can easily see under which conditions a(x,D) is also bounded from Lp(Rd) into
Lp(Rd), 1 ≤ p ≤ ∞. To see it, first, observe that the operator can also be represented by a
kernel of the form

a(x,D) f (x) =
∫
Rd

k(x, x − y) f (y) dy, x ∈ Rd,

where the kernel is given by the inverse Fourier transform

k(x, z) = ξ→z
[
a(x, ξ)

]
(z)4.

Differentiation gives the following estimate

|k(x, z)| ≤ C
∣∣∣∂αξ p(x, ξ)

∣∣∣ |z|−α.
By this estimate and the Young inequality for convolutions, one can calculate bounds of the
operator between Lebesgue spaces, like

|a(x,D) f |Lq ≤ ‖a‖0
γ,0;1,0
| f |Lq ,

for γ ≥ d + 1. In case, we have additional regularity of the functions, or the function is
a distribution, it is not that obvious. The next Theorem gives characterize the action of a
pseudo–differential operator on Besov spaces.

Theorem A.1 (compare [1, Theorem 6.19, p. 164]). Let κ,m ∈ R, a(x, ξ) ∈ Sκ1,0(Rd × Rd)
and 1 ≤ p, r ≤ ∞. Then, a(x,D) : Bκ+m

p,r (Rd)→ Bm
p,r(R

d) is a linear and bounded operator.

Remark A.1. Tracing step by step of the proof of Theorem 6.19 in [1, p. 164], one can
see that for all κ,m ∈ R, a(x, ξ) ∈ Sκ1,0(Rd × Rd) and 1 ≤ p, r ≤ ∞ and any k ≥ d + 1 the
following inequality holds

4ξ→z[a(x, ξ)](z) =
∫
Rd e−2πi〈ξ,z〉a(x, ξ) dξ.
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|a(x,D) f |Bm
p,r
≤ ‖a‖κ

k,0;δ,0
| f |Bκ+m

p,r
.

To analyse the composition of two operators of given symbols, one has to evaluate a
so-called oscillatory integral. In particular, for any χ ∈ (Rd × Rd) with χ(0, 0) = 1 and
a ∈ (Rd × Rd), we define the oscillatory integral by

Os–
�

e−iyηa(y, η) dy dη := lim
ε→0

�
Rd×Rd

χ(εy, εη) e−i〈y,η〉a(y, η) dy dη.

To calculate the oscillatory integral, the following Theorem is essential.

Theorem A.2 (compare [1, Theorem 3.9, p. 46]). Let m ∈ R, a ∈ m
(d+1+m)∧0,d+1;1,0(Rd ×

R
d), and let χ ∈ (Rd × Rd) with χ(0, 0) = 1. Then the oscillatory integral

Os–
�

e−i〈y,η〉a(y, η) dy dη

exists and ∣∣∣∣∣Os–
�

e−i〈y,η〉a(y, η) dy dη
∣∣∣∣∣ ≤ Cm,d ‖a‖m

(d+1+m)∧0,d+1;1,0
.

Corollary A.2 (compare [1, Corollary 3.10, p. 48]). Let a j ∈ Sm
1,0(Rd ×Rd) be a bounded

sequence in m
d+1+m,d+1;ρ,δ(R

d × Rd) such that there exists some a ∈ m
d+1+m,d+1;ρ,δ(R

d × Rd)

lim
j→∞ ∂

α
η∂

β
ya j(y, η) = ∂αη∂

β
ya(y, η),

for any |α| ≤ d + m + 1, |β| ≤ d + 1, y ∈ Rd and η ∈ Rd. Then

lim
j→∞Os–

�
e−i〈y,η〉a j(y, η) dy dη = Os–

�
e−i〈y,η〉a(y, η) dy dη.

With the help of the oscillatory integral, one can show that the composition of two pseudo-
differential operators is again a pseudo-differential operator. Using formal calculations, an
application of the Taylor formula leads to the following characterization.

Theorem A.3 (compare [1, Theorem 3.16, p. 55]). Let a1(x, ξ) ∈ Sm1
1,0(Rd × Rd) and

a2(x, ξ) ∈ Sm2
1,0(Rd × Rd). Then the composition a1(x,D) a2(x,D) is again a pseudo–

differential operator, whose symbol we denote by [a1 ◦ a2](x, ξ), and we have

[a1 ◦ a2](x, ξ) ∈ Sm1+m2
1,0 (Rd × Rd).

Moreover, it can be expanded asymptotically as follows

[a1 ◦ a2](x, ξ) ∼
∑
α

1
α!

(
∂αξ a1(x, ξ)

) (
∂αx a2(x, ξ)

)
.(A.1)

To be more precise, equation (A.1) means that

[a1 ◦ a2](x, ξ) −
∑
|α|≤N

1
α!

(
∂αξ a1(x, ξ)

) (
∂αx a2(x, ξ)

)
(A.2)

belongs to Sm1+m2−N
1,0 (Rd × Rd) for every positive integer N.



The Analyticity ofMarkovian Semigroup 61

Remark A.2. Following the proof of Theorem 3.16 [1, p. 53], one observes that

[a1 ◦ a2](x, ξ) −
∑
|α|≤N

1
α!

(
∂αξ a1(x, ξ)

) (
∂αx a2(x, ξ)

)
(A.3)

= (N + 1)
∑
|α|=N+1

1
α!

Os–
�

e−i〈y,η〉ηαrα(x, ξ, y, η) dy dη(A.4)

= (N + 1)
∑
|α|=N+1

1
α!

Os–
�

e−i〈y,η〉Dα
y rα(x, ξ, y, η) dy dη

with

rα(x, ξ, y, η) =
∫ 1

0

[
∂αξ′ p1(x′, ξ′) | ξ′=ξ+θη

x′=x
∂αx′ p2(x′, ξ′) | ξ′=ξ

x′=x+y
(1 − θ)N

]
dθ.
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Mathematics - CRM Barcelona, Birkhäuser Basel, Springer International Publishing Switzerland, 2016.
[28] P. Kim, R. Song and Z. Vondracek: Heat kernels of non-symmetric jump processes: Beyond the stable case.

Potential Anal. 49 (2017), 1–54.
[29] V.N. Kolokoltsov: On Markov processes with decomposable pseudo-differential generators, Stoch. Stoch.

Rep. 76 (2004), 1–44.
[30] H. Kumana-Go: Pseudo-differential operators, MIT Press, Cambridge, 1982.
[31] S. Kusuoka and C. Marinelli: On smoothing properties of transition semigroups associated to a class of

SDEs with jumps, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), 1347–1370.
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