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Abstract
To investigate a concentration of measure phenomena on metric measure spaces in terms of

Gromov–Ledoux’s expansion coefficients on this space as well as Ledoux’s per se, we studied
a concentration function in concert with their expansion coefficients. Further investigation into
an exponential concentration in terms of Ledoux’s expansion coefficient on a bounded and
volume doubling metric measure space enables us to derive an upper bound for its diameter in
terms of both the Ledoux’s expansion coefficient and doubling constant, provided that Ledoux’s
expansion coefficient > 1. In this study, we let Ledoux’s expansion coefficient > 1 on a metric
measure space, which is ensured by adopting Poincaré inequality. We demonstrated that on
a metric measure space, Gromov–Ledoux’s expansion coefficients with Ledoux’s expansion
coefficient > 1 give rise to an exponential concentration in terms of themselves. We further
showed that on a bounded and volume doubling metric measure space, a Ledoux’s expansion
coefficient of order bounded from above in terms of both the doubling constant > 1 and its
diameter is bounded from above in terms of the doubling constant per se. We applied this upper
diameter bound to a closed smooth Riemannian manifold with non-negative Ricci curvature.
This upper bound is described in terms of both the spectral gap and dimension.
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1. Introduction

1. Introduction
First, we briefly review relevant concepts used herein; in this study, we call a metric space

endowed with a Borel probability measure a metric measure space. To oscillate this mea-
sure dynamically makes us capable of grasping the structure of a metric measure space. On
a metric measure space, this dynamic association is exactly a concentration of measure phe-
nomenon; in fact, pertinence to this appellation of a concentration of measure phenomenon
is attributed to a concentration inequality for metric measure spaces (see Proposition 2.2).
Specifically, a concentration of measure phenomenon on metric measure spaces indicates
the behaviour of an enlargement (see Subsection 2.2) with respect to which concentration
of measure is evaluated; furthermore, letting an enlargement or the dimension of metric
measure spaces high, we observe a rapid decrease in concentration function.

1.1. Background.
1.1. Background. We briefly recall a concentration of measure phenomenon on metric

measure spaces based on Berger [6, p. 336]: ‘As early as 1919 Paul Lévy studied the so-
called concentration phenomenon of spheres Sn: most of the measure of the sphere is con-
centrated around an equator, and this effect becomes more pronounced as the dimension gets
large’; furthermore regarding its historical aspect, a concentration of measure phenomenon
was most vigorously put forward by V.D. Milman in the local theory of Banach spaces to
study Dvoretzky’s theorem on almost Euclidean sections of convex bodies; we refer readers
to Ledoux [14] and references therein and Ledoux and Talagrand [18]. From a contem-
porary perspective of Chapter 3 1

2+ of Gromov’s ‘Green Book’: Gromov [10, Chapter 3 1
2+]
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described groundbreaking results regarding a concentration of measure phenomenon on met-
ric measure spaces. In addition, focusing on a concentration function, whose definition was
first introduced in Amir and Milman [2], Ledoux [16] presented a concentration of measure
phenomenon on metric measure spaces. The present study was motivated by Ledoux [16]
and Gromov [10, Chapter 3 1

2+].
We say that a metric measure space has an exponential concentration if its concentra-

tion function decreases exponentially to zero (see Definition 2.4). In this study, we concern
ourselves with an exponential concentration. Since the early 21st century, numerous pre-
viously conducted studies have been concerned with an exponential concentration; based
on one of them, under which complete oriented connected smooth Riemannian manifolds
are those whose Ricci curvature is non-negative, an exponential concentration provides us
with some significant concepts, such as Cheeger’s isoperimetric inequality and Poincaré
inequality; for detailed accounts, we refer readers to Milman [21], for which readers are
referred to Ledoux [16, Proposition 1.8] and Barthe [4] and references therein. As will be
referred to in Subsection 4.2 subsequent, Ledoux’s expansion coefficient on an expander
graph may be regarded as being akin to the so-called Cheeger constant; we refer readers to
Cheeger [7] for its original literature. Ledoux [16, Proposition 1.13] presented a sufficient
condition for a metric measure space to have an exponential concentration; one can further
see that an expander graph satisfying Cheeger’s isoperimetric inequality has an exponential
concentration; we refer readers to Ledoux [16, pp. 31–32] for more detailed accounts. The
scenario of the proof of the abovementioned sufficient condition refers to that of Gromov
and Milman [11, Theorem 4.1]; slightly refining the abovementioned Ledoux’s result leads
to a sufficient condition for an exponential concentration in terms of Ledoux’s expansion
coefficient > 1 (see Corollary 5.3).

Now, it is significant to investigate the diameter of a bounded metric measure space as
well as an exponential concentration; from the perspective of a closed smooth Riemannian
manifold with Ricci curvature bounded below, we refer readers to (Bonnet-)Myers’s theorem
and Cheng’s maximal diameter theorem (see Theorem 7.2) and Ledoux’s upper diameter
bound theorem (see Theorem 7.3). Their crucial results on Riemannian manifolds with
positive curvature motivated this study (see Section 7.2).

1.2. Objective.
1.2. Objective. To investigate a concentration of measure phenomenon on metric mea-

sure spaces, much research interest has been devoted to estimate a concentration function
from above, an expansion coefficient on a bounded and volume doubling metric measure
space and a bound for its diameter.

To the best of our knowledge, the concept of an expansion coefficient on metric measure
spaces has two proposers: one demonstrated by M. Gromov and the other demonstrated by
M. Ledoux; subsequently, these two expansion coefficients will be referred to as Gromov and
Ledoux’s expansion coefficients, respectively. We investigated their expansion coefficients;
in fact, from Section 4 onwards, we demonstrated that their expansion coefficients give rise
to an exponential concentration in terms of themselves.

Onward Section 6 is devoted principally to lower and upper bounds for Ledoux’s expan-
sion coefficient on a bounded and volume doubling metric measure space. To present our re-
sults for geometric objects, such as closed smooth Riemannian manifolds with non-negative
Ricci curvature, we restricted our concern to the sufficient conditions presented below for
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establishing our results regarding Ledoux’s expansion coefficient: 1 < Ledoux’s expansion
coefficient < ∞; more precisely, the lower and upper bounds are described in terms of both
of the constant attributed to Poincaré inequality and the doubling constant with respect to a
doubling measure.

1.3. Overview of Principal Results.
1.3. Overview of Principal Results. Before outlining our results, we briefly describe

this paper. The remaining body of this paper is divided into seven sections: Sections 2–4 in
which our principal results in Sections 5–7 are based.

Consider the aforementioned enlargement ≥ ε (= 1/2 in Ledoux’s argument); see Defini-
tion 2.3 (Definition 2.2), respectively. In this study, an overview of the four principal results
under this enlargement as per above is as follows.

1. In Theorem 5.5, we demonstrated that on a metric measure space, Gromov–Ledoux’s
expansion coefficients give rise to an exponential concentration in terms of them-
selves, provided that Ledoux’s expansion coefficient > 1.

2. In Theorem 6.7, we described a sufficient condition for Ledoux’s expansion coeffi-
cient on a bounded and volume doubling metric measure space to be bounded above.

3. In Theorem 7.1, we showed a novel upper bound for the diameter of a bounded and
volume doubling metric measure space with Ledoux’s expansion coefficient > 1.

4. In Theorem 7.4, we showed a novel upper bound for the diameter of a closed smooth
Riemannian manifold with non-negative Ricci curvature.

2. A Concentration of Measure Phenomenon on Metric Measure Spaces

2. A Concentration of Measure Phenomenon on Metric Measure Spaces
In this section, we formulate the concept of a concentration of measure phenomenon on

metric measure spaces in terms of a concentration inequality.

2.1. Setup.
2.1. Setup. We now define the concept of a metric measure space in the sense of

Ledoux [16]; we also refer readers to Gromov [10] for pioneering studies regarding this
field.

Definition 2.1 (Metric measure space). A metric measure space is a metric space (X, dX)
equipped with a Borel probability measure μX on X. Let a triplet (X, dX , μX) denote a metric
measure space, as called an mm space.

Subsequently, we use an identical letter X to denote a metric space or a metric measure
space whenever no confusion can arise.

Shioya [24, p. vii] remarked that measures on metric measure spaces are not necessarily
probability measures.

2.2. A Concentration Function.
2.2. A Concentration Function. The concept of a concentration of measure phenome-

non is attributed to an isoperimetric inequality. A concentration function indicates a con-
centration of measure phenomena on metric measure spaces. A concentration of measure
phenomena involves two main components: a finite measure, such as a probability measure,
and an enlargement with respect to which a measure concentration is evaluated. For all
non-empty Borel subsets A of X and for all r ≥ 0, let Ar denote a closed r-neighbourhood
of A with respect to dX , i.e. Ar � { x ∈ X | dX(x, A) ≤ r }; in this study, by following an
appellation of Ar due to Ledoux [16, Section 1.2], Ar is referred to as an enlargement of
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order r of A with respect to dX .
Moreover, without referring to ‘concentration’, the concept of a concentration function

originated from Amir and Milman [2] as follows.

Definition 2.2 (vid., e.g. Ledoux [16, p. 3]). Let X be a metric measure space.

αX(r) � sup{ 1−μX(Ar) | X ⊃ A is an arbitrary Borel set such that μX(A) ≥ 1/2 }, r ≥ 0.

Subsequently, to address Gromov’s expansion coefficient (see Definition 4.1), we are
concerned principally with the generalisation of Definition 2.2 with respect to a lower bound
for μX(A) as per above (see Definition 2.3).

Throughout this paper, let ε be such that 0 < ε < 1.

Definition 2.3 (Concentration function; vid., Ledoux [16, p. 5]). A concentration func-
tion for a metric measure space X, denoted by αεX , is defined as

αεX(r) � sup{ 1 − μX(Ar) | X ⊃ A is an arbitrary Borel set such that μX(A) ≥ ε }, r ≥ 0.
(1)

In this study, for simplicity, we write αεX with ε = 1/2 as αX .
Proposition 2.1 enables us to compare subsequent results regarding αεX with those of αX:

Proposition 2.1. We have

αεX(r) ≤ α1−ε
X(r) for all r ≥ 0,

provided that ε ≥ 1/2, and vice versa.

Proof. This claim readily follows from the definition of a concentration function (1). �

Two significant classes of metric measure spaces share the upper bounds of an exponent
and a Gaussian kernel for a concentration function. In this study, we focus on an upper
bound of being exponential for a concentration function as follows.

Definition 2.4 (Exponential concentration; cf., Ledoux [16, p. 4]). We say that a metric
measure space X has an exponential concentration if there exist constants written as Ci >

0, i = 1, 2, and r0 ≥ 0 such that

(2) αεX(r) ≤ C1 exp(−C2r), r ≥ r0.

The constraint r0 to r in Definition 2.4 is expedient; more precisely, in Theorem 5.5, we
will show an exponential concentration with a positive constraint r0.

One says that a metric measure space has a normal concentration if an upper bound for a
concentration function is given in terms of a Gaussian kernel.

We turn to estimate the diameter of a bounded metric measure space; if a metric space X
is bounded, then an enlargement in the definition of a concentration function (1) ranges up
to the diameter of X, which is denoted by diam(X), i.e.

diam(X) � sup{ dX(x, y) | x, y ∈ X }.
It follows readily that a concentration function tends to zero as an enlargement goes to
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the diameter. In Section 7, we will show an upper bound for the diameter.

2.3. A Concentration Inequality.
2.3. A Concentration Inequality. In this subsection, we establish a concentration in-

equality of a Lipschitz function around its quantile with a concentration function to formalise
a concentration of measure phenomena on metric measure spaces.

Definition 2.5 (Quantile of order ε, percentile). Let f be a real-valued measurable
function on a probability measure space. Define a real number mf of f for a probability
measure μ such that

(3) μ({ f (x) ≤ mf }) ≥ ε, μ({ f (x) ≥ mf }) ≥ 1 − ε.
Let f be regarded as a random variable. Then, mf defined above is referred to as a quantile

of order ε of f for μ or the 100εth percentile of f for μ; in particular, if ε = 1/2, then mf

coincides exactly with the so-called Lévy mean or median of f for μ. This median may not
be unique.

Remark 2.1. A median of a Lipschitz function for a canonical Gaussian probability mea-
sure on a Euclidean space is unique; we refer readers to Ledoux and Talagrand [18, p. 21]
for more detailed accounts.

Up to Section 3, we concern ourselves with a Lipschitz property on a metric measure
space. As we will show below, a Lipschitz property involving a Lipschitz function and its
Lipschitz constant enables one to observe a concentration of measure phenomena on metric
measure spaces (see Definition 2.7), which yields the concept of an observable diameter (see
Section 3).

Definition 2.6 ((1-)Lipschitz and locally Lipschitz). A map f from a metric space (X, dX)
to a metric space (Y, dY ) is called Lipschitz if

sup
x,y∈X;x�y

dY ( f (x), f (y))
dX(x, y)

< ∞,

which is referred to as a Lipschitz constant of f and denoted by ‖ f ‖Lip; in particular, we
say that f is 1-Lipschitz if its Lipschitz constant ‖ f ‖Lip ≤ 1. A map on a metric space is
called locally Lipschitz if every point in the metric space has a neighbourhood such that its
restriction to this neighbourhood is Lipschitz.

We are now ready to establish a concentration inequality.

Proposition 2.2 (Concentration inequality). Let f be a Lipschitz function on a metric
measure space X and m f its quantile of order ε for μX. Then,

(4) μX({ | f (x) − mf | > r }) ≤ αεX(r/‖ f ‖Lip) + α1−ε
X(r/‖ f ‖Lip) for all r ≥ 0;

in particular, if f is 1-Lipschitz, then inequality (4) is reduced to the following:

(5) μX({ | f (x) − mf | > r }) ≤ αεX(r) + α1−ε
X(r) for all r ≥ 0.

Proof. Set A � { f (x) ≤ mf }. The inequality μX(A) ≥ ε follows from the definition of a
quantile of order ε of (3). Let r ≥ 0. We see that
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(6) μX(Ar) ≤ μX({ f (x) ≤ mf + ‖ f ‖Lipr });
indeed, take x ∈ Ar. It then follows that f (x) ≤ f (a)+ ‖ f ‖LipdX(x, a) for all a ∈ X. By taking
the infimum over a ∈ A, f (x) ≤ mf + ‖ f ‖Lipr follows, i.e. x ∈ { f (x) ≤ mf + ‖ f ‖Lipr }; hence,
from inequality (6) we have

(7) μX({ f (x) > mf + ‖ f ‖Lipr) }) ≤ 1 − μX(Ar).

By combining inequality (7) with the definition of a concentration function (1), it follows
that

(8) μX({ f (x) > mf + r }) ≤ αεX(r/‖ f ‖Lip),

which is referred to as a deviation inequality; for further accounts, we refer readers to
Ledoux [16, p. 6] in which ε = 1/2.

We consider the abovementioned argument again when A is replaced with { − f (x) ≤
−mf } to obtain μX(Ar) ≤ μX({ f (x) ≥ mf − ‖ f ‖Lipr }); the reasoning for this deviation in-
equality yields

(9) μX({ f (x) < mf − r }) ≤ α1−ε
X(r/‖ f ‖Lip).

By combining inequalities (8) and (9), we obtain the desired inequality (4); in particular,
if ‖ f ‖Lip ≤ 1, a concentration function decreases with respect to r; then, inequality (4) is
reduced to inequality (5) as desired. Thus, the proposition is proven. �

Definition 2.7 (Concentration inequality and concentration of measure phenomena; cf.,
Ledoux [16, Section 1.3]). Inequality (4) (inequality (5)) is called a concentration inequality
of a (1-)Lipschitz function f around its quantile of order ε for μX with rate αεX; that which
a concentration inequality implies is just a concentration of measure phenomena on metric
measure spaces.

3. An Observable Diameter

3. An Observable Diameter
Before defining the concept of an observable diameter, we first defined a partial diam-

eter; we refer readers to Gromov [10, Chapter 3 1
2 .20] as the original literature concerning

an observable diameter as well as Berger [6, pp. 336–337], Ledoux [16, Section 1.4] and
Shioya [24].

Throughout this paper, let κ be such that 0 < κ < 1.

3.1. A Partial Diameter.
3.1. A Partial Diameter.

Definition 3.1 (Partial diameter; vid., e.g. Shioya [24, Definition 2.13]). A partial di-
ameter of a metric measure space X with respect to μX , denoted by PartDiamμX (X; 1 − κ),
is defined as the infimum of diam(A), where X ⊃ A runs over all Borel subsets such that
μX(A) ≥ 1 − κ, i.e.

PartDiamμX (X; 1 − κ)
� inf{ diam(A) | X ⊃ A is an arbitrary Borel set such that μX(A) ≥ 1 − κ }.
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3.2. An Observation Device for Diameter.
3.2. An Observation Device for Diameter. What is not obvious is that a partial diameter

may dramatically decrease under all 1-Lipschitz maps from a metric measure space to a
certain metric space; the target metric space is referred to as a screen. That a screen is a
1-dimensional Euclidean space R provides us with a more geometric view of concentration.
A geometric observation device of 1-Lipschitz functions to a screen R yields the concept of
an observable diameter defined below; more precisely, an observable diameter enables one
to describe the diameter of a metric measure space viewed through a given Borel probability
measure on this metric measure space.

Definition 3.2 (Observable diameter; vid., e.g. Gromov [10, Chapter 3 1
2 .20]). An

(κ-)observable diameter of a metric measure space X with respect to μX , denoted by
ObsDiam(X;−κ), is defined as the supremum of PartDiam f∗μX (R; 1 − κ) over all 1-Lipschitz
functions f on X, where f∗μX is a push-forward measure of μX in terms of f , i.e.

ObsDiam(X;−κ) � sup{PartDiam f∗μX (R; 1 − κ) | f : X → R is 1-Lipschitz }.
It follows readily from the definition of a partial diameter (Definition 3.1) that

PartDiamμX (X; 1 − κ) is monotone decreasing with respect to κ; accordingly, so is
ObsDiam(X;−κ) from the definition of an observable diameter (Definition 3.2). Compared
with an observable diameter and the diameter per se, it is obvious that ObsDiam(X;−κ) ≤
diam(X).

3.3. Duality Between a Concentration Function and an Observable Diameter.
3.3. Duality Between a Concentration Function and an Observable Diameter. In this

subsection, we show that the concept of an observable diameter is dual to that of a concen-
tration function (see Corollary 3.2 and Proposition 3.6).

Proposition 3.1. We have

(10) ObsDiam(X;−κ) ≤ 2 inf{ r > 0 | αεX(r) + α1−ε
X(r) ≤ κ }.

Proof. Let f be a 1-Lipschitz function on X. To establish claim (10), we estimate a partial
diameter of X with respect to f∗μX. For all r ≥ 0, we measure { | f (x)−mf | ≤ r } with respect
to f∗μX; in fact,

f∗μX({ t ∈ R | |t − mf | ≤ r }) = μX({ | f (x) − mf | ≤ r })
≥ 1 − (αεX(r) + α1−ε

X(r)),(11)

in which the last inequality sign follows from a concentration inequality of a 1-Lipschitz
function (5). Put rε,κ � inf{ r > 0 | αεX(r) + α1−ε

X(r) ≤ κ }. It follows from inequality (11)
with r = rε,κ that

(12) f∗μX({ t ∈ R | |t − mf | ≤ rε,κ }) ≥ 1 − κ.
It remains to evaluate the diameter of { t ∈ R | |t−mf | ≤ rε,κ } as per above, which is given

as follows:

(13) diam({ t ∈ R | |t − mf | ≤ rε,κ }) ≤ (mf + rε,κ) − (mf − rε,κ) = 2rε,κ.

Both the push-forward measure evaluation (12) and diameter evaluation (13) give us an
upper bound for a partial diameter:
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(14) PartDiam f∗μX (R; 1 − κ) ≤ 2rε,κ.

In virtue of this upper partial diameter bound (14), we obtain the claim. Thus, the proposition
is proven. �

Corollary 3.2. Let ε ≤ 1/2. Then, we have

(15) ObsDiam(X;−κ) ≤ 2 inf{ r > 0 | αεX(r) ≤ κ/2 }.
Proof. Combining Proposition 3.1 with Proposition 2.1, we obtain

ObsDiam(X;−κ) ≤ 2 inf{ r > 0 | αεX(r) ≤ κ/2 } if ε ≤ 1/2;

ObsDiam(X;−κ) ≤ 2 inf{ r > 0 | α1−ε
X(r) ≤ κ/2 } if ε ≥ 1/2,

of which each is obviously just our claim of duality. �

Corollary 3.2 gives more, namely an upper observable diameter bound is made explicit if
X has an exponential concentration.

Proposition 3.3. Suppose that X has an exponential concentration with ε ≤ 1/2. Let κ
be such that 2C1 > κ, where C1 is a positive constant attributed to an exponential concen-
tration (2). Then, we have

ObsDiam(X;−κ) ≤ 2
C2

ln
2C1

κ
.

Proof. This claim readily follows from an upper observable diameter bound (15). �

The remainder of this section will be devoted to the abovementioned duality. To this end,
we briefly review the concept of a separation distance.

Definition 3.3 (Separation distance; vid., e.g. Shioya [24, Definition 2.24]). A separation
distance of a metric measure space X, denoted by Sep(X; κ1, . . . , κn), n ≥ 2, is defined as

Sep(X; κ1, . . . , κn)

� sup{mini� j dX(Ai, Aj) | X ⊃ Ai is each Borel set such that μX(Ai) ≥ κi, i = 1, . . . , n };
if κi > 1 for some i, then we define Sep(X; κ1, . . . , κn) � 0; accordingly, if

∑n
i=1 κi > 1, then

Sep(X; κ1, . . . , κn) = 0.

Sep(X; κ1, . . . , κn) is monotone decreasing with respect to each κi and n.
Proposition 3.4 enables us to show the abovementioned dual observation whenever n = 2:

Proposition 3.4 (vid., e.g. Shioya [24, Proposition 2.26]). Let κi, i = 1, 2, be such that
0 < κ1 < κ2 < 1. Then, we have

(16) ObsDiam(X;−2κ2) ≤ Sep(X; κ2, κ2) ≤ ObsDiam(X;−κ1).

We now review Shioya’s result regarding the duality for a concentration function with
ε = 1/2:

Proposition 3.5 (vid., Shioya [24, Remark 2.28 (2)]; cf., Naor et al. [23, Subsection 1.3]).
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αX(r) ≤ sup{ κ > 0 | ObsDiam(X;−κ) ≥ r } for all r ≥ 0.

The duality as per above is still true whenever ε ≥ 1/2:

Proposition 3.6. Let ε ≥ 1/2. Then, we have

αεX(r) ≤ sup{ κ > 0 | ObsDiam(X;−κ) ≥ r } for all r ≥ 0.

Proof. For completeness, we indicate its proof, which is in a fashion similar to that of
Proposition 3.5. Fix r ≥ 0. It follows from the definition of a concentration function (1)
that, for an arbitrary δ > 0, there exists some Borel subset A of X such that μX(A) ≥ ε and
αεX(r) − δ < μX(Ar

c); hence,

(17) αεX(r) − δ < 1 − ε ≤ ε.
It turns out that ObsDiam(X;−(αεX(r) − 2δ)) ≥ r; indeed,

from that dX(A,Ar
c) ≥ r, the definition of a separation distance (Definition 3.3) gives us that

r ≤ Sep(X; ε, αεX(r) − δ)
to which applying inequality (17) yields

≤ Sep(X;αεX(r) − δ, αεX(r) − δ)
≤ ObsDiam(X;−(αεX(r) − 2δ)),(18)

in which the last inequality sign is due to the rightmost sign of inequality (16). Therefore,
we obtain our claim of duality; indeed, it follows from inequality (18) that αεX(r) − 2δ ≤
sup{ κ > 0 | ObsDiam(X;−κ) ≥ r }. Now, δ > 0 being arbitrary, this is just what we have
desired. Thus, the proposition is proven. �

4. The Expansion Coefficients

4. The Expansion Coefficients
M. Gromov and M. Ledoux independently introduced the two expansion coefficients;

Gromov’s expansion coefficient was defined in Gromov [10, Chapter 3 1
2 .35] and Ledoux’s

is due to Gromov and Milman [11, the proof of Theorem 4.1]. In this study, Gromov and
Ledoux’s expansion coefficients are identified by their initials: ExpG and ExpL, respec-
tively. Notably, in their original papers, their definitions are incorrect (see Definitions 4.1
and 4.2).

4.1. Gromov’s Expansion Coefficient and Its Properties.
4.1. Gromov’s Expansion Coefficient and Its Properties.

Definition 4.1 (Gromov’s expansion coefficient; vid., Gromov [10, Chapter 31
2 .35]). Gro-

mov’s expansion coefficient of μX on a metric measure space X of order ρ (> 0), denoted by
ExpG(X; ε, ρ), is defined as

(19) ExpG(X; ε, ρ)

� sup{ e ≥ 1 | μX(Aρ) ≥ eε for an arbitrary Borel set A ⊂ X such that μX(A) ≥ ε }.
We refer readers to Shioya [24, Definition 8.10] as well.



Expansion Coefficients and Upper Diameter Bound 737

It follows from the definition of ExpG of (19) that

(20) μX(Aρ) ≥ ExpG(X; ε, ρ)ε,

from which it follows that ExpG(X; ε, ρ) is bounded; indeed,

(21) (1 ≤) ExpG(X; ε, ρ) ≤ 1/ε.

Proposition 4.1. We have a comparison with ExpG with respect to ε and its order ρ:

1. If ε1 < ε2, then

ExpG(X; ε2, ρ)
ExpG(X; ε1, ρ)

>
ε1

ε2
.

2. If ρ1 < ρ2, then

ExpG(X; ε, ρ1) ≤ ExpG(X; ε, ρ2).

Proof. 1. Let A ⊂ X be such that μX(A) ≥ ε1, so that inequality (20) with ε = ε1

follows. For all A ⊂ X such that μX(A) ≥ ε2(> ε1), the inequality still holds. It being
rewritten as μX(Aρ) ≥ (ExpG(X; ε1, ρ)ε1/ε2)ε2, one deduces that

ExpG(X; ε2, ρ) > ExpG(X; ε1, ρ)ε1/ε2

as desired.
2. This claim readily follows. �

Shioya [24, Proposition 8.12] remarked an application of a lower bound for Gromov’s
expansion coefficient to the concept of dissipation, which is the opposite of a concentration;
we refer readers to his book for more detailed accounts.

4.2. Ledoux’s Expansion Coefficient and Its Properties.
4.2. Ledoux’s Expansion Coefficient and Its Properties.

Definition 4.2 (Ledoux’s expansion coefficient; cf., Ledoux [16, Section 1.5]). Ledoux’s
expansion coefficient of μX on a metric measure space X of order ρ (> 0), denoted by
ExpL(X; ε, ρ), is defined as

(22) ExpL(X; ε, ρ)

� sup{ e ≥ 1 | μX(Bρ) ≥ eμX(B) for an arbitrary Borel set B ⊂ X such that μX(Bρ) ≤ ε }.
Without Borel sets such as those in the definition of ExpL of (22), we formally define
ExpL(X; ε, ρ) as∞.

Ledoux [16, Section 1.5] originally proposed this expansion coefficient with ε = 1/2.
It follows from the definition of ExpL of (22) that

(23) μX(Bρ) ≥ ExpL(X; ε, ρ)μX(B).

If B is such that μX(Bkρ) ≤ ε for some integer k ∈ N, then inequality (23) inductively gives

(24) ε ≥ μX(Bkρ) ≥ (
ExpL(X; ε, ρ)

)k μX(B);

one can see from inequality (24) that if ExpL(X; ε, ρ) > 1, then B has an extremely small
measure.
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Proposition 4.2. There are monotone properties of ExpL with respect to ε and its order
ρ:

1. If ε1 < ε2, then

ExpL(X; ε2, ρ) ≤ ExpL(X; ε1, ρ).

2. If ρ1 < ρ2, then

ExpL(X; ε, ρ1) ≤ ExpL(X; ε, ρ2).

Proof. 1. Let B ⊂ X be such that μX(Bρ) ≤ ε2, so that inequality (23) with ε = ε2

follows. For all B ⊂ X such that μX(Bρ) ≤ ε1(< ε2), this inequality still holds. Thus,
the claim follows.

2. Let B ⊂ X be such that μX(Bρ1 ) ≤ ε, so that inequality (23) with ρ = ρ1 follows;
moreover, it follows from the assumption that

(25) μX(Bρ2 ) ≥ ExpL(X; ε, ρ1)μX(B).

For all B ⊂ X such that (μX(Bρ1 ) ≤)μX(Bρ2 ) ≤ ε, inequality (25) still holds. Thus,
the claim follows. �

Remark 4.1. Contrary to Gromov’s expansion coefficient, Ledoux’s generally does not
possess its universal upper bound; cf., a universal upper ExpG bound (21). Onward Sec-
tion 6, we will be concerned principally with which ExpL satisfies 1 < ExpL < ∞.

We conclude this section with another argument concerning Ledoux’s expansion coeffi-
cient. Notably, ExpL(X; 1/2, ρ) may be regarded as an analogy to the Cheeger constant if X
is an expander graph (see Subsection 1.1). According to Ledoux’s argument, the Cheeger
constant amounts to Ledoux’s expansion coefficient; we refer readers to Ledoux [16, pp. 31–
32] for more detailed accounts.

5. An Exponential Concentration in Terms of the Expansion Coefficients

5. An Exponential Concentration in Terms of the Expansion Coefficients
In this section, assuming that Ledoux’s expansion coefficient > 1, we show that Ledoux’s

expansion coefficient and Gromov–Ledoux’s give rise to an exponential concentration in
terms of itself and themselves, respectively.

5.1. Ledoux’s Expansion Coefficient.
5.1. Ledoux’s Expansion Coefficient. From this subsection onwards, as far as we are

concerned with a complete connected smooth Riemannian manifold with finite volume with
respect to the Riemannian measure, we let such a Riemannian manifold be a metric mea-
sure space endowed with the Riemannian distance and its normalised measure. Let M be a
complete connected smooth Riemannian manifold with finite volume, which is designated
as volM(M) < ∞; write the normalised measure as μM � volM / volM(M). A smooth Rie-
mannian manifold is said to be closed if it is compact, connected and without boundary.

Ledoux [13] and [16, Theorem 3.1] rephrased Gromov and Milman [11, Theorem 4.1] in
terms of an exponential concentration with ε = 1/2. Let us restate this result.

Theorem 5.1 (cf., Gromov and Milman [11, Theorem 4.1]). Let M be a closed smooth
Riemannian manifold. M has an exponential concentration:
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(26) αεM(r) ≤ (1 − ε2) exp(−√λ1(M) ln(1 + ε)r) for all r ≥ 0.

Notably, λ1(M) > 0 (see Definition 6.5).

Corollary 5.2. Let M be as in Theorem 5.1. Let ε ≤ 1/2 and κ be such that 2(1− ε2) > κ.
Then, we have

ObsDiam(M;−κ) ≤ 2√
λ1(M) ln(1 + ε)

ln
2(1 − ε2)
κ

.

Proof. Apply the exponential concentration in terms of λ1(M) of (26) to Proposition 3.3.
�

Shioya [24, Section 2.5] indicates some upper bounds for an observable diameter of
closed smooth Riemannian manifolds with Ricci curvature bounded from below in terms
of a positive constant.

We now focus on a metric measure space X. M. Ledoux studied a case in which ε = 1/2,
although his statement is not in terms of ExpL(X; 1/2, ρ) but e (≤ ExpL(X; 1/2, ρ)); we
refer readers to Ledoux [16, Proposition 1.13] for more detailed accounts. He designed the
scenario of the proof of Gromov and Milman [11, Theorem 4.1] to demonstrate that X has
an exponential concentration in terms of Ledoux’s expansion coefficient; Corollary 5.3 is
that of Ledoux [16, Proposition 1.13]:

Corollary 5.3 (Exponential concentration in terms of Ledoux’s expansion coefficient).
We have

αεX(r) ≤ (1 − ε) ExpL(X; 1 − ε, ρ)(ExpL(X; 1 − ε, ρ))−r/ρ for all r ≥ 0;

in particular, if ExpL(X; 1 − ε, ρ) > 1 for some ε and ρ, then X has an exponential concen-
tration:

(27) αεX(r) ≤ (1 − ε) ExpL(X; 1 − ε, ρ) exp(−(ln ExpL(X; 1 − ε, ρ))r/ρ) for all r ≥ 0.

Proof. This claim actually follows from a slight variant of the proof of Ledoux [16,
Proposition 1.13]. �

This exponential concentration in terms of Ledoux’s expansion coefficient (Corollary 5.3)
gives more, namely an observable diameter of such a metric measure space is bounded from
above in terms of Ledoux’s:

Corollary 5.4. Assume that ExpL(X; 1 − ε, ρ) > 1 for some ε ≤ 1/2 and ρ. Let κ be such
that 2(1 − ε) ExpL(X; 1 − ε, ρ) > κ. Then, we have

ObsDiam(X;−κ) ≤ 2ρ
ln ExpL(X; 1 − ε, ρ) ln

2(1 − ε) ExpL(X; 1 − ε, ρ)
κ

.

Proof. Apply this exponential concentration in terms of Ledoux’s expansion coeffi-
cient (27) to Proposition 3.3. �
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5.2. Gromov–Ledoux’s Expansion Coefficients.
5.2. Gromov–Ledoux’s Expansion Coefficients.

Theorem 5.5 (Exponential concentration in terms of Gromov–Ledoux’s expansion coef-
ficients). Assume that 1 > ExpG(X; ε, ρ)ε for some ε and ρ. Then, we have

αεX(r) ≤ (1 − ExpG(X; ε, ρ)ε)(ExpL(X; 1 − ε, ρ))2(ExpL(X; 1 − ε, ρ))−r/ρ for all r ≥ ρ;
(28)

in particular, if ExpL(X; 1 − ε, ρ) > 1 for some ε and ρ, then X has an exponential concen-
tration:

αεX(r) ≤ (1 − ExpG(X; ε, ρ)ε)(ExpL(X; 1 − ε, ρ))2 exp(−(ln ExpL(X; 1 − ε, ρ))r/ρ)(29)

for all r ≥ ρ.
Proof. The scenario of the proof is in a fashion similar to that of an exponential concentra-

tion in terms of Ledoux’s expansion coefficient (Corollary 5.3). We interpolate an arbitrary
r ≥ 0 between (k − 1)ρ and kρ for some k ∈ N. Let A ⊂ X be such that μX(A) ≥ ε. Put
B � Akρ

c. The following claim is requisite:

Claim. Let A be a subset of a metric space X. Then, (Akρ
c)(k−1)ρ ⊂ Aρc for each k ∈ N and

for all ρ ≥ 0, where A0 � A if k = 1.

We verify this claim. For all x ∈ (Akρ
c)(k−1)ρ, there exists some y ∈ Akρ

c such that
dX(x, y) ≤ (k−1)ρ. Now, consider a 1-Lipschitz function f on X defined by f (z) � dX(z, Aρ),
z ∈ X. For such a y, it follows from (Aρ)(k−1)ρ ⊂ Akρ for each k ∈ N that f (y) > (k − 1)ρ;
hence, x ∈ Aρc. Indeed, it follows that f (x) ≥ f (y)−dX(x, y) > (k−1)ρ−dX(x, y) ≥ 0. Thus,
the claim is verified.

Now, it follows that

(30) μX(B(k−1)ρ) ≤ 1 − μX(Aρ) ≤ 1 − μX(A) ≤ 1 − ε,
in which the leftmost inequality sign is due to the abovementioned claim. Having μX(B(k−1)ρ)
≤ 1 − ε from inequality (30), to adopt inequality (24) makes it possible to estimate the
leftmost-side of inequality (30) from below:

μX(B(k−1)ρ) ≥ (ExpL(X; 1 − ε, ρ))k−1μX(B)

= (ExpL(X; 1 − ε, ρ))k−1(1 − μX(Akρ)).(31)

Combining inequalities (30) and (31), we obtain

1 − (ExpL(X; 1 − ε, ρ))k−1(1 − μX(Akρ)) ≥ μX(Aρ) ≥ ExpG(X; ε, ρ)ε,

in which the rightmost inequality sign follows from inequality (20); hence, we obtain

μX(Akρ) ≥ ((ExpL(X; 1 − ε, ρ))k−1 − (1 − ExpG(X; ε, ρ)ε))(ExpL(X; 1 − ε, ρ))−(k−1)(32)

> 0,

in which the last inequality sign of positivity follows from an assumption on ExpG. In fact,
this assumption is just a universal upper ExpG bound (21) with strictness.

We are now ready to show the conclusion. Adopting the abovementioned interpolation
for all r ≥ 0, we see that
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1 − μX(Ar+ρ) ≤ 1 − μX(Akρ)

by using inequality (32)

≤ (1 − ExpG(X; ε, ρ)ε) ExpL(X; 1 − ε, ρ)(ExpL(X; 1 − ε, ρ))−k

< (1 − ExpG(X; ε, ρ)ε) ExpL(X; 1 − ε, ρ)(ExpL(X; 1 − ε, ρ))−r/ρ

= (1 − ExpG(X; ε, ρ)ε)(ExpL(X; 1 − ε, ρ))2(ExpL(X; 1 − ε, ρ))−(r+ρ)/ρ,

which implies the desired result (28), from which an exponential concentration in terms of
Gromov–Ledoux’s expansion coefficients (29) readily follows if ExpL(X; 1 − ε, ρ) > 1 as
desired. Thus, the theorem is proven. �

Remark 5.1. One can further observe that an exponential concentration in terms of
Gromov–Ledoux’s expansion coefficients yields an exponential concentration in terms of
Ledoux’s as long as the exponential concentration in terms of Gromov–Ledoux’s holds.

This exponential concentration in terms of Gromov–Ledoux’s expansion coefficients
(Theorem 5.5) gives more, namely an observable diameter of such a metric measure space
is bounded from above in terms of themselves:

Corollary 5.6. Assume that 1 > ExpG(X; ε, ρ)ε and ExpL(X; 1 − ε, ρ) > 1 for some
ε ≤ 1/2 and ρ. Let κ be such that 2(1 − ExpG(X; ε, ρ)ε)(ExpL(X; 1 − ε, ρ))2 > κ. Then, we
have

ObsDiam(X;−κ) ≤ 2ρ
ln ExpL(X; 1 − ε, ρ) ln

2(1 − ExpG(X; ε, ρ)ε)(ExpL(X; 1 − ε, ρ))2

κ
.

Proof. In a manner identical to the proof of Corollary 5.4, we obtain the claim. �

6. Ledoux’s Expansion Coefficient on a Metric Measure Space Satisfying Poincaré
Inequality and Volume Doubling

6. Ledoux’s Expansion Coefficient on a Metric Measure Space Satisfying Poincaré
Inequality and Volume Doubling

A metric measure space satisfying Poincaré inequality with a doubling measure pro-
vides us with a conspicuous result; in fact, in Cheeger [8], he demonstrates that real-
valued Lipschitz functions defined on such a metric measure space satisfy properties akin to
Rademacher’s differentiability theorem; in particular, this metric measure space possesses
a differentiable structure with which Lipschitz functions can be differentiated almost ev-
erywhere. The aforementioned summary of Cheeger’s work is due to Keith [12]; we refer
readers to their papers for more detailed accounts.

In this study as well, insomuch as we are concerned with which ExpL satisfies 1 <
ExpL < ∞, onward this section, we restrict our argument to a metric measure space sat-
isfying Poincaré inequality with a doubling measure. To this end, we begin with reviewing
Poincaré inequality and a doubling measure.

6.1. Review of Poincaré Inequality.
6.1. Review of Poincaré Inequality. In this study, we work with Poincaré inequality on

entire metric measure spaces. In this subsection, to refer to Poincaré inequality, referring
to Ledoux [16, Section 3.1] and [17, Section 2] and Shioya [24, Section 7.4], we gather
relevant concepts.
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Definition 6.1 (Variance). Let f be a real-valued locally Lipschitz continuous function
on a metric measure space X. A variance of f with respect to μX , denoted by VarμX , is
defined as

(33) VarμX ( f ) �
∫

X

(
f −

∫
X

f dμX

)2

dμX .

Definition 6.2 (Length of gradient). Let f be a real-valued locally Lipschitz continuous
function on a metric space X. A length of a gradient of f , denoted by |∇ f |, at x ∈ X is
defined as

(34) |∇ f |(x) � lim sup
y→x

| f (x) − f (y)|
dX(x, y)

� lim
r↓0

sup
y∈X;

0<dX (x,y)<r

| f (x) − f (y)|
dX(x, y)

.

|∇ f | is written as | grad f | as well.

Definition 6.3 (Energy). Let f be a real-valued locally Lipschitz continuous function on
a metric measure space X. An energy of f , denoted by  , is defined as

(35) ( f ) �
∫

X
|∇ f |2 dμX .

We are now ready to define Poincaré inequality:

Definition 6.4 (Poincaré inequality). Let f be a real-valued locally Lipschitz continuous
function on a metric measure space X. We say that X satisfies Poincaré inequality if there
exists some universal constant C > 0 such that

(36) C VarμX ( f ) ≤ ( f ).

6.2. ExpL > 1.
6.2. ExpL > 1. In this subsection, we show that Poincaré inequality enables us to demon-

strate that ExpL > 1 (see Theorem 6.1). Ledoux [16, Corollary 3.2] made this claim without
its proof. Nonetheless, the scenario of the proof being identical to that of Gromov and
Milman [11, Theorem 4.1] for closed smooth Riemannian manifolds, for completeness, we
reformulate their result in terms of ExpL and give all details of its proof:

Theorem 6.1. Let a metric measure space X satisfy Poincaré inequality. Then, we have
a lower bound for Ledoux’s expansion coefficient of μX on X of order ρ:

ExpL (X; 1 − ε, ρ) ≥ 1 +Cερ2,

where C > 0 is a constant attributed to Poincaré inequality.

Proof. Let A and B be two arbitrary Borel subsets of X such that μX(A) > 0 and μX(B) > 0,
respectively and dX(A, B) > 0. Consider a real-valued function f on X defined by

(37) f (x) �
1
μX(A)

−
(

1
μX(A)

+
1
μX(B)

)
min{dX(x, A), dX(A, B)}

dX(A, B)
, x ∈ X.

It is straightforward that f is bounded; indeed,

(38) −1/μX(B) ≤ f (x) ≤ 1/μX(A) for all x ∈ X.
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In particular, f (x) is constantly equal to 1/μX(A) and −1/μX(B) on A and B, respectively. It
follows readily that f is Lipschitz; indeed,

(39) ‖ f ‖Lip ≤
(

1
μX(A)

+
1
μX(B)

)
1

dX(A, B)
.

Combining inequality (39) and that

(40) |∇ f |(x) ≤ ‖ f ‖Lip for all x ∈ X,

which follows from the definitions of both Lipschitz (Definition 2.6) and a length of a gra-
dient (34), we obtain

(41) |∇ f |(x) ≤
(

1
μX(A)

+
1
μX(B)

)
1

dX(A, B)
for all x ∈ X.

In particular, inequality (40) yields

(42) |∇ f |(x) ≡ 0 on A � B,

so that combining the definition of energy (35) with inequality (41) and equation (42) with
regard to a length of a gradient of f , we obtain

(43) ( f ) ≤
(

1
μX(A)

+
1
μX(B)

)2 1 − μX(A) − μX(B)
dX(A, B)2 .

We now estimate VarμX ( f ) from below. It follows from the definition of a variance (33)
that

VarμX ( f ) ≥
∫

A

(
f −

∫
X

f dμX

)2

dμX +

∫
B

(
f −

∫
X

f dμX

)2

dμX ,

for which we note from inequality (38) that
∫

X f dμX is finite,

=
1
μX(A)

+

(∫
X

f dμX

)2

μX(A) +
1
μX(B)

+

(∫
X

f dμX

)2

μX(B)

≥ 1
μX(A)

+
1
μX(B)

.(44)

Combining Poincaré inequality (36) with an upper ( f ) bound (43) and a lower VarμX ( f )
bound (44), we obtain

C ≤
(

1
μX(A)

+
1
μX(B)

)
1 − μX(A) − μX(B)

dX(A, B)2

≤ 1 − μX(A) − μX(B)
μX(A)μX(B)dX(A, B)2 ,

from which it follows immediately that

(45) 1 − μX(A) ≥ (1 +CμX(A)dX(A, B)2)μX(B).

In particular, let B be such that μX(Bρ) ≤ 1 − ε, for which we let A = Bρc, so that μX(A) ≥ ε
and dX(A, B) ≥ ρ. Then, it follows readily from inequality (45) that

μX(Bρ) ≥ (1 +Cερ2)μX(B),
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which implies our claim. Thus, the theorem is proven. �

6.2.1. Closed Smooth Riemannian Manifold.
6.2.1. Closed Smooth Riemannian Manifold. The remainder of this subsection is de-

voted to a closed smooth Riemannian manifold. Let RicM denote the Ricci curvature of a
Riemannian manifold M.

Definition 6.5 (Spectral gap). Let M be a closed smooth Riemannian manifold and Δ be
the Laplacian on M. λ1(M) (> 0) denotes the first non-trivial eigenvalue of −Δ, which is
called the spectral gap of M.

Theorem 6.2 (vid., Ledoux [16, Proof of Theorem 3.1]). Let M be a closed smooth
Riemannian manifold. Then, we have a lower bound for Ledoux’s expansion coefficient of
μM on M of order ρ:

(46) ExpL(M; 1 − ε, ρ) ≥ 1 + λ1(M)ερ2.

Proof. Recall Poincaré inequality (36) on M; in fact, we have for an arbitrary real-valued
smooth function f on M

λ1(M) VarμM ( f ) ≤ ( f ).

Let f on M be as in the function (37). As shown in the proof of Theorem 6.1, f is
Lipschitz on M, Rademacher’s theorem enables us to show that f is differentiable almost
everywhere; we refer readers to, e.g. Villani [25, Theorem 10.8], therefore |∇ f |(x) is defined
μM-a.e. x ∈ M. Therefore, almost everywhere on M, the remainder of our proof actually
runs as in Theorem 6.1; accordingly, it turns out that a lower ExpL bound to be derived is
just what we have desired. Thus, the theorem is proven. �

To give corollaries to Theorem 6.2, we restrict our concern to works due to Lichnerow-
icz [20] and Yang [26]; we refer readers to Li and Yau [19] and references therein for detailed
accounts:

Corollary 6.3. Let M be a closed smooth n-dimensional Riemannian manifold with
RicM ≥ (n − 1)K > 0 for some constant K. Then, we have

ExpL(M; 1 − ε, ρ) ≥ 1 + nKερ2.

Proof. Thanks to Lichnerowicz’ result:

λ1(M) ≥ nK;

we refer readers to Lichnerowicz [20]; hence, we apply Lichnerowicz’ to the lower ExpL

bound (46). �

The lower bound for the spectral gap due to A. Lichnerowicz results from the Bochner
formula; we refer readers to Lichnerowicz [20], and Bérard-Meyer [5] for a different manner
of the proof of Lichnerowicz’. D. Yang showed that if the diameter of a closed smooth n-
dimensional Riemannian manifold with RicM ≥ (n − 1)K ≥ 0 for some constant K is small,
then his result is better than Lichnerowicz’; more specifically, we show a lower ExpL bound.
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Corollary 6.4. Let M be a closed smooth n-dimensional Riemannian manifold with
RicM ≥ (n − 1)K ≥ 0 for some constant K. Then, we have

ExpL(M; 1 − ε, ρ) ≥ 1 +
(

π2

diam(M)2 +
1
4

(n − 1)K
)
ερ2.

Proof. Thanks to Yang’s result:

λ1(M) ≥ π2

diam(M)2 +
1
4

(n − 1)K;

we refer readers to Yang [26]; hence, in a manner identical to the proof of Corollary 6.3, we
obtain the claim. �

6.3. Review of Volume Doubling.
6.3. Review of Volume Doubling. In this subsection, referring to Villani [25, Chap-

ter 18], we give a brief exposition of doubling property: ‘Controlling the volume of balls is
a universal problem in geometry. This means of course controlling the volume from above
when the radius increases to infinity; but also controlling the volume from below when the
radius decreases to 0. The doubling property is useful in both situations’. Subsequently, let
B(x, r) denote a closed ball of a metric space X of centre x ∈ X and radius r > 0.

Definition 6.6 (Doubling, doubling constant and (locally) volume doubling; vid., e.g.
Ambrosio and Tilli [1, Definition 5.2.1] and Villani [25, Chapter 18]). Let (X) denote the
σ-algebra of all Borel subsets of a metric measure space X. A Borel measure μX : (X) →
[0,+∞] is said to be doubling if μX is finite on bounded sets and there exists a constant
CμX ≥ 1 with respect to μX such that for all x ∈ X and r > 0,

(47) μX(B(x, 2r)) ≤ CμXμX(B(x, r)).

It is reasonable to designate the best constant CμX in the doubling (47) as the doubling con-
stant with respect to a doubling measure μX . We call a metric measure space of doubling (47)
of the doubling constant volume doubling. A Borel measure μX is said to be locally volume
doubling if for all fixed closed balls B(z,R) ⊂ X, there exists a constant CμX = CμX (z,R) such
that for all x ∈ B(z,R) and r ∈ (0,R) doubling (47) holds.

Remark 6.1. In particular, if CμX = 1, then X is a one-point set, i.e. #X = 1.

Following Shioya [24, p. 6], we define the support of μX , denoted by supp μX , as

supp μX � { x ∈ X | μX(U) > 0 for an arbitrary open neighbourhood U of x }.
Proposition 6.5 (vid., e.g. Villani [25, Proposition 18.4]). Let X be locally volume dou-

bling. Then, supp μX = X.

A doubling measure μX is characterised in terms of the volume comparison theorem for
a metric measure space. The theorem provides us with an upper bound for the growth of
r �→ μX(B(x, r)) for μX .

Theorem 6.6 (Volume comparison theorem for a metric measure space; vid., e.g. Ambro-
sio and Tilli [1, Theorem 5.2.2]). Let μX : (X) → [0,+∞] be a finite measure on bounded
sets. Then, μX is doubling if and only if there exists a constant CμX ≥ 1 such that
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μX(B(x2, r2))
μX(B(x1, r1))

≤ C2
μX

(
r2

r1

) ln CμX
ln 2

for all r1, r2 > 0 such that r1 ≤ r2 and for all x1, x2 ∈ X such that x1 ∈ B(x2, r2).

6.4. ExpL < ∞.
6.4. ExpL < ∞.

Theorem 6.7. Let X be a bounded and volume doubling metric measure space. Suppose
that for some x ∈ X and ρ there exists a closed ball of X of centre x and radius 2ρ such that
for some ε,

(48) (0 <) μX(B(x, 2ρ)) ≤ 1 − ε.
Then, we have

ExpL(X; 1 − ε, ρ) ≤ CμX

whose order ρ is such that

(49) 0 < ρ < min{1/2, 2(1 − ε) ln 2
ln CμX } diam(X), CμX > 1.

Proof. Supposition (48) gives us an a priori upper bound for ρ:

(50) ρ < diam(X)/2.

Further argument enables us to bound ρ from above in terms of ε, CμX and diam(X);
indeed, supposition (48), in which we note from Proposition 6.5 that μX(B(x, 2ρ)) > 0,
equivalently indicates a lower bound for a volume comparison as follows:

1
1 − ε ≤

μX(B(x, diam(X)))
μX(B(x, 2ρ))

to which applying the volume comparison theorem for a metric measure space (Theo-
rem 6.6), we obtain a further upper bound for the volume comparison:

≤ C2
μX

(
diam(X)

2ρ

) ln CμX
ln 2

.

Notably, supposition (48) implies that #X ≥ 2; hence, it follows from Remark 6.1 that
CμX > 1. Therefore, we obtain an upper bound for ρ as desired:

(51) ρ ≤ 2(1 − ε) ln 2
ln CμX diam(X).

Consequently, both upper bounds (50) and (51) for ρ yield conclusion (49).
We now focus on handling ExpL(X; 1 − ε, ρ) of its order ρ = ρ(ε,CμX , diam(X)) desired

above. Applying a closed ball satisfying supposition (48) to inequality (23), we conclude
that

ExpL(X; 1 − ε, ρ) ≤ μX(B(x, 2ρ))
μX(B(x, ρ))

≤ CμX ,

in which the last inequality sign is in virtue of doubling (47). Thus, the theorem is proven.
�
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7. An Upper Bound for the Diameter of a Bounded and Volume Doubling Metric
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7.1. An Upper Bound for the Diameter of a Bounded and Volume Doubling Metric
Measure Space.

7.1. An Upper Bound for the Diameter of a Bounded and Volume Doubling Metric
Measure Space.

Theorem 7.1. Let X be a bounded and volume doubling metric measure space with
ExpL(X; ε, ρ) > 1 for some ε and ρ. Then, the diameter of X is bounded from above in
terms of both Ledoux’s expansion coefficient of a doubling measure μX on X of order ρ and
the doubling constant with respect to μX:

diam(X)(52)

≤ 3ρmax

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ln(C4

μX
(1 − ε) ExpL(X; 1 − ε, ρ)ε−1)

ln ExpL(X; 1 − ε, ρ) ,
2 ln(3

ln CμX
ln 2 C3

μX
εExpL(X; ε, ρ))

ln ExpL(X; ε, ρ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Proof. The exponential concentration in terms of Ledoux’s expansion coefficient (Corol-

lary 5.3) enables us to show that for all Borel sets A ⊂ X such that μX(A) ≥ ε,
1 − μX(Ar)(53)

≤ (1 − ε) ExpL(X; 1 − ε, ρ) exp(−(ln ExpL(X; 1 − ε, ρ))r/ρ) for all r ≥ 0.

Let r > 0 be sufficiently small and fixed. Now, considering a positive parameter τ (≤ 1)
for diam(X), we observe a closed ball of X centred at an arbitrary x ∈ X and with a radius
τ diam(X). Let z ∈ X be distinct from x ∈ X such that

(54) (0 <)dX(x, z) = τ diam(X) + 2r(≤ diam(X))

for some τ such that τ diam(X) ≤ r; hence,

(55) (0 <)τ ≤ 1/3.

In the remainder of this proof, for such a closed ball B(x, τ diam(X)), we will put
μX(B(x, τ diam(X))) at ε from above and below; first, we observe

μX(B(x, τ diam(X))) ≥ ε.
In inequality (53), put A = B(x, τ diam(X)). Then, it follows from the definition of z of (54)
that

(56) A ⊂ B(z, 2(τ diam(X) + r))

and for all ς ∈ (0, 1)

μX(B(z, ςr)) ≤ 1 − μX(B(x, τ diam(X) + r))

≤ 1 − μX(Ar),(57)

in which we note from Proposition 6.5 that μX(B(z, ςr)) > 0; hence, it is allowable to apply
the volume comparison theorem for a metric measure space (Theorem 6.6) to
B(z, 2(τ diam(X) + r)) and B(z, ςr). We obtain the following volume comparison: observe
from Remark 6.1 that CμX > 1,
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μX(B(z, 2(τ diam(X) + r)))
μX(B(z, ςr))

≤ C2
μX

(
2(τ diam(X) + r)

ςr

) ln CμX
ln 2

= C3
μX

(
τ diam(X) + r

ςr

) ln CμX
ln 2

;

hence,

μX(B(z, ςr)) ≥ μX(B(z, 2(τ diam(X) + r)))
C3
μX

(
ςr

τ diam(X) + r

) ln CμX
ln 2

≥ μX(A)
C3
μX

(
ςr

τ diam(X) + r

) ln CμX
ln 2

with an inclusion relation (56)

≥ ε

C3
μX

(
ςr

τ diam(X) + r

) ln CμX
ln 2

.(58)

Combining inequalities (57) and (58) with inequality (53) results in

(59)
ε

C3
μX

(
ςr

τ diam(X) + r

) ln CμX
ln 2

≤ (1−ε) ExpL(X; 1−ε, ρ) exp(−(ln ExpL(X; 1−ε, ρ))r/ρ).

Hence, because r is arbitrary, letting r = τ diam(X) in inequality (59) and letting ς ↑ 1, we
obtain an upper bound for diam(X):

(60) diam(X) ≤ ρ ln(C4
μX

(1 − ε) ExpL(X; 1 − ε, ρ)ε−1)

τ ln ExpL(X; 1 − ε, ρ) .

Based on the following observation, we let

(61) μX(B(x, τ diam(X))) < ε.

Replace A with B(x, τ diam(X))c, so that condition (61) is rewritten as

(62) μX(A) > 1 − ε.
Let us observe an enlargement of order τ diam(X)/2 of A with respect to dX . It follows

that

(63) μX(B(x, τ diam(X)/2)) ≤ 1 − μX(Aτ diam(X)/2);

indeed, for all p ∈ Aτ diam(X)/2 take q ∈ A such that dX(p, q) = dX(p, A). Then, the triangle
inequality yields

dX(x, p) ≥ −dX(p, q) + dX(x, q)

> −τ diam(X)/2 + τ diam(X)

= τ diam(X)/2,

from which p ∈ B(x, τ diam(X)/2)c follows; therefore, we obtain inequality (63).
Furthermore, we apply the volume comparison theorem for a metric measure space (The-

orem 6.6) to B(x, τ diam(X)/2) to estimate μX(B(x, τ diam(X)/2)) (> 0) as follows:
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1
μX(B(x, τ diam(X)/2))

=
μX(B(x, diam(X)))
μX(B(x, τ diam(X)/2))

≤ C2
μX

(
diam(X)
τ diam(X)/2

) ln CμX
ln 2

= C3
μX
τ−

ln CμX
ln 2 ,

from which we obtain

(64) τ
ln CμX

ln 2 /C3
μX
≤ μX(B(x, τ diam(X)/2)).

Combining inequalities (63) and (64) into inequality (53) under condition (62) results in

τ
ln CμX

ln 2 /C3
μX
≤ εExpL(X; ε, ρ) exp(−(ln ExpL(X; ε, ρ))τ diam(X)/2ρ);

hence, we obtain an upper bound for diam(X):

(65) diam(X) ≤ 2ρ ln(τ−
ln CμX

ln 2 C3
μX
εExpL(X; ε, ρ))

τ ln ExpL(X; ε, ρ)
.

Finally, we are now in a position to evaluate τ (see inequality (55)) appeared in both upper
diameter bounds (60) and (65). It turns out that τ = 1/3 makes them actually reasonable.
Therefore, we obtain the desired upper bound (52) for the diameter of X.

Now, there remains a concern with an anti-logarithm that appeared in upper diameter
bound (65) under condition (61) with τ = 1/3. We have

3
ln CμX

ln 2 C3
μX
εExpL(X; ε, ρ) > 1;

indeed,

ε > μX(B(x, diam(X)/3))

≥ μX(B(x, 2 diam(X)/3))
CμX

, μX being volume doubling

≥ μX(B(x, 4 diam(X)/3))
C2
μX

, μX being volume doubling

=
1

C2
μX

.

Therefore, we can conclude the desired upper diameter bound to be constantly positive.
Thus, the theorem is proven. �

As a preceding work related to Theorem 7.1, to the best of our knowledge, Naor et al.
were the first to study an upper bound for the diameter of a certain bounded metric measure
space with the doubling constant (> 3), which is described in terms of its observable diam-
eter; cf., a comparison with an observable diameter and a diameter per se; we refer readers
to Naor et al. [23, Theorem 1.7].

7.2. An Upper Bound for the Diameter of a Closed Smooth Riemannian Manifold
with Non-Negative Ricci Curvature.

7.2. An Upper Bound for the Diameter of a Closed Smooth Riemannian Manifold
with Non-Negative Ricci Curvature. We conclude this section by briefly outlining some
previously conducted studies on the diameter of a complete connected smooth Riemannian



750 U. Tanaka

manifold and applying Theorem 7.1 to a closed smooth Riemannian manifold with non-
negative Ricci curvature.

The most well-known theorem on an upper bound for the diameter of a complete con-
nected smooth Riemannian manifold with Ricci curvature bounded from below in terms
of a positive constant, which can be traced back to the work of Sumner B. Myers (1941),
building on earlier work due to Ossian Bonnet, Heinz Hopf and John L. Synge, is currently
referred to as (Bonnet-)Myers’s theorem; for some contemporary studies, we refer readers to
Bakry and Ledoux [3] and Villani [25, p. 378]. We now review (Bonnet-)Myers’s theorem.

Theorem 7.2 ((Bonnet-)Myers’s theorem due to Myers [22]). Let M be a complete con-
nected smooth n-dimensional Riemannian manifold with RicM ≥ (n − 1)K > 0. Then, we
have

(66) diam(M) ≤ π√
K

;

furthermore, M is compact and its fundamental group is finite.

Cheng [9, Theorem 3.1] proved that the equality of the upper diameter bound (66) holds
if and only if M is isometric to an n-dimensional Euclidean sphere, which is referred to as
the generalised Toponogov sphere theorem and Cheng’s maximal diameter theorem.

In Ledoux [15, pp. 120–216], [16, Section 3.2, Notes and Remarks] and [17, Section 3],
he surveyed a relationship between the spectral gap and diameter of a closed smooth Rie-
mannian manifold. We review his upper diameter bound, which is based on Cheng [9]:

Theorem 7.3 (vid., Ledoux [16, Theorem 3.5] and [17, Theorem 3.1]). Let M be a com-
plete connected smooth n-dimensional Riemannian manifold without boundary with finite
volume and Ricci curvature bounded below. Then, M is compact provided

lim inf
r→∞

ln (1 − μM(B(p, r)))
r

= −∞
for some (or all) p ∈ M. We have then λ1(M) > 0. In particular, if RicM ≥ 0, then

diam(M) ≤ Cn√
λ1(M)

,

where Cn is a positive constant depending only on n.

We are now in a position to state our upper bound for the diameter of a closed smooth
Riemannian manifold with non-negative Ricci curvature.

Theorem 7.4. Let M be a closed smooth n-dimensional Riemannian manifold with RicM

≥ 0. Suppose that for some p ∈ M and ρ there exists a closed metric ball of M of centre p
and radius 2ρ such that for some ε,

(0 <)μM(B(p, 2ρ)) ≤ 1 − ε.
Then, we have

(67) diam(M) ≤ 3ρmax
{

ln(25n(1 − ε)ε−1)
ln(1 + λ1(M)ερ2)

,
2 ln(3n24nε)

ln
(
1 + λ1(M)(1 − ε)ρ2)

}

whose order ρ is such that
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(68) 0 < ρ < min{1/2, 2(1 − ε) 1
n } diam(M).

Proof. First, we observe that condition (49) for M is actually given by that of (68) because
CμM = 2n, which results from Bishop–Gromov’s volume comparison theorem. In virtue of
Theorems 6.2 and 6.7, it turns out that the Ledoux’s expansion coefficient of μM on M of
order ρ bounded above (68) is bounded as per below:

(69) 1 + λ1(M)ερ2 ≤ ExpL(M; 1 − ε, ρ) ≤ 2n.

Combining our upper diameter bound (52) with the upper and lower bounds for ExpL(M; 1−
ε, ρ) of (69) and CμM , we obtain the desired upper bound for diam(M) of (67). Thus, the
theorem is proven. �

Remark 7.1. For a compact connected smooth n-dimensional Riemannian manifold with
RicM ≥ −(n − 1)K, K ≥ 0, under the supposition of Theorem 7.4, one can demonstrate
that Bishop–Gromov’s volume comparison theorem enables us to show the result akin to
the upper bound for Ledoux’s expansion coefficient (69). This upper bound is described
in terms of the local volume doubling constant with respect to the Riemannian measure; in
fact, for some ε,

ExpL(M; 1 − ε, ρ) ≤ 2n exp(2(n − 1)
√

Kρ)

for some ρ = ρ(ε, n, diam(M),K) > 0. In this paper, we refrain from detailing this result.

8. Conclusions

8. Conclusions
In this study, we investigated an exponential concentration in terms of Gromov–Ledoux’s

expansion coefficients (Theorem 5.5), an upper bound for Ledoux’s expansion coefficient on
a bounded and volume doubling metric measure space (Theorem 6.7) and an upper bound
for the diameter of a bounded and volume doubling metric measure space (Theorem 7.1)
and of a closed smooth n-dimensional Riemannian manifold with RicM ≥ 0 (Theorem 7.4).
We assumed that Ledoux’s expansion coefficient > 1 while dealing with an exponential
concentration in terms of Ledoux’s expansion coefficient. We demonstrated that a metric
measure space satisfying Poincaré inequality yields one with Ledoux’s expansion coefficient
> 1 (Theorem 6.1).

We conclude this study by referring to Gromov’s ‘Green Book’, in which he proposed
the following problem regarding an expansion coefficient (Definition 4.1) and an observ-
able diameter (Definition 3.2) of a metric measure space; we refer readers to Gromov [10,
Chapter 3 1

2 .35]:

Exercise. Bound ExpG(X; ε, ρ) from below in terms of ObsDiam(X;−κ).
Numerous efforts should be made to study Gromov’s problem mentioned above. From a

fundamentally novel perspective of the procedure for our results, we will study this problem
later.
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