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Abstract. Hofer’s metric is a very interesting way of measuring distances be-
tween compactly supported Hamiltonian symplectic maps. Unfortunately, it is not
known yet how to compute it in general, for example for symplectic maps far
away from each other. It is known that Hofer’s metric is locally flat, and it can be
computed by the so-called oscillation norm of the difference between the Poincare
generating functions of symplectic maps close to identity. It is shown here that the
same result holds for arbitrary extended generating function types and symplectic
maps, as long as the respective generating functions are well defined for the given
symplectic maps. This result plays a crucial role is formulating and solving the
optimal symplectic approximation problem in Hamiltonian nonlinear dynamics.
Applications to beam physics are oulined.

1. Introduction

Often, in Hamiltonian dynamics, it is necessary to study the quality of the ap-
proximation of the real dynamics by some approximate numerical or analytical
method, since the equation of the motion cannot be solved analytically in closed
form. Lately, the method of choice is the symplectic integration method, which
is a category of the so-called geometric integrators [10]. For very complicated
weakly nonlinear Hamiltonian systems, as for example large particle accelerators,
a variant of the symplectic integration methods is utilized, called symplectifica-
tion of one-turn maps. To this end, an approximate functional relationship is cal-
culated for trajectories of particles one turn around the accelerator, and the long-
term behavior of the beam is obtained by iterating this map. The one-turn map’s
approximation is not exactly symplectic, and the method that transforms this map
into a symplectic map is called symplectification [19]. The study of the sym-
plectification in an optimal way lead to the consideration of Hofer’s metric [11]
for the formulation of the optimal symplectification conditions [6]. However, the
same theory may be applied to symplectic integrators in the traditional sense. The
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success of the optimal symplectification [7, 19] underlines the deep connections
between the geometric properties of the symplectic diffeomorphisms with respect
to Hofer’s metric and the dynamics of the corresponding Hamiltonian system that
generates the symplectomorphisms.

In this paper, Hofer’s metric is reviewed, and a result on the so-called local flat-
ness of Hofer’s metric in proved. The local flatness was a crucial argument in
the solution of the optimal symplectification [6]. In general, it is not possible to
compute Hofer’s metric between two arbitrary Hamiltonian symplectic maps. The
local flatness phenomenon allows us to do that locally. This local result proved
to be sufficient for the optimal symplectification theory. Following a suggestion
of McDuff [15], the computation of Hofer’s metric between two maps that are
close can be done using generating functions (of canonical transformations). In
the following sections, we prove that the same formula involving computation
of Hofer’s metric in terms of generating functions holds for arbitrary generating
function types that are valid for the given symplectic maps. In another paper [5],
we proved the existence of infinitely many generating functions types. That we
can apply the distance computation formula for any type of generating function
is the key of the theory of optimal symplectic approximation. More generally,
Hofer’s metric, the local flatness phenomenon, and related properties may be use-
ful in other aspects of Hamiltonian dynamics.

1.1. Hofer’s Metric

We use geometric and topological methods to solve a nonlinear dynamics prob-
lem. This is astonishing, since despite Hamiltonian systems have been studied for
such a long time, there was no symplectic topology 30 years ago. Now symplectic
topology is a very lively research field, and we will extend some results concern-
ing Hofer’s metric. In [11], a surprising intrinsic metric has been introduced, now
called Hofer’s metric, on the space of compactly supported Hamiltonian symplec-
tomorphisms, Hamc

(
R

2n
)
. Recall that a symplectic map is called Hamiltonian

if it is the time one map of the flow of some function defined on phase space. The
fact that such a Finsler metric exists on a non-compact infinite dimensional Lie
group points out the special nature of Hamiltonian systems.

We give a short description of this norm [15]. In general, let G be a Lie group
with Lie algebra L. A norm ‖ · ‖ on L is called invariant if it is invariant under
the adjoint action of G

‖ ξ ‖=‖ g−1ξg ‖ (1)

(defined through the exponential of ξ at t = 0) for every ξ ∈ L and every g ∈ G.
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Any such norm gives rise to a bi-invariant intrinsic metric on the Lie group via

d (g0, g1) = inf
g

∫ 1

0
‖ ġ (t) g (t)−1 ‖ dt (2)

for g0, g1 ∈ G. The infimum is taken over any smooth path g : [0, 1] → G
connecting g0 = g (0) to g1 = g (1).

Specifically, the compactly supported Hamiltonian vector fields of R
2n can be

identified with the space of compactly supported functions C∞
c

(
R2n

)
. The ve-

locity vector of (2) is the Hamiltonian vector field. Hence, Hofer defined the
following L∞-type norm on compactly supported Hamiltonian functions

||XHt
|| � sup

z∈R2n

Ht (z) − inf
z∈R2n

Ht (z) . (3)

For convenience we denote it as ||Ht||. This norm is called the oscillation norm.
The adjoint actions are the symplectic variable changes. For the Hamiltonian
functions the adjoint actions are the transformations H 	−→ H ◦ ψ, for every
H ∈ C∞

c

(
R

2n
)

and every ψ ∈ Symp
(
R

2n, J
)
. The oscillation norm is obviously

invariant under the adjoint action

||Ht|| = ||Ht ◦ ψ||. (4)

In fact, the norm stays invariant under the larger diffeomorphism group of R
2n.

The induced length spectrum for paths {φt}, t ∈ [0, 1] in Hamc
(
R

2n
)

is given by

� {φt} =

∫ 1

0
||Ht||dt (5)

where Ht is the, possibly time dependent, generating Hamiltonian. For any two
ϕ,ψ ∈ Hamc

(
R

2n
)
, the distance between them is defined as

ρ (ϕ,ψ) = inf
φ0=ϕ,φ1=ψ

� {φt} = inf
φ0=ϕ,φ1=ψ

∫ 1

0
||Ht||dt. (6)

The infimum is taken over all smooth paths in Hamc
(
R

2n
)

from ϕ to ψ. The
following proposition holds [12]

Proposition 1. For all φ,ϕ, ψ ∈ Hamc
(
R

2n
)

the following hold

• ρ (φ,ϕ) ≥ 0

• ρ (φ,ϕ) = ρ (ϕ, φ)
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• ρ (φ,ψ) ≤ ρ (φ,ϕ) + ρ (ϕ,ψ)

• ρ (φ,I) = ρ
(
ϕ ◦ φ ◦ ϕ−1,I

)
• ρ (ψ ◦ φ,ψ ◦ ϕ) = ρ (φ,ϕ) = ρ (φ ◦ ψ,ϕ ◦ ψ)

• the map t → ρ (φt,I) is uniformly continuous.

The first three properties mean that ρ is a pseudo-metric. The highly nontrivial
fact is [12]:

Theorem 2. Let φ,ϕ ∈ Hamc
(
R

2n
)
. Then

ρ (φ,ϕ) = 0 ⇔ φ = ϕ. (7)

Therefore, Hofer’s metric ρ is an essentially unique, genuine, intrinsic, bi-invariant,
Finsler metric, i.e., it satisfies the positive definiteness, separation and symmetry
axioms, the triangle inequality, and the fifth statement of the above proposition. It
has been shown in [4] that all the invariant Lp norms, 1 ≤ p < ∞,

||H||p =

(∫
R��

|H|pωn

)1/p

(8)

give rise to pseudo-metrics, but not genuine metrics. So, the only non-trivial
case is p = ∞. We also mention that varying the metric in the t direction gives
equivalent metrics.

1.2. Connectedness of the Group of Hamiltonian Symplectic Maps

There is a lot of information scattered in the literature on the connectedness of
the group of symplectic and Hamiltonian maps [1, 12, 15]. There is also some
confusion regarding certain aspects of this topic. For self consistency, the most
important results are presented in this subsection.

It follows from the existence of generating functions (or the so-called Weinstein
charts) that the group of symplectic maps (compactly supported symplectic maps)
are locally contractible, and consequently are locally connected by smooth arcs.
Then, the identity components consist of all symplectic maps which are isotopic
to the identity through symplectic maps (compactly supported symplectic maps).
Smooth isotopies are in one-to-one correspondence with families of smooth vector
fields, i.e., if φt is such an isotopy, then it gives rise to the vector fields

Xt =
dφt

dt
◦ φ−1

t . (9)
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If the isotopy is symplectic, then so is the vector field. On simply connected
manifolds, the symplectic vector fields are Hamiltonian (in general, on connected
manifolds, only locally Hamiltonian). Therefore, on R

2n every symplectic isotopy
is Hamiltonian. Moreover, it can be shown that in this case the group of symplectic
and Hamiltonian maps coincide. Indeed, given any M ∈ Symp

(
R

2n
)
, to show

that it is Hamiltonian, according to the above discussion, it is enough to show that
M is the endpoint of a symplectic isotopy.

Denote the constant part of M by c, i.e., M (0) = c. Homotop M = c + M0 to
an origin preserving symplectic map by Mt = tc + M0, t ∈ [0, 1]. We have that
Mt is symplectic for each t and M0 (0) = 0. Using the Alexander trick, an arc
can be found from the linear part of M0, L, to M0, that is

M0
t =

1

t
M0 ◦ tI (10)

for t ∈ (0, 1]. It is easy to see that M0
t is symplectic for each t (the Alexander

trick being in fact only a change of scale), and from the Taylor expansion of M0
t

is follows that
lim
t→0

M0
t = L. (11)

Furthermore, L = Jac (L) ∈ Sp (2n, R), and it is well-known that Sp (2n, R) is
contractible. There are several ways to see this. For example, any L ∈ Sp (2n, R)
can be written as

L = eJS1eJS2 (12)

where S1, S2 are symmetric matrices and J is the matrix of the standard symplec-
tic structure [3]. Therefore, it is enough to define the arc

Lt = etJS1 ◦ etJS2 (13)

t ∈ [0, 1] to obtain the final part of the total isotopy. Putting together the different
parts by juxtaposition of paths, we obtain the following piecewise smooth isotopy

Mt =

⎧⎨⎩
Lt, t ∈ [0, 1/3]
M0

t , t ∈ (1/3, 2/3]
tc + M0, t ∈ (2/3, 1].

(14)

By replacing the parameter t by a smooth function f : [0.1] → [0, 1] such that
it is constant in the neighborhoods of the non-smooth points, we finally obtain a
smooth isotopy from the identity to M, showing that every M ∈Symp

(
R

2n
)

is
in fact ∈Ham

(
R

2n
)
.
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The next natural question is the following: if M ∈ Sympc
(
R

2n
)
, then is it true

that M ∈Hamc
(
R

2n
)
? In general, the answer is not known. It is true for n < 3

[9]. Moreover, it is known that Hamc
(
R

2n
)

is the C0 closure of Sympc
(
R

2n
)

for any n. Again, there are several ways to see this. Perhaps the easiest is to
notice that for any compactly supported diffeomorphism φ such that supp(φ) ⊂
D, and any diffeomorphism θ, supp

(
θ ◦ φ ◦ θ−1

)
⊂ θ (D). It follows that any

M ∈Sympc
(
R

2n
)

can be conformally rescaled to have support in an arbitrary
small neighborhood of a point. Then, the Alexander trick (10) gives an iso-
topy from M to an element in Sympc

(
R

2n
)

arbitrarily C0-close to the identity.
Therefore, for computational purposes we can always interchange symplectic with
Hamiltonian, even in the compactly supported case.

2. Local Flatness of Hofer’s Metric

Parametrization of a neighborhood of M is possible in the C 1 topology, utilizing
the theory of generating functions. The first results in this direction have been
obtained in [2] for Hamiltonian maps C1 close to identity and Poincaré’s generat-
ing function, and then it was extended to Hamiltonian maps C 1 close to identity
and all compactly supported generating functions in [13] and [15]. While the ap-
proach of [13] is more general, as it holds on any symplectic manifold, we are
only interested in R

2n, and the method of [2] lends itself more easily to general-
izations. The main idea is to replace the Hamiltonian maps by their generating
functions, and try to express Hofer’s metric between two maps as some norm of
the difference of their generating functions. In [2] this was proven to be possible
in some cases. However, in the extended theory of generating functions [5, 7] it
was shown that in fact there exist uncountably many generator types for any sym-
plectic map, some of which are not compactly supported. To be able to decide
which generating function type provides the optimal symplectification, the result
of [2] must be generalized to every generator type.

More precisely, introducing a map Φα that sends a symplectic map M into its
generating function F of type α, we prove that Φα is an isometry. Formally, we
can state the result as the following main theorem:

Theorem 3. There exists a neighborhood E of any M ∈ Hamc
(
R2n

)
, and a

neighborhood Z of 0 in C∞
c

(
R

2n
)

such that the map

Φα : E → Z, Φα (M) = F (15)
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is isometric. That is, for every F,G ∈ Z

ρ (M,N ) =
1

|µ|
||Φα (M) − Φα (N ) || =

1

|µ|
||F − G||. (16)

As a consequence, the inverse of the isometry takes any function from (Z, || · ||)
into a Hamiltonian symplectomorphism in (E , ρ) depending on α. This shows
that, considering the space (Z, || · ||) a flat space (in which straight lines are min-
imal geodesics), their image under Φ−1

α : Z → E in Hamc
(
R2n

)
remain locally

flat minimal geodesics. That is why this results is called the local flatness phe-
nomenon.

The proof uses three main ingredients. First, there is an intimate relationship be-
tween fixed points of symplectic maps and critical points of generating functions,
which is presented in the next subsection. Second, the proof in [2] is based on
the Hamilton-Jacobi equation. In the following the generalized Hamilton-Jacobi
equation is derived, adapted to our situation. It provides the time evolution of any
generator type. Finally, the proof uses a theorem of Siburg [20], which is stated
without proof. The theorem essentially states that paths without nontrivial fixed
points are absolutely length minimizing for Hofer’s metric.

2.1. Review of the Extended Generating Function Theory

Here we summarize the main result of the extended generating function theory
[5, 7].

Definition 4. A function F defined by

(∇F )T =

(
α1 ◦

(
M
I

))
◦

(
α2 ◦

(
M
I

))−1

(17)

where M is a symplectic map and α = (α1, α2)
T is a conformal symplectic map

satisfying

(Jac (α))T

(
02n I2n

−I2n 02n

)
(Jac (α)) = µ

(
J2n 02n

02n −J2n

)
(18)

µ ∈ R
×, is called a generating function of type α for M.

Of course, the existence is tied to the existence of the inverse in the defining rela-
tion, but always there are infinitely many conformal symplectic maps that satisfy
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this requirement for any given symplectic map, so it follows that to any symplectic
map infinitely many generating function types can be constructed.

Also, it follows from the above definition that the inverse relationship

M =

(
α1 ◦

(
∇F
I

))
◦

(
α2 ◦

(
∇F
I

))−1

(19)

holds with α−1 =
(
α1, α2

)T .

2.2. The Fixed Point-Critical Point Relationship

In this subsection we study an interesting property of generating functions. A
point zf is called a fixed point of the symplectic map M if it acts on it as the
identity map, that is M (zf ) = zf . It follows that the iterates of the map have the
same fixed points,

Mk (zf ) = Mk−1 ◦M (zf ) = Mk−1 (zf ) = ... = M (zf ) = zf . (20)

Moreover, the inverse M−1 also has the same fixed points,

M−1 (zf ) = M−1 ◦M (zf ) = zf . (21)

To sum up, we can say that any integer power of a symplectic map has the same
fixed points as the map itself. Thus the set of fixed points form a topological in-
variant of the map under iteration. Generating functions can be connected with
these fixed points. For start, let us consider a special class of generating functions.
We assume that the generating functions are globally defined, otherwise the the-
ory is valid for the fixed points in the regions where they are defined. The critical
points of functions in this set are the fixed points of the symplectic maps, and
conversely, the fixed points of the map are critical points of the function. If the
symplectic maps are compactly supported, then these generating functions are ex-
actly the generating functions with compact support. This can be easily seen if we
argue geometrically. Recall that a symplectic map is a Lagrangian submanifold in
the product manifold. Then, the fixed points of the map are exactly the intersec-
tion points of this submanifold with the diagonal. On the other hand, the critical
points of the generating function are the intersection points of the Lagrangian sub-
manifold determined by the function with the zero section. Now, if we identify
the diagonal with the zero section by some given α, the fixed points of the map
will go into critical points of the generating functions.
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Explicitly, given a symplectic map, we can choose only α’s that satisfy the transver-
sality condition. On the other hand, identification of the diagonal with the zero
section requires that

α (∆) = Z (22)

which further restricts the pool of α’s. A necessary condition is that the generating
functions in this class can generate the identity map. If the map is close enough
to the identity, then also the transversality condition is satisfied automatically.
Equation (22) can be expanded as⎛⎜⎜⎝ α1 ◦

(
I
I

)
α2 ◦

(
I
I

)
⎞⎟⎟⎠ (z) =

(
0
I

)
(w) . (23)

Applying zf to (17), we obtain that

∇F ◦ α2 ◦

(
M
I

)
(zf ) = α1 ◦

(
M
I

)
(zf ) (24)

which is equivalent to

∇F ◦ α2 ◦

(
I
I

)
(zf ) = α1 ◦

(
I
I

)
(zf ) . (25)

Using (23) we arrive to

∇F (wf ) = 0 (26)

where wf is given by zf and the identification process. From the explicit con-
straints we will see that actually wf = zf . Hence, the fixed points of the map are
critical points of the generating functions from this set.

The next question is whether this is true conversely: are all the critical points of
generating functions in this set fixed points of the map? As has been shown,

M =

(
α1 ◦

(
∇F
I

))
◦

(
α2 ◦

(
∇F
I

))−1

(27)

or

M◦

(
α2 ◦

(
∇F
I

))
(wc) =

(
α1 ◦

(
∇F
I

))
(wc) (28)
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where wc are the critical points of F . From (22) it follows that

α−1 (Z) = ∆ (29)⎛⎜⎜⎝ α1 ◦

(
0
I

)
α2 ◦

(
0
I

)
⎞⎟⎟⎠ (w) =

(
I
I

)
(z) . (30)

Combining what we have derived sofar, we are able to answer the question about
critical points. Using ∇F (wc) = 0, from (28) and (30) we obtain

M (zc) = zc. (31)

Again, zc is the point corresponding to wc via the identification, and we will see
that zc = wc. Hence, wc are fixed points of the symplectic map. In conclusion,
there is a one-to-one correspondence between fixed points of the map and critical
points of the generating functions in this set.

Now we elaborate in the direction of finding the explicit constraints for this class
of generating functions. Beside the constraints given by (18) we have another set
given by (23), which in terms of the entries in the Jacobian of α read

A (z, z) + B (z, z) = 0 (32)

C (z, z) + D (z, z) = I. (33)

But we already know that [7], with M = I , this set is nothing else than generating
functions constructed via any α of the form

α =

(
−µJ µJ

1
2 (I + JS) 1

2 (I − JS)

)
µ ∈ R

×, S = ST . (34)

The critical points of these generators are in one-to-one correspondence with the
fixed points of the map. Now it is straightforward to check that for any generating
function in this set indeed wf = zf and zc = wc.

The above results can be extended to any generating function, with the condition
that it can be used to generate the identity map. The difference between the above
set and the other generating functions is that they will not identify the diagonal
with the zero section, but some other section. However, this little inconvenience
can be circumvented by noticing that subtracting from the generating function the
function that generates the identity map, we get almost the same results. That is,
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suppose we have the following

∇F ◦ α2 ◦

(
M
I

)
(z) = α1 ◦

(
M
I

)
(z) (35)

∇F0 ◦ α2 ◦

(
I
I

)
(z) = α1 ◦

(
I
I

)
(z) (36)

where we denoted by F0 the same type of generating function as F , but which
generates the identity map. Then, if z = zf , the right hand sides are the same, and
we obtain that

∇ (F − F0) (wf ) = 0. (37)

The fixed points can be obtained from

zf =

(
α2 ◦

(
I
I

))−1

(wf ) . (38)

So, there is still a one-to-one correspondence between fixed points of symplec-
tic maps and critical points of generating functions in the above modified sense.
Of course, in the case of the (34) set F0 = 0, and the previous results can be
recovered.

Finally, to put the results in the form that we will need them to prove the theorem,
consider the case when the same generator type α exists for two symplectic maps
M and N . It follows that

∇F ◦ α2 ◦

(
M
I

)
(z) = α1 ◦

(
M
I

)
(z) (39)

∇G ◦ α2 ◦

(
N
I

)
(z) = α1 ◦

(
N
I

)
(z) . (40)

Then, on the set of common fixed points zf of M and N we obtain that

∇ (F − G) (wf ) = 0. (41)

2.3. The Generalized Hamilton-Jacobi Equation and Applications

In this subsection we prove the most general Hamilton-Jacobi equation, associated
to the time evolution of any generating function. As we have seen, critical points
of generating functions are closely related to fixed points of the map. But more
can be said. We will show that, actually every generating function of compact
support assumes the same value at the fixed points of the map. These numbers
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are called the action of the fixed points, that is, if zf is a fixed point of M, define
A (zf ,M, µ) as the value taken by any generating function. Call the set of all
such numbers, as zf spans all the fixed points, the action spectrum of M

σµ (M) = {A (zf ,M, µ) ; M (zf ) = zf} . (42)

The spectrum depends parametrically on the conformality factor µ of α, and is
a symplectic invariant of the map. To show the claim, we need to prove that the
generating functions satisfy a generalized Hamilton-Jacobi equation. Based on
the proof in [8] for linear α’s, here we present the general proof. Assume that the
flow is generated by the time-dependent Hamiltonian Ht, and the corresponding
time t maps can be represented at any moment by a time-dependent generating
function Ft. We claim the following.

Theorem 5. The following Hamilton-Jacobi equation is satisfied for any w ∈
R

2n :
∂

∂t
Ft (w) = µHt ◦

(
α1 ◦

(
Nt

I

))
(w) (43)

where Ft is the generating function associated to any α satisfying (18), and Nt =
(∇Ft)

T at every moment t.

Proof: We are situated in the
(
R

4n, J4n

)
symplectic space, with symplectic co-

ordinates (w, ŵ). Consider the extended phase space R
4n+2 by including the

canonical pair of variables
(
t,−H̄t

)
. The symplectic structure modifies to

ω = ω0 − dt ∧ dH̄t (44)

the differential form of Cartan. Take the one-form

λe = ŵdw + H̄tdt (45)

where H̄t = µHt ◦

(
α1 ◦

(
Nt

I

))
. We prove that λe is closed. We have that

dλe =

2n∑
i,j=1

∂ŵi

∂wj

dwj ∧ dwi+

2n∑
i=1

(∂ŵi

∂t
dt ∧ dwi+

∂H̄t

∂wi

dwi ∧ dt
)
+

∂H̄t

∂t
dt ∧ dt

=
2n∑
i<j

(
Jac (Nt) − Jac (Nt)

T
)

dwj ∧ dwi +
2n∑
i=1

(
∂ŵi

∂t
−

∂H̄t

∂wi

)
dt ∧ dwi

=
2n∑
i=1

(
∂ŵi

∂t
−

∂H̄t

∂wi

)
dt ∧ dwi. (46)
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On the other hand
dŵ

dt
= Ṅt (w) = Jac (Nt (w)) · ẇ +

∂ŵ

∂t
(47)

∂ŵ

∂t
= Ṅt (w) − Jac (Nt (w)) · ẇ. (48)

Recall that

w = α2 ◦

(
Mt

I

)
(z) (49)

ŵ = α1 ◦

(
Mt

I

)
(z) (50)

and ẑ = Mt (z) is the solution of the initial value problem
dẑ

dt
= J∇ẑHt (ẑ) (51)

ẑ (t = 0) = z. (52)

We compute

∂H̄t

∂w
(w) = µ∇w

(
Ht ◦

(
α1 ◦

(
Nt

I

)))
(w) (53)

= µ

[
Jac

(
α1 ◦

(
Nt

I

))
(w)

]T

· ∇ẑH (ẑ) (54)

= µ

[(
Aα Bα

)
·

(
Nt

I

)]T

· ∇ẑH (ẑ) (55)

= µ (AαNt + Bα)T · ∇ẑH (ẑ) (56)

= µ
(
NtA

αT + BαT
)
· ∇ẑH (ẑ) (57)

where in the second row we used ẑ = α1 ◦

(
Nt

I

)
(w), in the third row

Jac (Nt) = Nt and the notation for the Jacobian of α−1

α# = Jac
(
α−1

)
=

(
Aα Bα

Cα Dα

)
. (58)

In the last row the fact that Nt is symmetric, NT
t = Nt is also utilized. We can

express α# in terms of entries of α#. From (18) it follows that

α# = −
1

µ
J̃4nαT

#J4n (59)

= −
1

µ

(
J2n 02n

02n −J2n

)(
AT CT

BT DT

)(
02n I2n

−I2n 02n

)
(60)
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which reads explicitly

Aα =
1

µ
J2nCT , Bα = −

1

µ
J2nAT (61)

Cα = −
1

µ
J2nDT , Dα =

1

µ
J2nBT . (62)

Finally, we obtain

∂H̄t

∂w
(w) = µ

(
NtA

αT + BαT
)
· ∇ẑHt (ẑ) (63)

= (A − NtC) · J∇ẑHt (ẑ) . (64)

Analogously, the calculation of ∂ŵ
∂t

proceeds as follows

∂ŵ

∂t
=

d

dt
(α1 (ẑ, z)) − Nt ·

d

dt
(α2 (ẑ, z)) (65)

=
∂α1 (ẑ, z)

∂ẑ
·
dẑ

dt
− Nt ·

∂α2 (ẑ, z)

∂ẑ
·
dẑ

dt
(66)

= (A − NtC) · J∇ẑHt (ẑ) . (67)

Hence, dλe = 0. The vanishing first cohomology class guarantees the existence
of a function Ft (w) such that

dFt (w) = λe = ŵdw + H̄t (w) dt (68)
∂Ft (w)

∂w
dw +

∂Ft (w)

∂t
dt = ŵdw + H̄t (w) dt. (69)

Comparing coefficients, we get that indeed Ft (w) is the generating function

∇Ft (w) = Nt (w) = ŵ (70)

and the advertised result

∂Ft (w)

∂t
= µHt ◦

(
α1 ◦

(
Nt

I

))
(w) . (71)

�

Finally, as an application, it can be shown that compactly supported generating
functions assume the same value at the fixed points of the symplectic map. Notice
that the right hand side of (71) can be expressed as

Ht ◦

(
α1 ◦

(
Nt

I

))
(w) = Ht ◦

(
α1 ◦ α ◦

(
Mt

I

)
(z)

)
(72)

= Ht ◦Mt (z) . (73)
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In the derivation we used the following

α−1 ◦ α =

(
α1 ◦ α
α2 ◦ α

)
= I. (74)

Therefore, α1 ◦ α is the identity for the first 2n components and 0 for the second
2n components. Also, if we consider only time-independent Hamiltonians, H
is invariant under its own flow at any time, H = H ◦ Mt, since H is constant
along the solutions of the Hamiltonian dynamical system. Reparametrization with
respect to time, such that M is the time 1 flow of Ht, and integration of (68) gives

F ◦ α2 ◦

(
M
I

)
(z) − F0 ◦ α2 ◦

(
I
I

)
(z) (75)

=

∫ w(1)

w(0)
∇F (w) · dw + µ

∫ 1

0
Ht ◦Mt (z) dt. (76)

We used M0 = I , and the notation F1 = F . If z = zf , the first term on the right
hand side is vanishing because in this case w (0) = w (1) as can be seen from
(49). Hence, we get

(F − F0) (wf ) = µ

∫ 1

0
Ht ◦Mt (zf ) dt (77)

with

wf = α2 ◦

(
I
I

)
(zf ) . (78)

In particular, for compactly supported generating functions (77) takes the form

F (zf ) = µ

∫ 1

0
Ht ◦Mt (zf ) dt = A (zf ,M, µ) . (79)

This means that generating functions in this set, with the same conformality factor,
take the same value at the fixed points of the symplectic map. In general, the other
generating functions, after subtracting the part that generates the identity, take the
same value at points that are in one-to-one correspondence with the fixed points.
In [15] it is shown that the action of a fixed point is related to the area enclosed
by certain loops, thus is no surprise that the action depends parametrically on the
conformality factor.

It is also known that the action spectrum of compactly supported Hamiltonian
maps is compact and nowhere dense, and in general does not depend continuously
with respect to M. For details we refer the reader to [12]. On the other hand,
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Weinstein proved that the fixed points of a perturbed symplectic map are close to
the fixed points of the unperturbed map [23]. A related result is due to Viterbo,
who proved that any compactly supported symplectic map has infinitely many
periodic points inside its support [22].

2.4. Siburg’s Theorem

Some preparation is needed before the theorem statement.

Definition 6. Let I ⊂ R be a connected subset with non-empty interior. A smooth
path {φt} : I → Hamc

(
R

2n
)

is called regular if XHt
�= 0 for every t ∈ I .

Definition 7. Let {φt} : I → Hamc
(
R

2n
)

be a smooth regular path.

• {φt} is called a minimal geodesic if for all a, b ∈ I , such that a < b,

� {φt} |[a,b] = ρ (φa, φb) (80)

holds.

• {φt} is called a geodesic if for every t ∈ I there exists a neighborhood
U ⊂ I of t such that {φt} |U is a minimal geodesic.

The following proposition is proved in [2].

Proposition 8. Let H : [a, b] × R
2n→ R be a smooth compactly supported func-

tion. The following two conditions are equivalent:

•
∫ b

a
||Ht||dt = ||

∫ b

a
Ht (z) dt||

• There exist two points z−, z+ ∈ R
2n such that sup

z
Ht = Ht (z+) and

inf
z

Ht = Ht (z−), for all t ∈ [a, b].

Definition 9. A function Ht (z) which satisfies one of the conditions in the propo-
sition above is called quasi-autonomous. Each autonomous path is quasi-autono-
mous.

We are interested under what conditions the length-minimizing property of a path
is achieved. Lalonde and McDuff [13] proved the necessary condition, which
holds for any symplectic manifold.
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Theorem 10. A regular path {φt}, t ∈ I , in Hamc
(
R

2n
)

is a geodesic if and
only if its generating Hamiltonian has at least one fixed maximum and one fixed
minimum at each moment.

Hence, every geodesic is generated by quasi-autonomous Hamiltonian functions.
To prove that a path is length-minimizing is much harder. Fortunately, in R

2n one
can obtain more results than in the general case. First, we need another definition.

Definition 11. A fixed point, zf , of a map φ1 ∈ Hamc
(
R

2n
)

is called constant if
it is a fixed point of its flow, that is φt (zf ) = zf , for every t ∈ [0, 1].

We say that a smooth path
{
φt∈[0,1]

}
starting at the identity has no non-constant

fixed points if for any fixed τ ∈ (0, 1] and zf such that

φτ (zf ) = zf ⇒ φt (zf ) = zf (81)

for any t ∈ [0, 1]. In case
{
φt∈[0,1]

}
does not start at the identity, (81) should be

modified to
φτ (zf ) = φ0 (zf ) ⇒ φt (zf ) = φ0 (zf ) . (82)

We are ready to state the following theorem [20].

Theorem 12. Any regular path
{
φt∈[0,1]

}
in Hamc

(
R

2n
)

that is generated by a
quasi-autonomous Hamiltonian, and has no non-constant fixed points in time less
than one, is a minimal geodesic, that is absolutely length-minimizing for Hofer’s
metric.

It is conjectured that a similar theorem holds for any symplectic manifold. The
case of autonomous Hamiltonians has been proved recently [16].

2.5. Proof of the Main Theorem

Now we are ready to derive the so-called local flatness phenomenon. We want to
measure the distance between two compactly supported Hamiltonian symplectic
maps, say ϕ and ψ. Suppose that for some type α the two generating functions
associated with α for ϕ and ψ are Fα and Gα. Take the convex combination of
the two generating functions

St = (1 − t)Fα + tGα = Fα + t (Gα − Fα) . (83)

The corresponding path {φt} in Hamc
(
R

2n
)

is generated by a Hamiltonian Ht.
The path satisfies the following relations: φ0 = ϕ and φ1 = ψ. Noticing that
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S0 = Fα, if zf is a fixed point of φτ , for some fixed τ ∈ (0, 1], according to (41)
it follows that

∇ (Sτ − S0) (wf ) = τ · ∇ (Gα − Fα) (wf ) = 0 (84)

that is wf is a critical point of Gα−Fα. Obviously, this implies that wf remains a
critical point of Gα − Fα for any t ∈ [0, 1], which in turn means that zf is a fixed
point of φt for any t ∈ [0, 1]. Indeed, as in (38), it follows that in this case

zf =

(
α2 ◦

(
ϕ
I

))−1

(wf ) . (85)

We just proved that all the fixed points of
{
φt∈[0,1]

}
are constant. Also, a care-

ful look at the Hamilton-Jacobi equation (71) reveals that the path
{
φt∈[0,1]

}
is

generated by quasi-autonomous Hamiltonians. Since, as follows from above, the
left hand side is quasi-autonomous, the right hand side must be quasi-autonomous
too. Moreover, the points where the left hand side achieves its maximum and
minimum values are critical points of Gα − Fα which means that at these points
Nt (wc) = ∇St (wc) = ∇Fα (wc) is time independent and proves that indeed Ht

is quasi-autonomous. We remark that the same arguments show that paths with
these properties are never unique, as in the definition of St any function of t such
that f (0) = 0 and f (1) = 1 can be taken instead of t. In our specific case,
i.e., f (t) = t, in fact autonomous paths are obtained. As a side note, this shows
that symplectic maps close to identity always can be generated by autonomous
Hamiltonians.

To this end, the conditions of theorem (12) are satisfied, and the Hamilton-Jacobi
equation provides a method to compute the distance between symplectic maps.
Using (73) in (71), taking norms on both sides of (71), and using the invariance of
the oscillation norm under the adjoint action, we obtain

||Gα − Fα|| = ||µHt ◦Mt|| = |µ|||Ht||. (86)

Integration gives
||Gα − Fα|| = |µ| · � {φt} (87)

and according to Siburg’s theorem we finally arrive at

ρ (ϕ,ψ) =
1

|µ|
||Gα − Fα||. (88)

In summary, as long as the same type of generating function exists for two com-
pactly supported Hamiltonian maps, the Hofer distance between them can be mea-
sured as the oscillation norm of the difference between their generators. From our
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point of view, it is very important that this result holds for any generator type,
subject to the existence condition. This is always the case if ϕ and ψ are suffi-
ciently close in the C1 topology. However, it is a local result in the sense that it
does not provide a way to compute Hofer’s distance between any two arbitrary
Hamiltonian maps. It is worthwhile to note that for any autonomous Hamiltonian
H , there exists an ε > 0 such that the time one flow of εH has only constant fixed
points [15]. Also, it automatically follows that flows of quasi-autonomous Hamil-
tonian systems are geodesics, that is they minimize length on sufficiently small
time intervals. It was known from [12] that this is true for autonomous Hamilto-
nians, and examples of time dependent (quasi-autonomous) Hamiltonians can be
found in [14].

2.6. Some Further Remarks

In general, Hofer’s metric is rather little understood. It determines a kind of C−1

topology on Hamc
(
R

2n
)
, and gives rise to a paradox. Sikorav [21] showed that

every one-parameter subgroup of Hamc
(
R

2n
)

remains a bounded distance from
the identity. So, we could draw the paradoxical conclusion that, according to the
main theorem, every point has a flat neighborhood, but in some sense a positive
curvature is apparent. In any case, geometry on the group of Hamiltonian sym-
plectomorphisms with respect to Hofer’s metric gives rise to a different way of
thinking about Hamiltonian dynamics, and we can expect quite some progress in
this direction in the near future. The understanding of the global features and
properties of Hofer’s metric could give insight into the long term properties of
Hamiltonian systems, and perhaps provide an exciting method to compute the re-
gion of dynamical stability (dynamic aperute in the beam physics jargon) without
the time intensive tracking (time consuming numerical integration of large number
of sample trajectories). Finally, we mention that there exists another, related met-
ric on Hamc

(
R

2n
)
, introduced in [22]. However, in [2] and [20] it was proved

that they coincide locally on R
2n, so we need not consider it. We use Hofer’s

metric because it is easier to work with.

Intuitively, Hofer’s metric measures what is the minimal Hamiltonian needed, av-
eraged over time, to generate a symplectic map from identity. Actually, Hofer
himself calls the distance from the identity of a map the symplectic energy of the
map. In view of the KAM theorem for symplectic integration methods [17, 18],
which roughly says that the behavior of symplectic maps obtained by symplectic
integration applied to a integrable system should be close to the integrable system
(at least in the region where invariant tori still exist), this provides a strong support
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for our closeness criterion for optimal symplectification based on Hofer’s metric,
and points out that Hofer’s metric is a natural choice.

There is an alternative interpretation of Hofer’s metric applied to beam dynamics.
Notice that, due to bi-invariance of Hofer’s metric we have

ρ (M,N ) = ρ
(
N−1 ◦M,I

)
. (89)

Therefore, by computing the distance between symplectic maps in Hofer’s metric,
actually what is computed is the minimum Hamiltonian needed to generate the
initial conditions for N from the initial conditions for M, such that both M and
N applied to the respective initial conditions give the same final results. If the
result of the norm minimization is small, the two sets of initial conditions are
connected by a map close to identity, hence the two sets are close to each other.
From a practical point of view this can be considered as not knowing exactly the
properties of the injected beam. Such small uncertainties always occur in practice,
and to be able to build robust accelerators, one should look for realizations that
are not too sensitive to small errors. This is done by considering different error
sources, each realization of the errors giving a different symplectic map. The
incoming beam quality can be considered one type of such an error effect. Hence,
from this viewpoint it does not matter whether M or N is used for the simulation
of the accelerator at least in the regions of phase space were large-scale chaos is
absent.

There are also other interesting consequences of these results, specifically con-
cerning symplectic integration. The only difference between symplectic integra-
tion and symplectic tracking is the method for obtaining the truncated generating
function. In the case of symplectic tracking, it is obtained from some approxima-
tion of M using (17). In symplectic integration, it is obtained by direct solution
of the generalized Hamilton-Jacobi equation (71). Thus, in this case, the linear
part M is not known. Therefore, the prescription for optimal symplectic integra-
tion is to use Poincaré’s generating function and a sufficiently small time step (by
this keeping the linear part of the resulting symplectic map as close as possible
to identity). Moreover, if the Poincaré generator is expanded in a power series
in the time step, from the Hamilton-Jacobi equation it follows that, the first order
approximation in time is FP (w) = H (z). The corresponding integration method
then reduces to the well-known implicit midpoint rule. This is the explanation for
the very good reputation that this simple integration method has.
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3. Summary

Throughout this paper methods of symplectic geometry and topology have been
utilized. The unifying concept behind these methods is the flows of Hamiltonian
systems. The systems of interest to us (particle accelerators and other beam
physics systems) can be modeled as Hamiltonian systems. The time evolution
of these systems (i.e., the flow, or the orbits) can be regarded as curves on the
space of Hamiltonian symplectic maps. The geometric properties of these curves
with respect to Hofer’s metric are deeply related to the dynamics. We exposed and
exploited several aspects of this relationship. More precisely, the Hamiltonian sys-
tem representing the real system is replaced by another Hamiltonian system, and
instead of simulating approximately the real system, we track exactly a nearby
system, where closeness is measured in Hofer’s metric. Then we hope that the
perturbations so introduced are small enough that in the light of the KAM theo-
rem most invariant tori, and hence most of the geometric structures, survive, and
it leads to a more reliable and faster estimation of the quantities of interest, such
as the region of phase space were stable trajectories exist.

The key ingredient was the proof of the main theorem in this paper: locally
Hofer’s metric between two symplectic maps close in C 1 can be computed by
a norm of the difference of any type of generating function that exist at least lo-
cally for both symplectic maps. A generalized Hamilton-Jacobi equation, besides
being needed in the proof, is also useful for devising new symplectic integration
methods, since it gives the time evolution of the generating functions in terms of
the associated Hamiltonian functions.

Finally, while these results have been derived with accelerator physics motivation
in mind, their relevance go beyond beam physics, and directly apply to any other
weakly nonlinear problem in Hamiltonian dynamics.
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