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SYMMETRY OF THE MAXWELL AND MINKOWSKI EQUATIONS
SYSTEM

IVAN TSYFRA

Communicated by Ivaïlo M. Mladenov
Abstract. We study the symmetry of Maxwell’s equations for external moving
media together with the additional Minkowski constitutive equations (or Maxwell–
Minkowski equations). We established that the system is conformally invariant.

1. Introduction

Symmetry properties of Maxwell equations in vacuum was studied in detail by
Lorentz, Poincare, Bateman, Cuningham [1, 2].

Maximal local Lie group of invariance of linear equations for electromagnetic
fields in vacuum is 16 parameters group containing 15 parameter conformal group
as a subgroup [3]. It was proved in [4] that the Maxwell equations in the medium,
which form a system of first order partial differential equations for vectors �D, �B,
�E and �H , admit infinite symmetry. Thus, the system of equations

∂ �D

∂t
= rot �H −�j, div �D = ρ (1)

∂ �B

∂t
= −rot �E, div �B = 0 (2)

if �j = 0, ρ = 0 is invariant under the infinite-dimensional Lie algebra with basis
elements

X = ξµ(k)
∂

∂xµ

+ ηEa ∂

∂Ea
+ ηBa ∂

∂Ba
+ ηDa ∂

∂Da
+ ηHa ∂

∂Ha
(3)

where

ηE1 = ξ3
0B2 − ξ2

0B3 − (ξ1
1 + ξ0

0)E1 − ξ2
1E2 − ξ3

1E3

ηE2 = −ξ3
0B1 − ξ1

0B3 − (ξ2
2 + ξ0

0)E2 − ξ1
2E1 − ξ3

2E3

ηE3 = ξ2
0B1 − ξ1

0B2 − (ξ3
3 + ξ0

0)E3 − ξ2
3E2 − ξ1

3E1
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ηB1 = ξ1
2B2 − ξ1

3B3 − (ξ2
2 + ξ3

3)B1 − ξ0
3E2 + ξ0

2E3

ηB2 = ξ0
3E1 − ξ0

1E3 − (ξ1
1 + ξ3

3)B2 − ξ2
1B1 + ξ2

3B3

ηB3 = ξ3
1B1 − ξ3

2B2 − (ξ1
1 + ξ2

2)B3 − ξ0
2E1 + ξ0

1E2

ηD1 = ξ1
2D2 + ξ1

3D3 − (ξ1
1 + ξ0

0)D1 + ξ0
3H2 − ξ0

2H3

ηD2 = −ξ0
3H1 − ξ0

1H3 − (ξ2
2 + ξ0

0)D2 − ξ2
1D1 + ξ2

3D3

ηD3 = ξ3
1D1 + ξ3

2D2 − (ξ3
3 + ξ0

0)D3 − ξ0
2H1 − ξ0

1H2

ηH1 = −ξ3
0D2 + ξ2

0D3 − (ξ1
1 + ξ0

0)H1 − ξ2
1H2 − ξ3

1H3

ηH2 = ξ3
0D1 − ξ1

0D3 − (ξ2
2 + ξ0

0)H2 − ξ1
2H1 − ξ3

2H3

ηH3 = ξ2
0D1 − ξ1

0D2 − (ξ3
3 + ξ0

0)H3 − ξ3
2H2 − ξ1

3H1

with ξµ(x) being arbitrary smooth functions, ξµ
ν = ∂ξµ

∂xν
, µ, ν = 0, 3, a, b = 1, 3,

and t ≡ x0. It follows that the equations (1)–(2) are invariant with respect to any
transformation of t, �x forming the Lie group. At the same time the vectors �D,
�B, �E, �H , �j and the density ρ are transformed on the linear representation of this
group. But the system of equations (1)–(2) is undetermined. In addition to these
equations we have to consider supplement constitutive equation. As was shown
in [4] there are the nonlinear constitutive equation which form the Poincare and
conformally invariant system of equation together with the equations (1)–(2). It
contains the well known Born-Infeld nonlinear equation for electromagnetic fields
as a particular case. Imposing different constraints on fields �D, �B, �E, �H , we
obtain different constitutive equation invariant with respect to Galilei, Poincare
and conformal group. More exactly, the constitutive equations

�D = M �E + N �B, �H = M �B − N �E (4)

where M and N are arbitrary functions of I1 = �B2− �E2, I2 = �B · �E, are Poincare
invariant [4, 5] (see also [6]). If on the other hand M ≡ M( I1

I2
), N ≡ N( I1

I2
) then

the equations (1)–(2) and (4) are invariant with respect to the conformal group.
It is well known that conformal symmetry of Maxwell equations in vacuum was
discovered by Bateman and Cunmigham (see [1, 2]). Surprisingly but true the
symmetry for the electromagnetic fields in moving media has not been investi-
gated at all. In this paper we study the symmetry properties of Maxwell equations
(1)–(2) together with additional constitutive equations in moving medium.
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2. Classical Symmetry of Differential Equations for Electromagnetic
Field

Let consider the system of Maxwell equations (1)–(2) together with the Minkowski
constitutive equations in the following form

�D + �u × �H = ε( �E + �u × �B), �B + �E × �u = µ( �H + �D × �u) (5)

where �u is the velocity of the medium, ε is the permittivity and µ is the permeance
of stationary medium.

The following theorems have been proved.

Theorem 1. The system of equations (1)–(2) is invariant with respect to infinite–
dimensional Lie algebra whose basic elements are given by

Q = X + ηja ∂

∂ja
+ ηρa ∂

∂ρ
(6)

where

ηja

= −dja+ξa
b jb+ξa

0ρ, ηρ = −dρ+ξ0
0ρ+ξ0

b jb, d = −(ξ0
0 +ξ1

1 +ξ2
2 +ξ3

3). (7)

Proof: The proof of theorem requires long cumbersome calculations which are
omitted here. We use in principle the standard Lie scheme which is reduced to
realization of the following algorithm:
Step 1. The prolongation of infinitesimal operator Q is constructed by using Lie
formulae [8].
Step 2. Using the infinitesimal invariance condition [8]

Q
1
LΨ

∣∣∣∣∣
LΨ=0

= 0 (8)

where Q
1

is the first prolongation of operator Q and LΨ = 0 is the system of equa-

tions (1)–(2) (symbolic form) we obtain the corresponding determining equations
for the functions ηρ, and ηja

.
Step 3. Solving the corresponding determining equations we obtain the conclu-
sion of the theorem. �

From the invariance condition (8) for the equation (1) we obtain ηja

= −dja +
ξa
b jb + ξa

0ρ. By applying the criterium (8) we have ηρ = −dρ + ξ0
0ρ + ξ0

b j
b. As

follows from [4] the invariance condition for the equations (2) gives no restriction
on ηja

and ηρ.
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Theorem 2. System of equation (1)–(2), (5) is invariant with respect to conformal
Lie group with generators

P0 = ∂t; Pa = ∂xa

Jab = xa∂xb
− xb∂xa

+ Sab + Vab + Rab

J0a = x0∂xa
− xa∂x0 + Soa + V0a + R0a

(9)
D = t∂t − xa∂xa

− 2(Ek∂Ek
+ Bk∂Bk

+ Dk∂Dk
+ Hk∂Hk

) − 3(jk∂jk
− ρ∂ρ)

Kµ = 2xµD − x2Pµ + 2xk (Sµk + Vµk + Rµk) , µ, k = 0, 1, 2, 3

where

Sab = Ea∂Eb
−Eb∂Ea

+Ba∂Bb
−Bb∂Ba

+Da∂Db
−Db∂Da

+Ha∂Hb
−Hb∂Ha

S0a = εabc (Eb∂Bc
− Bb∂Ec

+ Db∂Hc
− Hb∂Dc

)

Vab = ua∂ub
− ub∂ua

, V0a = ∂ua
− ua(ub∂ub

)

Rab = ja∂jb
− jb∂ja

, R0a = ja∂ρ + ρ∂ja
.

To prove the theorem we use the standard Lie scheme and therefore it is given
without proof.

As follows from the theorem vectors �D, �B, �E, �H are transformed under a linear
representation of invariance group and the velocity of moving medium is trans-
formed nonlinearly. The components of the velocity �u are transformed in the
following way

uk → u′
k =

ukσ − 2b0xk − 2b2
0xk(x0 − �x · �u)

1 + 2b0(x0 − �x · �u) + b2
0(x

2
0 + �x2 − 2x0�x · �u)

(10)

where b0 is the group parameter under the transformations generated by K0 and
σ = 1+2b0x0+b2

0(x
2
0−�x2). Operators Ka generate the following transformations

for the velocity vector

ua → u′
a =

uaδ + 2(x0 − �x · �u)(ba − b2
axa) − 2baua(xa + bax

2)

δ + 2bax0(x0 − �x · �u) − 2bauax0
(11)

uc → u′
c =

ucδ + 2(x0 − �x · �u)b2
axc − 2bauaxc

δ + 2b2
ax0(x0 − �x · �u) − 2bauax0

, c �= a (12)

where δ = 1−2baxa−b2
ax

2, x2 = x2
0−�x2, ba are the group parameters and there

is no summation over a.
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Remark 3. If the permittivity ε and the permeance µ are functions of the ratio of
�B2 − �E2 and �B · �E

ε = ε

(
�B2 − �E2

�B · �E

)
, µ = µ

(
�B2 − �E2

�B · �E

)
(13)

then the nonlinear system of (1)–(2), (5) and (13) is invariant with respect to the
Lie group of conformal transformations of dependent and independent variables.

Thus the system of Maxwell equations (1)–(2), (5) in a moving external medium
is invariant with respect to conformal group. And here, the velocity is changed
nonlinearly under the transformations generated by Kµ according to formulae
(10), (11) and (12).

In the all above given equations the fields �D, �B, �E, �H are transformed in a linear
way. Here, we give one more example of nonlinear system which is also confor-
mally invariant but vector fields �E, �H are transformed in a nonlinear way. The
system has the form

∂Σk

∂x0
+ Σl

∂Σk

∂xl

= 0, k, l = 1, 2, 3 (14)

where Σk = Ek + iHk. The complex system (14) is equivalent to the real system
of equations for �E and �H

∂Ek

∂x0
+ El

∂Ek

∂xl

− Hl

∂Hk

∂xl

= 0,
∂Hk

∂x0
− Hl

∂Ek

∂xl

+ El

∂Hk

∂xl

= 0. (15)

By using the Lie algorithm [8] we have proved the following theorem.

Theorem 4. The system of equation (15) is invariant with respect to 24–dimensional
Lie algebra with generators

Pµ =∂xµ

J
(1)
kl =xk∂xl

− xl∂xk
+ Ek∂El

− El∂Ek
+ Hk∂Hl

− Hl∂Hk

J
(2)
kl =xk∂xl

+ xl∂xk
+ Ek∂El

+ El∂Ek
+ Hk∂Hl

+ Hl∂Hk

G(1)
a =x0∂xa

+ ∂Ea

G(2)
a =xa∂x0 − (EaEk − HaHk)∂Ea

− (EaHk + HaEk)∂Hk
(16)
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D0 =x0∂x0 − Ek∂Ek
− Hk∂Hk

Da =xa∂xa
+ Ek∂Ek

+ Hk∂Hk
(no summation over a)

K0 =x2
0∂x0 + x0xk∂xk

+ (xk − x0Ek)∂Ek
− x0Hk∂Hk

Ka =x0xa∂x0 + xaxk∂xk
+ [xkEa − x0(EaEk − HaHk)]∂Ek

+ [xkHa − x0(HaEk − EaHk)]∂Hk
.

The invariance algebra of the system (15) given by (16) contains Poincaré , con-
formal, and Galilei algebras as subalgebras. The operators J0k = G1

k + G
(2)
k

generate the standard transformations for x

x′
0 = x0 cosh θk + xk sinh θk

x′
k = xk cosh θk + x0 sinh θk

x′
l = xl if l �= k

(17)

and nonlinear transformations for �E, �H

�E′
k + i �H ′

k =
(Ek + iHk) cosh θk + sinh θk

(Ek + iHk) sinh θk + cosh θk

�E′
k − i �H ′

k =
(Ek − iHk) cosh θk + sinh θk

(Ek − iHk) sinh θk + cosh θk

�E′
l + i �H ′

l =
El + iHl

(Ek + iHk) sinh θk + cosh θk

, l �= k

�E′
l − i �H ′

l =
El − iHl

(Ek − iHk) sinh θk + cosh θk

, l �= k.

(18)

Thus we conclude that the system of Maxwell equation (1)–(2) and constitutive
Minkowski equations (5) are conformally invariant just the same as the linear
Maxwell equations for electromagnetic fields in vacuum. This symmetry can be
successfully used for construction solutions of Maxwell equations in moving me-
dia by method of comparison of electrodynamic systems [7].

References

[1] Bateman H., The Transformations of the Electrodynamical Equations, Proc.
London Math. Soc. 8 (1909) 223-264.

[2] Cunningham E., The Principle of Relativity in Electrodynamics and Exten-
tion There of., Proc. London Math. Soc. 8 (1909) 77–98.



Symmetry of the Maxwell and Minkowski Equations System 81

[3] Fushchych W. and Nikitin A., Symmetries of Maxwell’s Equation, Dor-
drecht, Reidel, 1994.

[4] Fushchych W. and Tsifra I., On the Symmetry of Nonlinear Electrodynamic
Equations, Teoret. Mat. Fiz. 64 (1985) 41–50.

[5] Goldin G. and Shtelen V., On Galilean Invariance and Nonlinearity in Elec-
trodynamics and Quantum Mechanics, Phys. Lett. A279 (2001) 321–326.

[6] Goldin G. and Shtelen V., Generalization of Yang-Mills Theory with Nonlin-
ear Constitutive Equations, J. Phys. A: Math. Gen. 37 (2004) 10711–10718.

[7] Miller M., Sorokin J. and Stepanov N., Covariance of Maxwell Equation
and Comparison of Electrodynamic Systems, Uspechi Fiz. Nauk 121 (1977)
525–537.

[8] Olver P., Applications of Lie Groups to Differential Equations, Springer,
New York, 1986

Ivan Tsyfra
Institute of Mathematics
University of Bialystok
Bialystok 15-267
POLAND
E-mail address: tsyfra@math.uwb.edu.pl


