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GROUP THEORY IN THE PROBLEMS OF MODELING
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Communicated by Jan J. Sławianowski

Abstract. This work is a review of our research activity during the last ten

years concerning the problems of modeling and control of multi-body mechanical

systems. Because the treatment of the above topics is quite sensitive with respect

to the different parameterizations of the rotation group in three dimensional space

SO(3) and because the properties of the parameterization more or less influence

the efficiency of the dynamic model, here the so called vector-parameter is used

for parallel considerations. The consideration of the mechanical system in the

configurational space of pure vector-parameters with a group structure opens the

possibilities for the Lie group theory to be applied in the problems of the dynamics

and control. The sections in this paper present independent parts of an unified

scientific approach.
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1. Introduction in Multi–Body Mechanical System

Here we consider an open loop mechanical system with n degrees of freedom (for

example a manipulator system). We denote by q := [q(1) . . . q(n)]T the n × 1
matrix of the generalized coordinates (joint displacements) of the manipulator

system (MS) in the usual sense, where q ∈ Q ⊂ R
n and Q is the configurational

manifold

Q := {q ; q(i)min ≤ q(i) ≤ q(i)max, i = 1, 2, ..., n}. (1)

The connection between the position vector x ∈ R
m and q, i.e., the direct kine-

matic problem (DKP) is specified by

x = F (q) (2)

where F : Q → X is a smooth projection map over the target space

X = {x ; x = F (q), q ∈ Q ⊂ R
n} (3)

which is the working space of the MS under consideration. Differentiating (2)

with respect to t, one obtains

ẋ =

[
∂F

∂q

]
q̇ = J(q)q̇ (4)

where J(q) ∈ Rm,n(m < n) is the Jacobian matrix of the map F . All configura-

tions for which the rank of J(q) < m are called singular. In the configurational

space Q the dynamic equations for rigid body manipulator look like

H(q)q̈ + h(q, q̇) = P (5)

where H := H(q) is the n×n inertia matrix, the n× 1 matrix h := h(q, q̇) takes

into account Coriolis, centrifugal and gravitational forces, and P is the n × 1
matrix of the generalized forces and moments. According to the above notation,

the end-effector (EE) location and its velocity have the following analytical forms

x = [p
... o]T = F (q) ∈ R

3 × SO(3)

V = [ṗ
... ω]T = J(q)q̇ ∈ R

6.

(6)

Alternatively

x = [p
... β]T = F (q) ∈ R

3 × SO(3)

V = [ṗ
... β̇]T .

(7)
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β ∈ A ⊂ R
3 is a minimal representation of EE attitude. In general β = f(o)

which is many to one or undefined if the domain of f(.) in SO(3) is not prop-

erly restricted. The reason is that the group SO(3) can not be covered by a single

coordinate chart. Accordingly, β is not acceptable for all possible EE orienta-

tions and there will be a singularity of attitude representations unless we restrict

EE attitude for some subregion of SO(3). Then β has to be defined in the im-

age of admissible attitudes, namely in some A ⊂ R
3. When A ≡ R

3 as in the

case of Euler Rodrigues parameters, singularities of attitude representation corre-

spond to | β |= ∞. Nowadays, there is no doubt that a very important item in

modeling and control of a mechanical system is its kinematical description [112].

It is well known that the rigid-body motion in R
3 is described by the Euclidean

group E(3), and that the SO(3) group cannot be avoided in the representation of

orientations [110]. The appropriate parameterization of SO(3) is one of the most

important practical problem in mechanics because it has a great influence over the

overall efficiency of all methods. Angular velocity or momentum information is

required by the most control strategies. It could be obtained using the derivatives

of various orientation parameters β like Euler and Bryant angles, Euler or Cayley-

Klein parameters, quaternions [12], [6], [57], [7], or the so called vector-parameter

β = c, which as an element of a Lie group, having very nice and clear proper-

ties and simplifying the treatment of many problems [59], [61], [62]. After Fe-

dorov [24] who introduces the vector-parameter in connection with representation

theory of the Lorentz group a long standing program of studies of different group

parameterizations of the rotational motion and their after–effects is started [59].

Using the vector-parameter language, the interrelations between vector and ma-

trix transformations, screw geometry and dual algebra in description of Euclidean

motions were outlined [59]. Because of the fact that every Euclidean motion may

be represented as a screw motion, an useful interplay of screw geometry, dual al-

gebra and vector and matrix transformations is proposed in [69], [72]. The special

structure of a manipulator as a series of coupled bodies allows the specialization

of the general line coordinate transformation matrix in the so called dual orthog-

onal matrix form as well the definition of the notion of dual vector-parameter to

be introduced. The kinematical and dynamical equations of a manipulator sys-

tem play an extremely important role as for motion simulation so in control [7].

The mathematical models which present kinematics, dynamics, trajectory plan-

ning and control of rigid body manipulators in vector-parameters are treated in

details elsewhere [60–63], [65], [66], [78] and etc. Because of the fact that these

parameters make a Lie group with a very simple and clear composition law, they

are ideally suited for real time simulations and control modeling since through
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them the number of the elementary operations is reduced by more than 30% (see

Tables 1, 2 and 3).

The comparison between its computational cost and the other methods for simu-

lation and control used till now shows its efficiency and feasibility for real time

application. It is also proved that the computational effectiveness of the vector-

parameter approach increases with the increasing number of the revolute joints

[61]. This fact is heavily used in [89] and [73] where the problems of modeling

and control of elastic joints manipulators are treated.

The dynamical modeling and control of manipulator systems in a “pure” vector-

parameter configurational manifold as presented in [69] consists of describing the

geometry, kinematics and dynamics of an open loop kinematic chain in a new ex-

tended configurational space with a group structure – the space of vectors describ-

ing the joints displacements (vector-parameters c and some translational vectors

tr). In this way the transition operations from vector-parameters to generalized

coordinates are saved and the kinematic and dynamic equations in “pure” vector –

parameters are purely algebraic and the differential equations of motion “feel” the

Lie group structure of the underlying configurational manifold.

The present work considers in detail the Euclidean motions of a rigid body in

vector-parameters and presents the kinematics and dynamics of a multi-body me-

chanical system on a generalized manifold equipped with a group structure. An

approach for diagonalization of real 3 × 3 symmetric matrix is considered and

some mechanical applications are given. Attention is paid on modeling and con-

trol of nonholonomic systems, modeling of mobile robots, and control problems

of the system of mobile platform and manipulator are also outlined.

Most scientific investigations can be roughly classified as investigations in to pure

technical aspects, theoretical investigations (with possibilities for practical imple-

mentation) and studies from theory to practice as well from practice to theory.

Our previous investigations demonstrate how, using a group-theoretical approach

to the rotation motion presentation, one may reach computational effectiveness

in kinematic and dynamic modeling of manipulator systems. Such studies can

be considered as occupying some area between the second and third item in the

above classification. It is worth to be mentioned that there is an analogy between

the rigid body description through vector-parameter and this one realized in [31]

on the base of screw operators. The intrinsic mathematical formalism in physi-

cal rigid body motions description is presented with the use of affine geometry

together with Lie group theory and it is used for description of the mechanism

kinematic pairs.
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Table 1. Comparison of the matrix and vector-parameter method at the form-

ing of an end-effector vector in the base frame.

m – multiplications, a – additions, tr. f. – transcendental functions

Number of Matrix method Vector-parameter method

operations B Bp
∏n
i=1Bi p c O(c)p c1, c2 Total

Eulerian m 12 8 20n 3 14 10 13n + 4
angles a 4 6 10n 2 15 12 14n + 3

tr. f. 6 0 6n 5 0 0 5n

Brayant m 14 8 22n 5 14 10 15n + 4
angles a 4 6 10n 0 15 12 12n + 3

tr. f. 6 0 6n 3 0 0 3n

Eulerian m 11 8 19n 3 14 10 13n + 4
parameters a 10 6 16n 4 15 12 16n + 3

tr. f. 0 0 0 0 0 0 0

Denavit m 6 8 14n 1 14 10 11n + 4
Hartenberg a 0 8 8n 0 15 12 12n + 3
Parameters tr. f. 4 0 4n 2 0 0 2n

Table 2. Comparison in computational aspect at Jacoby matrix forming using

matrix and vector-parameter method

M – method, A – method of Vukobratović [132], [131], B – method of

Waldron [133], C – method of Ribble [104], D – method of Renaud [103],

E – method of Paul [96], [97], [98], F – method of Orin / Shrader [92],
jJi – index i denotes the coordinate frame according to which the Jacobian

J is formed, index j – the frame according to which J is referred

M J Matrix method Vector-parameter method

mult. add. tr. f. mult. add. tr. f.

A EJE 10n2 + ... n2 + ... 2n

B 0J0 30n − 55 15n − 38 2n − 2 24n − 42 22n − 41 n

C 0JE 30n − 11 18n − 20 2n 24n − 6 22n − 3 n

D kJk 30n − 87 15n − 66 2n − 2 24n − 52 22n − 60 n

E EJE 30n − 25 15n − 22 2n 24n − 26 22n − 26 n

F EJE 30n − 18 14n − 15 2n 24n − 10 22n − 12 n
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Table 3. Comparison of the number of the operations at dynamic modelling

LG – Lagrange formalism, NE – Newton-Euler formalism, M – method, A –

method of Uicker / Kahn [127], [40], B – method of Waters [139],

C – method of Hollerbach (through homogeneous matrices 4×4 and rotation

matrices 3 × 3) [32], [33], D – method of Luh / Armstrong [51], [4],

E – method of Orin, McGhee and Vukobratović [91], F – method of Naka-

mura [84], G – vector-parameter method of Mladenova

M multiplications n = 6 additions n = 6

LG A 321
2n4 + ... 37823 25n4 + ... 39462

B 1061
2n2 + ... 3256 82n2 + ... 5652

C

4 × 4 830n − 592 4388 675n − 464 3586

3 × 3 412n − 277 2195 320n − 201 1719

NE D, 137n − 22 852 131n − 48 738

E 150n − 48 800 101n − 11 595

F 133n − 17 781 106n − 19 617

G 138n − 53 775 143n − 66 792

Using the knowledge of theoretical mechanics, matrix algebra, group theory, geom-

etry and the basic methods in robotics, the paper presents our research activity in

creating an unified approach for modeling and control of multi-body systems and

it may serve as a nice tool for students, scientists and engineers from academia

and industry experienced in this attractive area.

2. Rigid Body Kinematics

It is the well known that the rotations play an extremely decisive role in describing

of the Euclidian motions [1], [5], [26], [53], [18]. The way of their representation

defines the set of the problems which may be solved and the computational ef-

ficiency of the procedures. The rotations are met everywhere – in physics and

engineering problems, computer simulations and visualizations, computer graph-

ics, and therefore in the whole computerized world. Nowadays because of the

modern and fast processors, the representation of the rotation group is still very

important so that the hardware and the software to work efficiently together. The

purpose of this work is to present the different parameterizations of the SO(3)

group and to show their role in the efficient modelling in both the manipulator

kinematics and dynamics and computer vision. The theoretical base is the refine
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knowledge of Lie groups and differential geometry in the problems of rigid body

mechanics [42], [110].

We consider the special orthogonal group SO(3) and its different representations

for description of the motion of a rigid body with a fixed point. Any displacement

D of a rigid body may be considered as a screw motion, i.e., it takes a point from

the body to the position A′ through: translation along the axis AA′ and a rotation

R around point A. The point is called pole and D = TR = RT . Further, we will

consider rotations mainly. According to a theorem due to Euler a displacement

in a general sense is equivalent to a rotation around an axis through the point

A [12], [129], [140]. There exist a few analytical representations of the rotations,

i.e., any rotation is expressed by defining its action, equivalently, on a

i) vector x x
′

= Ax, A ∈ SO(3)

ii) quaternion x x
′

= qxq−1, q ∈ Sp(1)
iii) spinor ψ ψ′ = Uψ, U ∈ SU(2)

iv) matrix X X
′

= U X U+

where SO(3) denotes the group of real, orthogonal 3 × 3 matrices, Sp(1) the

symplectic group of unit quaternions, SU(2) the unimodular unitary group of 2×2
complex matrices, ψ a one-index spinor and X a complex, Hermitian, traceless

2 × 2 matrix.

2.1. Vector Kinematics

Due to the theorem of Euler, the rigid body rotation in R
3 is characterized through

a fixed point O, a unit vector e and a right handed vector ϕ. The rotation of vector

x in x
′

is defined through the Rodrigues formula (see [131], [137], [138])

x
′

= cos ϕ . x + (1 − cos ϕ) (e, x) e + sin ϕ [e, x]. (8)

The symbols ( , ) and [ , ] mean scalar and vector product respectively. Since

1 − cos ϕ = 2 sin2 ϕ/2, the terms of the vector β = sinϕ/2 e and the scalar

β0 = cos ϕ/2, the equation 8 is transformed in the following way

x
′

= (2β2
0 − 1)x + 2(β, x) + 2β0 [β, x]. (9)

We denote by β = col(β1, β2, β3) a column-matrix. In a fixed coordinate system

with a unit basis (e1, e2, e3), the equation (9) may be written like

x
′

= B x (10)
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where the transformation matrix B = (β0, β) is the real, proper, orthogonal

matrix

B =

⎡⎣ β2
0 + β2

1 − β2
2 − β2

3 2(β1β2 − β0β3) 2(β1β3 + β0β2)
2(β1β2 + β0β3) β2

0 − β2
1 + β2

2 − β2
3 2(β2β3 − β0β1)

2(β1β3 − β0β2) 2(β2β3 + β0β1) β2
0 − β2

1 − β2
2 + β2

3

⎤⎦ . (11)

The four parameters, by definition, satisfy the condition

β2
0 + β2

1 + β2
2 + β2

3 = 1. (12)

The rigid body position is defined by the matrix B, which is an element of the Lie

group SO(3). The body motion corresponds to a curve B(t) on the configuration

space SO(3). The rotation velocity vector Ḃ = dB/dt, is a tangent to the curve

ant belongs to the tangent space TSO(3)B at the point B. Any curve satisfies

B(t)BT (t) = I and differentiating it with respect to the time t, we get

Ḃ(t)BT (t) + B(t)ḂT (t) = Ḃ(t)BT (t) + (Ḃ(t)BT (t))T = 0. (13)

The matrix Ḃ(t)BT (t) is skew-symmetric and is called angular velocity matrix

relative to space. We denote it by Ω, so that

Ω = Ḃ(t)BT (t) = Ḃ(t)B−1(t). (14)

Having in mind the isomorphism between the space of skew-symmetric matrices

and vector-space R
3 , we shall identify Ω with the instantaneous angular velocity

vector in the following way

Ω =

⎡⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎦ −→ ω =

⎡⎣ ω1

ω2

ω3

⎤⎦ (15)

and it is valid

Ωx = [ω, x]. (16)

In general the basic formulas describing the vector kinematics are

x
′

= B x (17)

ẋ = Ω x,

⎡⎣ ẋ1

ẋ2

ẋ3

⎤⎦ =

⎡⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ (18)
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Ω = ḂB−1, Ω =

⎡⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎦ . (19)

After differentiating BT (t)B(t) = I with respect to t, we obtain the following

result for the vector of the angular velocity

Ω̃ = B−1 Ḃ, Ω̃ =

⎡⎣ 0 −r q
r 0 −p
−q p 0

⎤⎦ (20)

where Ω̃ � ω̃ = col(p, q, r).

2.2. Quaternions and Quaternion Kinematics

The real algebra of quaternions H is in one-to-one linear correspondence with

the linear space R
4, having a standard basis (1, i, j, k), and a quaternion product

defined by the basis rules i2 = j2 = k2 = ijk = −1. Hence, a quaternion q
and its conjugate q are written as linear combinations: q = q0 + iq1 + jq2 + kq3

and q = q0 − iq1 − jq2 − kq3. A symplectic inner product is defined in H by

〈q, p〉 = qp so that the norm of a quaternion q is 〈q, q〉 = q2
0 + q2

1 + q2
2 + q2

3 and

every non-zero quaternion has an inverse defined by q−1 = q/〈q, q〉. The regular

left representation of the group H∗ of non-zero quaternions is the representation

h of H∗ on the real vector space H given by h(q)q
′

= qq
′

(left multiplication by

q), where h has matrix form

h(q) =

⎡⎢⎢⎣
q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤⎥⎥⎦ . (21)

Any quaternion may be written as the sum q = s + v, where s ∈ R, v ∈ R
3. The

product of two quaternions q1 = s1 + v1 and q2 = s2 + v2 is given by the rule

q1q2 = s1s2 − (v1, v2) + s1v1 + s2v2 + [v1, v2]. (22)

The subgroup of quaternions H having unit norm, i.e., qq = 1, form a compact

non-Abelian Lie group Sp(1), called the symplectic group. This manifold is the

unit sphere S
3 in R

4 (q2
0 + q2

1 + q2
2 + q2

3 = 1). It easy to be proved, that the

automorphism of H: x → q × q−1 , with q ∈ Sp(1) and x = (0, x) ∈ R
3 is a

rotation of R
3 . The components of q are the Eulerian parameters of displacement.
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The equation (9) after some circumstances may be brought to an equation from

the type

x′ = β0(β, x)−(β, β0x+[β, x])+β0β0x+[β, x]+(β, x)β+[β, β0x+[β, x]]

or (23)

x′ = s1s2 − (v1, v2) + s1v2 + s2v1 + [v1, v2]

where we have substituted

s1 = β0, v1 = β, s2 = (β, x), v2 = β0x + [β, x]. (24)

The right side of (23) coincides with the formula for product q1q2 of two quater-

nions, and in a result we have

x′ = (β0 + β)(0 + x)(β0 − β). (25)

We denote by

a) b = col(β0, β1, β2, β3) = col(β0, β) (b ∈ Sp(1)) – the matrix-column

corresponding to the quaternion β0 + β1i + β2j + β3k = β0 + β, which

characterize the rotation, and b−1 = col(β0,−β) the matrix-column of the

conjugate quaternion.

b) x = col(0, x) and ω = col(0, ω) – the position and angular velocity quater-

nions resp.

c) b̂, x̂, ω̂ – 4×4 quaternion matrices from the type h(b), h(x), h(ω) according

to (21).

Hence, using regular left representations we may express the active rotations (25)

as

x
′

= b̂x̂b−1. (26)
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The main formulas of kinematics of the rotation in quaternion form are

x
′

= b̂ x̂ b−1

⎡⎢⎢⎣
0
x′

1

x′

2

x′

4

⎤⎥⎥⎦

=

⎡⎢⎢⎣
β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0

⎤⎥⎥⎦
⎡⎢⎢⎣

0 −x1 −x2 −x3

x1 0 −x3 x2

x2 x3 0 −x1

x3 −x2 x1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

β0

−β1

−β2

−β3

⎤⎥⎥⎦

ḃ =
1

2
ω̂b

⎡⎢⎢⎣
β̇0

β̇1

β̇2

β̇3

⎤⎥⎥⎦ =
1

2

⎡⎢⎢⎣
0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

β0

β1

β2

β3

⎤⎥⎥⎦

ω = 2 ̂̇b b−1

⎡⎢⎢⎣
0
ω1

ω2

ω3

⎤⎥⎥⎦ = 2

⎡⎢⎢⎣
β̇0 −β̇1 −β̇2 −β̇3 β0

β̇1 β̇0 −β̇3 β̇2 −β1

β̇2 β̇3 β̇0 −β̇1 −β2

β̇3 −β̇2 β̇1 β̇0 −β3

⎤⎥⎥⎦
⎡⎢⎢⎣

β0

−β1

−β2

−β3

⎤⎥⎥⎦

ω̃ = 2 b̂−1ḃ

⎡⎢⎢⎣
0
p
q
r

⎤⎥⎥⎦ = 2

⎡⎢⎢⎣
β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0

⎤⎥⎥⎦
⎡⎢⎢⎣

β̇0

β̇1

β̇2

β̇3

⎤⎥⎥⎦ .

From a group-theoretical view, (26) realizes surjective homomorphism of Lie

groups: Sp(1) � S
3 → SO(3) with kernel (1,−1), in other word, the sphere

S
3 is a two-fold covering of the configurational space of the rigid body – SO(3).

2.3. Spinors and Spinor Kinematics

We consider the orthogonal matrix of rotation (11) in Eulerian parameters β0, β1,

β2, β3, satisfying the condition (12). We denote the first vector-column with b,

the second with d, and the third one with a. The vectors b, d, a are images of

three unit vectors eh (h = 1, 2, 3) at the rotation action. These vectors form an

unit orthonormal right oriented triadic.

Let us denote a (a1, a2, a3), b (b1, b2, b3), d (d1, d2, d3). We consider the vector

a. The element −β0 β1 may be presented in the way:−β0 β1 = i2 β0 β1 =



Group Theory in the Problems of Modeling and Control of Multi-Body Systems 29

i (iβ0)β1, and precisely we have

a1 = (β3 + iβ0) (β1 − iβ2) + (β1 + iβ2) (β3 − iβ0) (27)

a2 = i [(β3 + iβ0) (β1 − iβ2) − (β1 + iβ2) (β3 − iβ0)] (28)

a3 = β2
0 − β2

1 − β2
2 + β2

3 = β2
0 + β2

3 − (β2
1 + β2

2)
(29)

= (β3 + iβ0) (β3 − iβ0) − (β1 + iβ2) (β1 − iβ2)

We set

ψ1 = β3 + iβ0, ψ2 = β1 + iβ2 (30)

and then

a1 = ψ1ψ2 + ψ1ψ2 (31)

a2 = i (ψ1ψ2 − ψ1ψ2) (32)

a3 = ψ1ψ2 − ψ1ψ2. (33)

Analogically the components of the vectors b and d are

b1 =
1

2
(ψ2

2 + ψ
2
2 − ψ2

1 − ψ
2
1) (34)

b2 =
i

2
(ψ

2
1 + ψ

2
2 − ψ

2
1 − ψ

2
2) (35)

b3 = ψ1ψ2 + ψ1ψ2) (36)

d1 =
i

2
(ψ2

1 − ψ
2
1 − ψ2

2 + ψ
2
2) (37)

d2 = −1

2
(ψ2

1 + ψ
2
1 + ψ2

2 − ψ
2
2) (38)

d3 = i (ψ1ψ2 − ψ1ψ2). (39)

The couple of the complex numbers ψ1 and ψ2 make an unit spinor, namely:

ψ =

(
ψ1

ψ2

)
=

(
β3 + iβ0

β1 + iβ2

)
. (40)

The expressions for a1, a2, a3 may be presented through the so called Pauli ma-

trices σ1, σ2 and σ3 in the following way

a1 =
(
ψ2 ψ1

)(ψ1

ψ2

)
=
(
ψ1 ψ2

) [0 1
1 0

](
ψ1

ψ2

)
= ψ+σ1ψ

a2 = i
(
ψ2 −ψ1

)(ψ1

ψ2

)
=
(
ψ1 ψ2

) [0 −i
i 0

](
ψ1

ψ2

)
= ψ+σ2ψ

a3 =
(
ψ1 −ψ2

)(ψ1

ψ2

)
=
(
ψ1 ψ2

) [1 0
0 −1

](
ψ1

ψ2

)
= ψ+σ3ψ.
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We make a projection of the sphere x2 + y2 + z2 = 1 from the point (0, 0, 1)
on the plane z = 0. The points S ′ and P from the sphere have the coordinates

(0, 0,−1) and P (x, y, z). The point P
′

(X,Y, 0) is a projection of the point P
on the plane z = 0. The equation of the line through the points P and S is

S + t (P − S) or in coordinates it looks like (0, 0,−1) + t (x, y, z + 1), from

where it follows that

t =
1

z + 1
, x t = X =

x

z + 1
, y t = Y =

y

z + 1
· (41)

The complex number ξ = X + iY is called stereographic projection, ξ ∈ C

ξ =
x + i y

z + 1
. (42)

If P (a1, a2, a3), then

X =
a1

a3 + 1
, Y =

a2

a3 + 1

and

ξ =
a1 + i a2

1 + a3
, ξ =

a1 − i a2

1 + a3
(43)

or

1 + a3 =
a1 + i a2

ξ
=

a1 − i a2

ξ
· (44)

Since a2
1+a2

2+a2
3 = 1, it follows from (44) that (1+a3)

2 = (1+a3) (1−a3)/ξ ξ,

or

a3 =
1 − ξ ξ

1 + ξ ξ
· (45)

From (44) we have a1 + i a2 = ξ (1 + a3) , or a1 − i a2 = ξ (1 + a3) , so that

a1 =
1

2
(ξ + ξ) (1 + a3), a2 = − i

2
(ξ − ξ) (1 + a3). (46)

After the substitution

ξ =
ψ2

ψ1
(47)
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and with the help of the equations (45) and (46) we get that a1 = ψ1 ψ2 +
ψ1 ψ2, a2 = i (ψ1 ψ2 − ψ1 ψ2), which are the components of a. Any rota-

tion is a linear-fractional map, which is defined through the complex unimodular

second order matrix [
α β
γ δ

]
, α δ − γ β = 1

and

ξ
′

=
α ξ + β

γξ + δ
=

(β0 + iβ3) ξ + (β2 − iβ1)

−(β2 + iβ1)ξ + (β0 + iβ3)
(48)

where β0, β1, β2, β3 are the Euler parameters, and α, β, γ, δ – Cayley-Klein

parameters.

If we substitute ξ from (47), the expression (48) is transformed in

ψ
′

=

[
β0 − iβ3 −(β2 + iβ1)
β2 − iβ1 β0 + iβ3

]
ψ. (49)

This is the well known SU(2) transformation of the spinors generating the rota-

tion in R
3. If we associate to an arbitrary quaternion q a spinor Q by means of

the correspondence f : H → S, q → Q defined by

f(q0 + i q1 + j q2 + k q3) =

(
q3 + i q0

q1 + i q2

)
≡ Q (50)

we obtain a spinor formulation of the kinematics of rotations, which extends the

quaternion formulation given above. The correspondence (50) is linear and injec-

tive since

f(q + p) = f(q) + f(p), f(λq) = λf(q), λ ∈ C, kerf = 0. (51)

The norm q q of the quaternion q is equal to the norm of the associated spinor

Q+Q = Q1 Q1 + Q2 Q2. For a conjugate unit quaternion q we set

f(q−1) = f(q0 − q1 i − q2 j − q3 k) =

(−q3 + i q0

−q1 − i q2

)
≡ Q−1. (52)

We may now associate to the product of two quaternions q p – in addition to the

quaternion-matrix product q̂ p, – a spinor-matrix product, namely

q p → q̂ p → −i Q̂ q (53)
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where q is the spinor associated to the quaternion p via (50) and Q̂ is the com-

plex, unitary, square matrix (with negative determinant q q), defined by

Q̂ =

[
q3 + i q0 q1 − i q2

q1 + i q2 −q3 + i q0

]
= q0 i σ̂0 + qh σ̂h (54)

where σ̂α, α = 0, 1, 2, 3 are the Pauli matrices. Let us denote by σα the first col-

umn of a Pauli matrix σ̂α. According to (50), the four basic quaternions 1, i, j, k
are represented, respectively, by iσ0, σ1, σ2, σ3. The connection between a spinor

Q and a square matrix (54) is given by

Q = Q̂

(
1
0

)
. (55)

The correspondence (50), Q = τq, is realized by means of the rectangular block-

matrix τ = [iσ0 | σ1 | σ2 | σ3]. A spinor transformation

Q
′

= s Q, s =

[
z W

−W z

]
(56)

corresponds to a quaternion transformation q ′ = â q, i.e., to a rotation q′ = a q
in R

4, the matrix â = h(a) is skew-symmetric, orthogonal and unimodular,

and represents the unit quaternion a = (Rez,−ImW,−ReW,−Imz). So, to the

quaternion representing the rotation of a rigid body (50), corresponds the spinor

b → ψ =

(
β3 + iβ0

β1 + iβ2

)
−→ ψ̂ =

[
β3 + iβ0 β1 − iβ2

β1 + iβ2 β3 + iβ0

]
(57)

ω → Ω =

(
ω3

ω1 + iω2

)
−→ Ω̂ =

[
ω3 ω1 − iω2

ω1 + iω2 −ω3

]
. (58)

From the equations (53) and (57) the quaternion expression (26) for rotations

becomes

X
′

= (−i) ψ̂ (−i) X̂ ψ−1 = −ψ̂ X̂ ψ−1. (59)
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Analogically the relations for the spinor kinematics are obtained

X
′

= −B̂ X̂ B−1 (60)(
x3

x
′

1 + ix
′

2

)
=

[
β3 + iβ0 β1 − iβ2

β1 + iβ2 −β3 + iβ0

][
x3 x1 − ix2

x1 + ix2 −x3

]
×
( −β3 + iβ0

−β1 − iβ2

)
ψ̇ = −1

2
i Ω̂ ψ (61)(

β̇3 + i β̇0

β̇1 + i β̇2

)
= −1

2
i

[
ω3 ω1 − iω2

ω1 + iω2 −ω3

](
β3 + iβ0

β1 + iβ2

)

Ω = −2i
̂̇
ψ ψ−1

(62)(
ω3

ω1 + iω2

)
= −2i

[
β̇3 + i β̇0 β̇0 − i β̇2

β̇1 + i β̇2 −β̇3 + i β̇0

]( −β3 + iβ0

−β1 + iβ2

)

Ω̃ = −2i ψ̂−1 ψ̇
(63)(

r
p + i q

)
= −2i

[ −β3 + iβ0 −β1 + iβ2

−β1 − iβ2 β3 + iβ0

](
β̇3 + i β̇0

β̇1 + i β̇2

)
.

2.4. Vector-Parameter Representations of Rotations

Let us consider the special orthogonal group SO(3)

SO(3) = {O ∈ Mat(3, R) ; detO = 1, OOT = I} (64)

where Mat(3, R) is the group of 3 × 3 real matrices together with its Lie algebra

(infinitesimal generators) consisting of the real skew-symmetrical 3× 3 matrices.

If A belongs to the Lie algebra of SO(3), the matrix I − A is invertible, and the

Cayley transformation making the connection between the algebra and the group

explicit is given by the formulas [49]

O = (I + A)(I − A)−1 = (2I − (I − A))(I − A)−1 = 2(I − A)−1 − I.

As an exception in the three-dimensional space, there exists a map between vec-

tors and skew-symmetric matrices, i.e., if c ∈ R
3, then c → c×, where c× is the

corresponding skew–symmetric matrix. Then we may write the SO(3) matrix in
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the form

O = O(c) = (I + c×)(I − c×)−1 =
(1 − c2)I + 2c.c + 2 c×

1 + c2
(65)

and consider it as a mapping from R
3 to SO(3) (see [107] for higher-dimensional

generalizations) for which the smooth inverse is

c× =
[O − OT ]

1 + tr(O)
· (66)

Here I is the 3 × 3 identity matrix, c.c means diadic, tr(O) is the trace of the

matrix O and “T ” is the symbol for transposition of a matrix. The formula above

provides us with an explicit parameterization of SO(3). The vector c is called the

vector-parameter [24]. It is parallel to the axis of rotation and its module ‖c‖ is

equal to tan(α/2). The so defined vector-parameters form a Lie group with the

following composition law

c′ = 〈c1, c2〉 =
c1 + c2 + c1 × c2

1 − c1 c2
. (67)

The symbol “×” means cross product of vectors. Every component of c can take

all values from −∞ to +∞ without any restrictions, which is a great advantage

compared with the evident asymmetry in the Eulerian parameterization. Obvi-

ously, the vector c ≡ 0 corresponds to the identity matrix O(0) ≡ I and −c
produces the inverse rotation O(−c) ≡ O−1(c). Conjugating with elements from

the SO(3) group leads to linear transformations in the vector-parameter space

O(c)O(c′)O−1(c) = O(c′′)

where c′′ = O(c)c′ = Occ
′. Such a parameterization in the Lie group theory is

called natural. It is worth mentioning that no other parameterization possesses

either this property or a manageable superposition law (see also [28]).

The exceptional case in (67), i.e., when c1 c2 = 1, may be treated by replacing the

vector c with a vector d from another chart of the SO(3) group manifold using the

relation

d =
c

1 + c2
(68)

and

O(c) = O′(d) = I + 2(
√

1 − d2 + d×)d×. (69)

The direction of d coincides with that of c and ‖d‖ = sin(α/2). The composition

law in this case is

d′ = 〈d1 , d2〉 = d1

√
1 − d2

2 + d2

√
1 − d2

1 + d1 × d2. (70)
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2.5. Vector-Parameters for Different SO(3) Parameterizations

Here we shall show how the vector-parameter looks in the case when one uses

other parameterizations of the SO(3) group. In the case of a parameterization of

the rotation group through Eulerian angles (ψ, ϑ, ϕ) one finds that

c = (−tan
ϑ

2
cos

ψ − ϕ

2
/ cos

ψ + ϕ

2
, tan

ϑ

2
sin

ψ − ϕ

2
/ cos

ψ + ϕ

2
, tan

ϕ + ψ

2
).

(71)

If c′ is a vector-parameter describing another rotation expressed in Eulerian angles

(ψ′, ϑ′, ϕ′), through the relation c′′ = 〈c′, c〉, then the complex and practically

unusable composition law in Eulerian angles can be obtained

ψ′′ = − arctan
c′′2
c′′1

− arctan c′′3

ϕ′′ = arctan
c′′2
c′′1

− arctan c′′3

ϑ′′ = 2arctan± cos (arctan c′′3)

√
c′′1

2 + c′′2
2

where c′′(c′′1 c′′2 c′′3) and

c′′1 =
−tanϑ2 cos ψ−ϕ−ψ

′
−ϕ′

2 − tanϑ
′

2 cos ψ+ϕ+ψ′
−ϕ′

2

cos ψ+ϕ+ψ′+ϕ′

2 − tanϑ2 tanϑ
′

2 cos ψ−ϕ−ψ
′+ϕ′

2

= − 1

cos ψ
′′+ϕ′′

2

tan
ϑ′′

2
cos

ψ′′ − ϕ′′

2

c′′2 =
tanϑ2 sin ψ−ϕ−ψ′

−ϕ′

2 + tanϑ
′

2 sin ψ+ϕ+ψ′
−ϕ′

2

cos ψ+ϕ+ψ′+ϕ′

2 − tanϑ2 tanϑ
′

2 cos ψ−ϕ−ψ
′+ϕ′

2

=
1

cos ψ
′′+ϕ′′

2

tan
ϑ′′

2
cos

ψ′′ − ϕ′′

2

c′′3 =
− sin ψ+ϕ+ψ′+ϕ′

2 + tanϑ
′

2 tanϑ
′

2 sin ψ−ϕ+ψ′
−ϕ′

2

cos ψ+ϕ+ψ′+ϕ′

2 − tanϑ2 tanϑ
′

2 cos ψ−ϕ−ψ
′ϕ′

2

= − sin ψ′′+ϕ′′

2

cos ψ
′′+ϕ′′

2

·

In the case of Eulerian parameters (qo, q1, q2, q3), the vector-parameter is

c = (−q3

qo
, −q2

qo
,

q1

qo
) (72)
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while, for the Bryant angles (ϕ1, ϕ2, ϕ3), we have the relations

c1 = (tan
ϕ1

2
, 0, 0), c2 = (0, tan

ϕ2

2
, 0), c3 = (0, 0, tan

ϕ3

2
) (73)

leading to

c = 〈c3, c2, c1〉 = 〈c3, 〈c2, c1〉〉.
As a result

c =
1

1 + tanϕ1

2 tanϕ2

2 tanϕ3

2

(tan
ϕ1

2
− tan

ϕ2

2
tan

ϕ3

2
,

tan
ϕ2

2
+ tan

ϕ1

2
tan

ϕ3

2
, (74)

tan
ϕ3

2
− tan

ϕ1

2
tan

ϕ2

2
).

On the basis of the above considerations, we may conclude that the suggested ap-

proach of the vector-parameterization is applicable with any choice of coordinate

frames and with different generalized parameters.

It is worth to note here that the composition laws of the other parameterizations

are not used and that they have never been written in explicit form because of their

complexity. As examples, the complex superpositions in the cases of Eulerian and

Bryant angles are shown in this section.

Alternatively, the group SO(3) may be parameterized through a vector l, which is

directed along the rotation axis and it is equal numerically to the angle of rotation

α

l =
αc

‖c‖ = 2
c

‖c‖ arctan ‖c‖

so that

c =
l

‖l‖ tan
‖l‖
2

.

This parameterization is also linear and natural, but it has a very complex compo-

sition law.

2.6. Euclidean Motion

The Euclidean motions in R
3, i.e., rotations about a fixed point and translations

can be unified in the equation

r = Ord + p (75)
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where O ∈ SO(3), rd and r are vectors in movable Rd and immovable Ro frames

respectively and p is a vector of translation. If O and p are time dependent, the

expression (75) gives a consequence of displacements. Introducing the skew-

symmetric matrix of angular velocity Ω = Ȯ OT , it follows that

Ω2 = −(Ȯ OT )(Ȯ OT )T = −Ȯ ȮT and Ω̇ = Ö OT + Ȯ ȮT . (76)

After differentiating (75), we obtain for the linear and acceleration velocity vec-

tors respectively

ṙ = Ȯ rd + ṗ = Ω (r − p) + ṗ (77)

r̈ = [Ω̇ + Ω2] (r − p) + p̈ (78)

where Ω̇(t) (r(t) − p(t)) is the tangential acceleration, parallel to the velocity

and Ω2(t)(r(t)− p(t)) is the normal acceleration. By using equation (65) and the

relation Ω = Ȯ OT for the angular velocity vector, it can be verified that

ω =
2

1 + c2
(c × ċ + ċ) (79)

where c is the vector-parameter defining the rotation of the movable frame Rd

with respect to the fixed one Ro. Then the vector of the angular acceleration is

ε = ω̇ =
2

1 + c2
(c × c̈ + c̈ − ω(cċ)). (80)

The components of the vectors ċ and c̈ are respectively the first and second deriv-

atives of the components of the vector-parameter c. The recurrent relations for the

vectors of angular and linear velocities and accelerations of the links of a rigid-

body system as well as their dynamical characteristics are presented in [61].

The kinematic-differential equations (KDE) relate the time derivatives of the

angular position coordinates to the angular velocity vector. With the angular ve-

locity vector in terms of vector-parameters (79), the KDE may be obtained directly

from the formula

ċ =
[O(−c) + I]ω

1 + tr(O)
. (81)

It should be noted that the equation Ȯ = ΩO, for O = O(c), is an alternative

form of the KDE. Since the matrices O and the vectors c belong to a Lie group

and Ω and ω are elements of the corresponding Lie algebra, the equations above

give the relation between the algebra and the group. Lie groups and Lie algebras

live in a closed relationship, with the exponential mapping being a key feature
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of this relationship. The configurational manifold of a rigid body motion with a

fixed point in the ordinary Euclidean space R
3 can be identified quite naturally

with the special orthogonal group SO(3) and its phase space is nothing but the

tangent bundle TSO(3). In classical mechanics, the usual description of a rigid-

body state is through its pole and angular velocity. This is complemented by an

identification of the tangent vectors at different points. A basic idea here is that

the definition of angular velocity does not depend on the concrete body state. That

is why one may speak about equality of the angular velocities independently of

the rigid-body state. This is the essence of the tangent bundle trivialization [63].

There are at least two alternative trivializations of TSO(3):

Theorem 1. When one trivializes the tangent bundle of the SO(3) group through
vector-parameter c and angular velocity vector ω the group composition law is
(c1, ω1) (c2, ω2) = (c3, ω3), where c

i
∈ SO(3), ω

i
= ω(c

i
) ∈ TcSO(3),

(i = 1, 2, 3), c3 = 〈c1 , c2〉 and ω3 is defined by Ω3 = Ω1 + O(c1)Ω2O
T (c1).

Theorem 2. Under the second alternative trivialization of the SO(3) tangent bun-
dle through the vectors c and ċ the group law is (c1 , ċ1) (c2 , ċ2) = (c3, ċ3).

On the basis of the theorems given above, if x = [p
... o]T is a 6-dimensional

vector of position p and orientation o of a rigid body, then ȯ in the velocity vector

ẋ = [ṗ
... ȯ]T (treated before as an angular velocity vector, the derivatives of three

independent elements of the rotation matrix, derivatives of Bryant angles, Eulerian

parameters, etc.) may be considered either as a velocity of orientation change of

a movable frame with respect to the fixed one (ȯ = ċ′) or as an angular velocity

vector (ȯ = ω).

Now we consider the bundle T1S2 consisting of the unit tangents to S
2 vectors,

namely

T1S
2 = {(x, y); ‖x‖2 = 1, y. x = 0, ‖dy‖2 = 1}.

Theorem 3. In spite of the fact that S
2 is not a Lie group, T1S2 has a group

structure isomorphic to the one of SO(3).

Proof: Let us consider (x, y) ∈ T1S2 with x(x1, x2, x3), y(y1, y2, y3). It may be

immediately checked that the matrix O(x, y), given by

O(x, y) =

⎡⎣ x1 y1 (x × y)1
x2 y2 (x × y)2
x3 y3 (x × y)3

⎤⎦ (82)
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is orthogonal. From the definition of c× it follows that the components of the

vector-parameter c(c1, c2, c3) corresponding to this rotation are

c1 =
y.e3 − (x × y).e2

1 + x.e1 + y.e2 + (x × y).e3

c2 =
(x × y).e1 − x.e3

1 + x.e1 + y.e2 + (x × y).e3
(83)

c3 =
x.e2 − y.e1

1 + x.e1 + y.e2 + (x × y).e3

where e1, e2, e3 provide a standard basis in R
3. Here the symbol “.” means scalar

product. The vector form of c is accordingly

c =
J1x + J2y + J3(x × y)

1 + e1.x + e2.y + e3(x × y)
(84)

and the matrices Ji = e×i , i = 1, 2, 3

J1 =

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ , J2 =

⎡⎣ 0 0 1
0 0 0

−1 0 0

⎤⎦ , J3 =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦
are the standard infinitesimal generators of the rotation group. Since

1 + x.e1 + y.e2 + (x × y).e3 = 1 + trO(x, y) = 4/(1 + c2)

if we denote J1x+J2y +J3(x×y) = a, from the equation c = a/(1+ c2) we

get 4/(1 + c2) = 2 −√
4 − a2 . Therefore, from equation (84), it follows that

c =
a

2 −√
4 − a2

· (85)

Let us consider the couples: (x1, y1), (x2, y2) ∈ T1S2, whose components are

three dimensional vectors, namely xi(xi1, xi2, xi3), yi(yi1, yi2, yi3), i = 1, 2.

Let ai = J1xi + J2yi + J3(xi × yi) and ci(ci1, ci2, ci3) are the corresponding

vector-parameters for the matrices O(xi, yi). The resultant function is given by

the vector c3, which is a function of x3 and y3. If we denote by Xi the raw vector

[xi yi xi × yi], i = 1, 2, 3, it may be proved that

X3 =
(1 − X2E)X1 + (1 + X1E)X2

1 − (X1E)(X2E) − (X1 × E)(X2 × E)
(86)

where XiE = trO(xi, yi) = 1 −
√

4 − a2
i . It may be also shown that

Xi × E = [yi.e3 − (xi × yi).e2, −xi.e3 + (xi × yi).e1, xi.e2 − yi.e1]
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where E = [e1, e2, e3], is exactly the vector ai. Then the resultant couple

(x3, y3) is

(x3, y3) =
(2 −

√
4 − a2

2(x1, y1) + (2 −
√

4 − a2
1(x2, y2)√

4 − a2
1 +

√
4 − a2

2 −
√

4 − a2
1

√
4 − a2

2 − a1a2

· (87)

In explicit form we have

x3 = Ax1 + Bx2, y3 = Ay1 + By2 (88)

where

A = b2/c, B = b1/c b2 = 2 −
√

4 − a2
2, b1 = 2 −

√
4 − a2

1

c =
√

4 − a2
1 +

√
4 − a2

2 −
√

4 − a2
1

√
4 − a2

2 − a1a2

a1 = J1x1 + J2y1 + J3(x1 × y1), a2 = J1x2 + J2y2 + J3(x2 × y2).

The formulas (87) and (88) define the group operation inside T1S2. Besides, the

above theorem clarifies the topological structure of SO(3).

2.7. Dynamics and Control of a Rigid Body with Vector-Parameters

We consider now the dynamics of a rigid body in R
3 which is subject to external

torques M (for example, spacecraft attitude with gas-jet or momentum-exchange

actuators [39], [43], [25], [8]). We treat a pure rotation of the body about its

fixed point. According to the above notation, we denote by R a space frame and

by Rb a frame fixed with respect to the body. The subindex “b” means that the

corresponding vector is expressed in the body-frame Rb.

Let Jb1, Jb2, Jb3 denote the principal moments of inertia (positive real numbers).

It is well known that the angular momentum of the system in the body frame is

pb = Jb ωb (89)

with Jb = diag [Jb1, Jb2, Jb3] which is a matrix of constants and is called the

inertia matrix. The momentum balance condition in the space frame yields

ṗ = M (90)

and M = OMb. Then using the relation pb = OT p, we obtain

Jb ω̇b = ṗb = ȮTp + OT ṗ = ȮTO OT p + Mb = −ΩbJb ωb + Mb. (91)
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Here we use the relation ȮTO = −Ωb which may be obtained from the time-

differentiation of the matrix identity OOT = I and the definition Ωb = OTO.

The equations thus obtained

Jb ω̇b = −Ωb Jb ωb + Mb (92)

or

Jb ω̇b = − ωb × Jb ωb + Mb (93)

are commonly known as Euler dynamic equations.

After introduction of the notation Sb(ω) = −Ωb, the system which describes

control of the body is expressed by means of equations of the form

Jb ω̇b = Sb (ω)Jb ωb + Mb (94)

Ȯ = O Sb(ω), O = O(c) (95)

with state (ω,O) ∈ R
3× SO(3) and input Mb ∈ R

3. If we suppose the external

torque Mb generated by a set of m independent pairs of gas jets (thrusters), we

may set

Mb =
∑

b
i
u

i
, i = 1, . . . ,m (96)

where b1, . . . , bm ∈ R
3 represent the vectors of direction cosines, with respect to

the body of the axes about which the control torques are applied, and u1, . . . , um
are the corresponding magnitudes. It is assumed that the vectors b1, . . . , bm
are linearly independent. Setting x = Jb ωb and using the property S(w)v =
−S(v)w, we may rewrite the equation in question in the form

ẋ = S(x)J−1x + Bu, S(x) = Sb(Jb ωb), B = [b1 b2 . . . bn]. (97)

Thus we obtain the state equations in the usual form

ẋ = f(x) + g1(x)u1 + . . . + gm(x)um (98)

where

f(x) = S(x)J−1
b x, g

i
(x) = b

i
. (99)

The vector-parameterization of SO(3) and trivialization of TSO(3) through the

vectors c and ω imply that the system which controls the rigid body motion is

Jb ω̇b = Sb(ω)Jb ωb + B u (100)

ċ = AO ωb, ω = O ωb (101)
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where the matrix A is

A =
1

1 + tr(O)
[O(−c) + I]. (102)

In the state space (ω, c) ∈ R
3 × R

3, with the matrix operator A from ċ = A ω,

realizing a transition from the space of the angular velocity vectors to the vectors

ċ, we have

ẋ = S(x)J−1
b x + B u (103)

ċ = AO J−1
b x. (104)

If the tangent bundle TSO(3) is trivialized by the vectors c and ċ using the substi-

tution

y = JbO
−1 A−1ċ (105)

the last system may be written in the form

ẏ = S(y)J−1
b y + B̂ û (106)

ċ = AO J−1
b y. (107)

3. Kinematics and Dynamics of a Manipulator System with
Vector-Parameters

3.1. Basic Kinematical Relations

As a basic example we consider here a MS with n degrees of freedom and links

Bo, B1, B2, . . . , Bn, where Bo is fixed (Fig. 1). A frame R
i

centered in O
i

is

referred to the link B
i

(and joint i) from the chain. The frame R
n+1

is built in

the gravity center Gn of the link Bn (gripper), which may be coincident with the

gripper characteristic point C [75–77].

Figure 1. Links i − 1, i and i + 1 of a manipulator
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The vector
−−−−−→
O

i−1
O

i
between the respective centers of the frames R

i−1
and R

i
is

denoted by s
i−1

, the vectors
−−−→
O

i
G

i
,
−−→
O

i
Gi−1 and

−−−−−→
G

i−1
O

i
by s

ii
, s

i,i−1
and s

i−1,i
,

respectively, and the vectors
−−−→
OoO

i
,
−−−→
OoGi

by p
i

and p
G

i
, respectively where

p
i
= so + s1 + . . . + si−1, so = 0, p

Gi
= p

i
+ s

ii
(108)

and q1, q2, . . . , qn are the generalized coordinates (joint displacements) of the MS

in the usual sense.

Let (c1, t1), (c2, t2), . . . , (cn, tn) be the vectors describing the joint movements

of the MS. They occupy the group configurational space

Qct = {(c, t)min ≤ (c, t) ≤ (c, t)max}. (109)

The entries of the i-th pair (c
i
, t

i
) coincide either with the vector-parameter c

i

or translational vector t
i

in dependence on the type of the i-th joint (revolute or

prismatic, respectively).

The absolute gripper vector x = [p
... o]T gives the information for the position of

the end–effector (through the vector p ∈ R
m1) and for the orientation (through

the vector o ≡ c′ = 〈c1, c2, . . . , cn〉 ∈ R
m2) and dim(p)+dim(o) = m1+m2 =

m. Further on, for a more clear presentation, we shall consider MS with rotational

pairs only, i.e., the system whose motion is described through the vector c

c = [c1, c2, . . . , cn]
T , c′ = 〈c1, c2, . . . , cn〉 and Qct ≡ Qc.

The connection between x and c (DKP) is given by

x = F
V
(c) (110)

where F
V

: Qc → X is a smooth projection map over the target space

X = {x ; x = F
V
(c), c ∈ Qc ⊂ R

m} (111)

which is the working space of the MS under consideration. After differentiation

with respect to t of the equation (110), one obtains

ẋ = [
∂F

V

∂c
] ċ = J

V
(c) ċ (112)

where J
V
(c) ∈ R

m,3n is the Jacobian matrix of the map F
V

. As before all

configurations for which the rank of J
V
(c) < m are called singular. One can use

equation (112) to go to the standard joint variables q through the transformation

ẋ = [
∂F

V

∂c
] [

∂c

∂q
] q̇ = J

V
(c) [

∂c

∂q
] q̇ = J(q) q̇ (113)
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where ∂c/∂q is 3n × n block diagonal matrix with elements

[
∂ci1
∂q

i

,
∂ci2
∂q

i

,
∂ci3
∂q

i

]T , i = 1, 2, . . . , n.

As it can be seen, the Jacobian of this transformation J(q) may be presented as a

product of two matrices which simplifies the computation while its inversion can

be realized through parallel processors. In the case of a “pure” vector-parameter

consideration of MS (i.e., in Qc space), after measuring the joint displacements q
i

by the transducers, the vectors c
i

(as functions of tan(qi/2), i = 1, 2, . . . , n are

tabulated.

The vector of the end–effector angular velocity may be presented as

ω = N
V
ċ (114)

where N
V

is the 3 × 3n block matrix

N
V

= [N1
V

N2
V

. . . Nn
V
] (115)

with components

Nk
V

= O(〈c1, c2, . . . , ck−1〉)N(ck) = O(gk−1)N(ck) (116)

and

N(ck) =
1

1 + c2
k

[c×k + I]. (117)

By analogy, the gripper linear velocity vector may be written as

V = M
V
ċ (118)

where M
V

is also a 3 × 3n matrix of the type

M
V

= [M1
V

M2
V

. . . Mn
V
] (119)

whose elements are the matrices

Mk
V

= −sxkcO(gk−1)N(ck), skc = OkGn. (120)

Hence, when ȯ = ω, we have

ẋ = [V
... ω]T = [M

V

... N
V
]T ċ. (121)
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The matrix [M
V

... N
V
]T = J

V
(c) is the Jacobian matrix of the map F

V
. Now we

use the kinematical differential equation in vector parameter terms. Denoting by

Λ the matrix on the right hand side of the last equation, we see that, when ȯ = ċ′,
we have

ẋ = [ṗ
... ċ′]T = [M

V

... N
CV

]T ċ (122)

where N
CV

is 3 × 3n block matrix

N
CV

= [N1
CV

N2
CV

. . . Nn
CV

] (123)

with components 3 × 3 matrices of the type

Nk
CV

= ΛNk
V

. (124)

We may also write

Nk
CV

=
1

1 + trO(c′)
[O(〈−cn,−cn−1, . . . ,−ck〉)N(ck) + Nk

V
]. (125)

Finally, we have to note that the full information for the i-th joint motion (i =
1, 2, . . . , n) is entirely encoded into just one of the components of the vector-

parameter c
i
.

3.2. Dynamics in Qct

Dynamical equations of MS are very important for simulation of motion and con-

trol of the manipulator systems. In design, they are used in motion simulation,

where they furnish a powerful tool for the study of control strategies, optimiza-

tion of the parameters, and for the testing of robot performance under various

conditions. In connection with the robot operation, dynamical equations are used

for the evaluation of nominal actuator torques and forces which drive the robot

along a prescribed trajectory. Such calculations normally need to be performed

on-line, and since the forces and torques need to be updated frequently, computa-

tional efficiency is of major concern.

In [61], dynamic models based on Lagrange’s, Newton and Euler’s, Tzenov’s, as

well Appel’s and Nilsen’s equations of motion are built. The final form of the

equations for MS motion is expressed in the standard joint coordinates q on the

configurational space Q.
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Here a dynamic model in pure vector-parameter based on Lagrange’s equations is

presented. The linear velocity VGi
of the center of gravity Gi of the i-th link will

be written as VGi
= M

V i
ċ, where M

V i
are 3 × 3n block matrices

M
V i

= [M1
V i

... M2
V i

... . . .
... M i

V i

... Ø
... Ø

... · · · ... Ø] (126)

with components

Mk
V i

=

{
−po×

Gi
O(gk−1)N(ck) k = 1, 2, ..., i − 1

(pi − po
Gi

)×O(gk−1)N(ci) k = i.
(127)

Since ωii = O(−gi)ωoi , it is appropriate to introduce the 3 × 3n block matrix

N̄
V i

N̄
V i

= [N̄1
V i

... N̄2
V i

... . . .
... N̄ i

V i

... Ø
... Ø

... · · · ... Ø] (128)

whose components are

N̄k
V i

= O(−g
i
)O(ck−1)N(ck), k = 1, 2, . . . , i (129)

with O(co) = I. The kinetic energy of the i-th link is transformed in the follow-

ing way

Ti =
1

2
miċ

TMT
V i

M
V i

ċ + ċT N̄T
V i

JiN̄V i
ċ (130)

=
1

2
ċT [miM

T
V i

M
V i

+ N̄T
V i

JiN̄V i
]ċ =

1

2
ċTZ

V i
ċ. (131)

The total kinetic energy is

T =

n∑
i=1

Ti =
1

2
ċT

n∑
i=1

Z
V i

ċ =
1

2
ċTH

V
ċ. (132)

After a substitution into the second order Lagrangian equations

d

dt

∂T

∂ċ
− ∂T

∂c
= Q

V
(133)

we get

H
V
c̈ + Ḣ

V
ċ − ∂T

∂c
= Q

V
(134)
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where the column matrix

Q
V

= [QM
V

1

/QF
V

1

... QM
V 2

/QF
V 2

... ...
... QM

V n
/QF

V n
]T (135)

represents the generalized moments and forces. The generalized forces are derived

by means of the vertical displacement method. The vector of generalized forces

can be represented as a sum

Q
V

= P
V

+ Y
V

(136)

where

P
V

= [PM
V 1

/PF
V 1

... PM
V 2

/PF
V 2

... ...
... PM

V n
/PF

V n
]T (137)

is the column matrix of driving torques and forces, and Y
V

can be calculated

independently of P
V

YVj
=

{ ∑n
k=j mk[g, ej , r

(j)
k ] μj = 0 rotation∑n

k=j ejgmk μj = 1 translation
(138)

In the equation above, r
(j)
k =

∑k−1
p=j (s

′

pp − sp,p+1) + s′kk, s′pp = spp + qpepμp
and g = [0, 0 ,− 9.81]T .

Introducing

h
V

= Y
V

+
∂T

∂c
− Ḣ

V
ċ (139)

the equations (134) may be reduced to the simple form

H
V
c̈ = P

V
+ h

V
(140)

where H
V

= H
V
(c) is the 3n×3n inertial matrix. The 3n×1 matrix h = h(c, ċ)

takes into account Coriolis, centrifugal and gravitational forces, and P
V

is the

3n × 1 matrix of the driving torques and forces. However, the real dimension of

the differential equations is n because only one of the components of the vectors

c
i

is essential and informative.

4. Screw Considerations

Because of the fact that every Euclidean motion may be presented as a screw mo-

tion, this section proposes an useful interplay of screw geometry, dual algebra



48 Clementina D. Mladenova

and vector and matrix transformations. The special structure of a manipulator as

a series of coupled bodies allows the specialization of the general line coordi-

nate transformation matrix in the form called dual orthogonal matrix and defining

of the notion of dual vector-parameter. The geometrical and kinematical mod-

els of a manipulator are expressed in a closed form using dual orthogonal matri-

ces and dual vector-parameters. The angular velocity vector of the end-effector

takes a particularly simple form leading to a simple geometric interpretation of

the Jacobian matrix. After describing of the velocity-screw, the force-screw and

momentum-screw are introduced and Newton-Euler equations in screw-matrix

form are presented.

4.1. Screw Kinematics of a Rigid Body

As it is known every movement g ∈ E(3) may be presented as a screw motion
[12], [34]: a translation of a point along an axis l and a rotation about this axis,

i.e., g depends on the parameters c1, c2, c3, p1, p2, p3. Concerning the screw axis

l of (75): since it is parallel to the rotational axis c for the transformation O(c),
its Plücker vectors L and L′ are

L = 2c, L′ = c × p − p + νc, ν = (c.p)/c2, ν = const (141)

which, together with the angle of rotation α, defined by ‖c‖ = tan(α/2) and the

translation distance (c.p)/c2, gives a complete description of the screw displace-

ment of the six parameters ci and pi (i = 1, 2, 3).

It is interesting to find out how these requirements look on a velocity level. The

basic equations which we use now are (75) and (77). It may be proved that the

velocity distribution is identical with that of a screw motion, with l as an axis,

with angular velocity ω and translational velocity σω. The scalar σ being a

ratio of the linear and the angular velocity, it is known as the pitch of the screw

motion. The Plücker vectors of the screw axis now are

L = ω, L′ = ṗ − ω × p − σω (142)

which, in vector-parameter form look like

σ =
1 + c2

2

(c × ċ + ċ).p

c2ċ2 − (cċ)2
(143)
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and

L =
2

1 + c2
(c × ċ + ċ) (144)

L′ = ṗ − 2

1 + c2
(c × ċ + ċ) × p − (c × ċ + ċ).ṗ(c × ċ + ċ)

c2ċ2 − (cċ)2
(145)

4.2. Dual Vector-Parameter in Manipulator Kinematics

4.2.1. Manipulator Skeleton and Line Geometry

The system of coupled rigid bodies Bi, i = 0, 1, 2, . . . , n (Bo is the fixed body

while Bn may be treated as the end-effector) that make up a manipulator, can

be reduced to a skeleton consisting of the lines forming the axes of the cylindric

joints and the lines defined by the common normals to consecutive pairs of these

axes forming the rigid links of the manipulator. We denote by Ro the base frame

(fixed) and Rn+1 is connected with a characteristic point C of the gripper (usually

it coincides with the mass center). We define the coordinate frames Ri(xi, yi, zi)
and Ri−1(xi−1, yi−1, zi−1) for bodies Bi and Bi−1 by choosing the z-axis of each

reference frame along the axis of the joint and the x-axis of each frame along the

common normals of succeeding axes [69] (see Fig. 2 and Fig.3).

Figure 2. Scheme of a manipulator with general geometry

The displacement of the body Bi relative to Bi−1 is specified by the rotational

angle ϑi about the line li−1 coinciding with its z-axis, i.e., with the axis zi−1 of

the frame Ri−1, and the translation by the amount di along this line. The position

of li in the reference frame Ri of Bi relative to the joint axis li−1 is given by

the angle αi about the common normal between the axes xi) and the distance ai
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along it. The parameters di and ai are the dimensions of the link making up Bi−1,

whereas the parameters ϑi and αi are the joint variables that prescribe the position

of Bi relative to Bi−1. The coordinate transformation relating the position of Bi to

Bi−1 is made up by a pair of transformations, each of which consists of a rotation

about and a translation along a given line, which is just a screw displacement.

Figure 3. The standard reference frame

Since ā(a, 0, 0) and d̄(0, 0, d), the group of Euclidean motions – E(3) in R
3, can

be defined as a set of pairs with the following composition low

(O(cϑ), d̄) (O(cα), ā) = (O(〈cϑ, cα〉), O(cϑ)ā + d̄) = (O(cϑα), p). (146)

Hence, in terms of homogeneous transformations, (75) converts into[
r
1

]
=

[
O(cϑα) p

0̄ 1

] [
ro
1

]
(147)

where 0̄ is a 1 × 3 zero vector. The analog of 4 × 4 matrix in equation (147) for

the transformations of line coordinates looks like[
E

X × E

]
=

[
O(c) ∅

p×O(c) O(c)

] [
e

x × e

]
(148)

where the six dimensional Plücker coordinate vector of the line l is: l = (E,X×
E), E = Y − X, p× is a skew-symmetric matrix obtained from the compo-

nents of p(p1, p2, p3), ∅ is the 3 × 3 zero matrix, x, y and X,Y are point

coordinate vectors of points on l measured in Rb and Ro, respectively and

E = Y − X = O(c)(y − x) = O(c)e (149)

X × E = O(c)(x × e) + p×O(c)e. (150)
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4.2.2. Dual Orthogonal Matrices and Dual Vector–Parameters

In the language of the dual algebra [57], [142], equation (148) has the compact

form

Ê = Ô(c)ê (151)

where Ê = E +μX ×E, Ô(c) = O(c)+μp×O(c), ê = e+μx× e, and μ2 = 0.

Ô(c) is 3 × 3 dual orthogonal matrix, whose dual number elements represent a

general line coordinate transformation.

We now introduce the dual angle between two lines as the dual number ϕ̂ =
ϕ + μϕo, where ϕ is the angle between the lines and ϕo is the distance between

them about the common normal. Then ϑ̂ and α̂ are expressed in the following

way

ϑ̂ = ϑ + μd, α̂ = α + μa. (152)

Having in mind that O(cϑ) represents a rotation about the z-axis, its dual matrix
is O(cϑ̂) and the corresponding dual vector-parameters ĉϑ and ĉα are

ĉϑ = (0, 0, tan
ϑ̂

2
), ĉα = (tan

α̂

2
, 0, 0). (153)

Let ci be the vector-parameter giving the orientation of Ri referred to Ri−1

and ĉi – its dual one [64]. The corresponding orthogonal and dual orthogonal

matrices are O(ci) and Ô(ci) = O(ĉi), where ci = 〈cϑi
, cαi

〉, ĉi = 〈ĉϑi
, ĉαi

〉
and ĉ′ = 〈ĉ1, ĉ2, . . . , ĉn〉. We shall denote further on O(ci) as Oi−1,i . Given

the structure of the manipulator, we can determine the sequence of dual matrices

Ôo1, Ô12, Ô23, . . . , Ôn−1,n. Thus, we have the pair of transformation equations

relating line coordinates measured in Rn to those measured in Ro

Ê = Ôonê, Ê = Ô(c′)ê (154)

Ê = Ôo1Ô12 . . . Ôn−1,nê, Ê = Ô(c1)Ô(c2) . . . Ô(cn)ê. (155)

From these relations we obtain the matrix identity

Ôon = Ôo1Ô12 . . . Ôn−1,n. (156)

The corresponding relation in dual vector-parameters is ĉ′ = 〈ĉ1, ĉ2, . . . , ĉn〉. The

matrix equation (156) or its vector counterpart (154) relates the position and ori-

entation of the end-effector of a manipulator to its joint parameters. Considering

the dual angular velocity vector ω̂

ω̂ = ω(ĉ), ω̂ = (ω̂1, ω̂2, ω̂3) (157)



52 Clementina D. Mladenova

associated with the matrix O(ĉ), where ĉ = (ĉ1, ĉ2, ĉ3), the dual matrix of angular

velocity Ω̂, associated with the dual orthogonal matrix Ô(cϑ) depends on ω̂3.

Since dϑ̂/dt = ϑ̇+μḋ, we obtain that ω̂3 = dϑ̂/dt, and the dual angular velocity

vector is

ω̂ = (dϑ̂/dt)k̂. (158)

k̂ = [0 0 1]T is the dual vector representing the z-axis (its dual part is equal

to zero). The dual angular velocity vector ω̂i−1,i of Bi relating to Bi−1 is

transformed to the frame Ro by the equation

ω̂oi−1,i = Ôo1Ô12 . . . Ôi−1,iω̂i−1,i. (159)

Using the notation K̂i−1 as the image of k̂i−1 in Ro, we have

ω̂oi−1,i = (dϑ̂i/dt)Ôo1Ô12 . . . Ôi−2,i−1k̂i−1 = (dϑ̂i/dt)K̂i−1 (160)

ω̂oon = (dϑ̂1/dt)K̂1 + (dϑ̂2/dt)K̂2 + . . . + (dϑ̂n/dt)K̂n (161)

which may be written in turn as the following matrix equation

ω̂oon = [K̂1K̂2 . . . K̂n][(dϑ̂1/dt)(dϑ̂2/dt) . . . (dϑ̂n/dt)]T . (162)

For a typical manipulator, n = 6 and [K̂1K̂2 . . . K̂6] is 3 × 6 matrix with dual

number elements which is called the dual Jacobian matrix of the manipula-

tor [29]. The columns of this matrix are just the dual vectors of the lines cor-

responding to the manipulator’s joint axes, measured in the base reference frame

Ro. Equating the real and dual parts of equation (162) and introducing the nota-

tion ω∗ and K∗

i for the dual part of ω̂ and K̂i, there follows that[
ω
ω∗

]
=

[
[K1 . . . K6] [0 . . . 0]
[K∗

1 . . . K∗

6 ] [K1 . . . K6]

] [
ϑ̇

ḋ

]
(163)

where [ϑ̇ ḋ]T = [ϑ̇1 . . . ϑ̇6 ḋ1 . . . ḋ6]
T . Twelve unknowns, the real and dual

parts of the six dual angular velocities, appear in (163) because single-degree-of-

freedom revolute and prismatic joints are being modelled in this general case by

two-degrees-of-freedom cylindric joints. Actually, for a six-degree-of-freedom

manipulator only six of these unknowns are non-zero and the matrix in equation

(163) becomes of 6 × 6. This matrix is just the Jacobian of the manipulator.
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4.3. Dynamics of Multi-Body Systems in Screw Form

There are some vector pairs in mechanics, such as the resultant force f and couple

n reduced by a system of forces about an arbitrary point R, the instantaneous an-

gular velocity ω of a rigid body and the velocity V of a point R of the body, the lin-

ear momentum F and angular momentum M about a point R of a system of par-

ticles, which have different physical meanings, but they all satisfy the definition

of the screw and can be defined as force-screw, velocity-screw and momentum-

screw, respectively (see [143], [99].

We denote by V i
i , ω

i
i , F

i
i ,M

i
i , f

i
i , n

i
i the coordinate columns of the following vec-

tors in the body fixed base e(i) = (ii, ji, ki) with origin Ri

Vi, ωi – vectors of the linear velocity of Ri and the angular velocity of Bi

respectively;

Fi,Mi – linear momentum and angular momentum about Ri of Bi;

fi, ni – resultant force and couple of the external forces on Bi about Ri.

The corresponding dual base is ê(i) = (̂ii, ĵi, k̂i) and according to previous nota-

tion Ê(i) = Ôoiê
(i). We define the velocity-screw V̂i, momentum-screw F̂i and

force-screw f̂i as follows [143]

V̂i = [V iT
i ωiTi ]T F̂i = [F iT

i M iT
i ]T f̂i = [f iTi niTi ]T . (164)

Compose 6 × 6 square matrix V̂ ×

i from 3 × 3 skew-symmetric matrices V ×

i and

ω×

i of vectors V i
i and ωii on the base e(i)

V̂ ×

i =

[
ω×

i ∅
V ×

i ω×

i

]
. (165)

The recurrent relations for the position vectors as well for vectors of linear and

angular velocities and accelerations may be found in [69].

Let mi and Ji be the mass and inertia matrix of Bi about Ri, s×ii be the skew-

symmetric matrix of radial vector siii from Ri to the mass center Gi of the body

Bi, on base e(i). The formulas of linear and angular momenta, can be expressed

by two compact screw equations

F̂i = φ̂iV̂i,
˙̂
Fi + V̂ ×

i F̂i = f̂i (166)

where 6× 6 matrix φ̂i is called the generalized inertia matrix of Bi on base e(i)

φ̂i =

[
miI mis

×T
ii

mis
×

ii Ji

]
. (167)
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Equation (167) is just the Newton-Euler equations written in screw-matrix form.

Through external iterative procedure for kinematical analysis and internal iterative

procedure for synthesis of forces and moments, the dynamics of an open-loop

mechanical system may be described analogically as it is done in [61].

5. An Approach for Diagonalization of Real 3 x 3 Symmetric Matrix
and Mechanical Applications

5.1. Reasons for Investigation of the Problem

Many classical and quantum mechanical analysis lead to considerations of the

spectrum and eigenvectors of either 3 × 3 or 4 × 4 real symmetric matrices as

the lowest realistic cases of the problem at hand. The inertia tensor in rigid body

mechanics given in [140], the determination of the point groups of symmetry in

crystallography [100] and the gradient flows on the space of orthogonal matrices

[14] are just a few of the numerous cases.

The story starts with the Jacobi’s method for solving the eigenproblem for a con-

crete 8 × 8 symmetric matrix that arises in his study on dynamics. Jacobi diago-

nalizes the above matrix by performing a sequence of orthogonal similarity trans-

formations and his method is relevant and effective in all dimensions (cf. [27] for

numerical counterpart). Each transformation is a plane rotation, chosen so that

the induced similarity diagonalizes some 2 × 2 principal submatrix, moving the

weight of the annihilated elements onto the diagonal. Performing the same pro-

cedure in lower dimensions has a lot of specificity. E.g., using the isomorphism

between 4×4 orthogonal matrices and algebra of quaternions [3] and [52] present

a construction of an orthogonal similarity that acts directly on 2 × 2 blocks and

diagonalizes a 4 × 4 symmetric matrix.

A straightforward analysis of the procedure of finding eigenvalues of a symmet-

ric 3 × 3 matrix can be found in [119], while the authors in [11] provide explicit

formulas for eigenvectors. This was done using the standard result about rota-

tional matrices in the real three-dimensional space, namely that any of them can

be represented as a product of three plane rotations.

In this section an easily tractable analytical method for casting a real three dimen-

sional symmetric matrix into its diagonal form along with explicit formulas for

the corresponding eigenvectors is given. This is achieved by two steps relying on

a nice geometrical parameterization of the rotational group SO(3) and the funda-

mental algebraic theorem about solutions of the polynomial equations. Results
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for the mass inertia matrix in rigid body mechanics and special systems of linear

differential equations are examined in some detail. Another aim is the approach

to be applied for obtaining a new form of dynamical equations of multi-body me-

chanical systems which is quite convenient for the control process.

Here we follow the already mentioned procedure based on the vector parameteri-

zation, which is quite different from the standard Euler’s parameterization of the

rotational group SO(3). Contrary to other known coordinatizations of SO(3) the

vector-parameterization is a symmetrical and a natural one. Our aim is to find

the vector-parameter defining the orthogonal matrix which diagonalizes the given

symmetric matrix. This process will be realized by two steps. At each level we

will obtain the corresponding vector-parameter and the resultant vector-parameter

will be their composition. The advantage of closed, albeit relatively involved ex-

pressions for eigenvalues and eigenvectors is that they can be examined for the

effect of any kind of variations of the original matrix elements.

Last but not least, this can help in identifying the hidden symmetries which might

manifest themselves through various special combination of the matrix entries.

Why we have chosen the vector-parameter to reach the above aim?

The well known parameters like Eulerian angles [11], Bryant angles, Eulerian pa-

rameters or quaternions [2], [52] as well as Euler–Rodrigues parameters or Gibbs

vectors [125] are standard in the literature. Specially the last two are classical

parameterizations which play an important role in the geometrical and kinemati-

cal descriptions of motion, especially in the dynamics of spacecrafts and aircrafts

(see also [107]). The absence of trigonometric functions in the kinematical dif-

ferential equations (giving the connections between the angular velocity vector

and time derivatives of these parameters) makes these differential equations more

attractive for many applications. But this is not the case in the problem when

quaternions are used for interpolation of SO(3), which is important in motion

planning. The vector-parameterization is the best among others coordinatizations

for all these purposes. On the base of vector-parameterization we have developed

an unified numerically efficient approach for kinematical and dynamical mod-

elling and control of a rigid body and mechanical systems of rigid and elastic

bodies [61], [62], [69]. Because of the decoupling of the differential equations of

motion, the problem of diagonalization of the inertia matrix is of a great impor-

tance. And since vector-parameters are convenient also for motion planing, we

consider the problem of diagonalization using the same parameters. This method

may be also successfully used in dynamics of flexible multi-body systems and

could be developed for example as a separate module within the computer pro-

gram system DynaFlex [111], that generates and operates with the equations of
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motion symbolically.

As examples of the proposed method, the case of the mass inertia matrix in rigid

body mechanics is worked out in detail and an effective procedure for computing

the exponential mapping generated by three–dimensional symmetric matrices is

presented. At the end our aim is reached considering the dynamics of multi-body

mechanical systems and using the suggested approach for obtaining a new form

of the differential equations of motion which is quite appropriate for real time

control.

5.2. Setting the Problem

Our objective is: given a symmetric 3 × 3 matrix A, construct a diagonalizing

rotation matrix O(c), where c is the vector-parameter of resultant rotation, such

that

OT (c)AO(c) = Λ = Diag [λ
σ(1)

, λ
σ(2)

, λ
σ(3)

] (168)

where T means the transposed matrix, λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the

matrix A and σ is an element of the group Σ3 of permutations of the three element

set 1, 2, 3.

5.3. First Level of Diagonalization

Let A = [a
ij
], i, j = 1, 2, 3 be a real, symmetric 3 × 3 matrix. Consider the

vector-parameter c = (x, 0, z). The corresponding orthogonal matrix is O(c) =
O(x, z) and OT (c) = OT (x, z). We denote by B = [b

ij
] the real symmetric

3 × 3 matrix

B = OT (x, z)AO(x, z). (169)

We are going to eliminate the elements b
12

and b
13

. For this purpose we have to

solve a pair of coupled highly nonlinear equations. Several methods how to deal

with such problems exist in computational kinematics. Most promising in our

case seem to be the elimination methods. Here we shall use the so called Dialytic
elimination method [106]. The basic steps in this method are

1. Rewrite equations with one variable suppressed.

2. Define the remaining power products as new linear, homogeneous unknowns.

3. Obtain new linear equations so as to have as many linearly independent

homogeneous equations as the linear unknowns are.



Group Theory in the Problems of Modeling and Control of Multi-Body Systems 57

4. Set the determinant of the coefficient matrix to zero, and obtain a polyno-

mial in the suppressed variable. (If one is interested in numerical solutions,

this is omitted as we can go directly to the next step).

5. Determine the roots of the characteristic polynomial or the eigenvalues of

the matrix. This yields all possible values of the suppressed variable.

6. Substitute (one of the roots or eigenvalues) of the suppressed variable and

solve the linear system for the remaining unknowns. Repeat this for each

value of the suppressed variable.

Guided by this strategy we present the elements b
12

and b
13

as polynomials of

z which coefficients depend on x. In this form we denote them as B
12

and B
13

respectively, i.e.,

B
12

= F (z) = Pol [b
12

, z], B
13

= G(z) = Pol [b
13

, z]. (170)

The degree of the polynomials B
12

and B
13

in the variable z is four. With the

letters given below we denote the coefficients of the polynomials B
12

and B
13

in

front of the corresponding power of z

C
0

= Coeff [B
12

, z0], D
0

= Coeff [B
13

, z0]

C
1

= Coeff [B
12

, z1], D
1

= Coeff [B
13

, z1]

C
2

= Coeff [B
12

, z2], D
2

= Coeff [B
13

, z2] (171)

C
3

= Coeff [B
12

, z3], D
3

= Coeff [B
13

, z3]

C
4

= Coeff [B
12

, z4], D
4

= Coeff [B
13

, z4]

where

C
0

= − a
12

x4 + 2a
13

x3 + 2a
13

x + a
12

C
1

= − 2a
23

x3 + 4a
33

x2 − 2a
11

x2 − 2a
22

x2 + 6a
23

x + 2a
22 − 2a

11

C
2

= − 6a
13

x − 6a
12

, C
3

= − 2a
23

x + 2a
11
− 2a

22
C

4
= a

12
(172)

and

D
0

= − a
13

x4 − 2a
12

x3 − 2a
12

x + a
13

D
1

= − 2a
33

x3 + 2a
11

x3 − 6a
23

x2 + 2a
11

x − 4a
22

x + 2a
33

x + 2a
23

D
2

= 6a
13

x2 + 6a
12

x (173)

D
3

= − 2a
11

x + 2a
33

x + 2a
23

D
4

= − a
13

.



58 Clementina D. Mladenova

So we have

B
12

= C
4
z4 + C

3
z3 + C

2
z2 + C

1
z + C

0

(174)
B

13
= D

4
z4 + D

3
z3 + D

2
z2 + D

1
z + D

0

where one should take into account that the new coefficients C
0
, . . . ,D

0
contain

the suppressed variables x. In step two we consider each power of z as separate

independent linear indeterminate. We have to note that the number one is counted

as a variable as well since it is always convenient to have homogeneous equations

and it provides a rationale to discard trivial solutions. The coefficient of the “vari-

able” 1 is the constant term. Having in mind all these arguments we rewrite the

equations (174) as the following linear set

C
4
Z

1
+ C

3
Z

2
+ C

2
Z

3
+ C

1
Z

4
+ C

0
Z

5
= 0

(175)
D

4
Z

1
+ D

3
Z

2
+ D

2
Z

3
+ D

1
Z

4
+ D

0
Z

5
= 0.

Since we have two equations with five unknowns, we need additional equations.

In our case this can be accomplished by multiplying equations (175) first by z,

after that by z2 and at the end by z3. So we obtain eight equations with eight

unknowns since three new power products appear. Using the concept of step two,

we invoke new independent variables Z
6

= z5, Z
7

= z6, Z
8

= z7. As a result

we obtain a system of eight homogeneous linear equations in eight unknowns

C
4
Z

1
+ C

3
Z

2
+ C

2
Z

3
+ C

1
Z

4
+ C

0
Z

5
= 0

D
4
Z

1
+ D

3
Z

2
+ D

2
Z

3
+ D

1
Z

4
+ D

0
Z

5
= 0

C
4
Z

6
+ C

3
Z

1
+ C

2
Z

2
+ C

1
Z

3
+ C

0
Z

4
= 0

D
4
Z

6
+ D

3
Z

1
+ D

2
Z

2
+ D

1
Z

3
+ D

0
Z

4
= 0

(176)

C
4
Z

7
+ C

3
Z

6
+ C

2
Z

1
+ C

1
Z

2
+ C

0
Z

3
= 0

D
4
Z

7
+ D

3
Z

6
+ D

2
Z

1
+ D

1
Z

2
+ D

0
Z

3
= 0

C
4
Z

8
+ C

3
Z

7
+ C

2
Z

6
+ C

1
Z

1
+ C

0
Z

2
= 0

D
4
Z

8
+ D

3
Z

7
+ D

2
Z

6
+ D

1
Z

1
+ D

0
Z

2
= 0.

This is the main idea in the dialytic elimination method, namely that even though

the new equations are dependent on the original equations their dependence is not

linear but encoded into a linear system. We go to step four where we obtain a
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single polynomial equation in the suppressed variable x. We rewrite the system

(176) in a matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
4

C
3

C
2

C
1

C
0

0 0 0
D

4
D

3
D

2
D

1
D

0
0 0 0

C
3

C
2

C
1

C
0

0 C
4

0 0
D

3
D

2
D

1
D

0
0 D

4
0 0

C
2

C
1

C
0

0 0 C
3

C
4

0
D

2
D

1
D

0
0 0 D

3
D

4
0

C
1

C
0

0 0 0 C
2

C
3

C
4

D
1

D
0

0 0 0 D
2

D
3

D
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (177)

and in more compact notation we have U Z = 0 . Since we know that Z
5

= 1,

then the trivial solution Z
i
≡ 0, (i = 1, 2, ..., 8) is not admissible and therefore the

determinant of the coefficient matrix U must be equal to zero, i.e., det U ≡ 0.
Having in mind that the entries of the matrix U contain the suppressed variable

x, expansion of its determinant produces polynomial of sixteen degree which fac-

torizes into the form

detU = 256 (1 + x2)3 P 2(x)Q(x) (178)

where

P (x) = (a
11

a
12

a
23
− a2

12
a

13
+ a

13
a2

23
− a

12
a

23
a

33
)x3 + (a

11
a

12
a

22
− a3

12

+2 a
12

a2
13

+ 2 a
13

a
22

a
23
− a

11
a

13
a

23
− a

12
a2

23
− a

11
a

12
a

33

−a
12

a
22

a
33
− a

13
a

23
a

33
+ a

12
a2

33
)x2 + (2a2

12
a

13
− a3

13

(179)−a
11

a
13

a
22

+ a
13

a2
22
− a

11
a

12
a

23
− a

12
a

22
a

23
− a

13
a2

23

−a
13

a
22

a
33

+ a
11

a
13

a
33

+ 2 a
12

a
23

a
33

)x + a
11

a
13

a
23
− a

12
a2

13

−a
13

a
22

a
23

+ a
12

a2
23

and

Q(x) = (a2
11

+ 4 a2
13
− 2 a

11
a

33
+ a2

33
)x4 + (8a

12
a

13
− 4 a

11
a

23

+ 4 a
23

a
33

)x3 + (2a2
11

+ 4 a2
12

+ 4 a2
13
− 2 a

11
a

22
+ 4 a2

23

− 2 a
11

a
33

+ 2 a
22

a
33

)x2 + (8a
12

a
13
− 4 a

11
a

23
+ 4 a

22
a

23
)x

+ a2
11

+ 4 a2
12
− 2 a

11
a

22
+ a2

22
.

(180)

According to Abel’s fundamental theorem it is always possible to write down the

solutions of polynomial equations up to fourth degree in analytical form using

rational operations and radicals and this means that our equations

P (x) = 0 and Q(x) = 0 (181)
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can be solved explicitly in any concrete case. In both analytical and numerical

cases, we are only interested in real roots (at least one coming from the first of

the above equations always exists). Therefore, any complex or purely imaginary

roots which meets the determinant condition (as those coming from the multiplier

(1 + x2)3) reduce the number of the admissible solutions to the maximal possible

value of seven.

Finally, in step six, we substitute for the variable x into the linear set of equations,

and solve them for the other original variables, which in this case is z. Substituting

any of the real roots of x into equation (177) and setting Z
5

= 1 we obtain the

corresponding variable z. Since the system is linear, this yields just one z for each

x (when the rank of the matrix U in (177) is maximal).

It is worth to be noted here, that the introduction of new power products and

the so obtained additional equations is optimized in our approach and the proof

of this fact is just the form of both polynomials which we have obtained. In

spite of the fact that U is 8 × 8 matrix we manage to derive analytically solvable

equations. Our experience shows that if we start the procedure of diagonalization

with another vector-parameter (e.g. č = (x, y, 0)) the elimination procedure does

not give polynomials of such low degrees.

So, in principle one can associate with the seven couples (x
i
, z

i
) the correspond-

ing seven vector-parameters c
i
, (i = 1, 2, ..., 7). We substitute their values in the

matrix B and we continue the procedure towards elimination of the third non–zero

(in the general case) element b
23

of the new symmetric matrix B. If we exchange

the suppressed variable x with z the relevant polynomials P̃ (z) and Q̃(z) are

of degree four and six respectively and there is no guarantee that the equations

P̃ (z) = 0 and Q̃(z) = 0 allow any real root. Up to now we have tastefully as-

sumed that both a
12

and a
13

are non-zero elements. If this is not the case and one

of them vanishes this simplifies considerably the foregoing procedure. If both are

zero one simply goes directly to the next stage described in the section to follow.

5.4. Second Level of Diagonalization

After actualization of the matrix B, the resultant matrix will be denoted by C =
[C

ij
], i.e., C = Actual[B] which is again 3 × 3 matrix. Now we continue the

process of diagonalization keeping

C
12

= 0 and C
13

= 0. (182)
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Consider the vector-parameter c̃ = (u, 0, 0). There exists an orthogonal matrix

Oc̃ = O(c̃) and OT (c̃) = OT
c̃ . Now we form the matrix S = [S

ij
] as follows

S = OT
c̃ C Oc̃ = OT

c̃ OT
c AOc Oc̃ (183)

and set S
23

= 0. In this way we obtain a polynomial in u which power is not

greater then four. Assuming that we are in the generic case this gives

u4 − 2au3 − 6u2 + 2au + 1 = 0, a = (C
33
− C

22
)/C

23
. (184)

Solving this equation we find the following solutions

u
1

= (a + M −
√

2(M 2 + aM))/2 (185)

u
2

= (a − M +

√
2(M

2 − aM))/2 (186)

u
3

= (a − M −
√

2(M 2 − aM))/2 (187)

u
4

= (a + M +

√
2(M

2

+ aM))/2 (188)

and all of them are real because M =
√

a2 + 4 > |a|. Choosing any of these

roots we actually fix the vector c̃. Composing the so obtained vector-parameters

(x, 0, z) and (u, 0, 0) we get the vector-parameter of the resultant rotation

c′′ = 〈c, c̃〉 (189)

and actually we have proved

Theorem 4. Let A = [a
ij
], i, j = 1, 2, 3 be a real symmetric 3× 3 matrix. Then

there exist a vector c′′ ∈ R
3 given in equation (189) and an uniquely associated

with it via (66) orthogonal matrix O such that

O
T

AO = Λ = Diag [λ
σ(1)

, λ
σ(2)

, λ
σ(3)

], σ ∈ Σ
3

(190)

where O = O(c′′) and O
T

= O
T
(c′′).

5.5. Mechanical Applications

5.5.1. The Mass Inertia Matrix

As a first illustration of the above procedure we will consider the diagonalization

of the inertia matrix

I(ξ, η, ζ) =

⎡⎣ m(η2 + ζ2) −mξη −mξζ
−mξη m(ξ2 + ζ2) −mηζ
−mξζ −mηζ m(ξ2 + η2)

⎤⎦ . (191)
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Using the homogeneity of the matrix elements we can forget at the moment about

the mass parameter m and restore its presence at the end. So, we assume that

m ≡ 1 in I(ξ, η, ζ) and continue with determination of x and z which appear in

equation (169). At this stage we recognize immediately that any real x is a root of

P (x) as this polynomial is identically zero. This situation is just a manifestation

of the hidden symmetries of our matrix and means that we are free to choose x
arbitrarily. As we are working in the analytical setting the most convenient choice

is to fix x to be zero. Thus we are left at the first level only with the problem

of finding z. This can be done either by solving the linear system given through

equation (177) or identifying the common roots of (170). The result of the second

procedure is

z
+

=
η +

√
ξ2 + η2

ξ
, z

−
=

η −
√

ξ2 + η2

ξ
· (192)

Rotation around vectors c
±

= (0, 0, z
±
) produces respectively

I
±

=

⎡⎣ ξ2 + η2 + ζ2 0 0

0 ζ2 ± ζ
√

ξ2 + η2

0 ± ζ
√

ξ2 + η2 ξ2 + η2

⎤⎦ . (193)

Now the roots of equation (184) are

u±

1
= ∓ ζ −

√
ξ2 + η2 + ζ2√
ξ2 + η2

, u±

2
= ±

√
ξ2 + η2 +

√
ξ2 + η2 + ζ2

ζ

(194)

u±

3
= ∓ ζ +

√
ξ2 + η2 + ζ2√
ξ2 + η2

, u±

4
= ±

√
ξ2 + η2 −

√
ξ2 + η2 + ζ2

ζ

and the rotations generated by odd, respectively even numbered vectors c̃±
i

=
(u±

i
, 0, 0), (i = 1, 2, 3, 4) brings I

−
, accordingly I

+
into the form

Iodd =

⎡⎣ ξ2 + η2 + ζ2 0 0
0 ξ2 + η2 + ζ2 0
0 0 0

⎤⎦ (195)

Ieven =

⎡⎣ ξ2 + η2 + ζ2 0 0
0 0 0
0 0 ξ2 + η2 + ζ2

⎤⎦ . (196)

Restoration of the mass parameter amount simply to multiplication by m, i.e.,

Λodd = m. Iodd, Λeven = m. Ieven, (197)
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and the rotational matrices which furnish these diagonalizations can be explicitly

built using (66) from

codd
i

= (u±

i
, u±

i
. z

±
, z

±
), i ∈ {1, 3},

and

ceven
j

= (u±

j
, u±

j
. z

±
, z

±
), j ∈ {2, 4}.

5.5.2. Explicit Formulae for Solutions of Some Differential Equations

Let A be a given symmetric 3× 3 matrix and let X(t) denote a three-dimensional

column vector function of the real variable t. It is well known that the system of

first-order linear differential equations

X ′(t) = AX(t) (198)

with prescribed initial value X(0) has the unique solution

X(t) = Exp[tA]X(0) (199)

on the entire interval (−∞,+∞ ) and the only problem here is the effective cal-

culation of the matrix exponential (for more details see [80]).

Below we shall describe a simple procedure for its explicit evaluation using our

method of diagonalization.

So, let us take any rotational matrix O(c) which brings A into its diagonal form,

i.e.,

OT (c)AO(c) = Diag[μ
1
, μ

2
, μ

3
]. (200)

Because it is non-degenerate we can unambiguously introduce new state variables

X̃ = OT (c)X ⇐⇒ X = O(c) X̃ (201)

and transform our initial problem as follows

X̃ ′(t) = OT (c)X ′(t) = OT (c)AX(t) = OT (c)AO(c) X̃(t)
(202)

= Diag[μ
1
, μ

2
, μ

3
] X̃(t).

The first and final members of the above chain of equalities tell us that in the new

state variables X̃ our system of differential equations decouples completely and

we can write its solution into the form

X̃(t) = Exp[t Diag[μ
1
, μ

2
, μ

3
]] X̃(0)

(203)
= Diag[eμ1

t, eμ2
t, eμ3

t] X̃(0).
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Going back to the original state variables X we have

X(t) = O(c) X̃(t) = O(c)Diag[eμ1
t, eμ2

t, eμ3
t] X̃(0)

(204)
= O(c)Diag[eμ1

t, eμ2
t, eμ3

t]OT (c)X(0)

and this means that we have evaluated the matrix exponential Exp[tA] as well. It

is obvious that the foregoing method works also for systems of differential equa-

tions of order s

X(s)(t) = AX(t) (205)

with prescribed initial values X(0),X ′(0), . . . ,X(s−1)(0) and their matrix vari-

ants when the vector X is exchanged for a 3 × m matrix function of the real

variable t.

5.5.3. Dynamics of a Three Degrees–of–Freedom Manipulator System

We consider an open loop mechanical system with 3 degrees of freedom (for

example a manipulator system) . We introduce the following notation:

q := [q(1) . . . q(3)]T is the 3 × 1 matrix of the generalized coordinates (joint

displacements) of the manipulator in the usual sense, q ∈ Q ⊂ R
3 and Q is

the configurational manifold. The dynamic equations are expressed again in the

known form (5), namely

H(q)q̈ + h(q, q̇) = P

where H := H(q) is the 3 × 3 inertia matrix, the 3 × 1 matrix h := h(q, q̇) takes

into account Coriolis, centrifugal and gravitational forces, and P is the 3×1 matrix

of the generalized forces and moments. After multiplying the above equation from

the left side with the matrix OT (c) and using the following substitutions

q̄ = O(c)T q, q = Oq̄ = O(c)q̄ (206)

q̇ = Ȯq̄ + O ˙̄q, q̈ = Öq̄ + 2Ȯ ˙̄q + O ¨̄q (207)

Hdiag = OT (c)HO(c) (208)

H̄ = H(q̄), h̄ = h(q̄, ˙̄q), P̄ = P (q̄) (209)

OTH(q̄)OOT [ÖT q̄ + 2Ȯ ˙̄q + O ¨̄q] + OTh(q̄, ˙̄q) = OTP (q̄) (210)
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we obtain

Hdiag[O
T ÖT q̄ + 2OT Ȯ ˙̄q + ¨̄q] + OT h̄ = OT P̄ (211)

or

Hdiag ¨̄q + HdiagO
T ÖT q̄ + 2HdiagO

T ȮT ˙̄q + +OT h̄ = OT P̄ . (212)

Denoting all members except the first one in the left part of the last equation by ¯̄h
and the right part by ¯̄P the final form of the dynamical equations is

Hdiag ¨̄q + ¯̄h = ¯̄P. (213)

The higher dimensions are treated in a similar way but using the dynamical equa-

tions over the configurational space in vector-parameters (see [69]). This form of

the dynamical equations is quite convenient for decoupled control of manipula-

tors.

The purely algebraic feature of the presented approach allows us to find eigen-

values and eigenvectors of an arbitrary real 3 × 3 symmetric matrix in a closed

analytical form following a straightforward algorithm. It offers a means of study-

ing in full details various models of theoretical and experimental relevance. Con-

trary to Jacobi’s method which is based on three consecutive plane rotations, our

method is based upon general two-parameter rotation (first level of diagonaliza-

tion) followed by one-parameter plane rotation (second level of diagonalization).

This is the first main point in the diagonalization procedure. The second interest-

ing moment is that the information about these rotations is encoded in a vector

form, their composition is expressed by simple vector operations and any use of

transcendental functions is avoided. Besides, one will be able to examine the be-

haviour of critical parameters as functions of input data. And the third essential

element is that in the first level of the diagonalization procedure a pair of cou-

pled highly nonlinear equations has to be solved which is realized by using the

so called dialytic elimination method. Having in mind the abundance of contexts

in physics, mechanics, crystallography, elasticity, hydromechanics, robotics, etc.,

where symmetric matrices appear, we hope that the potential users will find this

method useful in any concrete situation.

Finally, it is worth to note here that our analytical algorithm is realized as Mathe-
matica

�

package for symbolic calculations [141].
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6. Modeling and Control of Nonholonomic Mechanical Systems

6.1. Theoretical Background and History

This section aims to provide some tools for analyzing, modeling and control of

nonholonomic mechanical systems. This classical subject has received the at-

tention of many authors because nonholonomic constraints arise in many robotic

structures like mobile robots, space manipulators, multifingered robot hands. The

nonholonomic constraints are nonintegrable motion constraints that occure mainly

in rolling motion. The number of system coordinates needed to identify the sys-

tem’s configuration is usually greater than the number of the instantaneous de-

grees of freedom of motion or with other words – the nonholonomic behavior

implies that the mechanism can be completely controlled with a reduced number

of actuators. Both planning and control of such systems are more difficult than in

the case of holonomic systems. The term nonholonomic is also used to describe

certain types of quasi-velocities described in some details below. It is important

also to mention that the nonholonomy of the kinematic constraints in mechanical

systems is equivalent to the controllability of the associated control systems and

takes some concepts of the nonlinear control theory may be applied. The dynam-

ics of nonholonomic systems is introduced here on the base of Hamel’s equations

of motion and a method of obtaining the reaction forces is given.

Nonholonomic constraints exist in the rolling problems due to the direct contact

mechanism based on friction forces. Another, rather new domain of nonholo-

nomic dynamics are navigation and automatic control system based on feedback

phenomena. In such systems one deals with servo-constraints, i.e., holonomic or

nonholonomic constraints of non-contact origin. The nonholonomic constraints

appear in the literature at the end of XIX century in the papers of Ferrers, Ap-

pell, Voronetz, Hamel and many other scholars. More details concerning the topic

may be found in [23] or [85]. At present time the modern algebraic, differential-

algebraic and differential-geometric approaches are applied and in this field found

real applications as exemplified in [22], [116], [117], [118], [37], [115], [15], [56],

[9], [10] [135], [126], [109], [44], [45], [7], [50], [68], [70], [71] and many others.

Some of these authors use successfully the theory of Lie group and Lie algebras

in wheel vehicles and mobile robots control. When a rigid body motion is studied

a rotation operator and operators for coordinate transfer are naturally involved.

The velocity of a given body point is defined through them. It is found that the

velocity of a rigid body point is obtained by the action of a skew–symmetric op-

erator over the radius-vector of the point. This skew-symmetric operator is called
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angular velocity matrix (operator) (see [12], [1], [6], [57], [31]). A vector which

corresponds in one-to-one manner to the angular velocity operator is known as a

vector of angular velocity. Its components are peculiar kinematical characteristics

of the rotated body. They are not equal to the time derivatives of some Lagrangian

coordinates. The so-called nonholonomic velocities (pseudo or quasi-velocities)

correspond to them.

In this section we consider Hamel’s equations of motion of nonholonomic systems

in terms of pseudo-coordinates and the efficient method (thereafter called Hamel’s

method) for writing down the equations for reactions. The group of the nonholo-

nomic operators is defined and its group structure constants are determined.

6.2. Equations of Motion and Reaction Forces in Pseudo-Coordinates

Let us consider the motion of a mechanical system whose position is described

by n generalized coordinates qs (s = 1, 2, . . . , n). Let us assume also that some

constraints of arbitrary order are imposed on the sytem. Among the nonholonomic

constraints (differential-nonintegrable) may also occur holonomic constraints. In

our further considerations we shall assume the presence only of n − m linear

nonholonomic constraints

n∑
s=1

am+i,sq̇s = 0, det | akj |�= 0, i = 1, 2, . . . n − m. (214)

The presence of nonholonomic constraints limits the system mobility in a com-

pletely different way if compared to holonomic constraints. To illustrate this point,

consider a single Pfaffian constraint

aT (q)q̇ = 0. (215)

If constraint (215) is holonomic, then it can be integrated as

h(q) = c (216)

where ∂h/∂q = aT (q) and c is the integration constant. In this case, the system

motion is confined to a particular level surface of h, which depends on the initial

conditions through the value of c = h(qo).

Assume instead that constraint (215) is nonholonomic. Then, even if the instan-

taneous mobility of the system is restricted to n − 1 dimensional space, it is still

possible to reach any configutation in the configurational space. Correspondingly,

the number of degrees of freedom is reduced to (n − 1), but the number of the

generalized coordinates cannot be reduced. This conclusion is general: for a me-

chanical system with n generalized coordinates and k nonholonomic constraints,
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although the generalized velocities at each point are confined to (n − k) - dimen-

sional subspace, the accessibility of the whole configuration space is preserved.

Some useful results about the integrability of the constraints using tools from non-

linear control theory may be found in [50].

In nonholonomic mechanics the equations of the motion with undetermined mul-

tipliers, built in the space of the generalized coordinates, are known as Routh’s
equations

d

dt

∂T

∂q̇s
− ∂T

∂qs
= Qs +

n−m∑
i=1

λm+iam+i,s, s = 1, 2, . . . , n. (217)

Let us introduce n expressions π̇s in the following manner

π̇k =

n∑
s=1

ak,sq̇s, π̇m+i =

n∑
s=1

am+i,sq̇s = 0

k = 1, 2, . . . ,m, i = 1, 2, . . . , n − m

(218)

where A = (aij(q)) is n × n matrix, q ∈ U ⊂ R
n and detA �= 0, π̇ does not

denote the full derivative with respect to t of any q. The variations δπi and δqi are

related through

δπm+i =

n∑
s=1

am+i,sδqs, δπk =

n∑
s=1

aksδqs

i = 1, 2, . . . , n − m, k = 1, 2, . . . ,m

(219)

and according to the nonholonomic constraints (214), it is valid that

δπm+i = 0, i = 1, 2, . . . , n − m. (220)

Consider a Cartan moving frame on U

Πj = ∂/∂πj =
∑
i

bij∂/∂qi, i, j = 1, 2, . . . , n (221)∑
π̇jΠj =

∑
q̇i ∂/∂qi, or π̇ = A(q)q̇. (222)

The variables π̇1, π̇2, . . . , π̇n are called nonholonomic velocities or pseudo(quasi)-

velocities and the symbolic quantities π1, π2, . . . , πn – nonholonomic coordinates

which in fact have no meaning of real coordinates. The motivation for the notation

∂/∂πj is as follows: if πj were true coordinates then

∂f/∂π =
∑
i

(∂f/∂qi)(∂qi/∂πj) =
∑
i

(∂f/∂qi)bij = Πi(f). (223)
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According to the constraints free principle we may without changing the motion or

stability of the mechanical system forget about the constraints replacing them by

corresponding reaction forces. The so obtained free system is dynamically equiv-

alent to the initial one but not kinematically and d’Alembert-Lagrange’s equations

in this case look like(
d

dt

∂T

∂q̇s
− ∂T

∂qs
− Qs − Ds

)
δqs = 0, s = 1, 2, . . . , n (224)

where Ds are unknown reaction forces satisfying Dsδqs = 0, while T and

Qs are the kinetic energy and the generalized forces respectively. In pseudo-

coordinates the equations (224) take the form

(Bk − Pk − Rk)δπk = 0, k = 1, 2, . . . , n (225)

and

Bk =

(
d

dt

∂T �

∂π̇k
− ∂T �

∂πk

)
+
∑
i,j

γkij
∂T �

∂π̇i
π̇j , i, j, k = 1, 2, . . . , n (226)

π̇k =
∑
s

aksq̇s, q̇s =
∑
l

bslπ̇l, | bsl |=| aks |−1 (227)

T (q1, . . . , qn; b1kπ̇k, . . . , bnkπ̇k, t) = T ∗(q1, . . . , qn; π̇1, . . . , π̇n, t) (228)

T ∗(q1, . . . , qn; a1sq̇s, . . . , ansq̇s, t) = T (q1, . . . , qn; q̇1, . . . , q̇n, t) (229)

Pk =
∑

Qsbsk, Rk =
∑

Dsbsk s, k = 1, 2, . . . , n (230)

γkij =
∑
i,j

bskblj(
∂ais
∂ql

− ∂ail
∂qs

), k, i, j, s, l = 1, 2, . . . , n (231)

∂T ∗

∂πk
=
∑
s

bsk
∂T ∗

∂qs
, s, k = 1, 2, . . . , n. (232)

Since we consider the system till now as a free one, and since the δπk are inde-

pendent, we have

Bk − Pk − Rk = 0, k = 1, 2, . . . , n. (233)



70 Clementina D. Mladenova

According to the well known theorem in mechanics a necessary and sufficient

condition that the sum of the elementary works of the force system Di(t), i =
1, 2, . . . , n at every virtual displacement compatible with the constraints be equal

to zero, i.e.,
∑n

i=1 ari∂qi = 0, r = 1, 2, . . . ,m, is that the forces Di obey the

constraints Di =
∑n

r=1 λrari i = 1, 2, . . . , n. Therefore we obtain for the

reaction forces

Rk =
∑
i

λm+i

∑
s

am+i,s bsk, i = 1, 2, . . . , n − m, s, k = 1, 2, . . . , n.

(234)

The motion is defined by the second order differential equations

Pk =

(
d

dt

∂T �

∂π̇k
− ∂T �

∂πk

)
+
∑
i,j

γkij
∂T �

∂π̇i
π̇j (235)

i, j = 1, 2, . . . , n, k = 1, 2, . . . ,m

and the reaction forces are obtained from the following algebraic equations

Rk = Pk +

(
d

dt

∂T �

∂π̇k
− ∂T �

∂πk

)
+
∑
i,j

γkij
∂T �

∂π̇i
π̇j (236)

i, j = 1, 2, . . . , n, k = m + 1, . . . , n.

The systems (235) and (236) define a direct and an inverse dynamic problem,

respectively. After we have established both, their solution in the language of

nonholonomic coordinates is simpler than the solution of the Routh equations in

Lagrangian coordinates with multipliers as given by (217).

6.3. Matrix Representations

To make our presentation more compact, we shall apply further matrix notation.

First we introduce the vectors (in sense of n × 1 matrices) of the generalized

coordinates, velocities and accelerations and the vectors of the nonholonomic co-

ordinates and their first derivatives with respect to time

q = [q1 . . . qn]
T , q̇ = [q̇1 . . . q̇n]

T , q̈ = [q̈1 . . . q̈n]
T (237)

π̇ = [π̇1 . . . π̇n]
T , π̈ = [π̈1 . . . π̈n]

T . (238)

Let us denote by B the inverse matrix of A, namely B =| bsl |=| aks |= A−1.

The matrices A and B have the block forms

A = [A1
...A2]

T , [B1
...B2]

T (239)
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where A1 is (m×n), A2 is (n−m×n) dimensional matrices. We also introduce

the following matrices

∂T

∂q̇
= [

∂T1

∂q̇1
. . .

∂Tn
∂q̇n

]T = h1(q, q̇),
∂T

∂q
= [

∂T1

∂q1
. . .

∂Tn
∂qn

]T (240)

d

dt
(
∂T

∂q̇
) = H(q)q̈ + h2(q, q̇). (241)

Here H(q) is the n × n inertial matrix, h1(q, q̇), h2(q, q̇) and h = −(h1 + h2)
are vectors (n×1) of Coriolis, centrifugal and gravitational forces. Since Q,D,P
and R are also n × 1 vectors and Λ = [λm+1 . . . λn]

T , the equations of motion

become

H(q)q̈ + h(q, q̇) = Q + D (242)

where D = AT
2 Λ. Let us introduce also

π̇1m = [π̇1 . . . π̇m]T , π̇m+1,n = [π̇m+1 . . . π̇n]
T . (243)

The following relations are quite useful

π̇1m = A1q̇, π̇m+1,n = 0 = A2q̇ (244)

q̇ = B1π̇1m + B2π̇m+1,n or only q̇ = B1π̇1m (245)

where A1B1 = Im, A2B1 = O, Im is the m × m identity matrix, A1B2 = O,

A2B2 = In−m, O is the corresponding zero matrix. The second set of equations

in (244) is just the constraint equation. By differentiation we obtain

q̈ = B1π̈1m − (B1Ȧ1 + B2Ȧ2)B1π̇1m. (246)

When A1 is a constant matrix the pseudo-coordinates are linear combinations of

the generalized velocities, Ȧ1 is a zero matrix which simplifies the model. When

A1 coincides with the Jacobian matrix, the nonholonomic coordinates are just

the task-velocities. After multiplying the both sides of equation (242) by B =
[B1, B2]

T – two decoupled systems for the motion and reactions, respectively,

can be extracted: m scalar differential equations of motion

BT
1 Hq̈ = BT

1 (Q − h) (247)

and n − m equations for the Lagrange multipliers

Λ = BT
2 (Hq̈ + h − Q). (248)
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Having in mind the expressions for q̇ and q̈ from equations (245) and (246) we

obtain the following relation for π̈

π̈1m = (BT
1 HB1)

−1BT
1 [H(B1Ȧ1 + B2Ȧ2)B1π̇1m + Q − h]. (249)

After that the reaction forces may be obtained from

R = AT
2 BT

2 (Hq̈ + h − Q) (250)

where q̈ comes just from equation (246). By the principle of the compatibility of

the equations of motion, we may write them also in the following way

Hq̈ + h = Q + U (251)

where U = [u1 . . . un]
T is the control vector assuring the performance of the

constraints from (214). Relying on the fact that the constraint equations (214)

could be written as an algebraic system GD + g = 0, where G and g are given

later, we may formulate the following

Theorem 5. A solution of equation (251) is compatible with the constraint equa-
tions (214) (task program) and conversely a set of functions satisfying the task
conditions (214) is a solution of (251) if and only if the control vector U satisfies
the algebraic equation

GU + g = O (252)

where G = A2H
−1 and A2H

−1(Q − h) + A2q̈ = g. (253)

After some matrix transformations it follows that

A2H
−1U + A2H

−1(Q − h) + Ȧ2B1π̇1m = 0. (254)

It is easy to see that this is just the equation (252), i.e., the theorem is valid also in

terms of pseudo-coordinates.

Reviewing our considerations we may generalize that the basic feature of the

pseudo-coordinate approach for motion and reaction description suggested in the

present paper, is that until a definite moment we can assume the mechanical sys-

tem to be free. Otherwise additional unknown forces compatible with the con-

straints should be applied to it. It is proved also that these forces are just the

reactions. In fact a system with a definite kinetic energy and generalized forces

is constructed in such a way that its motion is compatible with the imposed con-

straints.
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Looking at the Newtonian mechanics of any mechanical system from a geometric

point of view the following conclusions may be extracted:

The configurational space is a differentiable manifold. The system dynamics

is formulated on the tangent (q̇/π̇) and second tangent space (q̈/π̈), while the

forces may be defined as elements of the cotangent bundle. After specifying a

Riemannian metric on the configurational space, the dynamical properties of the

system may be studied. In addition the equations of motion, written in a coor-

dinate non-invariant form, may be interpreted as follows: H is the matrix of the

metric tensor (kinetic energy) and h may be considered as the matrix product

h(q, q̇) = ĥ(q, q̇)q̇ , where ĥ(q, q) is an n × n matrix composed of the covariant

Christoffel symbols of the connection induced by the metric. Within the motion

equation in pseudo-coordinates the structural constants γkij of the group of the

nonholonomic operators play the same role. The generalized reaction forces Q
and D (respectively P and R in the equations in pseudo-coordinates) are ele-

ments of the cotangent bundle of the configurational Lagrangian space and they

may serve as two different types of control parameters.

It is worth here to note that descriptor systems are very much used in identification

and control of constrained mechanical systems [82], [115]. The descriptor form

of the differential–algebraic equations of motion (235) and reaction forces (236)

in the language of pseudo–coordinates has the following matrix form⎡⎣A1 0 0
0 H∗ 0
0 0 0

⎤⎦⎡⎣ q̇
π̈1m

Λ̇

⎤⎦ =

⎡⎣0 Imn 0
0 0 AT

2

0 0 0

⎤⎦⎡⎣ q̇
π̇1m

Λ

⎤⎦
(255)

+

⎡⎣ 0
−h∗

0

⎤⎦+

⎡⎣ 0
P

π̇m+1,n

⎤⎦
where H∗(q) and h∗(q, π) have the meaning of H and h but expressed in terms

of q and π. Here the descriptor vector is [q π1m Λ] with real dimension 2n. In

the descriptor form of the system of equations (235) and (236) but in generalized

variables, the descriptor vector [q q̇ Λ] is 3n − m dimensional. Since m ≤ n, it

is clear that the number of the computations is reduced when pseudo-coordinates

are used. In a contemporary geometrical language, it means that the problem can

be easily solved in the tangent (cotangent) space, which is just the idea of this

section.
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7. Dynamics and Control of Elastic Joint Manipulators Through
Vector-Parameter

Kinematical and dynamical equations of a manipulator system play an extremely

important role as for motion simulation so in control. Because so many authors

have approached this problem, it is impossible even to list them here and that

is why we refer to the books [131], [19] and references therein. The dynamical

equations are used in motion simulation, where they furnish a powerful tool for the

study of control strategies, optimization of the parameters, and for testing of robot

performance under various conditions. In connection with the robot operation,

dynamical equations are used for the evaluation of nominal actuator torques and

forces which drive the robot along a prescribed trajectory.

7.1. The Main Idea of the Model

The investigations presented in this section are based again on our previous stud-

ies relying on vector-parameterization of the SO(3) group. The statement that this

parameterization has the nice property of a Lie group which simplifies drastically

some considerations, reduces the computational burden, and all this is valid for

models built through vector-parameter, becomes stronger in pure vector-parameter

considerations. It is proved additionally that the computational effectiveness of

the vector-parameter approach increases with the increasing number of the revo-

lute degrees of freedom. Here we show that this can be used successfully in the

problems of elastic joint manipulators, where except the real n links, n fictious

links are included and n additional revolute degrees of freedom are involved. Dy-

namic models ‘through’ vector-parameter and in ‘pure’ vector-parameter form are

developed and the inverse dynamic problem is discussed.

The basic equations that characterize the first approach (through vector-parameter)

are (1) – (5), where the vector-parametrization of SO(3) group is used to facilitate

some statements and proofs and to reduce the calculation burden. The computa-

tional efficiency is proved in solving direct and inverse kinematic problems, both

in dynamic modeling and full simulation of manipulators system motion. After

that all the models are transferred again in the configurational manifold of the

standard joint displacements.

The idea of the second approach (in pure vector-parameter) is that the geometry,

kinematics and dynamics of an open loop kinematic chain should be described

in a new extended configurational space with a group structure – the space of

vectors describing the joints displacements (vector-parameters c and translational
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vectors tr) as it is presented in equations (256) – (260). In this manner the transi-

tion operations from vector-parameters to generalized coordinates are saved. The

computational efficiency that is proved in the first approach becomes here even a

stronger one. Here the kinematic and dynamic equations are pure algebraic and

the differential equations of motion are over a Lie group. In this frame the merge

of the powerful theory of Lie groups and Lie algebras with fundamental problems

of controllability and observability of manipulator systems is quite natural and

promising.

In this section is shown also that the nonlinear equations of motion are globally

linearizable by smooth invertable coordinate transformation and nonlinear state

feedback (see also [73], [79], [120], [20]).

7.2. Basic Notation

We consider a flexible joint manipulator with n rotational degrees of freedom, and

links B(0) (fixed), B(1), B(2), . . . , B(n) (Fig. 4). A frame R(i) centered in C(i)
is referred to the link B(i) (and joint i) from the chain. The frame R(n+1) is built

in the gravity center G(n) of the link B(n) (gripper), which may be coincident

with the gripper characteristic point C . We denote by Rm(i) the frame referred

to the motor M(i) that moves the link B(i), with Cm(i) as its origin.

Figure 4. Links i − 1 and i of a flexible joint manipulator

q := [q(1) . . . q(n)]T is n × 1 vector of the generalized coordinates (joint dis-

placements) of the manipulator system (MS) in the usual sense, q ∈ Q ⊂ R
n

and Q is the configurational manifold; qm := [qm(1) . . . qm(n)]T is n×1 vec-

tor of the motor rotation angles, qm ∈ Qm ⊂ R
n and Qm is the space of motor

angles; x is m-dimensional vector of end-effector position and orientation. We
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follow the basic notation given in the first section and equations (1)–(5). Further

we denote by:

× – the cross product of vectors, a × b := a×b, a× is the skew-symmetric

matrix whose components are the components of vector a;

G(i) – the mass center of the link B(i) and Gm(i) – the mass centre of

motor M(i);
s(i, i + 1) − 3 × 1 vector from C(i) to C(i + 1), written in R(i);
sm(i − 1, i) − 3 × 1 vector from C(i − 1) to Cm(i), written in R(i − 1);
g(i) – the 3 × 1 vector from C(i) to the mass center G(i), written in the

frame R(i), which is constant in this frame;

gm(i) – the 3 × 1 vector from Cm(i) to the mass center Gm(i), written in

the frame Rm(i), which is constant in this frame;

e(i) := [0 0 1]T is 3 × 1 vector aligned with the i-th rotation axis;

em(i) := [0 0 1]T is 3 × 1 vector of rotation for the motor M(i) written in

the frame Rm(i);
p(i) := s(0, 1) + s(1, 2) + . . . + s(i − 1, i), (s(0, 1) := 0);
pg(i) = p(i) + g(i);
c(i) – the vector-parameter of rotation of R(i − 1) according to R(i);
cc(i) is a composition vector, i.e., cc(i) := 〈c(1), c(2), . . . , c(i)〉;
tr(i) – the translation vector along the axis of i-th prismatic joint;

O(i, i + 1) = O(c(i + 1)) is the rotation matrix that relates the orientation

of frame i to frame i + 1 and we use the following identities:

O(1, i) = O(cc(i)), O(i, k) = O(cc(k))O(−cc(i));
ω(i)− 3× 1 vector of angular velocity of link i at C(i) written in the frame

R(i);
ωm(i) – the 3 × 1 vector of angular velocity of motor i at C(i) written in

the frame R(i);
v(i) – the 3 × 1 vector of linear velocity of link B(i) written in the frame

R(i);
vm(i) – the 3 × 1 vector of linear velocity of the motor M(i) at Cm(i)
written in Rm(i);
V (i) − 6 × 1 vector of spatial velocity of link i written in the frame R(i);
V (i) := [ω(i)T v(i)T ]T ;

V m(i)−6×1 vector of spatial velocity of the motor M(i) written in Rm(i);
V m(i) := [ωm(i)T vm(i)T ]T ;

W (i) − 6 × 1 vector of spatial acceleration of C(i) written in the frame

R(i):
W (i) := [ω̇(i)T v̇(i)T ]T ;
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Wm(i)−6×1 vector of spatial acceleration of Cm(i) written in the frame

Rm(i):
Wm(i) := [ ˙ωm(i)T ˙vm(i)T ]T ;

F (i) − 3 × 1 vector of inertial forces acting upon link i at point G(i);
N(i) − 3 × 1 vector of inertial moments acting upon link i at G(i);
f(i)− 3× 1 vectors of forces acting upon link i at point C(i) written in the

frame R(i);
n(i)− 3× 1 vectors of moments acting upon link i at point C(i), written in

R(i);
t(i) − 6 × 1 vector of spatial force acting upon link i at point C(i) written

in Rm(i);
t(i) := [f(i)T n(i)T ]T ;

P (i) – the torque acting on the link i, and Pm(i) – the i-th motor torque.

Let (c(1), tr(1)), . . . , (c(n), tr(n)) are couples of vectors describing the link

movements of the MS. They define the group configurational space Qct

Qct := {(c, tr)min ≤ (c, tr) ≤ (c, tr)max}. (256)

The entries of the i-th pair ((c(i), tr(i)) coincide either with the vector-parameter

c(i) or translational vector tr(i) in dependence on the type of the i-th joint (revo-

lute or prismatic respectively). We assume that all joints are rotational and

c := [c(1) . . . c(n)]T , c′ := gc(n) := 〈c(1), . . . , c(n)〉 and Qct ≡ Qc

where c(i) = (cx(i), cy(i), cz(i)), gc(i) = (gcx(i), gcy(i), gcz(i)).

Remark 6. According to the results in [59] only one of the components of the
vector-parameters contains the whole information for the joint rotation, and the
superfluous coordinates are discarded by proper geometrical considerations. So
in reality the dimensions of the kinematic and dynamic models do not increase.

The connection between x and c, i.e., the direct kinematic problem (DKP) in this

case is given by

x = FV (c) (257)

where FV : Qc → X is a smooth projection map over the target space

X = {x ; x = FV (c), c ∈ Qc ⊂ R
3n} (258)

which is the working space of the MS under consideration. After differentiation

of (257) with respect to t one obtains

ẋ =

[
∂F

∂c

]
ċ = JV (c)ċ (259)
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where JV (c) ∈ Rm,3n is the Jacobian matrix of the map FV . Again all configura-

tions for which the rank of JV (c) < m are called singular.

The dynamic equations for a rigid body MS on the group configurational space

Qc look like

HV (c)c̈ + hV (c, ċ) = PV (260)

where HV := HV (c) is 3n× 3n inertia matrix, the 3n× 1 vector hV := hV (ċ, c)
takes into account Coriolis, centrifugal and gravitational forces, and PV is 3n× 1
matrix of the generalized forces and moments. Analogically the vector cm with

components cm(i), i = 1, . . . n which describes the motor rotations is introduced,

cm ∈ Qcm ⊂ R
3n.

We continue with the appropriate notation for spatial transformations [81], [36]:

Φ(i + 1, i) − 6 × 6 matrix which translates a spatial velocity at point C(i)
written in the frame R(i) to a spatial velocity at C(i+1) written in R(i+1)

Φ(i + 1, i) :=

[
O(i, i + 1) ∅

−O(i, i + 1)s×(i, i + 1) O(i, i + 1)

]
where ∅ means 3 × 3 zero matrix.

ΦT (i+1, i) – transpose of Φ(i+1, i) matrix. ΦT translates the spatial force

acting at C(i + 1) written in the frame R(i + 1) to a spatial force acting at

C(i) written in R(i)

ΦT (i + 1, i) :=

[
O(i + 1, i) s(i + 1, 1)O(i + 1, 1)

∅ O(i + 1, i)

]
;

Om(i − 1, i) − 3 × 3 rotation matrix which relates the orientation of the

frame Rm(i) at Cm(i) to the frame R(i − 1). The corresponding vector-

parameter is cm(i) and

Om(i − 1, i) := O(cm(i));

Φm(i, i − 1) - 6 × 6 matrix which translates a spatial velocity at point

C(i − 1) written in the frame R(i − 1) to a spatial velocity at Cm(i) writ-

ten in Rm(i)

Φm(i, i − 1) :=

[
O(i − 1, i) ∅

Om(i − 1, i)sm×(i − 1, i) Om(i − 1, i)

]
;

mb(i) – mass of link i, mm(i) – mass of motor i, that drives link i,
I(i) − 3 × 3 inertia matrix of the link i at C(i) written in R(i),
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Im(i)−3×3 inertia matrix of the motor/gear at Cm(i) written in the frame

Rm(i);
Mb(i) − 6 × 6 spatial mass matrix of link i at C(i) written in the in frame

R(i). It connects the inertia matrix of link i, link mass and the location of

the mass centre g(i)

Mb(i) :=

[
I(i) m(i)g×(i)

−m(i)g×(i) m(i)I

]
where I is 3 × 3 identity matrix,

Mm(i)− 6× 6 spatial mass matrix of the motor and gear at Cm(i) written

in R(i)

Mm(i) :=

[
Im(i) mm(i)gm×(i)

−mm(i)g×(i) mm(i)I

]
;

a(i) − 6 × 1 vector of spatial accelerations of link i, written in frame R(i),
which in case of a rotational joint

a(i) :=

[
O(i − 1, i)ω(i − 1) × ω(i)

O(i − 1, i)(ω(i − 1) × (ω(i − 1) × s(i − 1, i)))

]
;

am(i) - 6× 1 vector of spatial accelerations of the motor(gear) driving link

i written in frame Rm(i)

am(i) :=

[
Om(i − 1, i)ωm(i − 1) × ωm(i)

Om(i − 1, i)(ωm(i − 1) × (ωm(i − 1) × sm(i − 1, i)))

]
;

b(i) - 6× 1 vector of spatial forces acting on link i at point C(i), written in

frame R(i), which for a rotational joint look as

b(i) :=

[
ω(i) × I(i)ω(i)

mb(i)ω(i) × (ω(i) × g(i))

]
;

bm(i) - 6×1 vector of spatial forces acting on the motor/gear at point C(i),
written in frame Rm(i) as

bm(i) :=

[
ωm(i) × Im(i)ωm(i)

mm(i)ωm(i) × (ωm(i) × gm(i))

]
;

E(i) – 6 × 1 vector for the spatial axis of motion for link i, written in

R(i), which for a rotational joint is E(i) := [eT (i) 0 0]T , or E(i) :=
[0 0 1 0 0 0]T ;

ET (i) – transpose of E(i);
Em(i) – 6×1 vector for the spatial axis of motion for the motor driving link

i written in R(i), Em(i) := [emT (i) 0 0 0]T , or Em(i) := [0 0 1 0 0 0]T ;

EmT (i) – transpose of Em(i).
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7.3. Inverse Dynamic Problem (IDP) for Elastic Joint Manipulators

The future implementation of robot manipulators, especially in space, will require

extensive modeling, simulation and analysis during manipulator construction, de-

velopment and verification of controllers, training of the operators and actual op-

eration of the manipulators. The performance of real time simulations, control and

analysis requires also the development of computationally effective methods and

approaches. The Inverse Dynamic Problem (IDP) plays an important role in real

time simulation and control. Its solution on the base of Newton-Euler equations

is extremely efficient. This approach is appropriate also for parallel computations

in full manipulator simulation. A detailed treatment from this perspective of the

rigid body manipulators can be found in [62].

Further on, the above notation are used so that IDP relationships can be outlined

just in case of flexible joint manipulator. At this stage the problem is treated

“through” vector parameter and spatial operator technique as described in [81] is

also used.

7.3.1. External Iterative Procedure (Forward Recursion)

This procedure is realized from the first link to the last one. It contains the propa-

gation of the velocities and the accelerations. The velocity of each link is the sum

of the velocity of the previous link and the link’s own relative rotational velocity.

The velocity of each motor is the velocity of the link upon which it is mounted

plus the local rotational velocity of the motor. For the flexible joint, the motor

velocity is independent of the link velocity. For a geared joint, the motor velocity

and link velocity are related through the gear ratio, Γ.

Similar equations hold for the accelerations but with additional terms added to

account the centrifugal accelerations. The accelerations are contained in a(i) and

am(i) terms. The base is assumed to be fixed with respect to an inertial frame.

The recursive equations in an algorithmic form seem like

V (0) := Base Spatial Velocity

W (0) := Base Spatial Acceleration.
(261)

For i = 1, 2, . . . , n we have

link : V (i) := Φ(i, i − 1)V (i − 1) + E(i)q̇(i)

W (i) := Φ(i, i − 1)W (i − 1) + E(i)q̈(i) + a(i)

motor : V m(i) := Φm(i, i − 1)V m(i − 1) + E(i)q̇(i) (262)

Wm(i) := Φm(i, i − 1)Wm(i − 1) + E(i) ¨qm(i) + am(i)

Geared : ˙qm(i) := Γ(i)q̇(i), ¨qm(i) = Γ(i)q̈(i).
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7.3.2. Internal Iterative Procedure (Backward Recursion)

It is realized from the end-effector to the base. Independent of the geared or

flexible joint case, the force acting over every link is a sum of the link inertial

forces, the forces from the outer link and the motor inertial forces

t(n + 1) := vector of external torques(forces) (263)

applied on the end-effector

tm(n + 1) := 0. (264)

Besides, for i = n, . . . , 1 we have that

link : t(i) := ΦT (i + 1, i)t(i + 1) + ΦmT (i + 1, i)tm(i + 1)

+M(i)W (i) + b(i) (265)

motor : tm(i) := Mm(i)Wm(i) + bm(i).

The next step aims obtaining of motor and link torques, namely: The torque acting

on the joint axis i is the projection of the force acting on the link i along the axis

of the joint

P (i) = ET (i)t(i). (266)

This torque is also a function of the state-dependent coupling between the motor

and the link. For example, for a simple torsional spring model, the torque is a

function of the angular displacement between the motor and the link

P (i) = K(i)(qm(i) − q(i)) (267)

where K(i) is the torsional spring constant for i-th axis. To account the internal

damping, the torque may be written

P (i) = K(i)(qm(i) − q(i)) + Z(i)( ˙qm(i) − q̇(i)) (268)

where Z(i) characterizes the damping coefficient. We may generalize that the

torque can be expressed as a function of the state of the manipulator

P (i) = f(q, q̇, qm, ˙qm). (269)

Through a force balance on the motor and the link, the motor torque can be ex-

pressed as the sum of the projection of the forces along the motor axis and the link

torque

Pm(i) = ET (i)tm(i) + P (i) (270)
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In case of a point contact at interactions between gears, the torque of the motor

can be expressed as the link torque reduced by the gear ratio plus the torque due

to the acceleration of the motor

Tm(i) = ET (i)t(i)/Γ(i) + EmT (i)tm(i). (271)

Equations (261) – (267) define the complete inverse dynamics of both flexibly

jointed and geared manipulators.

7.4. Dynamic Problem and Control

7.4.1. Direct Dynamic Problem

The goal of simulation, or forward dynamics, is to find the motor and link accel-

erations when the motor (link) angular positions, velocities and motor torques are

given. A lot of algorithms exist. For example, the recursive sweep method [81]

begins by assuming that the state (force vector) t(i) and the costate (acceleration

vector) are related by

t(i) = Ĥ(i)W (i) + ĥ(i) (272)

where Ĥ(i) and ĥ(i) are the articulated body inertias and bias forces respectively

for body i and they are defined recursively from link n.

We refer to our previous works, mentioned above, concerning rigid body dynam-

ics where elegant recursive procedures of building equation (5) on the base of

different mechanical equations are given. We present equation (5) as

H(q)q̈ + h1(q, q̇)q̇ + h2(q) = P (273)

where in h1(q, q̇)q̇ enter centrifugal terms (these which contain q̇2) and Coriolis

terms (these which contain q̇q̇), and h2(q) is the gravity vector, i.e.,

H(q)q̈ + h1 centr(q̇2) + h1 Coriolis(q̇q̇) + h2(q) = P.

From [63] it may be seen that

h1 = Ḣq̇ − ∂T/∂q and h2 = ∂U/∂q (274)

where T and U are the kinetic and potential energy of the system respectively, as

well all recursions for the matrix H and vectors h1 and h2.

We consider now a model of an n-link manipulator with joint flexibility. For

simplicity we assume (as it is done in [121]) that the joints are revolute, they
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are actuated by DC motors and the flexibility of i-th joint is modeled as a linear

torsional spring with spring constants K(i) for i = 1, . . . , n as it is shown on

Fig.3. We note that due to the joint flexibility, there are now twice as many degrees

of freedoms as compared with the rigid joint case. We denote by

q̄ := [q1 . . . q2n]
T (275)

the set of generalized coordinates of the system, where

q2i−1 := q(i) (the angle of link i), i = 1, . . . , n
(276)

q2i := − 1

Γ(i)
qm(i), i = 1, . . . , n

In this case q2i − q2i−1 is the elastic displacement of joint i. If we define the

n-dimensional vectors

q̄1 := [q1 q3 . . . q2n−1]
T q̄2 := [q2 q4 . . . q2n]

T (277)

the kinetic T and potential U energies of this system can be expressed as

T =
1

2
˙̄qT1 H(q̄1) ˙̄q1 +

1

2
˙̄qT2 Jm ˙̄q2, U = U1(q̄1) + U2(q̄1 − q̄2) (278)

where H(q̄1) and U1(q̄1) are respectively the inertia matrix and potential energy

of the rigid manipulator, Jm is a n × n diagonal matrix

Jm := Diag [Imzz(1)/Γ2(1), . . . , Imzz(n)/Γ2(n)] (279)

which components contain the inertia Imzz(i) of the i-th rotor about its principal

axes of rotation. From the previous subsection we have

Im(i) := Diag[Imxx(i) Imyy(i) Imzz(i)]

where the diagonal elements are the moments of inertia of the rotor about the

principal axis. U2 is the elastic potential energy of the joints

U2 =
1

2
(q̄1 − q̄2)

TK(q̄1 − q̄2). (280)

Then the dynamics of a manipulator with joint elasticity can be described by

H(q̄1)¨̄q1 + h1(q̄1, ˙̄q1) + h2(q̄1) + K(q̄1 − q̄2) = 0 (281)

Jm ¨̄q2 − K(q̄1 − q̄2) = u. (282)

The input vector u (input torque applied to the motor shaft) which has units of

torque is a function of the generalized forces and moments of the rigid mechanical
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system and some motor characteristics and constants. For more details concerning

the last system, as well for general theory of nonlinear control we refer to [122],

[82], [83], [20], [37] and references quoted therein. The both equations may be

combined in the form[
H(q̄) 0

0 Jm

]
¨̄q +

[
h1(q̄1, ˙̄q1)

0

]
+

[
h2(q̄1)

0

]
+

[
K −K
−K K

]
q̄ =

[
0
I

]
u. (283)

Viscous friction terms acting both on link and on the motor sides of the elastic

joints could be easily included in the dynamic model. This model describes sys-

tem dynamics “through” vector-parameter coordinates.

How does the dynamic model looks in “pure” vector-parameter notation?

We introduce the following system of vectors

c̄ := [c1 . . . c2n]
T (284)

as vector-parameters of the system, in which

c2i−1 := c(i), c2i := − 1

Γ(i)
cm(i), i = 1, . . . , n (285)

and cm(i) is the vector-parameter describing the rotation of i-th rotor. Analogi-

cally we can define the 3n-dimensional vectors

c̄1 := [c1 c3 . . . c2n−1]
T , c̄2 := [c2 c4 . . . c2n]

T (286)

and using the formalism already described in [62], to obtain

HV (c̄1)¨̄c1 + hV 1( ˙̄c1, c̄1) + hV 2(c̄1) + K(c̄1 − c̄2) = 0 (287)

JmV ¨̄c2 − K(c̄1 − c̄2) = uV (288)[
HV (c̄) 0

0 JmV

]
¨̄c +

[
hV1

(c̄1, ˙̄c1)
0

]
+

[
h2(c̄1)

0

]
+

[
K −K
−K K

]
c̄ =

[
0
I

]
uV .

(289)

However, the real dimension of the differential equations is just 2n because only

one of the components of the vectors c(i) and cm(i) is essential and informative.

Here the subindex V means again that the model is considered in “pure” vector-

parameter approach. We note that the gyroscopic forces between each rotor and

the other links are not included in the last equations since we assume [121] that

the kinetic energy of the rotors is due mainly to its own rotation, equivalently,

the motion of the rotor is a pure rotation with respect to an inertial frame. The

matrix H and the vectors h and u from the dynamic model over the generalized

manifold Q given above as well as the corresponding HV , hV and uV in “pure”

vector-parameter dynamics are defined also recursively.
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7.4.2. Inverse Dynamics Control and Feedback Linearization

It is well known that the rigid robot equations (283) may be globally linearized and

decoupled by nonlinear feedback. This is just the scheme of the inverse dynamic

control. The key idea of the inverse dynamics is to seek a nonlinear feedback

control law

u = f(q̄, ˙̄q), uV = fV (c̄, ˙̄c) (290)

which after entering in the equations (283) or (289) results in a linear closed loop

system. For example applying the nonlinear control law to the system described

by (283)

u = A(q̄)v + B(q̄, ˙̄q) (291)

which is also called the inverse dynamic control and

A(q̄) = H(q̄) + Jm, B(q̄, ˙̄q) = h1(q̄, ˙̄q) + h2(q̄) (292)

the so called double integrator system is obtained

¨̄q = v. (293)

The new system is linear and decoupled and it can be controlled by adding an

“outer loop” control [122]. We have to note that here v does not mean velocity

vector but control variable. The technique of the inverse dynamic control may

be considered as a special case of a more general procedure for transforming a

nonlinear system to a linear one, known as external or Feedback Linearization

[35], [87], [86]. The basic idea of the feedback linearization is to find a nonlinear

control law (inner control law) which linearizes the nonlinear system exactly after

an appropriate change of the coordinates in the state space. Then a second stage of

outer loop control in the new coordinates is designed which satisfies some control

specifications. In the case of rigid manipulators the inverse dynamic problem and

feedback linearizations are covered each other. The power of the techniques of the

feedback linearization may be really seen when manipulator systems with elastic

joints are considered.

In the general case of n-link manipulator the dynamics equations represent a

multi-input nonlinear system. We consider the system (287) and (289). We define

in the state space R
4n the state variables in block form

x1 = 2arctan c13, x2 =
2ċ13

1 + c2
13

(294)

x3 = 2arctan c23, x4 =
2ċ23

1 + c2
23

(295)
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where c̄1 = (0, 0, c13), c̄2 = (0, 0, c23). Then (294), (287) and (289) are

equivalent to the system

ẋ1 = x2 (296)

ẋ2 = −H−1(x1)(h1(x1, x2) + K(x1 − x3)) (297)

ẋ3 = x4 (298)

ẋ4 = Jm−1K(x1 − x3) + Jm−1u (299)

whose general form is

ẋ = f(x) + g(x)u. (300)

Having in mind the theorem mentioned in the Appendix, the feedback lineariza-

tion algorithm for multi-input systems may be used. On the base of the nonlinear

change of the coordinates, namely

y1 = D1(x) = x1 (301)

y2 = D2(x) = ẏ1 = x2 (302)

y3 = D3(x) = ẏ2 = ẋ2

= −H−1(x1)(h1(x1, x2) + K(x1 − x3)) (303)

y4 = D4(x) = ẏ3

= − d

dt
(H−1(x1))(h1(x1, x2) + K(x1 − x3))

−H−1(x1)(
∂h1

∂x1
x2 +

∂h1

∂x2
(−H−1(x1)(h1(x1, x2) (304)

+K(x1 − x3))) + K(x2 − x4))

= a4(x1, x2, x3) + H−1(x1)Kx4

and a nonlinear feedback, the transformed system has the known linear block form

given in the Appendix. The function a4 contains everything from y4 except the

last term.

7.5. Single-Link Flexible-Joint Robot Arm

Consider a single-link flexible-joint robot arm as shown in Fig. 5. We first rewrite

the equations of motion in state variables and then verify that the resulting non-

linear system satisfies some necessary and sufficient conditions in order to be

linearized globally by a nonlinear feedback. We have to notice that this analysis is
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Figure 5. Single-link flexible-joint robot arm

standard in nonlinear systems control theory and for this particular case of robot

it has been done in [55].

For simplicity, the damping will be ignored in this system. The joint is assumed to

be of revolute type, and the link is assumed to be rigid with inertia I(l) about the

axis of rotation. Let q(l) be the link-angular variable with the vertical axis as its

reference and q(m) is the motor-shaft angle. We suppose that the rotor inertia of

the motor is I(m). Assume also that the flexible joint is modeled as a linear spring

of stiffness k. The corresponding vector-parameters are: c1 = (0, 0, c(l)) and

c2 = (0, 0, c(m)), where c(l) = tan(q(l)/2), c(m) = tan(q(m)/2). The

motion equations are

2I(l)

1 + c2(l)
(c̈(l) +

2c(l)ċ2(l)

1 + c2(l)
) + 2Mg

c(l)

1 + c2(l)

+ 2K(arctan c(l) − arctan c(m)) = 0
(305)

2I(m)

1 + c2(m)
(c̈(m) +

2c(m)ċ2(m)

1 + c2(m)
)

− 2K(arctan c(l) − arctan c(m)) = u

where M is the total mass of the link, L is the distance from the link mass cen-

ter to the axis of rotation, g – the acceleration constant of gravity, and u – the

(generalized) force-input to the shaft by the actuator. Let

x1 = 2arctan c(l), x2 =
2ċ(l)

1 + c2(l)

x3 = 2arctan c(m), x4 =
2ċ(m)

1 + c2(m)
.

Then equation (305) can be rewritten as

ẋ = f(x) + g(x)u (306)
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where x := [x1 x2 x3 x4]
T and

f(x) :=

⎡⎢⎢⎢⎣
x2

−MgL
I(l) sin (x1) − K

I(l) (x1 − x3)

x4
K
I(m) (x1 − x3)

⎤⎥⎥⎥⎦ , g(x) :=

⎡⎢⎢⎣
0
0
0
1

I(m)

⎤⎥⎥⎦ . (307)

It is easy to be verified that the vector fields g, [f, g], [f, [f, g]], [f, [f, [f, g]]] are

constant and so they form an involutive set. Moreover, since these vector fields

are linearly independent for all k > 0, and I(l), I(m) < ∞ , then the nonlinear

system (306) is globally feedback linearizable in the sense that an equivalent linear

feedback system with a nonlinear transform exists and it may be found in the well

known manner [123]. The nonlinear system (306) may be linearized as

ẏ = Ay + Bu (308)

where A(4 × 4) and B(4 × 1) are matrices from the type given in the Appendix

and the physical meaning of y1, y2, y3, y4 are position, velocity, acceleration

and jerk of the link respectively.

Appendix. Lie Groups, Lie Algebras and Nonlinear Control Process

A Lie group is a set G such that:

1) G is a group;

2) G is a smooth manifold;

3) the group operations of composition and inversion are smooth maps of G
into itself relative to the manifold structure defined in 2).

A Lie algebra over the real numbers R is a real vector space G equipped with the

bilinear operation called a Lie bracket [ , ]: G × G → G with the properties:

For X,Y,Z ∈ G
[αX + βY,Z] = α[X,Z] + β[Y,Z], α, β ∈ R

[X,Y ] = −[Y,X]

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 − Jacobi identity.

If f and g are two vector fields on R
n, the Lie bracket of f and g denoted by [f, g]

is a third vector field defined by

[f, g] =
∂g

∂x
f − ∂f

∂x
g
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where
∂g

∂x
and

∂f

∂x
are Jacobian matrices of f and g respectively. Sometimes

another notation for the Lie bracket is used, namely

[f, g] = Lf (g)

and by induction argument we have as well

Lkf (g) = [f, Lk−1
f (g)].

There is no general theory for nonlinear control. There are methods based on the

analysis of linearized models. Another approach consists in using Lie-algebraic

and Lie-group techniques [35], [87], [13], [90].

Given a control system

ẋ := f(x) +

m∑
i

uigi(x) = f(x) + g(x)u.

where f(x) and gi(x) are smooth vector fields on R
n we can form the respective

Lie algebra {f, g1, . . . , gm}LA generated by the vector fields f, g1, . . . , gm. It is

called a controllability Lie algebra. A linearly independent set of vector fields

X1, . . . ,Xm is said to be involutive if and only if there are scalar functions αijk :
R
n → R such that

[Xi,Xj ] =
∑
k

αijkXk for all i, j, k.

Involutivity simply means that if one forms the Lie brackets of any pair of vector

fields from the set X1, . . . ,Xm , then the resulting vector field can be expressed

as a linear combination of the original vector fields X1, . . . ,Xm. The coefficients

of this linear combination are allowed to be smooth functions on R
n.

The necessary conditions for the existence of solutions to certain systems of first

order partial differential equations are provided by the Frobenius’ theorem which

states:

The set of vector fields X1, . . . ,Xm that are linear independent at each point is

completely integrable if and only if it is involutive.

The nonlinear system

ẋ = f(x) + g(x)u (∗)

is said to be feedback linearizable in a neighborhood Uo of the origin if there exists

a diffeomorphism D : Uo → R
n and nonlinear feedback u = α(x) + β(x)v such
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that the transformed state y = D(x) satisfies the linear system ẏ = Ay + Bv,

where (A,B) is a controllable linear system with

A =

⎡⎢⎢⎢⎢⎣
0 I 0 0 0
0 0 I 0 0
. . . . .
. . . . I
0 0 . 0 0

⎤⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎣
0
0
.
.
I

⎤⎥⎥⎥⎥⎦
and I is n × n identity matrix, 0 is n × n zero matrix, y ∈ R

4n, v ∈ R.

A diffeomorphism is simply a differentiable map whose inverse exists and is also

differentiable. We have to look at the diffeomorphism D as a nonlinear change of

coordinates in the state space. The idea of the feedback linearization is that if we

first change the coordinate system y = D(x), then there exists a nonlinear control

law which cancels the system nonlinearities. If the region U is all of Rn, then the

feedback linearization is said to be global.

Theorem 7. (See [123]) The nonlinear system (∗), where f(x) and g(x) are
smooth vector fields and f(0) = 0 is feedback linearizable if and only if there
exists a region U containing the origin in R

n, where the following conditions are
satisfied:

i) The vector fields g, Lf (g), . . . , Ln−1
f (g) are linearly independent in U .

ii) The set g, Lf (g), . . . , Ln−2
f (g) is involutive in U .

8. An Approach to Automatic Generation of Dynamic Equations in
Vector-Parameters of Elastic Joint Manipulators in Symbolic Lan-
guage

The present section describes an approach for automatic generation of the equa-

tions of motion of elastic joint manipulators in symbolic language [67], [101],

[88], [89]. It is based on a vector-parameterization of the Lie group SO(3) and

uses the Lagrange’s formalism to derive the dynamical equations, whose final

forms are like in the recursive Newton-Eulerian algorithm. Both characteristics

together, the first one – on kinematic level and the second one – on dynamic level,

increase the computational efficiency. This makes the suggested algorithm quite

appropriate as for the purposes of modeling and identification, so for real time

simulations and control.
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The automatic symbolic generation of dynamic equations of manipulators in a

closed form is a topic that has received a very extensive research and is there-

fore very well developed. Most algorithms to this effect are based on either

the Newton-Eulerian formalism [113], [108], [30], [138], [134] [19], [51], [130],

[102], [105], [114], [47], [48], [46], [144] or the Lagrangian dynamics [127],

[128], [40], [136], [32], [17], [137] [58]. Almost all these algorithms concen-

trate on the development of rigid body models. This is inspite of the considerable

attention that control of elastic joint manipulators has been given in the last two

decades or more, where it has generally been confirmed that elastic joint ma-

nipulators can not be controlled by a procedure that is designed for robots with

rigid joints. Some works in the area of control of elastic joint robots therefore

use, under special assumptions, a simple model of the actuator, neglecting the

coupling moments betweens the actuators and the links [121]. According to the

authors knowledge, the only program, that has also been used in this area, and

that can generate the full dynamic model of manipulators with elastic joints, is the

DYMIR [16], [54].

The model presented in this section is based on the methods given in [51] and [17],

but has the specific and original feature, that it is built for elastic joint manipula-

tors, although it can be also used for rigid manipulators. In addition, the modified

Denavit-Hartenberg convention [19] to describe the Euclidean motions is used in

this section, while the above mentioned works apply the approach suggested by

Denavit and Hartenberg [21]. Finally, this section differs in the important item,

that it uses the so called vector-parameters. Both the computational efficiency of

the vector-parameterization and the effective generation of the dynamic equations

make the suggested approach quite appropriate for on–line simulation and control.

In order to improve further the computational efficiency, the positive characteris-

tics of the symbolic–numeric programming, as pointed out in [130], have been

used during the realization of this algorithm.

8.1. Geometrical Description

We consider a general structure of an industrial robot with N serial links. If

the joints are elsatic, then the position of the i-th actuator and that of the i-th
link will be different (Fig.4.) and each joint-actuator combination can be seen as

two different subsystems coupled by a torsional spring. The effective number of

degrees of freedom for a robot with N links and N elastic joints is then 2N . To

derive the equations of motion, the modified Denavit-Hartenberg convention [19]

is used here as to assign a coordinate frame to each body, so to determine the
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position and orientation of the actuators. The following general assumptions are

added to this convention in order to take the elasticity of each joint into account:

• The links are marked with the indices 1, .., i, ..N , and the movable frames

and the variables with 1, ..., s, ..., 2N (including the position of the end-

effector).

• The inertial frame has index 0.

• The i-th actuator has index s = 2i − 1 and the i-th link index s = 2i for

i = 1, ...,N .

• The index l = 2i − 2 is used, when s = 2i − 1 and s = 2i.

• The z-axes of the frames 2i − 1 and 2i coincide.

• Each link has its own actuator whose rotor is modelled as an uniform body

of revolution with the axis of symmetry along the axis of rotation (z-axis).

• The joint elasticity is modelled as a linear torsional spring with a spring

constant ki.

• For the variables, the generalized coordinate qs is used for each degree of

freedom. The variable for the motion of the rotor of the i-th actuator is q2i−1

with respect to the l-th frame and that of the i-th link is q2i also with respect

to the l-th frame. If the link i has a revolute joint, then q2i is the rotational

angle of the frame 2i around its z-axis and if the link i is prismatic, then q2i

is d2i along the z-axis. As mentioned above, all rotors of the actuators have

revolute degrees of freedom. According to the convention mentioned above,

qs = ϑs, when the joint s is rotational and qs = ds, if it is translational.

8.2. Kinematics of Elastic Joint Manipulators

For describing the Euclidean motions, we use a modified Denavit-Hartenberg con-

vention, in which, the position, presented by 3 × 1 vector p and the orientation,

presented by 3 × 3 matrix R, of the frame s with respect to the frame l and the

frame 0, are given by the following 4 × 4 transformation matrices

lAs =

⎡⎢⎢⎣
cϑs −sϑs 0 al

sϑscαl cϑscαl −sαl −sαlds
sϑssαl cϑsαl cαl cαlds

0 0 0 1

⎤⎥⎥⎦ =

[
lRs

lps
0̄ 1

]
(309)

where c = cos and s = sin, 0̄ is 1 × 3 zero vector and

0Ts = 0A2
2A4 ... l−2Al

lAs =

[
0Rs

0ps
0̄ 1

]
(310)
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is the resultant transformation matrix. Note that al and αl are the same for both

the actuator and the link and

0Rs = lRs
0Rl,

0ps = 0pl +
0Rl

lps. (311)

As mentioned before, the orientation matrix lRs is expressed here in terms of

vector parameters as in (77), that is

lRs = O(cs), cs = (tan
αl
2

, −tan
αl
2

tan
ϑs
2

, tan
ϑs
2

). (312)

Then the multiplication of the orientation matrices is replaced by the composition

of the vector parameters as follows

g1 ≡ c1, g2 ≡ c2,

g3 = 〈g2, c3〉, g4 = 〈g2, c4〉, gs = 〈gl, cs〉 (313)

in which gl = 〈c1, cs, ..., cl〉 for s = 2i.

The angular and linear velocities of a point p with a position vector srs (fixed) on

link s expressed with respect to frame l are

lωs = lRs[0 0 q̇s]
T (314)

lvs =
∂lAs(qs)

∂qs
q̇s
srs =

[
lω̃s

lRs
lṗs

0̄ 0

] [
srs
1

]
= lω̃s

srs + lṗs. (315)

Since the transformation matrices A and T , as defined above, belong to the Euclid-

ean Lie group, that describes the motion of a rigid body in the three-dimensional

space, (315) can be rewritten as

∂lAs

∂qs
q̇s =

[
lω̃s

lRs
lṗs

0̄ 0

]
=

[
lδ̃s

lRs
lτs

0̄ 0

]
q̇s (316)

where

lδ̃s = lRs
sδ̃s

lRT
s or lδ̃s = lRs

sδs and lτs = lRs
sτs. (317)

The matrices

sδ̃s =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ , sτs = [0 0 0]T if s has a rotational joint (318)

sδ̃s =

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦ , sτs = [0 0 1]T if s has a prismatic joint (319)
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are the infinitesimal generators of such a group of motions consisting of rotations

about and translations along the z-axis. From (316) it can be seen that

∂lAs

∂qs
= lΔs =

[
lδ̃s

lτs
0̄ 0

]
=

[
lδ̃s

lλs
0̄ 0

]
lAs (320)

in which

lλs = −lδ̃s
lps + lτs = −sδ̃s

lRs
T lps + sτs. (321)

It is worth noting here, that because of the properties of the orthogonal matrices

as elements of the group SO(3), namely

lRT
s = lR−1

s = sRl (322)

as well as the vector-parameterization of SO(3) and equation (312), it is valid

that

sRl = O(−cs). (323)

Using the above equations and the inverse of the transformation matrix 0Ts

[0Ts]
−1 =

[
0RT

s −0RT
s

0ps
0̄ 1

]
the linear velocity of frame s with respect to the base frame 0 is

0vs = 0Ṫs =

i∑
k=1

∂0Ts
∂q2k

q̇2k +
d0Ts
dqs

q̇s = (

i∑
k=1

0Δ2k q̇2k + 0Δsq̇s)
0Ts

=

( i∑
k=1

[
0δ̃2k q̇2k

0λ2k q̇2k

0̄ 0

]
+

[
0δ̃sq̇s 0λsq̇s

0̄ 0

])
0Ts (324)

=

[
0ω̃s

0us
0̄ 0

]
0Ts, i = l/2

where

0δ̃2k = 0R2k
2kδ̃2k

0RT
2k (325)

0λ2k = 0R2k
2kλ2k = 0δ̃2k

0p2k + 0τ2k (326)

0us =

i∑
k=1

0λ2k + 0λsq̇s = 0us−1 + 0λsq̇s, i = l/2 (327)

0ω̃s =

i∑
k=1

0δ̃2k q̇2k + 0δ̃sq̇s = 0ω̃l +
0δ̃sq̇s, i = l/2. (328)



Group Theory in the Problems of Modeling and Control of Multi-Body Systems 95

The second derivative of 0Ts is obtained from (324) as

0T̈s =

[
0 ˙̃ωs + 0ω̃2

s
0u̇s + 0ω̃s

0us
0̄ 0

]
0Ts. (329)

According to the above relations we have

0u̇s = 0u̇l +
0λ̇sq̇s + 0λsq̈s (330)

0ω̇s = 0ω̇l +
0δ̇sq̇s + 0δsq̈s (331)

respectively, the expressions for 0δ̇s and 0λ̇s are

0δ̇s = 0ωl × 0δs (332)

0λ̇s = −(0 ˙̃δs
0ps + 0δ̃s

0ṗs) + 0ωs × 0τs (333)

and 0ṗs is determined from

0Ṫs =

[
0ω̃s

0Rs
0ṗs

0̄ 0

]
=

[
0ω̃s + 0Rs

0ω̃s
ops + ous

0̄ 0

]
(334)

as

0ṗs = 0ωl × 0ps + 0us. (335)

The substitution of (335) in (332) and using the vector triple product identity

A × (B × C) + B × (C × A) + C × (A × B) = 0 yields

0λ̇s = 0ωl × 0λs − 0δs × 0us. (336)

Finally, the following expressions for 0ω̇s and 0u̇s are obtained

0ω̇s = 0ω̇l +
0ωl × 0δsq̇s + 0δsq̈s (337)

0u̇s = 0u̇l +
0ωs × 0λsq̇s + 0λsq̈s (338)

In case q̈s = 0, it is valid that

0ω̇∗

s = 0ω̇∗

l + 0ωl × 0δsq̇s (339)
0u̇∗

s = 0u̇∗

l + 0ωs × 0λsq̇s + 0us × 0δsq̇s. (340)

The equations given above in this section are the kinematic equations of frame

s with respect to the base frame 0. They are recursively determined from frame

1 to frame 2N . Computationally more efficient versions of these equations are

obtained by expressing them with respect to their own coordinate frames. This is

given in the following.
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Outward Iterations (in joint coordinates) s = 1, . . . , 2N

The main relations here are:

0Rs = 0Rl
lRs,

sps = lRs(
lpl +

lps) (341)

sλs =

{−sδs
lRT

s
lps

sτs

if joint s is rotational

if joint s is prismatic
(342)

sus =

{
lRT

s (lul +
lps × sδsq̇s)

lRT
s
lul +

sτsq̇s

if joint s is rotational

if joint s is prismatic
(343)

sωs =

{
lRT

s
lωl +

sδsq̇s
lRT

s
lωl

if joint s is rotational

if joint s is prismatic
(344)

svs =

{
lRT

s (lvl +
lωl × lps)

lRT
s (lvl +

lωl × lps) + sτsq̇s

if joint s is rotational

if joint s is prismatic.
(345)

Finally, it follows that

sω̇∗

s = lRT
s
lω∗

l + lRT
s
lωl × sδsq̇s (346)

su̇∗

s = lRT
s
lu̇∗

l + sωs × sλsq̇s + sus × sδsq̇s. (347)

8.3. Dynamics of Elastic Joint Manipulators

The dynamic equations of an elastic joint manipulator are derived on the basis of

the Lagrange’s equations of second order

d

dt

(
∂Wk

∂q̇s

)
− ∂Wk − Wp

∂qs
= Fqs (348)

where Wk and Wp are the kinetic and potential energy of the body and qs and Fqs
are the generalized coordinate and applied force corresponding to the s-th degree

of freedom respectively. For a robot with elastic joints, the potential energy consist

of the elastic energy Wpe and the gravitational energy Wpg. The elasticity of each

joint i is modeled here by a linear torsional spring of a constant stiffness ki so that

Wpe =
1

2
ki (q2i − q2i−1/Ni). (349)

Here Ni is the gear ratio for the i-th set of the reduction gear. The presence

of elasticity at each joint of a manipulator with N -links, doubles the number of

degrees of freedom of the manipulator to 2N . The s-th dynamic equation of
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motion of an elastic joint robot with N -links, derived from the above equations is

2N∑
k=1

Bskq̈k + Cs(q, q̇) − Gs(q) + Es(q) = Us (350)

where Bsk is the coupling inertia matrix between bodies s and l and it seems like

Bsk =
2N∑
j=k

tr

[
∂0Tj
∂qs

Jj
∂0T T

j

∂qk

]
, k ≥ s = 1, ..., 2N (351)

and Cs is a vector which includes the Coriolis’s and the centrifugal forces on body

s as expressed according to [32]

Cs =

2N∑
j=s

tr

[
∂0Tj
∂qs

Jj
d20T T

j

dt2

]
q̈=0

, 1 ≤ s ≤ 2N (352)

Gs is a vector of the gravitational force acting on body s

Gs = −
2N∑
j=s

mjg
T ∂0Tj

∂qs

srsg, 1 ≤ s ≤ 2N (353)

and Es are the elastic forces at either side of the gear of joint i

Es =

{ − ki

Ni
(q2i − q2i−1/Ni), if s = 2i − 1, (i = 1, . . . ,N)

ki(q2i − q2i−1/Ni), if s = 2i.
(354)

The inertia matrix

Jj =

[
jIjg + mj

jrjg
jrTjg mj

jrjg
mj

jrTjg mj

]
(355)

consists of the position vector jrjg of the center of mass, the mass mj of link or

actuator s and the matrix

jIjg =

⎡⎣ a jIjxy
jIjxz

jIjxy b jIyz
jIxz

jIyz c

⎤⎦ (356)

where

a =
−jIjxx + sIjyy + sIjzz

2

b =
jIjxx − jIjyy + jIjzz

2
(357)

c =
jIjxx + jIjyy − jIjzz

2
·
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Here jIjxx, jIjyy, jIjzz and jIjxy, jIjxz,
jIjyz are the moments and products of

inertia of the body s determined about a rotational axis through the mass center

of the body. All the terms in Jj are expressed with respect to their own frame. In

order to determine the elements Bsk, Cs and Gs in (350), in view of the presence

of joint elasticity, (351) is representatively analyzed using Table 4.

Table 4. The elements Bsk of the inertia matrix B for s = 1

k = 1 k = 2 k = 3 ...

s = 1, j = 1 : tr ∂
0T1

∂q1
J1

∂0TT
1

∂q1

s = 1, j = 2 : tr ∂
0T2

∂q1
J2

∂0TT
2

∂q1
tr∂

0T2

∂q1
J2

∂0TT
2

∂q2

s = 1, j = 3 : tr ∂
0T3

∂q1
J3

∂0TT
3

∂q1
tr∂

0T3

∂q1
J3

∂0TT
3

∂q2
tr∂

0T3

∂q1
J3

∂0TT
3

∂q3
...

...
...

...

s = 1, j = 2N · · · · · · · · · · · ·
Bsk: B11 B12 B13 · · ·

Since index l in the transformation matrix lAs is always even, because it refers to

the previous link, the following points should be noted:

1) if j is even, then 0Tj is not a function of any odd variable qs, s = 2i − 1.

2) if j is odd, then in 0Tj only lAj is a function of the odd variable qj . All its

other variables are even. This implies that,

3) if k is even, k ≥ s = 1, · · · , 2N , then[
∂oTj
∂qs

Jj
∂0Tj

T

∂qk

]
= 0 if s is odd. (358)

4) if k is odd, k ≥ s = 1, . . . , 2N , then

Bsk =

⎧⎨⎩ tr

[
∂0Tj

∂qs
Jj

∂0Tj
T

∂qk

]
if s = j = k,

or (j = k and s is even)

0 if s is odd and s < k.
(359)

Considering a six degree-of freedom manipulator, the dynamical system (350)

contains 12 nonlinear differential equations. After multiplying (350) with a per-

mutation matrix P , where P−1 = P T , the first six equations are for the actuator

dynamics and the second for the dynamics of the links. The resultant matrix B
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consists of 6 × 6 block matrices B∗

11, B∗

12, B∗

21, B∗

22 and it has the follow-

ing structure

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 0 0 0 0 0 . 0 0 0 0 0 0
0 b22 0 0 0 0 . b27 0 0 0 0 0
0 0 b33 0 0 0 . b37 b38 0 0 0 0
0 0 0 b44 0 0 . b47 b48 b49 0 0 0
0 0 0 0 b55 0 . b57 b58 b59 b510 0 0
0 0 0 0 0 b66 . b67 b68 b69 b610 b611 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 b27 b37 b47 b57 b67 . b77 b78 b79 b710 b711 b712

0 0 b38 b48 b58 b68 . b87 b88 b89 b810 b811 b812

0 0 0 b49 b59 b69 . b97 b98 b99 b910 b911 b912

0 0 0 0 b510 b610 . b107 b108 b109 b1010 b1011 b1012

0 0 0 0 0 b611 . b117 b118 b119 b1110 b1111 b1112

0 0 0 0 0 0 . b127 b128 b129 b1210 b1211 b1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(360)

in which the symmetry is maintained. A similar analysis is done for the vectors

Cs und Gs.

Algorithms for B, C and G

Using the kinematic equations from the last section and taking (358) and (359)

into account, an algorithm for an efficient computation of the terms Bsk, Cs and

Gs given in equations (351)-(353) for manipulators with elastic joints is derived

in this section. With the help of (324), (351) can be rewritten as

Bsk = tr

2N∑
j=k

0Δs
0TjJj

0Tj
T 0Δk

T
= 0Δs

[
Lk

0Hk
0Hk

T
Mk

]
0Δk

T

= tr

{
0δ̃s
(
Lk

0δ̃k
T

+0 Hk
0λk

T )
+0 λs

(
0Hk

0δ̃k
T

+ Mk
0λk

T )}
k ≥ s = 1, . . . , 2N

(361)

where, from (355) we get

Lk =

2N∑
j=k

{
0Rj

j
Ijg

0Rj
T

+ mj

(
0Rj

j
rjg +0 pj

)(
0Rj

j
rjg +0 pj

)T}
(362)

0Hk =

2N∑
j=k

mj

(
0Rj

j
rjg +0 pj

)
, Mk =

2N∑
j=k

mj. (363)
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Using the relationship between vector arrays and dyadic arrays, (361) may be

presented in the following form

Bsk = 0δs
T (0

Kk
0δk +0 Hk × 0λk

T )
+ 0λs

T (0
δk ×0 Hk + Mk

0λk
)

(364)

in which the elements

0Kk =
2N∑
j=k

(
0I∗jg + mj

0r̃∗jg
0r̃∗jg

T )
, 0r∗jg = 0Rj

j
rjg +0 pj (365)

are the effective inertia matrix and

0I∗jg = 0Rj
jI∗jg

0Rj
T

=

∞∑
i=1

0r̃ij
0r̃ij

T
mi (366)

is the inertia tensor of the body j, where rij is the position vector of a particle i
with a mass mi on the body j. The vector Cs, for the Coriolis’s and centrifugal

forces, can also be rewritten using the same method. After substituting (320) and

(329) in (352), it follows

Cs = tr
2N∑
j=s

0Δs
0TjJj

0Tj
T

[
0 ˙̃
ω∗

j + 0ω̃j
2 0u̇∗

j +0 ω̃j
0uj

0̄ 0

]T
, 1 ≤ s ≤ 2N.

(367)

Because of the same relationship between vector arrays and dyadic arrays, the

vectors Cs may be expressed as

Cs = 0δs
T 0Ns + 0λs

T 0Ds (368)

where

0Ns =
2N∑
j=s

{
0I∗jg

0ω̇∗
j +0 ω̃j

(
0I∗jg

0ωj
)}

+ 0D∗

s (369)

with

0D∗

s =

2N∑
j=s

mj
0r∗jg×

[
0u̇∗

j+
0 ω̇∗

j×0r∗jg+
0ωj×

(
0uj+

0ωj×0r∗jg
)]

(370)

and

0Ds =
2N∑
j=s

mj

[
0u̇∗

j +0 ω̇∗
j × 0r∗jg +0 ωj ×

(
0uj +0 ωj × 0r∗jg

)]
. (371)
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The gravity force Gs is similarly obtained by substituting (318) in (353)

Gs = −[gT 0
]0

Δs

2N∑
j=s

[
mj

0r∗jg +0 pj
1

]
= −gT

(0
δs × 0Hs + Ms

0λs
)
, 1 ≤ s ≤ 2N. (372)

By expressing the kinematic variables and functions in the equations (364)–(372)

in joint coordinates, the following set of recursive relations for the dynamical

matrices in joint coordinates can be easily derived:

Inward Iterations (in joint coordinates) k ≥ s = 1, . . . , 2N

kKk =

⎧⎪⎨⎪⎩
kI∗kg + mk

(
kr∗kg

T kr∗kgI − kr∗kg
kr∗kg

T )
if k is odd

kKk+2 + kI∗kg + mk

(
kr∗kg

T kr∗kgI − kr∗kg
kr∗kg

T )
if k is even

(373)

k−2Kk = k−2Rk
kKk

k−2Rk
T

+ k−2Rk+1
k+1Kk+1

k−2Rk+1
T

if k is even

(374)

(2N+2K2N+2,
2N+1K2N+1 = 0)

kHk =

⎧⎪⎨⎪⎩
mk

(k
rkg +k pk

)
if k is odd

kHk+2 + mk

(k
rkg +k pk

)
, if k is even

(375)

k−2Hk = k−2Rk
kHk + k−2Rk+1

k+1Hk+1 if k is even (376)

(2N+2H2N+2,
2N+1H2N+1 = 0)

Mk =

⎧⎨⎩
mk if k is odd

Mk+2 + mk + m
k+1, (M2N+2 = 0, m2N+1 = 0) if k is even

(377)

kXk = kKk
k
δk +k Hk ×k λk

kYk =k δk ×k Hk + Mk
kλk (378)

Bkk = kδk
T kXk + kλk

T kYk (379)
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kNk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kI∗kg
kω̇∗

k +k ωk ×
(
kI∗kg

kωk
)

+ mk
kr∗kg×[

ku̇∗
k +k ω̇∗

k × kr∗kg +k ωk ×
(
kuk +k ωk × kr∗kg

)]
if k is odd

kNk+2 +
(
kI∗kg

kω̇∗
k +k ωk ×

(
kI∗kg

kωk
)

+ mk
kr∗kg×[

ku̇∗
k +k ω̇∗

k × kr∗kg +k ωk ×
(
kuk +k ωk × kr∗kg

)]
if k is even

(380)
k−2Nk = k−2Rk

kNk + k−2Rk+1
k+1Nk+1 if k is even (381)

(2N+2N2N+2,
2N+1N2N+1 = 0)

kDk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mk

[
ku̇∗

k +k ω̇∗
k × kr∗kg +k ωk ×

(
0uk+

kωk × kr∗kg
)]

if k is odd

kDk+2 + mk

[
ku̇∗

k +k ω̇∗
k × kr∗kg +k ωk×(

0uk +k ωk × kr∗kg
)]

if k is even

(382)

k−2Dk = k−2Rk
kDk + k−2Rk+1

k+1DNk+1 if k is even (383)

(2N+2D2N+2,
2N+1D2N+1 = 0)

Ck = kδk
T kNk + kλk

T kDk (384)

Gs = −kgT kYk (385)

k−2g = k−2Rk
T k

g, (0g = g), if k is even (386)

sXk = lRs · · ·k−2 Rk
k
Xk,

sYk = lRs · · ·k−2 Rk
k
Yk (387)

Bsk = sδs
T sXk + sλs

T sYk. (388)

The algorithm presented in this section is derived using Lagrange’s equations of

motion, although the final form of its equations is as those given in [19] and [113],

where the Newton-Euler formalism is used. In this way, a good insight into the

dynamics of the mechanical system is achieved and at the same time terms like the

inertia matrix are explicitly obtained. This algorithm is therefore a very suitable

starting point for the identification of these terms. Differentiations of functions

are avoided and the multiplications of skew-symmetric matrices are substituted

by vector products. It is worth mentioning also, that, in order to avoid multipli-

cations with and additions to zero, explicit expressions for prismatic and revolute

joints are used during the implementation of the procedure, where the symbolic

language REDUCE has been employed that gives an output program in FOR-

TRAN codes. The applications of the output program for control design have

given very satisfying results.
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9. Control Problems of the System of Mobile Platform
and Manipulator

9.1. Specification of the Task

The present section considers the problems arising in the control of a mechanical

system with a holonomic and a nonholonomic part as the combination of a manip-

ulator and a mobile platform respectively looks like. We show the common and

the special moments in it and reduce the problem in the motion planning, i.e., how

we have to follow the interpolation curve of the generalized coordinates (the curve

of vector-parameters) so that the concrete task to be fulfilled in a most efficient

way.

The synthesis of control algorithms is a main problem in robot devices. The com-

bination of a mobile platform and a manipulator is a couple of bodies which are

quite different as controllable objects. The manipulator may be considered as a

controllable system of interconnected bodies with holonomic constraints. Without

having in mind the deformation of the wheels, the mobile platform ( or so called

transportation robot) is a system with nonholonomic constraints. The common of

the control approaches of such objects is: first – the deriving of the dynamical

models and the second – on the base of these models the control laws are built so

that the motion and the dynamical characteristics of the system to be satisfied.

There are a lot of control algorithms depending on the concrete task. For ex-

ample, for manipulator control may be used: linear algorithms for systems with

changeable structure, nonlinear and adaptive algorithms, methods from the theory

of nonlinear chains, etc. There are also a lot of algorithms for control of mobile

platforms.

In the problem of program control of manipulators, methods in which the trajecto-

ries are described with polynomial approximation in the space of the generalized

coordinates are used, as well as methods in which the output trajectory is approx-

imated with circle arcs and closed intervals of lines. In control of mobile robots

such an approximation allows the problem to be limited in two types of motions –

along a line and along a circle. These regimes are realized with the most simple

control law, namely fixing of the position of the leading wheel. In these problems,

the parameterization of the program trajectories and the synthesis of the system

for stabilization are of a great importance.

How we shall follow the given program trajectory on a generalized coordinates

level or on a level of Cartesian coordinates – this depend on the task, our aim and

the technical devices we have.
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For the program control of the system of mobile platform and manipulator it is

important the following:

1. The mobile platform (nonholonomic mechanical system) has the functions

of a transfer system, i.e., a system through which the manipulator under

consideration is localized to the place, where it has to work.

2. The manipulator (holonomic mechanical system) realizes a definite task ac-

cording to the general problem.

In the both problems the trajectory is given in Cartesian coordinates and from the

task requirements, constraints for velocities, accelerations or for forces or mo-

ments of the manipulator gripper are imposed.

In dependence of the concrete task, the joint parameters (i.e., the correspond-

ing control functions), which have to be realized are obtained. In the theory

which we follow the joint parameters are the translation parameters and the vector-

parameters describing the rotation motions.

The problem is how the rotational motions to be parameterized. The interpolation

of the translational motions is a standard problem and we will not discuss here.

9.2. An Approach for Motion Planning

Our further considerations are based again on the vector-parameterization of the

rotation group SO(3) [78]. In principle, motion planning in our consideration is

the generation of the generalized coordinates which have to perform some task,

i.e., in the sense of our parameterization – the obtaining of the vector-parameter

polynomial time functions. This problem depends on the type of control – pure

kinematical or dynamical. In the first case the inverse kinematical problem is

solved, in the second – the direct dynamical problem is solved.

We present an algorithm generating differentiable curve on the rotation group

SO(3) (see also [93] and [95], [94]) that interpolates a set of rotation matrices at

their specified time knots. The problem of interpolation of smooth curves on the

rotation group SO(3) arising in computer graphics, animation, robot motion plan-

ning and machine vision is a subject of many papers at recent time. The curve

depends on the choice of local coordinates. Using the standard parameterizations

of SO(3) group as Eulerian and Bryant angles, quaternions, Caley-Klein parame-

ters, etc. the resulting trajectories have the “multiple winding” effect. But this is

not the case with the vector-parameterization of the group SO(3) which is used in

our approach. The resulting algorithms are computationally efficient and do not

require transcendental functions.
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9.2.1. Problem Statement

A common problem that arises not only in computer graphics and animation, but

also in robot motion planning and machine vision is the interpolation of smooth

curves on the rotation group SO(3). We address the following problem:

Given an ordered set of n + 1 rotation matrices {Oo, O1, ..., On}, and a set of

n + 1 scalars to < t1 < . . . < tn, find a twice-differentiable curve O(t) on the

rotation group such that O(ti) = Oi, i = 0, 1, . . . , n.

Our goal is to find a computationally efficient, coordinate-invariant method of in-

terpolating smooth curves on the rotation group that produces smooth, bi–invariant

orientation trajectories. The crux of our approach is to parameterize the rotation

group in terms of the vector-parameters. Doing so leads to a particularly simple

and efficient set of expressions for the angular velocity and acceleration that does

not require the evaluation of any transcendental functions. Also, the resulting tra-

jectory can be viewed as an approximation to a minimum angular acceleration

curve in the same sense that Euclidean cubic splines can be viewed as an approxi-

mation to minimum curvature curves, and does not suffer from the winding effect.

9.2.2. Two Point Interpolation

We are considering now the problem of interpolating between two elements of

SO(3), where two specified values for the angular velocities at the two endpoints

are given. Mathematical problem statement is:

Find a curve O(t) ∈ SO(3) with boundary conditions: O(0) = Oo, O(1) =
O1; OT (0)Ȯ(0) = ω×

o OT (1)Ȯ(1) = ω×

1 , where Oo, O1 ∈ SO(3), such that

tr(OT
o O1) �= −1, ωo, ω1 ∈ R

3 (angular velocities in body - fixed frames).

The class of admissible curves that we consider are left-invariant, i.e., in the form

O(t) = Oo(I − c×(t)) (I + c×(t))−1. (389)

Furthermore, we require that c(t) is a three-dimensional cubic polynomial with

zero constant term, namely

c(t) = x t3 + y t2 + z t (390)

with coefficients x, y, z to be determined. From the definition of the matrix O
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and the skew matrix c× we have

c(0) = 0 (391)

c×(1) =
1

1 + tr(OT
o O1)

(OT
o O1 − OT

1 Oo) (392)

ċ(0) =
ωo
2

(393)

ċ(1) =
1+ ‖ c(1) ‖2

2
(I − c×(1))−1ω1. (394)

The boundary condition for c(0) is automatically satisfied. From the boundary

condition for ċ(0) follows

z =
ωo
2

(395)

x + y = c(1) − ωo
2

(396)

3x + 2y =
1+ ‖ c(1) ‖2

2
(I − c×(1))−1ω1 − ωo

2
· (397)

c(1) is determined from the equation for c×1 . Once x, y, z (and hence c(t)) are

obtained, the interpolating curve O(t) can be determined from the closed form of

the equation for the matrix O given in the previous section.

Bi-invariance reflects the property that the actual rotation trajectory generated in

physical space should be independent of how one chooses the inertial and body –

fixed reference frames. Our interpolating trajectory is bi-invariant but for a brief

exposition we will not present the proof of this fact here. Because of the same

reasons we will not show here that the generated cubic splines on SO(3) can be

viewed as an approximation to a minimum angular acceleration trajectory.

9.2.3. Multiple Point Interpolation Algorithm

Given:

{Oo, . . . , On} − n + 1 rotation matrices satisfying

tr(OT
i−1Oi) �= −1, i = 1, . . . , n

{to, . . . , tn} − n + 1 knot times

ωo − angular velocity at to in body fixed cord

ω̇o − angular acceleration at to in body fixed cord.
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Preprocessing: for i = 1 to n do

f×

i =
OT
i−1 Oi − OT

i Oi−1

1 + tr(OT
i−1 Oi)

·

Initialization:

z1 =
ωo
2

y1 =
ω̇o
2

x1 = f1 − z1 − y1.

Recursion: for i = 1 to n do

w = fi

v = 3xi−1 + 2yi−1 + zi−1

u = 6xi−1 + 2yi−1

zi =
−w × v + v

1 + wTw

yi =
−w × u + u − 2wT vzi

2(1 + wTw)

xi = fi − zi − yi.

Once all the coefficients xi, yi, zi, i = 1, . . . , n have been found, then for a given

value of t, where ti−1 ≤ t ≤ ti, the corresponding orientation O(t) for the

interpolating trajectory is found as follows:

Results:

τ =
t − ti−1

ti − ti−1

c = xiτ
3 + yiτ

2 + ziτ

O(t) = Oi−1
(1 − cT c)I + 2ccT + 2c×

1 + cT c
·

On the base of vector-parameterization of the rotation group, the program control

of our mechanical system which is a combination of holonomic and nonholo-

nomic part, is concluded in planning and realization of the joint motions, i.e.,

following some interpolation curves in a way, that the program trajectory to be

followed most effectively. This efficiency comes from the fundamental new theo-

retical statement of the considerations still on the kinematical level. This does not

exclude some standard approaches known in this field to be also used.
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10. Motion Planning of Robot Locomotion

Since the treatment of robot locomotion is quite closed with this one of human

locomotion, here we treat the problems of modelling, simulation and motion plan-

ning of robot locomotion on the base of knowledge of the skeletal system, as well

as on the base of multi-body system modelling, simulation and control using some

ideas from Lie group theory and differential geometry.

10.1. Theoretical Background

The term “locomotion” indicates the act of going from one place to another. The

human walking is a locomotion with stride character with has four walking phases.

The basic problems of locomotion dynamics are: identification of the external

forces and moments acting on the body and its links and obtaining of the joint

moments which are connected with the motion control.

In principle, motion planning is the generating of the generalized coordinates

which have to perform some task. We are using an algorithm generating dif-

ferentiable curve on the rotation group SO(3) that interpolates a set of rotation

matrices at their specified time knots, i.e., in the sense of our parameterization –

the obtaining of the vector-parameter polynomial time functions. This problem

depends on the type of control – pure kinematical or dynamical. In the first case

the inverse kinematical problem is solved, in the second – the direct dynamical

problem is solved. The resulting algorithms are computationally efficient and do

not require transcendental functions.

10.2. Case Study

We consider a planar bipedal device (in the sagittal plane XZ) which consists of a

body and legs (see Fig. 6). The weightless and uninertial legs play a fundamental

role. They allow the problem to be divided in two parts: calculating the control

moments and ground reaction forces. In this aspect the biped walking may be

considered analytically.

In our case we consider a biped device (see Fig. 6) with five weight inertial el-

ements: a trunk-balance and two identical legs (lower limbs) every with thigh

length 2a and shank (calf) length 2b. O is the center of the hip joint which con-

nects the trunk with the legs and it coincides with the gravity center of the pelvis.

This point is modeled as a material point with mass mo. The point O is defined in

the space by two cartesian coordinates x and z, and the legs and trunk position –
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Figure 6. A Scheme of a Biped Device

by the angle coordinates α1, β1, α2, β2, θ . The angle coordinates are mea-

sured clockwise from the vertical lines given in the Fig. 1 to the corresponding

links. All these seven quantities are the system generalized coordinates. The cor-

responding vector parameters are : C1 = (0, c1, 0), D1 = (0, d1, 0), C2 =
(0, c2, 0), D2 = (0, d2, 0), C = (0, c, 0), where c1 = tanα1/2, d1 =
tanβ1/2, c2 = tanα2/2, d2 = tanβ2/2, c = tanθ/2.

We denote by: u1 and u2 – the control moments in the knee joints; q1 and q2 – the

control moments between the thighs and the trunk; Ri, i = 1, 2 are the ground

reaction forces. In the general case there are ankle control moments −p1,−p2

in the ankle joints. We suppose here that pi = 0 . Further we introduce: M1 –

the mass of the trunk-balance; ρ – the distance from point O to the mass center

C of the trunk; I – the inertial moment of the trunk with respect to the axis Z ′

which is parallel to Z and passes through the point O; ma – thigh mass; a is

the distance from point O to the thigh mass center; I oa is the inertial moment of

the thigh with respect to Z ′; mb is the shank mass; b – the distance from knee

joint center to the shank mass center; Ib – the inertial moment with respect to

an axis through the knee joint and parallel to Z. Also

M = mo + 2ma + 2mb + M1, Ia = Ioa + 4mba
2

ka = a(ma + 2mb), kb = bmb, Iab = 2mbab, kρ = M1ρ.

We denote by sin(∗) = s(∗) and cos(∗) = c(∗) and after the substitutions

sθ =
2c

1 + c2
, cθ =

1 − c2

1 + c2

sαi =
2ci

1 + c2
i

, cαi =
1 − c2

i

1 + c2
i

(398)

sβi =
2di

1 + d2
i

, cβi =
1 − d2

i

1 + d2
i

.
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the equations of motion look like

Mẍ + kρ(ddθ cθ − (dθ)2 sθ)

−
2∑
i=1

[ka(ddαi cαi − (dαi)
2 sαi) + kb(ddβi cβi − (dβi)

2 sβi)] = Qx

Mz̈ + kρ(ddθ sθ + (dθ)2 cθ)

+

2∑
i=1

[ka(ddαi sαi + (dαi)
2 cαi) + kb(ddβi sβi + (dβi)

2 cβi)] = Qz − Mg

Iddθ + kρ(ẍ cθ − z̈ sθ)− gkρ sθ = Qθ

Ia ddαi + Iab ddβi c(αi − βi) − ka(ẍ cαi − z̈ sαi)

+ Iab (dβi)
2 s(αi − βi) + gka sαi = Qαi

Ib ddβi + Iab ddαi c(αi − βi) − kb(ẍ cβi − z̈ sβi)

− Iab (dαi)
2 s(αi − βi) + gkb sβi = Qβi, i = 1, 2

where the symbols d and dd mean the first and the second derivatives with respect

to time of the angles θ, α, β, and

Qx =

2∑
i=1

Rix, Qz =

2∑
i=1

Riz Qθ = −
2∑
i=1

qi

Qαi = −ui + qi − 2a(Rix cαi − Riz sαi) (399)

Qβi = ui − 2b(Rix cβi − Riz sβi) − pi i = 1, 2.

Here we denote by

c(αi−βi) = (cαi) (c βi)+(s αi) (s βi), s(αi−βi) = (s αi) (c βi)−(cαi) (s βi).

It may be seen that in the equations written above all trigonometric functions are

ignored and they are pure algebraic. After obtaining c, ci, di we get the joint

angles from the following equations: θ = 2arctan c; αi = 2arctan ci; βi =
2arctan di.

In the above equations: index “1” is related to the support leg (in case of single-

support phase) or to the foreleg (in case of double-support phase), index “2” –

to the swing leg (single-support phase) or to the back leg (double-support phase).
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We shall apply the semi-inverse method of partially prescribed coordinates as time

functions. From some sensible kinematical reasons the most expedient way is the

leg motion to be given, i.e., αi, βi as explicit functions of time. Then the functions

that have to be found are : x, z, θ, ui, qi, Rix, Riz . They depend on the character

of the motion: swing, single-support and double-support.

In case of swing phase by definition it is fulfilled: Rix = 0, Riz = 0, i = 1, 2.

Then only x, z, θ, ui, qi, i = 1, 2 have to be obtained and since we have seven

equations the problem is determined. In single-support phase, αi, βi as well as

x, z are given and by definition we have R2x = 0, R2z = 0. Seven functions have

to be defined, namely θ, ui, qi, R1x, R2z , so that again the problem is determined.

In the double-support phase we have to obtain all nine functions x, z, θ, ui, qi, Rix,

Riz , so that our problem is undetermined. The problem has to be determined with

additional equations to the equations of motion like some constraints equations.

11. Conclusion

The present paper makes a review of our long standing studies for creating an

unified approach for modeling and control of open-loop mechanical rigid body

systems by making use of efficient vector-parameterization of the rotation group

SO(3). Additionaly, on the same language some examples and problems with nice

practical application are solved.
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[132] Vukobratović M. and Sokić D., Control of Manipulation Robots, Springer,

Berlin, 1982.

[133] Waldron K., Geometrically Based Manipulator Rate Control of Algorithms,

Ohio State Univ., 1981.

[134] Walker M. and Orin D., Efficient Dynamic Computer Simulation of Robotic
Mechanisms, ASME J. Dyn. Syst. Meas. Cont. 104 (1982) 205-211.

[135] Walsh G., Tilbury D., Sastry S., Murray M., and Laumond J-P., Stabiliza-
tion of Trajectories for Systems with Nonholonomic Constraints, In: Proc.

1992 IEEE Conf. Rob. Autom., Nice, 1992, pp. 1999-2004.

[136] Walters R., Mechanical Arm Control, A.I. Memo 549, MIT Artif. Intell.

Lab., 1979.

[137] Wang T. and Kohli D., Closed and Expanded Form of Manipulator Dynam-
ics Using Lagrangian Approach, Trans ASME, J. Mech. Transm. Autom.,

107 (1985) 223-225.

[138] Wang T. and Ravani B., Recursive Computations of Kinematic and Dy-
namic Equations for Mechanical Manipulators, IEEE J. Rob. Autom. RA-1
(1985) 124-131.

[139] Waters R., Mechanical Arm Control, MIT Artif. Intell. Lab. Memo 549,

1979.



Group Theory in the Problems of Modeling and Control of Multi-Body Systems 121

[140] Whittaker E., A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies, Cambridge Univ. Press, Cambridge, 1965.

[141] Wolfram S., The Mathematica Book, 4th edition, Wolfran Media, Cam-

bridge University Press, Cambridge, 1999.

[142] Yang A. and Frendenstein F., Application of Dual-Number Quaternion Al-
gebra to the Analysis of Spatial Mechanisms, Trans. ASME, J. Appl. Mech.

Ser. E. 86 (1964) 300-308.

[143] Yanzhu, L., Screw-Matrix Method in Dynamics of Multibody Systems, Acta

Mech. Sin. 4 (1988) 165-174.

[144] Zahariev E., Novel Method for Rigid and Flexible Multibody System Dy-
namics Simulation, In: Proc. IDETC’05 ASME Int. Design Engineering

Technical Conferences and Computers and Information in Engineering

Conference, DETC 2005-84137, Long Beach, CA 2005, pp. 1-14.

Clementina D. Mladenova

Institute of Mechanics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl.4

Sofia 1113, Bulgaria

E-mail address: clem@imbm.bas.bg


