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HARMONIC POLYNOMIALS ON THE POINCARÉ
DODECAHEDRAL THREE-MANIFOLD

PETER KRAMER

Communicated by Gerald A. Goldin

Abstract. With Lie-algebraic methods we obtain the set of orthogonal harmonic
polynomials on the Poincaré dodecahedral three-manifold. The expansion in these
polynomials of temperature fluctuations of the cosmic microwave background tests
this manifold as a candidate for cosmic topology.

1. Introduction

The global topology of the three-space is not fixed by Einstein general relativ-
ity, since this is formulated in terms of local differential equations. Einstein’s
first static cosmological models used for the space-part of the universe a sim-
ply connected sphere S

3. With present-day cosmological information it becomes
possible to propose and test multiply-connected topologies for the space-part of
the universe. J.-P. Luminet et al. [7] and J. Weeks [10] propose to explore the
topology of three-space from temperature fluctuations of the cosmic microwave
background (CMB). These fluctuations are measured with very high precision.

As one way to test the topology, one can try to expand the temperature fluctuations
of the CMB into harmonic polynomials of a chosen topological three-manifold,
for example the Poincaré dodecahedral manifold P . The topology will be verified
if the harmonic polynomials of the manifold suffice to expand these fluctuations.
We shall see that the restriction of the topology from S

3 to P results in strong and
specific selection rules for the harmonic poplynomials.

To implement such an expansion, a prerequisite is to explicitly characterize the
harmonic polynomials on P . The details of such a characterization are given in
Kramer [5] and gr-qc/0410094. Here we describe the main steps of the analysis.
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2. General Concepts from Topology

For general notions of topology we refer to the classical monograph by Seifert and
Threlfall [9]. The topology of a manifold M is partially characterized by its (first)
homotopy group π1(M) [9]. This group operates on M by loop composition. If
the manifold is multiply connected, the homotopy group is non-trivial. Associated
to M is its simply-connected universal cover M̃. The topological manifold M
appears on its universal cover M̃ in the form of a tiling into copies of M. There
is a group of deck transformations deck(M̃) [9]. It acts fixpoint-free on M̃ and
produces the tiling. This group is isomorphic to the homotopy group

deck(M̃) ∼ π1(M). (1)

These relations allow one to work out the topology on the universal cover and to
view the topological manifold M as the quotient space

M = M̃/deck(M̃). (2)

3. Topology of the Poincaré Dodecahedral Three-manifold P

H. Poincaré in 1895 introduced the dodecahedral manifold P . C. Weber and H.
Seifert in 1933 [8] gave a gluing prescription for P: glue all pairs of opposite
faces of a dodecahedron, after rotation by π/5, to get the topological manifold P .
H. Seifert and W. Threlfall [9] derived from this gluing prescription the homotopy
group π1(P). Their proof requires non-trivial steps in combinatorial group theory
to transform from the original gluing generators and their relations to new ones.
These new generators are then shown to belong to the binary icosahedral group
H3 of order |H3| = 120 without reflections

deck(P̃) ∼ π1(P) ∼ H3 < SU(2, C). (3)

The group H3 consists of the preimages in SU(2, C) of all the rotations of the
familiar icosahedral group, which is isomorphic to the alternating group A5 of
five objects.

We now wish to view the topology on the universal cover. The Poincaré dodec-
ahedral manifold P has as universal cover the three-sphere, P̃ = S

3 of constant
positive curvature κ = 1. By the isomorphism in (1), there is an action

deck(P̃) × P̃ → P̃ (4)
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such that P̃ is tiled by images under H3 of a prototile P . Conversely from (2), the
Poincaré manifold may be taken as the quotient

P = S
3/deck(P̃) = S

3/H3. (5)

We shall work on the universal cover S
3.

4. Complex Coordinates and Lie Group Actions on S
3

The sphere S
3 itself is a homogeneous space

S
3 := SO(4, R)/SO(3, R). (6)

Moreover S
3 as a manifold is in one-to-one correspondence with SU(2, C), so

that the pair (z1, z2) of complex numbers may serve as its coordinates, where

u :=

[

z1 z2

−z2 z1

]

∈ SU(2, C), z1z1 + z2z2 = 1. (7)

In the above coordinates S
3 admits the following left and right actions:

u ∈ S
3, (gl, gr) ∈ SU(2, C), ((gl, gr) × u) = g−1

l ugr. (8)

The left and right actions (gl, e), (e, gr) commute. Moreover the full group SO(4, R)
of isometries of S

3 has the direct product form

SO(4, R) = SUl(2, C) × SUr(2, C)/Z2. (9)

5. Klein’s Fundamental Invariant of H3

In his monograph F. Klein [4] implements the Galois theory of A5. He lets the
binary icosahedral group H3 < SU(2, C) act by linear fractional transforms on
two complex projective coordinates (z1, z2), ζ = z1/z2 as

ζ → ζ ′ =
aζ − b

bζ + a
,

[

a b

−b a

]

= gr ∈ SU(2, C), aa + bb = 1. (10)

Rewritten in terms of (z1, z2) equation (10) is exactly the right action in (8) of gr

from (9) on u ∈ S
3. Klein constructs a H3-invariant complex polynomial

fk(z1, z2) := (z1z2)
[

(z1z1)
5 + 11(z1z2)

5 − (z2z2)
5
]

(11)

of degree 12 from the coordinates of the midpoints of the twelve dodecahedral
faces. We shall see below that this invariant is in fact a lowest degree harmonic
polynomial on P . Moreover we shall build from this particular invariant poly-
nomial an invariant operator-valued polynomial which quantizes any harmonic
polynomial on P .
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6. Constructing the Group of Deck Transformations

For the construction, we use a Coxeter group [2]. A Coxeter group is finitely
generated by involutive generators and relations, encoded in a Coxeter-Dynkin
diagram. The relevant spherical Coxeter group with icosahedral subgroup has the
Dynkin diagram, the four involutive generators associated with the nodes of the
diagram, and the non-trivial relations

◦ 5 ◦ 3 ◦ 3 ◦

:={R1, R2, R3, R4; (R1)
2 = (R2)

2 = (R3)
2 = (R4)

2 (12)

=(R1R2)
5 = (R2R3)

3 = (R3R4)
3 = I}.

Any pair of generators unlinked in the Dynkin diagram commutes. Any Coxeter
group has a linear isometric representation by reflections [5] in Weyl hyperplanes,
one for each generator. The first three generators in (12) form the icosahedral Cox-
eter group ◦ 5 ◦ 3◦. From a 3-simplex bounded by the first three Weyl hyperplanes
intersecting with S

3, by Weyl reflections one can generate a dodecahedron. This
dodecahedron on S

3 will be identified with the prototile of (4) under the group of
deck transformations. We find the following results [5]:

A1) The group H3 of deck transformations is a subgroup of the Coxeter group
(12).

We construct a first Weber-Seifert gluing generator C1 according to Fig-
ure 1.

A2) We can express explicitly the Weber-Seifert gluing generator C1, lifted to
deck(P̃), as a product of Coxeter group elements

C1 = R4 5−2
1 I = even, {51, I} ∈ ◦5 ◦ 3 ◦ . (13)

Here 51 is a five-fold rotation around the vertical axis in Figure 1, and is I
the inversion in the center of the dodecahedron.

By conjugation of C1 with icosahedral rotations we get five more gluings,
and so find

A3) The group deck(P̃) = H3 has the subgroup embedding

H3 < S(◦5 ◦ 3 ◦ 3◦) < SO(4, R). (14)

Here S( ) denotes the unimodular restriction of the Coxeter group to
SO(4, R).
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Figure 1: Gluing prescription for P by Weber and Seifert. Two opposite pentagonal
faces of the dodecahedral prototile in a projection along a two-fold axis. 1) The inversion
I maps the shaded triangle in the bottom pentagon face to the white triangle in the top
face. 2) The operation 5−2

1
rotates the white triangle in the top face to the shaded position.

3) The Weyl generator R4, a reflection in the top pentagon face, glues the dodecahedron
to its top face neighbour.

By computing the action of C1 = R4 5−2
1 I from (13) on the complex

coordinates (7) for S
3 we find

C1 : (z1, z2) → (z1, z2) (−1)

[

ε−2 0
0 ε2

]

, ε := exp(2πi/5). (15)

The matrix in (15) belongs to H3 [5].
A4) The group deck(P̃) = H3 < SUr(2, C) acts from the right on u ∈ S

3, and
therefore commutes with the continuous left action of SUl(2, C).

A5) The group H3 is normal in the unimodular restriction of the Coxeter group
(12) and forms the semidirect product [5]

S(◦5 ◦ 3 ◦ 3◦) = H3 ×s S(◦5 ◦ 3◦). (16)

7. From Group Actions to Representation Spaces: Harmonic Polyno-
mials

Definition 1. A harmonic polynomial P on S
3 is homogeneous of degree λ and

obeys ∆P = 0 where ∆ is the Laplacian on S
3.

Theorem 2. The harmonic polynomials on S
3 in the complex coordinates of equa-

tion (7) are identical with Wigner’s standard irreducible representations of
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SU(2, C), taken as polynomials in the elements of the matrix u ∈ SU(2, C) of
(7) [3]

P λ ≡ Dj
m,m′(z1, z2, z1, z2), λ = 2j, −j ≤ (m, m′) ≤ j. (17)

Here λ is the degree of the harmonic polynomial, j is the integral or half-integral
label for the irreducible representation of SUl(2, C), and (m, m′) are the usual
integral or half-integral row and column labels of this irreducible representation.

Proof: i) The degree of P λ is λ = 2j.

ii) For m = j, Dj
j,m′ is analytic in (z1, z2), hence ∆Dj

j,m′ = 0.

iii) Since m can be lowered by the operator Ll
− commuting with ∆

∆Dj
m,m′ ∼ ∆(Ll

−)j−mDj
j,m′ = (Ll

−)j−m∆Dj
j,m′ = 0. (18)

�

The problem of finding the harmonic polynomials on P can now be formulated as
follows:

From all the polynomials in (17), we must select the subset which belongs to the
identity irreducible representation Dα0 ≡ 1 of H3 ∈ SUr(2, C).

For fixed irreducible representation j of SUr(2, C) with character χj we can com-
pute the multiplicity of H3-invariant polynomials from a scalar product of char-
acters

m(j, α0) :=
1

|H3|
∑

g∈H3

χj(g)χα0(g), χα0(g) = 1 (19)

with the following result:

The multiplicity m(j, α0) of invariant harmonic polynomials is zero for degree
2j = odd. For 2j = even it is given by

i) the starting values m(j, α0) = 1 for j ≤ 30 are

j = 0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28 (20)

and m = 0 otherwise
ii) the recursion relation from the characters (19) is

m(j + 30, α0) = m(j, α0) + 1.
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The multiplicity (20) characterizes the subduction SUr(2, C) > H3. In addition,
since H3 and SU(2, C) commute, there is for fixed j an additional multiplicative
degeneracy (2j + 1) of harmonic polynomials, see B4 below.

From (20) ii) we conclude that the relative fraction up to j of harmonic polyno-
mials for (P/S

3) on average is
∑j

0 m(j′, α0)/(
∑j

0(2j
′ + 1)) ∼ 1/30.

There are strong selection rules and a low mode suppression of harmonic polyno-
mials on P versus those on its universal cover S

3. Weeks [10] phrases this as the
Mystery of the missing fluctuations.

8. Group/Subgroup Subduction of Irreducible Representations by a
Generalized Casimir Operator

We proceed to the explicit determination of the invariant polynomials. For this
purpose we first extend the problem and find the full group/subgroup subduction
in SU(2, C) > H3 for all irreducible representations Dα of H3, and then from
these select the identity irreducible representation Dα0 .

We follow the Bargmann and Moshinsky [1] paradigm, exemplified by them for
SU(3, C) > SO(3, R):

Definition 3. A generalized Casimir operator Ω determines the irreducible rep-
resentation subduction G > H iff i), ii), iii) hold

i) Ω is from the enveloping Lie algebra Env(lG) and so preserves irreducible
representation spaces under G

ii) Ω is invariant under H but not under G

iii) Ω is hermitian and non-degenerate.

Part iii) of this definition excludes for continuous H its Casimir operator and
for discrete H its projection operators, since these cannot distinguish between
repeated irreducible representations!

As tools we determine the right action generators of SUr(2, C) acting on S
3 ac-

cording to equation (8). The right action Lie generators of SUr(2, C) from (8) act
on functions of (z1, z2, z1, z2) as first order differential operators:

L+ := Lr
1 + iLr

2 = z1∂z2
− z2∂z1

L− := Lr
1 − iLr

2 = z2∂z1
− z1∂z2

(21)
L3 := Lr

3 = (1/2)z1∂z1
− z2∂z2

− z1∂z1
+ z2∂z2

[L3, L±] = ±L±, [L+, L−] = 2L3.



62 Peter Kramer

The left action of the Lie generators of SUl(2, C) from (8) looks similar but com-
mute with all the right Lie generators in (21) [5].

The next tool is Klein’s homomorphism [4], SUr(2, C) → SO(3, R). Under the
right action

(z1, z2) → (z1, z2) gr, gr ∈ SU(2, C) (22)

the vector

((x + iy)/
√

2, z, (x − iy)/
√

2) ≡ (2z1z2, z1z1 − z2z2, 2z1z2) (23)

respectively under conjugation

(L+, L3, L−) → Ugr
(L+, L3, L−) U−1

gr

(24)

the generators from (21) transform linearly with the same representation D1(gr) ∈
SO(3, R)!

The following steps are just an exercise in the noncommutative geometry of
Env(su(2, C)), similar to the Penrose length quantization in spin networks and
to quantum gravity.

9. Lie-algebraic Results on Hharmonic Polynomials of P

To find harmonic polynomials we proceed [5] as follows:

B1) Construct a H3-invariant polynomial

K′=P (2z1z2, z1z1−z2z2, 2z1z2)=P ((x+iy)/
√

2, z, (x−iy)/
√

2). (25)

Klein’s invariant polynomial from (11) can not be written in terms of the
vector components in (23) which then would allow to pass to the generators
(L+, L3, L−). Fortunately we can generate other invariant polynomials by
applying the left lowering generator Ll

− from SUl(2, C) to Klein’s funda-
mental invariant (11). Applying the power (Ll

−)6 to Klein’s invariant one
obtains [5] a polynomial in which the vector components of the homomor-
phism (22) can be substituted

K′ ∼ ((Ll
−)6fk(z1, z2) ∼ (x+iy)5z + z(x− iy)5 +P2(r

2, z) := P. (26)

B2) Use the Klein homomorphism (23) and substitute

K′(x + iy, z, x − iy) → K(L+, L3, L−).
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Since now we are dealing with homogeneous polynomials of degree n, we
run into the noncommutativity problem of operator-valued polynomials in
(L+, L3, L−). To assure the same transformation of the polynomial opera-
tor K as for K′, we must apply the operator of symmetrization defined for
polynomial operators P by

Sym P (A1, . . . , An) :=
1

n!

∑

(i1,...,in)∈Sn

P (Ai1 , . . . , Ain). (27)

In this way we get from equations (26) and (27) the H3-invariant hermitian
generalized Casimir operator

K := Sym [K(L+, L3, L−)] ∈ Env(SUr(2, C))
(28)

= Sym
[

(L+)5L3 + L3(L−)5 + P2(L
2, L3)

]

.

By construction K commutes with the Casimir operator Λ2 of SO(4, R).
Note that Sym has 6!=720 terms. The symmetrization (28) is performed in
the appendix of [5].

B3) Quantize the spherical harmonics P 2j by diagonalizing the right action of
K. The eigenspaces are characterized by irreducible representations Dα of
H3.

B4) K commutes with SU(2, C), so the degeneracy of any real eigenvalue κ
of K is (2j + 1)dim(α), and the harmonic polynomials on S

3 are now
characterized by

P =P 2j
m,κ(z1, z2, z1, z2), ∆P 2j

m,κ =0, (x · ∇)P 2j
m,κ =(2j)P 2j

m,κ

Λ2P 2j
m,κ =4j(j + 1)P 2j

m,κ, KP 2j
m,κ =κP 2j

m,κ, Ll
3P

2j
m,κ =mP 2j

m,κ.
(29)

B5) Harmonic polynomials on P must belong to the identity irreducible rep-
resentation α0 of H3.

B6) The Spectrum of K ( [5] pp. 3530-1): K by (28) acts in linear subspaces
Lµ : m ≡ µ mod 5 and in these subspaces is tridiagonal. By general rea-
sons given in [1], it follows from tridiagonality that the operator K in any
linear subspace Lµ is non-degenerate (no repeated eigenvalues). More-
over, it is shown in ([5] p.3531) that the identity irreducible representation
Dα0 of H3 can occur only in L0.

The hermiticity of K yields the orthogonality of the eigenstates.



64 Peter Kramer

Theorem 4. The properties B1 – B6 taken together show that the operator K by
its eigenvalues and eigenstates completely characterizes the harmonic polynomi-
als on the dodecahedral Poincaré manifold P . Moreover, the unique character-
ization by K of the subduction in SO(4, R) > H3 holds true for any irreducible
representation Dα of H3 [5].

As an example for the diagonalization of K we consider the case j = 6. The
values of µ and corresponding values of m are given by

j = 6 µ : 0 1 2 3 4

m : (−5, 0, 5) (−4, 1, 6) (−3, 2) (−2, 3) (−6,−1, 4)
(30)

From B6, we expect harmonic polynomials only in L0 of dimension three. Eval-
uation of the operator K in this subspace gives its matrix form and eigenvalues

K V µ = V µ Kµ,diag

j = 6, µ = 0, m = (−5, 0, 5)

κ = (−51975,−51975

2
,
14175

2
)

K =







−51975
2

4725
√

77
2 0

4725
√

77
2 −18900 − 4725

√
77

2

0 −4725
√

77
2 −51975

2






(31)

V 0 =











−
√

7
25

√

1
2 −

√

11
50

√

11
25 0 −2

√

7
50

√

7
25

√

1
2

√

11
50











K0,diag =





−51975
−51975

2
14175

2



 .

The first eigenstate with κ = −51975 is a harmonic polynomial and up to a con-
stant factor turns out to be Klein’s fk(z1, z2) from (11)! Twelve more orthogonal
companions with the same eigenvalue κ are obtained by applying powers of the
lowering operator Ll

−.

The other two eigenstates in (31) are not harmonic polynomials for the following
reason: It turns out ( [5] p. 3534) that they have companions with the same eigen-
value κ, but in subspaces Lµ, µ 6= 0. Together with these they span irreducible
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representations Dα, α 6= α0 of H3 and therefore are not harmonic polynomials of
P .

The explicit diagonalization of K for degrees 2j ≤ 12 is given in ( [5] pp. 3532-
3536). There is no problem in going on to any higher degree harmonic polyno-
mials as eigenstates of K. Since these harmonic polynomials are orthogonal, the
expansion coefficients of the observed CMB fluctuations in terms of harmonic
polynomials are given by the scalar products between the observed fluctuations
and these polynomials. The strict validity of the Poincaré manifold as a model
for the space-part of the cosmos would imply that all scalar products beween the
fluctuations and harmonic polynomials not belonging to the identity irreducible
representation Dα0 of H3 must vanish.

10. Conclusions

• The subduction SO(4, R) > H3 for any irreducible representation of H3 is
explicitly resolved by the operator K. Harmonic polynomials on P become
(non-degenerate) eigenstates of K.

• For degree 2j = 12, only Felix Klein’s invariant harmonic polynomial fk

in (11) plus twelve orthogonal companions belong to the non-degenerate
eigenvalue κ = −51975 of K. All other eigenstates have degenerate com-
panions in subspaces Lµ′

, µ′ 6= 0 belonging to irreducible representations
α 6= α0.

• There is an additional controlled degeneracy (2j+1) from invariance under
SUl(2, C).

• If three-space has the topology of P , we can expand the temperature fluc-
tuations of CMB exclusively in invariant eigenmodes of K.

• A similar analysis can be done for the topological three-manifolds S
3/T ∗,

S
3/O∗. with T ∗, O∗ the binary tetrahedral, octahedral group. All these

three-manifolds share S
3 as their universal cover.

• What about hyperbolic three-manifolds [6]? Here the universal cover is the
hyperbolic space of dimension three.
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