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EXAMPLES OF AUTOMORPHISM GROUPS OF IND-VARIETIES
OF GENERALIZED FLAGS∗
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Abstract. We compute the automorphism groups of finite and cofinite ind-
grassmannians, as well as of the ind-variety of the maximal flags indexed by Z>0.
We pay special attention to differences with the case of ordinary flag varieties.
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1. Introduction

The flag varieties of the classical Lie groups are central objects of study both in
geometry and representation theory. In a sense, they are a hub for many directions
of research in both fields. Several different infinite-dimensional analogues of the
ordinary flag varieties have been studied in the literature, one such analogue being
the ind-varieties of generalized flags introduced in [1] and further investigated in
[2–5]; see also the survey [6]. The latter ind-varieties are direct limits of classical
flag varieties and are homogeneous ind-spaces for the simple ind-groups SL(∞),
SO(∞), Sp(∞). Without doubt, some of these ind-varieties, in particular the ind-
grassmannians, have been known long before the paper [1].

A natural question of obvious importance is the question of finding the automor-
phism groups of the ind-varieties of generalized flags. The purpose of the present
paper is to initiate a discussion in this direction and to point out some differences
with the case of ordinary flag varieties - see Section 4.

2. Automorphisms of Finite and Cofinite Ind-Grassmannians

The base field is C. Let V be a fixed countable-dimensional complex vector space.
We fix a basisE = {e1, . . . , en, . . . } of V and set Vn := spanC{e1, . . . , en}. Then
V = ∪nVn. Fix k ∈ Z>0. By definition, Gr(k, V ) is the set of all k-dimensional
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subspaces in V and has an obvious ind-variety structure

Gr(k, V ) = lim
−→

Gr(k, Vn).

The projective ind-space P(V ) equals Gr(1, V ). Note that the basis E plays no
role in this construction. We think of the ind-varieties Gr(k, V ) for k ∈ Z>0 as the
“finite ind-grassmannians.”

The basis E plays a role when defining the “cofinite” ind-grassmannians. Fix a
subspace W ⊂ V of finite codimension in V and such that E ∩W is a basis of
W . Let Gr(W,E, V ) be the set of all subspaces W ′ ⊂ V which have the same
codimension in V as W and in addition contain almost all elements of E. Then
Gr(W,E, V ) has the following ind-variety structure

Gr(W,E, V ) = lim
−→

Gr(codimV W, V̄n)

where {V̄n} is any set of finite-dimensional spaces with the properties that V̄n ⊃
span{E\{E ∩ W}}, dim V̄n = n > codimV W , E ∩ V̄n is a basis of V̄n,
and ∪V̄n = V . The map identifying the direct limit of Gr(codimV W, V̄n) with
Gr(W,E, V ) is

W ′′ 7→W ′′ ⊕ span{E\(E ∩ V̄n)}

for W ′′ ∈ Gr(codimV W, V̄n).

It is clear that the ind-varieties Gr(W,E, V ) and Gr(k, V ) are isomorphic: the
isomorphism is given by

Gr(W,E, V ) 3W ′ → AnnW ′ ⊂ V∗ := span{E∗} (1)

where E∗ = {e∗1, e∗2, . . . } is the system of linear functionals dual to the basis
E, i.e., e∗i (ej) = δij . The map (1) is an obvious analogue of finite-dimensional
duality. Therefore the automorphism groups Aut Gr(k, V ) and Aut Gr(W,E, V )
for codimW V = k are isomorphic, and by an automorphism we mean of course
an automorphism of ind-varieties.

The following result should in principle be known. We present a proof which
shows a connection with the work [2].

Proposition 1. Aut Gr(k, V ) = PGL(V ) where GL(V ) denotes the group of all
invertible linear operators on V and PGL(V ) := GL(V )/CmultId (where Cmult

is the multiplicative group of C).

Proof: An automorphism φ : Gr(k, V ) → Gr(k, V ) induces embeddings
φn : Gr(k, Vn) ↪→ Gr(k, VN(n)) for appropriate N(n) ≥ n. These embeddings
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are linear in the sense that φ∗n(OGr(k,VN(n))(1)) is isomorphic to OGr(k,Vn)(1),
where by O·(1) we denote the positive generator of the respective Picard group.
According to Theorem 1 in [2], φn is one of the following

i) an embedding induced by the choice of an n-dimensional subspace Wn ⊂
VN(n) for some N(n) ≥ n

ii) an embedding factoring through a linearly embedded projective space PM(n) ⊂
Gr(k, VN(n)) for some M(n) < N(n).

If k > 2, the option ii) may hold only for finitely many n as the contrary implies
that the image of φn is contained in a projective ind-subspace

P := lim
−→

PM(n) ⊂ Gr(k, V ).

Then, since P is not isomorphic to Gr(k, V ) by Theorem 2 in [2], the image of φn
would necessarily be a proper ind-subvariety of Gr(k, V ), which is a contradiction.

For k = 1, options i) and ii) are the same, and therefore without loss of generality
we can now assume that for our fixed k option i) holds for all n. The embeddings
φn : Gr(k, Vn) ↪→ Gr(k, VN(n)) determine injective linear operators φ̃n : Vn →
VN(n). Moreover, the operators φ̃n are defined up to multiplicative constants which
can be chosen so that φ̃n|Vn−1 = φ̃n−1 for any n. Therefore, we obtain a well-
defined linear operator

φ̃ : V = lim
−→

Vn → V = lim
−→

VN(n)

which induces our automorphism φ. Since φ is invertible, φ̃ is also invertible,
and since φ̃ depends on a multiplicative constant, we conclude that φ determines a
unique element φ̄ ∈ PGL(V ).

In this way we have constructed an injective homomorphism

Aut Gr(k, V )→ PGL(V ), φ 7→ φ̄.

The inverse homomorphism

PGL(V )→ Aut Gr(k, V )

is obvious because of the natural action of PGL(V ) on Gr(k, V ). The statement
follows. �
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3. Ind-Variety of Maximal Ascending Flags

We now consider a particular ind-variety of maximal generalized flags, in fact the
simplest case of maximal generalized flags. Let V and E be as above. Define
Fl(FE , E, V ) as the set of all infinite chains F ′E of subspaces of V

0 ⊂ (F ′E)1 ⊂ · · · ⊂ (F ′E)k ⊂ . . .

where dim(F ′E)k = k and (F ′E)n = Fn
E := span{e1, . . . , en} for large enough n.

This set has an obvious structure of ind-variety as

Fl(FE , E, V ) = lim
−→

Fl(Fn
E)

where Fl(Fn
E) stands for the variety of maximal flags in the finite-dimensional

vector space Fn
E .

Denote by GL(E, V ) the subgroup of GL(V ) of automorphisms of V which keep
all but finitely many elements of E fixed. The elements of GL(E, V ) are the E-
finitary automorphisms of V .

Proposition 2.

Aut Fl(FE , E, V ) = P (GL(E, V ) ·BE)

where BE ⊂ GL(V ) is the stabilizer of the chain FE in the group GL(V ) and
GL(E, V ) ·BE is the subgroup of GL(V ) generated by GL(E, V ) and BE .

We start with a lemma.

Lemma 3. Fix k ≥ 2. Let ψk−1, ψk : V → V be invertible linear operators such
that ψk−1(Wk−1) ⊂ ψk(Wk) for any pair of subspaces Wk−1 ⊂ Wk of V with
dimWk−1 = k − 1, dimWk = k. Then ψk−1 = cψk for some 0 6= c ∈ C.

Proof: Assume the contrary. Let v be a vector in V such that the space Z :=
spanC{ψk−1(v), ψk(v)} has dimension two. Extend v to a basis v = v1, v2, . . . of
V . Then, setting Wk = spanC{v1, . . . , vk} and Wk−1 = spanC{v1, . . . , vk−1},
we see that the condition ψk−1(Wk−1) ⊂ ψk(Wk) implies Z ⊂ ψk(Wk). Simi-
larly, settingW ′k = spanC{v1, vk+1, vk+2 . . . , v2k−1} andW ′k−1 = spanC{v1, vk+1,
vk+2 . . . , v2k−2} we have Z ⊂ ψk(W ′k). However clearly

dim(Wk ∩W ′k) = 1

hence the dimension of the intersection ψk(Wk) ∩ ψk(W ′k) must also be one due
to the invertibility of ψk. Contradiction. �
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Proof of Proposition 2: We first embed A := Aut Fl(FE , E, V ) into the group
PGL(V ). For this we consider the obvious embedding

A ↪→ Π∞i=1 Aut Gr(i, V )

arising from the diagram of surjective morphisms of ind-varieties

Fl(FE , E, V )

uu �� ))
P(V ) = Gr(1, V ) Gr(2, V ) . . . Gr(k, V ) . . . .

By Proposition 1, the groups Aut Gr(k, V ) are isomorphic to PGL(V ) for all
k ∈ Z>0. Moreover, it is clear that the homomorphism A → Πk PGL(V ) is
injective as the ind-varieties Gr(k, V ) are pairwise nonisomorphic for k ≥ 1 [2]
(this argument is false in the finite-dimensional case). It is also clear that this
homomorphism factors through the diagonal of Πk PGL(V ) since Lemma 1 shows
that an automorphism from A induces necessarily the same element in PGL(V )
via any projection Fl(FE , E, V )→ Gr(k, V ).

It remains to determine which elements of the group PGL(V ) arise as images of el-
ements ofA. It is clear that this image contains both PGL(E, V ) and PBE as each
of these groups acts faithfully on Fl(FE , E, V ). Indeed, the fact that PGL(E, V )
acts on Fl(FE , E, V ) is clear. To see that PBE acts on Fl(FE , E, V ) one notices
that for any F ′E ∈ Fl(FE , E, V ) and any γ ∈ PBE , the flag γ(F ′E) differs from
FE only in finitely many positions, hence is a point on Fl(FE , E, V ).

On the other hand, it is clear that the image φ̄ ∈ PGL(V ) of φ ∈ A is contained
in P (GL(E, V ) · BE). Indeed the composition ψ ◦ φ̄ with a suitable element of
PGL(E, V ) will fix the point FE on Fl(FE , E, V ). This means that ψ◦ φ̄ ∈ PBE .
Therefore the image of A in PGL(V ) is contained in P (GL(E, V ) ·BE), and we
are done.

�

4. Discussion

First, Proposition 1 can be generalized to ind-varieties of the form Fl(F,E, V )
where F is a finite chain consisting only of finite-dimensional subspaces of V , or
only of subspaces of finite codimension of V . The precise definition of the ind-
varieties Fl(F,E, V ) is given in [1]. In these cases, the respective automorphism
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groups are always isomorphic to PGL(V ), however in the case of finite codimen-
sion there is a natural isomorphism with PGL(V∗).

We now point out some differences with the case of ordinary flag varieties. A
first obvious difference is the following. Despite the general fact that Gr(k, V )=
PGL(E, V )/Pk, where Pk is the stabilizer in PGL(E, V ) of a k-dimensional sub-
space of V , the automorphism group of Gr(k, V ) is much larger than PGL(E, V ).
Therefore Gr(k, V ) is a quotient of any subgroupG satisfying PGL(E, V ) ⊂ G ⊂
PGL(V ), and there is quite a variety of such subgroups. Similar comments apply
to the other examples we consider.

Next, we note that the automorphism group of an ind-grassmannian is in gen-
eral not naturally embedded into PGL(V ). Indeed, the case of the cofinite ind-
grassmannian Gr(W,E, V ) shows that the natural isomorphism Aut Gr(W,E, V )
= PGL(V∗) does not embed Aut Gr(W,E, V ) into PGL(V ) by duality, but only
embeds Aut Gr(W,E, V ) into the much larger group PGL((V∗)

∗) in a way that
its image does not keep the subspace V ⊂ (V∗)

∗ invariant. This is clearly an
infinite-dimensional phenomenon.

Finally, recall that the group of automorphisms of a finite-dimensional grassman-
nian is naturally a subgroup of the automorphism group of the corresponding
full flag variety. More precisely, the former group is the connected component
of unity of the latter group. This note shows that the situation in the infinite-
dimensional case essentially different: indeed, the injection Aut Fl(FE , E, V ) ↪→
Aut Gr(k, V ) constructed in the proof of Proposition 2 is proper.

We hope that the above differences motivate a more detailed future study of the
automorphism groups of arbitrary ind-varieties of generalized flags.

5. In Memoriam

The topic of this paper is very close to Vasil’s interests and expertise, and for sure
I would have discussed it with him if he were still alive.
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