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Abstract. Let X be a simply connected CW-complex of finite type. Denote by
Baut1 (X) the Dold-Lashof classifying space of fibrations with fiberX . This paper
is a survey about the problem of realizing Dold-Lashof classifying spaces. We will
also present some new results: we show that not all rank-two rational H-spaces can
be realized as Baut1 (X) for simply connected, rational elliptic space X . More-
over, we construct an infinite family of rational spaces X, such that Baut1 (X) is
rationally a finite H-space of rank-two (up to rational homotopy type).
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1. Introduction

In this paper, all spaces are simply connected CW-complex and are of finite type
over Q, i.e., have finite-dimensional rational homology in each degree.
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In 1959, Dold and Lashof [4] generalized Milnor’s construction from the setting of
topological groups to that of topological monoids obtaining a universal principal
H-quasifibration, where H is a topological monoid

H → EH → BH.

In this period, the monoid aut(X) of all homotopy self-equivalences ofX emerged
as a central object for the theory of fibrations. In general, aut(X) is a disconnected
space. J. Stasheff [28] constructed the universal X-fibration

X → UE → Baut (X)

for X a finite CW-complex, building on work of Dold-Lashof. His result implied
that the universal X-fibration is obtained, up to homotopy, by applying the Dold-
Lashof classifying space functor to the evaluation fibration ev : aut(X)→ X . One
outcome of this work is the correspondence

[B,Baut (X)] ∼= {fibre homotopy equivalence classes of X-fibrations over B}.

The extension of Stasheff’s result to any CW-complex was obtained by Dold [3].
See also [1]. Let aut1(X) the space of self-homotopy equivalences of X that are
homotopic to the identity. This is a monoid with multiplication given by composi-
tion of maps and topologized as a sub-space of Map(X,X); the space of all contin-
uous functions with the compact-open topology. By a proposition of Félix, Lupton
and Smith [7, Proposition 2.2], aut1(X) has the homotopy type of a CW-complex
and H-homotopy type of a loop space. So, by applying the Dold-Lashof construc-
tion to the monoid aut1(X), we obtain Baut1(X), which may be identified as the
universal cover of Baut (X) (cf [5]), and so classifies orientable X-fibrations.

The identity ΩBaut1(X) ' aut1(X) [3, satz 7.3] gives the isomorphism

π∗+1 (Baut1(X); ∗) ∼= π∗ (aut1(X); 1) .

Then, the space Baut1(X) is, in turn, a simply connected CW-complex and so
admits a rationalization Baut1(X)Q. We observe that, as the space Baut1(X) is
quite complicated, calculations and other descriptions will be difficult to obtain.

The calculations of H∗ (Baut1(X),Q) and π∗ (Baut1(X))⊗Q are the subject of
a long line of celebrated structure theorems. In Appendix 1 of [20], Milnor com-
puted H∗ (Baut1(Sn),Q) to be a polynomial algebra with a single positive degree
generator. Work of Federer [9], Thom [31] and then others gave calculations of
these homotopy groups for certain space X . Milnor showed that, when X = Sn,
we have Baut1(X) 'Q K (Q, 2n) if n is even and Baut1(X) 'Q K (Q, 2n+ 1)
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if n is odd. Here 'Q means having the same rational homotopy type (cf [6, Propo-
sition 9.8]). In general, the determination of the homotopy type of the Dold-Lashof
classifying space is a very hard problem.

Realizing rational homotopy types as Baut1(X) is the subject of the following
long-standing problem in rational homotopy theory (see [6, p.519]).

Problem 1. Which simply connected spaces can be realized as Dold-Lashof clas-
sifying spaces?

This question is often interpreted as a conjecture to the effect that: every simply
connected CW-complex Y is realized, up to rational homotopy, as a Baut1(X).
That is, there is a simply connected CW-complex X with

Y 'Q Baut1(X).

At this time, however, problem 1 remains very much open. In this survey paper we
consider a particular problem suggested by Smith in [27].

Problem 2. Realize rank-two rationalH-spaces as Dold-Lashof classifying spaces.

Our contributions to this problem are as follows.

Theorem 3. 1) There is no simply connected, rational pure spaceX for which:

• K (Q, 2p)×K (Q, 2q) 'Q Baut1(X) for (p, q) ∈ (Z− 2Z)×(Z− 3Z)
and p 6= q

• K (Q, 2p+ 1)×K (Q, 2q) 'Q Baut1(X) for p ≥ 1 and q ≥ p+ 1.

2) There is no simply connected, rational elliptic space X for which:

• K (Q, 2p)×K (Q, 2q + 1) 'Q Baut1(X) for p ≥ 1 and q ≥ p
• K (Q, 2p+ 1)×K (Q, 2q + 1) 'Q Baut1(X) for p, q ≥ 1 and p 6= q.

Theorem 4. The following spaces are rationally realizable as Baut1(X) for some
simply connected, rational space X:

• KQ, 2m)×K(Q, 3m) for each m ≥ 2 and m is even

• K(Q, 4m+ 1)×K(Q, 4m+ 2n+ 2) for each n ≥ 1 and m ≥ n

• K(Q, 4r − 1)×K(Q, 4r + 2s) for each r ≥ 1 and s ≥ 1

• K(Q, 4r − 1)×K(Q, 4r + 2s− 1) for each r ≥ 1 and s ≥ 2r − 1.
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Here, K (Q, n) is the Eilenberg-Mac Lane space. In general, let G be an abelian
group and n ≥ 2. The Eilenberg-Mac Lane space K (G,n) is a CW-complex such
that πn (K (G,n)) = G and the other homotopy groups are zero.

We will obtain these results working with the theory elaborated by D. Sullivan [29],
which asserts that the homotopy of one-connected rational spaces is equivalent to
the homotopy of one-connected minimal cochain commutative algebras over the
rationales.

Now we briefly summarize the contents of the paper. Section 2 establishes our
notations and basic conventions. In Section 3,we recall some previous results of G.
Lupton and S. Smith. In Section 4,we give an infinite family of rank-twoH-spaces
that cannot be realized as Baut1(X), under some restrictions on X . This result
is proved using standard tools familiar from rational homotopy theory: minimal
Sullivan model, Euler-Poincaré characteristic, ect. Finally, in Section 5, we prove
theorem 4, which gives many examples of rank-two H-spaces that are realized as
Baut1 (X) for some simply connected, rational space X with finite-dimensional
homotopy groups. The general approach and many of the details follow exactly
those of [16], and we conclude this section with some comments.

2. Preliminaries in Rational Homotopy Theory

We begin this introductory section with a brief review of some ideas from rational
homotopy theory. All results of this paper are proved using standard tools of the
subject. We refer to [6], [8] and [12] for a general introduction to these techniques.
We recall some of the notations here. By a vector space we mean a graded vector
space over the field of rational numbers Q,i.e., a collection

V =
{
V k ; k an integer ≥ 0

}
, such that each V k is a vector space over Q. If

v1, ..., vr, ... is a basis of V, that is v1, ..., vi0 is a basis of V 0, vi0+1, ..., vi1 is a basis
of V 1, etc., then we write V = 〈v1, ..., vr, ...〉. If the set of basis vectors of V is
finite, we say that V is finite-dimensional.

We consider a differential graded commutative algebra (A, d) over Q, called DGCA
for a short, with differential d of degree +1. We write x ∈ A to indicate that
x ∈ An for some n ≥ 0 and |x| = n be the degree of x. We use similar notation
for a vector space V . We denote the cohomology algebra of A by H∗ (A) and let
[x] ∈ H∗ (A) stand for the cohomology class of the cocycle x ∈ A.

The free graded commutative algebra generated by the vector space V is denoted
ΛV. A basis for V is then called a set of algebra generators for ΛV .

If V = 〈v1, ..., vr, ...〉 , we write ΛV = Λ (v1, ..., vr, ...). A DGCA (A, d) is a
Sullivan algebra if A ∼= ΛV and if V admits a basis v1, ..., vr, ... such that d (vr) ∈
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Λ (v1, ..., vr−1) for each r and |v1| ≤ |v2| ≤ .... If the differential d has image in
the decomposables of ΛV i.e.,

d
(
V i
)
⊂
(
∧+V. ∧+ V

)i+1

then we say (A, d) is minimal. Here ∧+V is the ideal of ΛV generated by elements
of positive degree.

In [29], D. Sullivan defined a functor APL () from topological spaces to DGCA.
The functor APL () is connected to the cochain algebra functor C∗ (−;Q) by a
sequence of natural quasi-isomorphisms. A DGCA (A, d) is a Sullivan model
for X if (A, d) is a Sullivan algebra i.e., (A, d) ∼= (ΛV, d) and there is a quasi-
isomorphism (ΛV, d)→ APL (X) (induces isomorphisms on homology). If (ΛV, d)
is minimal, then it is the minimal Sullivan model of X .

Note that (ΛV, d) determines the rational homotopy type XQ of X . In particular
there are isomorphisms:

H∗(X,Q) ∼= H∗(ΛV, d) as graded commutative algebras

π∗(X)⊗Q ∼= HomQ(V,Q) as vector spaces.

Next, we focus on certain spaces X that satisfy the following conditions:

1) H∗(X,Q) is finite-dimensional

2) π∗(X)⊗Q is finite-dimensional.

For example, spheres Sn for n ≥ 2 and Eilenberg-Mac Lane spacesK (Q, 2n+ 1)
for n ≥ 1 satisfy these conditions. A space that satisfies 1) and 2) is called ratio-
nally elliptic. See [6, Chapter 32] or [13] for a discussion of these spaces. Con-
dition 1) above implies that the minimal Sullivan model has finite-dimensional
cohomology, as the cohomology of the minimal model is identified with that of the
space. Condition 2) translates into the condition that the minimal Sullivan model
be finitely-generated as a free graded algebra, since the algebra generators of the
minimal Sullivan model are identified, as a graded vector space, with the rational
homotopy groups of the space.

In [13], S. Halperin shows that, for an elliptic space X, χπ(X) ≤ 0 where χπ(X)
denotes the homotopy Euler-Poincaré characteristic of X . This is a number de-
fined for any simply connected space that has finite-dimensional rational homotopy
groups by

χπ(X) =
∑

i(−1)idim (πi(X)⊗Q) .

In particular, from the isomorphism above we have

χπ(X) = dim V even − dim V odd.
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Furthermore, an elliptic minimal Sullivan model (ΛV, d) with dV even = 0 and
dV odd ⊂ ΛV even is said to be pure, similarlyX is said to be pure when its minimal
Sullivan model (ΛV, d) is pure. There are many examples of such spaces: finite
products of even dimensional spheres, finite products of complex projective spaces
and homogeneous spaces G/H , where H is a closed connected sub-group of a
compact connected Lie group G.

The space Baut1(X) was among the first geometric objects described in ratio-
nal homotopy theory. In his foundational paper [29], Sullivan gave a model for
this simply connected space in terms of the derivations of a minimal Sullivan
model. For the convenience of the reader, we recall the construction of models
of Baut1(X). First, we give the definition of differential graded Lie algebra.

Definition 5. A differential graded Lie algebra (DGLA for short) is the data of a
differential graded vector space (L, δ) together a with bilinear map

[−,−] : L× L→ L, x⊗ y → [x, y]

(called bracket) of degree 0 such that:

1) (graded skewsymmetry) [x, y] = − (−1)|x||y| [y, x]

2) (graded Jacobi identity) [x, [y, z]] = [[x, y] , z] + (−1)|x||y| [y, [x, z]]

3) (graded Leibniz rule) δ [x, y] = [δx, y] + (−1)|x| [x, δy].

The Leibniz rule implies in particular that the bracket of a DGLA L induces a
structure of graded Lie algebra on its cohomology H∗ (L) = ⊕iH i (L).

A derivation of degree i of a DGCA (ΛV, d) will mean a linear map lowering
degrees by i and satisfying the product law

θ
(
V j
)
⊆ (ΛV )j−i and θ (xy) = θ (x) y + (−1)i|x|xθ (y) for x, y ∈ ΛV.

We write Deri (ΛV, d) for the vector space of all degree i derivations. The bound-
ary operator D : Deri (ΛV, d)→ Deri−1 (ΛV, d) is defined by

D (θ) = dθ − (−1)iθd.

Let Der∗ (ΛV, d) be the set of all positive degree derivations with the restriction
that Der1 (ΛV, d) is the vector space of derivations of degree one which commute
with the differential d. Then (Der∗ (ΛV, d) , D) has the structure of a DGLA with
the commutator bracket

[θ1, θ2] = θ1θ2 − (−1)|θ1||θ2|θ2θ1

for θ1, θ2 ∈ Der∗ (ΛV, d). We often denote (Der∗ (ΛV, d) , D) by Der∗ (ΛV ).

We use the following theorem to prove our results.
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Theorem 6 (D. Sullivan) Let X be a simply connected CW-complex of finite type
with minimal Sullivan model (ΛV, d), then

(Der∗ (ΛV, d) , D)

is a DGLA model for Baut1(X).

In particular, we have

π∗ (ΩBaut1(X))⊗Q ∼= H∗ (Der (ΛV, d) , D)

as graded Lie algebras, in which the left hand side has the Samelson bracket.

We elaborate on the meaning of a DGLA model for a space. In [22], Quillen
constructed a minimal DGLA (L (V ) , δ) , called the Quillen minimal model for
simply connected CW-complex of finite type. Here L (V ) is the free graded Lie
algebra on a connected vector space Vi ∼= Hi+1 (X;Q) and δ has degree -1. Min-
imality is satisfied if the differential δ is decomposable. Quillen constructed the
commutative cochains functor which takes a connected DGLA (L, δ) and returns
a differential graded algebra C∗ (L, δ). If L is of finite type, C∗ (L, δ) is a Sulli-
van algebra [6, Lemma 23.1]. When (L (V ) , δ) is the Quillen model for a simply
connected CW-complex X of finite type, C∗ (L (V ) , δ) is a Sullivan model for X
(in general it is not minimal).

We say that a connected DGLA (L, δ) of finite type is DGLA model for a space X
if C∗ (L, δ) is a Sullivan model for X . For more details, we refer the reader to the
standard book [30].

Schlessinger and Stasheff [23] constructed a second equivalent model in terms of
derivations of a Quillen model. In the same way, we define a DGLA Der∗L (V ) =
⊕i≥1Deri (L (V )) , where Deri (L (V )) is the vector space of derivations which
increase the degree by i with the restriction that Der1 (L (V )) is the vector space
of derivations of degree one which commute with the differential δ. Define the
differential graded Lie algebra

(sL (V )⊕Der∗(L (V )), D̃)

as follows

• If θ, θ1, θ2 ∈ Der∗L (V ) and sx, sy ∈ sL (V ) , then

[θ1, θ2]=θ1θ2−(−1)|θ1||θ2| θ2θ1, [θ, sx]=(−1)|θ| sθ (x) and [sx, sy]=0.

• D̃ (θ) = [δ, θ] and D̃ (sx) = −sδx + ad(x), where ad(x) is the adjoint
derivation defined by ad(x)(y) = [x, y].
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We recall that the suspension of a graded vector space V is the graded vector space
sV defined by (sV )i = Vi−1. If v ∈ Vi−1 the corresponding element in (sV )i is
denoted by sv.

Theorem 7 (Schlessinger-Stasheff) . Let X be a simply connected CW-complex
of finite type with Quillen minimal model (L (V ) , δ) . Then

(sL (V )⊕Der∗(L (V )), D̃)

is a DGLA model for Baut1(X).

Both Theorems 6 and 7 are great illustrations of the power of rational homotopy
theory for modeling a complex geometric construction in relatively simple terms.

Notation 8. i) In the following, we assume all spaces X appearing in this paper
are rational spaces. That is, all spaces satisfy X = XQ.

ii) The symbol (v, w) ∈ Der|v|−|w| means the derivation sending an element v ∈ V
to w ∈ ΛV and the other generators to zero.

iii) Denote by Q {e} the Q-graded vector space of basis e.

Calculations of the rational homotopy type of Baut1(X) follow the process:

X → (ΛV, d) → (Der∗ (ΛV, d) , D)→ Baut1(X)

space→ minimal model → DGLA → classifying space.

To well illustrate this process, we propose the following examples.

Example 9. For n ≥ 1, we have

Baut1(S2n) 'Q K(Q, 4n).

Indeed, let (ΛV, d) be the minimal Sullivan model of S2n. First, we give an explicit
description of the model (ΛV, d),write (ΛV, d) as (Λ (x , y ) , d) with |x| = 2n and
|y| = 4n− 1. The differential is defined as follows: dx = 0 and dy = x2.

A vector space basis for (Der∗ (Λ (x, y) , d) , D) is given by

∗ Der∗(Λ (x, y))

4n− 1 (y, 1)

2n (x, 1)

2n− 1 (y, x)
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We have D (y, 1) = d ◦ (y, 1) + (y, 1) ◦ d. When this is evaluated on y and x, we
find that D (y, 1) = 0. Furthermore, by direct computation we obtain

D (x, 1) = − (y, x) and D (y, x) = 0.

Then (Der∗ (Λ (x, y) , d) , D) has homology of rank 1 in degree 4n − 1 and zero
otherwise. Applying the Theorem 6, it follows that πi

(
Baut1(S2n)

) ∼= Q for
i = 4n and zero otherwise. So, we must have

Baut1(S2n) 'Q K(Q, 4n).

Example 10. For n ≥ 1, we have

Baut1(S2n+1) 'Q K(Q, 2n+ 2).

Write the minimal Sullivan model of S2n+1as (Λ (x ) , 0) with |x| = 2n+ 1. Then
the DGLA of derivations (Der∗ (Λ (x) , 0) , D) is the abelian Lie algebra 〈x∗〉
where x∗ denotes the dual derivation to x with D = 0. So (Der∗ (Λ (x) , 0) , 0)
has homology isomorphic, as a graded vector space, to 〈x∗〉. This is exactly a
DGLA model for K(Q, 2n+ 2).

We apply similar arguments to prove

Baut1(K (Q, p)) 'Q K(Q, p+ 1) for p ≥ 2.

Note that, many of the computations and examples introduced in this section have
been obtained by various mathematicians with a great amount of work [9], [20]
and [31]. We have tried to arrange these results into a coherent form.

3. Results of G. Lupton and S. Smith

A variety of results has been published about the realizability of the Dold-Lashof
classifying space. The aim of this section is devoted to recall some results about
this. We first give the definition of H-space, or Hopf space.

Definition 11. An H-space is a based topological space (X, ∗) together with a
continuous map µ : X × X → X such that the self maps x → µ (x, ∗) and
x→ µ (∗, x) of X are homotopic to the identity.

The rationalization of such a space X has the homotopy type of generalized
Eilenberg-Mac Lane space (see [24, Corollary 1])

XQ 'Q
∏

j≥2
K (πj (X) , j)
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Then H-spaces have the minimal Sullivan models of the form (ΛV, 0).

Now, we can translate Problem 2 in terms of minimal Sullivan model to the follow-
ing: let M (Y ) = (Λ (a, b) , 0) be the minimal Sullivan model of Y with |a| 6= |b|
and look for a minimal Sullivan model (ΛV, d) with C∗ (Der ((ΛV, d)) , D) quasi-
isomorphic to M (Y ) .

In [33], Yamaguchi gave a necessary and sufficient condition of a rationally elliptic
space X such that the Dold-Lashof classifying space Baut1 (X) is rank-one H-
space. He proved the following result

Theorem 12. For an elliptic space X, rank π∗ (Baut1 (X)) is one if and only if
X 'Q Sm or X has a minimal Sullivan model of the form

(Λ (x1, ..., xn, y1, ..., yn, v) , d)

where |xi| = |yi| is odd for 1 ≤ i ≤ n. The differential is defined as follows:
dxi = dyi = 0 for 1 ≤ i ≤ n and dv =

∑n

i=1
xiyi.

We turn next to rank-two H-spaces. G. Lupton and S. Smith were the first ones
who were interested in realizing rank-two H-spaces as Dold-Lashof classifying
spaces. In [16], the authors realized a family of rank-two H-spaces as Baut1 (X) .

Theorem 13. The following spaces occur as Baut1 (X) for some simply con-
nected space X

i) K (Q, 2n+ 1)×K (Q, 4n+ 1) for n ≥ 1 and n odd

ii) K (Q, r)×K (Q, r + 4m+ 1) for r ≥ 2 and m ≥ 1.

If we allow X to be nilpotent, we may also take m = 0 in ii).

Nilpotent spaces. If (X, ∗) is a based space then its higher homotopy groups
πn (X, ∗) come equipped with an action of the fundamental group π = π1 (X, ∗).
If X is also a connected CW-complex, then we say that X is nilpotent if π is a
nilpotent group and also the action of π on the higher homotopy groups is nilpotent.
The latter condition is equivalent to the statement that each πn (X, ∗) possesses a
finite filtration of π-modulesMn (i) ⊂Mn (i+ 1) ⊂ ... such that the action on the
associated graded Mn (i+ 1) /Mn (i) is trivial. More generally, if X is any based
connected space, we call X nilpotent if X has the homotopy type of a nilpotent
CW-complex. Topological groups having the homotopy type of a connected CW-
complex are nilpotent, since the action of π1 in this case is trivial.

In the same paper, the authors proved the following non-realization result
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Theorem 14. The spaces CP 2 and S4 are not realized as the Dold-Lashof classi-
fying space Baut1(X) for any simply connected, π-finite space X.

We say that a space X is π-finite if X it has only finitely many non-zero homotopy
groups. The authors gave an example of a simply connected space of dimension
five that does not satisfy a certain structural condition that cannot be realized as the
Dold-Lashof classifying space of any simply connected π-finite space.

Theorem 15. Suppose Y is the space with minimal Sullivan model

(Λ (a2, b2, c2, x3, y3, z3, t4, u4, v5) , d)

where subscripts denote degrees. The differential, where non-zero is given by

dx = a2 + ac, dy = ab, dz = bc

dt =xb− ay − az, du = cy − az
dv = ta+ xy + ua+ c3 + b3.

Then Y cannot be of the rational homotopy type of Baut1 (X) , for anyX a simply
connected, π-finite, rational space.

The following lemma plays a key role in the sequel

Lemma 16. [16, Proposition 2.2] Suppose X is a simply connected space and
π-finite with

πi (X) =

{
0 for i > N
Qr some r ≥ 1 for i = N

Then

πi (Baut1(X)) =

{
0 for i > N + 1
Qr for i = N + 1.

Proof: Denote by (ΛV, d) the minimal Sullivan model of X with V non-zero only
in degrees≤ N and dim

(
V N
)

= r. Then the DGLA of derivations (Der∗ (ΛV, d) , D)
is non-zero only in degrees ≤ N . Therefore, we have

Hi(Der (ΛV, d) , D) = 0 for i > N.

By Theorem 6, it follows that

πi (Baut1(X)) = 0 for i > N + 1.

Furthermore, in degree N, for each θ ∈ HomQ
(
V N ,Q

)
, we obtain a derivation

in (Der∗ (ΛV, d) , D) of degree N by setting θ
(
V N
)

= 1 and extending as a
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derivation. Any such derivation is a D-cycle, since the elements of V N do not
occur in the differential of any other generators. There are no non-zero boundaries
of degree N, since (Der∗ (ΛV, d) , D) is zero in degree N + 1 and higher. So, we
have

HN (Der (ΛV, d) , D) = HomQ
(
V N ,Q

)
.

It follows that by using Theorem 6

πN+1 (Baut1(X)) = HomQ
(
V N ,Q

)
.

�

4. Non-Realization of H-spaces as Dold-Lashof Classifying Spaces

In this section, we show that by using the theory of minimal Sullivan models and
other invariants in rational homotopy theory not all rank-two H-spaces can be
realized as Baut1(X) for some simply connected, elliptic space X . We begin by
the following:

Lemma 17. Let us denote by (ΛV, d) = (Λ (x1, x2, y1, y2) , d) the minimal Sulli-
van model of a simply connected space X, where |xi| are even with |x1| ≤ |x2| ,
|yi| are odd with |y1| < |y2|. The differential is defined as follows: dx1 = dx2 = 0
and dyi = Pi ∈ Q [x1, x2] for i = 1, 2, then K (Q, 2p) × K (Q, 2q) cannot be
realized as Baut1(X) for p ≥ 1 and p < q.

Proof: We argue by contradiction, suppose that for p ≥ 1 and p < q we have

πi (Baut1(X) ) ∼=


Q for i = 2q
Q for i = 2p
0 otherwise.

From Theorem 6 this condition is equivalent to

Hi (Der (ΛV )) ∼=


Q for i = 2q − 1
Q for i = 2p− 1
0 otherwise.

We see that the differential D in Der∗ (ΛV ) satisfies

D (y, xα) (e) = d ((y, xα) (e)) + (y, xα) d (e) = 0 (1)

for a certain α ≥ 0 and e in V with y = y1, y2 and x = x1, x2. On the other hand,
since the both derivations (y1, 1) and (y2, 1) are non-exact D-cycles, we have

[(y1, 1)] ∈ H|y1| (Der (ΛV )) and [(y2, 1)] ∈ H|y2| (Der (ΛV )) .
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Hence, by using the starting hypothesis, we must have |y1| = 2p − 1 and |y2| =
2q − 1 for p ≥ 1 and p < q. For degree reasons, we have two cases to check:
First case: let (ΛV, d) = (Λ (x1, x2, y1, y2) , d) with |x1| ≤ |x2| < |y1| < |y2|
and furthermore that the differential, where non-zero is dyi ∈ Q [x1, x2] for i =
1, 2. From 1, it follows that the derivations (y1, x1) and (y1, x2) are D-cycles,
which must be boundaries. Further we can say that D (θ) (y1) = −θd (y1) with
θ is a derivation of even-degree. So, since (ΛV, d) is supposed elliptic and |y1| <
|y2| we see directly that

θd (y1) = x1 if and only if
{
d (y1) = x21
θ = (x1 , 1)

and

θd (y1) = x2 if and only if
{

d (y1) = x22
θ = (x2 , 1).

Thus summarizing the analysis above, we infer that one of the derivations (y1, x1)
and (y1, x2) is non-exact D-cycle. Therefore, we have

dim H∗ (Der (ΛV )) ≥ 3.

Second case: let (ΛV, d) = (Λ (x1, y1, x2, y2) , d) with |x1| < |y1| < |x2| <
|y2| and the differential is given by: dx1 = dx2 = 0, dy1 ∈ Q [x1] and dy2 ∈
Q [x1, x2]. From 1, it follows that the derivation (y2, x1) is a cycle, but it is easy
to see that this derivation cannot bound. Therefore, the homology of Der∗ (ΛV )
contains at least the following elements: [(y1, 1)], [(y2, 1)] and [(y2, x1)].
As a consequence, in both cases we get

dim H∗ (Der (ΛV )) ≥ 3.

This contradicts our assumption.
�

Gottlieb group. Recall that the n-th Gottlieb group Gn (X) of a space X is
the sub-group of the n-th homotopy group πn (X) of X consisting of homotopy
classes of maps α : Sn → X such that the wedge [α, id] : Sn∨X → X extends to a
map α̃ : Sn×X → X [11]. If (ΛV, d) is the minimal Sullivan model ofX, then an
element v ∈ V n ∼= HomQ (πn (X) ,Q) represents a Gottlieb element of πn (X) if
and only if there is a derivation of ΛV verifying θ (v) = 1 and such that [d, θ] = 0.
Such a derivation represents a non-zero homology class in (Der∗ (ΛV ) , D).

Remark 18. The proof of Lemma 17 above may also be argued by considering
the Gottlieb group G2n+1 (X). If X is pure, then every odd-degree generator
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is a Gottlieb element, and hence π∗ (Baut1 (X)) ∼= π∗−1 (aut1 (X)) has rank at
least that of the odd-dimensional rational homotopy ofX. This reducesX to being
essentially of the form in our Lemma 17, remaining possibilities are eliminated by
direct calculation.

Proposition 19. There is no simply connected, pure space X for which

Baut1(X) 'Q K (Q, 2p)×K (Q, 2q)

for (p, q) ∈ (ZZ)× (Z− 3Z) and p 6= q.

Proof: Suppose that there is a simply connected, pure space X such as

Baut1(X) 'Q K (Q, 2p)×K (Q, 2q)

for (p, q) ∈ (Z− 2Z)× (Z− 3Z) and p 6= q. Since X is π-finite in particular and
π∗ (Baut1(X)) is zero above degree 2q, we can conclude that π∗ (X) is concen-
trated in degrees ≤ 2q− 1. Further, since we have π2q (Baut1(X)) ∼= Q, we must
have π2q−1 (X) ∼= Q by Lemma 16. Thus the minimal Sullivan model for X takes
the form

(ΛV, d) = (Λ (xi,k) , d)k∈Ii

where V i = 〈xi,k〉
k∈Ii

for i ∈ {2, ..., 2q − 1} and furthermore V 2q−1 is of dimen-

sion one. The differential satisfies dV even = 0 and dV odd ⊆ ΛV even. so, we
have

D (x2j+1,k , 1) = 0 (2)

for each j ∈ {1, ..., q − 1} and k ∈ Ii . Otherwise

D (θ) 6= (x2j+1,k , 1) (3)

where θ is a derivation of degree |x2j+1,k | + 1. One sees from this that the
derivations (x2j+1,k , 1) are non-exact D-cycles. Therefore according to the start-
ing hypothesis and from Theorem 6, we have necessarily V 2i+1 = 0, for i ∈
{1, 2, ..., q − 2}− (p− 1) and V 2p−1 is of dimension at most one. Recalling again
that for an elliptic space X, χπ (X) ≤ 0, then, there are two cases, which we
handle slightly differently

First case: dimV 2p−1 = 0. In this case, the minimal Sullivan model for X takes
the form (ΛV, d) = (Λ (xeven, z2q−1) , d) with subscripts denoting degrees and

differential dx = 0 and dz = xα with α =
2q − 2

|x|
· The cases α = 0 and α = 1

are not taken in consideration here because we suppose that the model of X is
elliptic and minimal.
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If α = 2, without loss of generality the DGLA Der∗ (ΛV ) is generated by (x, 1) ,
(z, x) and (z, 1) . Since D (x, 1) = (z, x) and D (z, 1) = 0, it follows that
H∗(Der (ΛV )) = [(z, 1)] . Then we conclude that

dim H∗ (Der(ΛV, d)) 6= 2.

If α 6= 3, it is easy to show that the derivations (x, 1) , (z, 1) and (z, x) are non-
exact D-cycles (possibly other derivations). This implies that

dim H∗ (Der(ΛV, d)) ≥ 3.

As a consequence, we get dimπ∗ (Baut1(X)) 6= 2, so this is a contradiction.
The other possibility is that α = 3 (cf Proposition 27 below).

Second case: dim V 2p−1 = 1. Since χπ (X) ≤ 0, we will discuss the following
cases:
i) Write (ΛV, d) as (Λ (xeven , y2p−1, z2q−1) , d) with subscripts indicating de-
grees and differential dx = 0, dy = x2m and dz = x2n for m, n ∈ N. Note
that we can choose m and n so as to have (ΛV, d) is elliptic and minimal. From 2
and 3, we conclude that

[(y, 1)] ∈ H2p−1 (Der(ΛV, d)) and [(z, 1)] ∈ H2q−1 (Der(ΛV, d)) .

Furthermore, we can observe that the derivation (z, x) or (z, y) are non-exact D-
cycles (possibly both). Consequently, we have

dim H∗ (Der(ΛV, d)) ≥ 3.

ii) Write (ΛV, d) as (Λ (xeven, teven, y2p−1, z2q−1) , d) with |x| ≤ |t| and |y| <
|z| and differential dx = dt = 0, dy ∈ Q [x, t] and dz ∈ Q [x, t]. Now apply
the preceding Lemma 17 to complete this case and assembling these two cases
completes the proof. �

Lemma 20. For each p ≥ 1 and q ≥ p + 1, there is no simply connected, pure
space X for which K (Q, 2p+ 1) ×K (Q, 2q) has the rational homotopy type of
Baut1(X).

Proof: We argue by contradiction. For each p ≥ 1 and q ≥ p +1, suppose there is
a simply connected, pure space X with

πi (Baut1(X)) =


Q for i = 2q
Q for i = 2p+ 1
0 otherwise
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and let (ΛV, d) be the minimal Sullivan model of X . Now introduce the following
notation: max V := max

{
i ; V i 6= 0

}
, which is finite since X is pure. By using

Lemma 16 we deduce there is an element y of V such that |y| = max V = 2q− 1.
It is well-known that (y, 1) is a non-exact D-cycle. Then, the minimal Sullivan
model forX must be of the form (Λ (xeven, y2q−1) , d) where dx = 0 and dy = xα

with α =
2q − 2

|x|
· Note that α cannot be equal to 0 and 1 because we suppose that

(ΛV, d) is elliptic and minimal. Now if α ≥ 2, we see directly that

Z (Der∗ (ΛV )) =
〈(
y, xβ

)
; 0 ≤ β < α

〉
and B (Der∗ (ΛV )) =

〈(
y, xα−1

)〉
.

Here, we have used the notations Z (Der∗ (ΛV )) and B (Der∗ (ΛV )) to denote
respectively the sub-vector space of cycles and boundaries in Der∗ (ΛV ) . As a
consequence, we obtain

dim H∗ (Der (ΛV )) = dim Hodd (Der (ΛV )) = α− 1.

It is automatic that πodd (Baut1 (X)) = 0, and so this is a contradiction. �

By the same manner we have the following

Lemma 21. There is no simply connected, elliptic space X for which

K (Q, 2p)×K (Q, 2q + 1) 'Q Baut1(X) for p ≥ 1 and q ≥ p.

Proof: As in previous arguments, we proceed by contradiction. Suppose there is a
simply connected, elliptic space X such that for p ≥ 1 and q ≥ p, we have

Baut1(X) 'Q K (Q, 2p)×K (Q, 2q + 1) .

Without loss of generality, from Lemma 16 we may assume that X has a minimal
Sullivan model of the form (ΛV, d) = (Λ (W ⊕ x) , d) withW is a sub-space of V
and |x| = 2q. Now, we appeal to some results of Halperin concerning elliptic min-
imal Sullivan models. First of all, to any elliptic minimal Sullivan model (ΛV, d) ,
there is an associated pure model, denoted (ΛV, dσ) , which is defined by adjusting
the differential d to dσ as follows: We set dσ = 0 on each even degree generator of
V, and on each odd degree generator v ∈ V, we set dσ (v) equal to the part of d (v)
contained in Λ (V even) . One checks that this defines a differential dσ on ΛV, and
thus we obtain a pure minimal Sullivan model (ΛV, dσ) . Then by [13, Proposition
1] (cf also [6, Proposition 32.4]) dimH∗ (ΛV, d) is finite-dimensional if and only
if dimH∗ (ΛV, dσ) is finite-dimensional. Applying all this to the minimal Sullivan
model (Λ (W ⊕ x) , d) , we obtain for n ≥ 1, [xn] ∈ H∗ (ΛV, dσ) , so we have
dimH∗ (ΛV, d) is infinite, contradicting the assumption that X is elliptic. �
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We next recall an interesting invariant of a simply connected space X . The L-S
category ofX as introduced by Lusternik-Schnirelmann [17], is defined as follows.
The L-S category of X, cat (X) , is the least integer n such that X can be covered
by (n+ 1) open subsets contractible in X and is∞ if no such n exists.
The rational category of a simply connected space X, cat0 (X) , is defined by
cat0 (X) = cat (XQ). For example cat0 (Sn) = 1 and cat0 (CPn) = n for
n ≥ 2, and moreover if Y and Z are simply connected topological spaces with
rational homology of finite type then cat0 (Y × Z) = cat0 (Y ) + cat0 (Z) . For
more details see [6]. For the next lemma we need to recall the following:

Theorem 22. [10, Theorem 1] Let X be an elliptic space. Then Baut1 (X) has
infinite rational L-S category.

We are now in a position to prove the following lemma

Lemma 23. For p, q ≥ 1 and p 6= q, K (Q, 2p+ 1) × K (Q, 2q + 1) cannot be
of the rational homotopy type of Baut1(X) for any X a simply connected, elliptic
space.

Proof: Gatsinzi’s result imply that the rational category of Baut1(X) is infinite
when X is an elliptic space. In the other words we have

cat0 (K (Q, 2p+ 1)×K (Q, 2q + 1)) = 2 for p, q ≥ 1.

This means that

Baut1(X) 6= K (Q, 2p+ 1)×K (Q, 2q + 1) .

�

Gathering Proposition 19, Lemma 20, Lemma 21 and Lemma 23, we have proved
the Theorem 3. The following result is an immediate consequence of Theorem 3.

Corollary 24. For (p, q) ∈ (Z− 4Z)× (Z− 6Z) , K(Q, p)×K(Q, q) cannot be
of the rational homotopy type of Baut1(X) for any X a simply connected, pure
space.

5. Realization of H-Spaces as Dold-Lashof Classifying Spaces

In this section we give the proof of Theorem 4. We break this proof into four re-
sults. We begin by the following observations: we may always realize K (Q, p)×
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K (Q, p) as Baut1(X) for p ≥ 3. Indeed; we define the space X in terms of mini-
mal Sullivan model (Λ (xp−1 , yp−1) , 0) with subscripts indicating degrees. Then
the DGLA Der∗ ((Λ (xp−1 , yp−1) , 0)) has a vector space basis {(x, 1) , (y, 1)}.
Since d = 0,we haveD = 0. To describe the rational homotopy type of Baut1(X)
we may apply the commutative cochains functor C∗ () to this DGLA (c.f [30],
I.1(3)). As differential graded algebras, we have

C∗ (Der∗ (Λ (xp−1, yp−1)))=Λ
(
s−1(Hom(Der∗ (Λ (xp−1, yp−1))),Q)

)
=Λ (u, v)

where |u| = |v| = p. The differential d decomposes as d = d1 +d2 with d1 dual to
the Lie model differentialD and d2 is dual to the Lie bracket. SinceD = 0 we con-
clude that d1 = 0. From the simple bracket structure of Der∗ ((Λ (xp−1 , yp−1) , 0)) ,
we conclude that Baut1(X) has minimal Sullivan model (Λ (u, v) , 0) . Clearly,
this gives that Baut1(X) has the rational homotopy type of K (Q, p)×K (Q, p).
Note that, we may also take p ≥ 2, if we allow X to be nilpotent.

Based on the previous argument, we conclude that for m ≥ 1 and p ≥ 2

Baut1(K (Qm, p)) 'Q

m times︷ ︸︸ ︷
K (Q, p+ 1)×K (Q, p+ 1)× ...×K (Q, p+ 1) .

The following example shows that the situation changes dramatically when the
input H-space X has generators in distinct degrees.

Example 25. Consider the spaceX = K (Q, 2)×K (Q, 4). The minimal Sullivan
model of Baut1(X) is (Λ (x3, y3, z5) , d) with subscripts denoting degrees and
differential dx = dy = 0 and dz = xy. This means that

Baut1 (K (Q, 2)×K (Q, 4)) 6= Baut1(K (Q, 3))× Baut1(K (Q, 5)).

Given a simply connected space X, let min π∗ (X)):= min{n | πn (X) 6= 0} and
max π∗ (X)):= max{n ; πn (X) 6= 0}. S. Smith showed the following

Theorem 26. [26, Theorem 3] Let us suppose that X is an F0-space with
Der+ (H∗ (X;Q)) equal to zero and Y is a rational H-space. If min π∗ (X) +
min π∗ (Y ) ≥ max π∗ (X × Y ) and max π∗ (X) ≤ min π∗ (Y ) , then

Baut1(X × Y ) 'Q Baut1(X)× ‖Der (H∗ (Y ;Q) , H∗ (X × Y ;Q))‖

where ‖L‖ is the spatial realization of a differential graded Lie algebra L (cf [22]).

Finally, it is not trivial to realize a product of Eilenberg-Mac Lane spaces with non-
zero homotopy groups in two distinct degrees. Next, we examine various issues
related to the realizability of Dold-Lashof classifying spaces. Our first result is the
following
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Proposition 27. For each m ≥ 2 and m is even, there exists a simply connected,
pure space Xm with

K (Q, 2m)×K (Q, 3m) 'Q Baut1(Xm).

Proof: For every natural m ≥ 2 and m is even, let us consider the following
1-connected minimal Sullivan model

ΛV = Λ (x, y)

with |x| = m and |y| = 3m − 1. The differential is as follows: dx = 0 and
dy = x3. Then the generating derivations are given by

∗ Der∗(Λ (x, y) , d)

3m− 1 (y, 1)

2m− 1 (y, x)

m (x, 1)

m− 1
(
y, x2

)
It is a straightforward computation to verify that

D (y, 1) = D (y, x) = 0, D (x, 1) = −3
(
y, x2

)
and D

(
y, x2

)
= 0.

Therefore, the derivations (y, 1) and (y, x) are cycles, which are not boundaries.
As a consequence, we obtain

H∗(Der (Λ (x, y) , d) , D) = Q {[(y, 1)]} ⊕Q {[(y, x)]} .

Denote the class [(y, 1)] inH3m−1(Der (Λ (x, y) , d) , D) by τ and the class [(y, x)]
in H2m−1(Der (Λ (x, y) , d) , D) by ρ. We can now deduce from theorem 6 that
π∗ (Baut1(Xm)) is concentrated in degree 3m and 2m. Thus Baut1(Xm) has a
minimal Sullivan model of the form

(Λ (ρ, τ) , d)

with |ρ| = 2m and |τ | = 3m. For degree reasons we must have d = 0. Therefore,
it is exactly the minimal Sullivan model of K (Q, 2m) × K (Q, 3m) , as needed.

�

This result, in turn, translates to the special case of a famous conjecture in rational
homotopy theory due to Halperin, as we discuss now. First, let X be a simply
connected elliptic CW-complex with evenly graded rational cohomology. We refer
to such spaces as F0-spaces. The class includes products of spheres, products
of complex projective spaces and homogeneous spaces G/H with G a compact
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connected Lie group and H ⊂ G a closed sub-group of maximal rank. Motivated
by this last case, Halperin [14] conjectured that the rational Serre spectral sequence
collapses at theE2 term for all orientable fibrations with fibre an F0-space. Thomas
[32] and Meier [19] independently proved that Halperin’s conjecture is equivalent
to the condition Heven (Der(M (X))) = 0, with M (X) the minimal Sullivan
model for an F0-space X . Thus by theorem 6 of Sullivan Haleprin’s conjecture
holds for an F0-space X if and only if

Baut1 (X) 'Q Πs
i=1K (Q, 2ni) for some ni.

The Halperin conjecture has been affirmed in several special cases including Käh-
ler manifolds by Meier [19], for homogeneous spaces of maximal rank pairs by
Shiga-Tezuka [25] and for F0-spaces with rational cohomology generated by ≤ 3
generators by Lupton [15].

Next, denote by (ΛV, d) = (Λ (x, y, u, v) , d) the minimal Sullivan model of the
space Xm,n with the degrees of these generators given by |x| = 2n + 1, |y| =
2m+ 1, |u| = 2m+ 2n+ 1 and |v| = 4m+ 2n+ 1. The differential is defined as
follows: dx = 0, dy = 0, du = xy and dv = uy. The following result extends the
example 2.4 in [16], here we prove that

Theorem 28. For each n ≥ 1 and m ≥ n, we have

K (Q, 4m+ 1)×K (Q, 4m+ 2n+ 2) 'Q Baut1(Xm,n).

Proof: We give the proof by dividing m into three cases.

When m ≥ 2n+ 1.

Without loss of generality, we may write a vector space basis for (Der∗ (ΛV ) , D)
in positive degrees as follows

∗ Der∗(ΛV )

4m+ 2n+ 1 (v, 1)

4m (v, x)

2m+ 2n+ 1 (u, 1)

2m+ 2n (v, y)

2m+ 1 (y, 1)

2m (v, u) , (u, x)

2m− 1 (v, xy)

2m− 2n (y, x)

2m− 2n− 1 (v, xu)

2n+ 1 (x, 1)

2n (u, y)
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Computation of H∗ (Der (ΛV ) , D)

It is clear that (v, 1) and (v, x) are non-bounding D-cycles. Then

H4m+2n+1 (Der (ΛV ))=Q {[(v, 1)]} and H4m (Der (ΛV ))=Q {[(v, x)]}. (4)

On the other hand we have

D (u, 1) = (v, y) and D (v, y) = 0.

This means that

H2m+2n+1 (Der (ΛV )) = H2m+2n (Der (ΛV )) = 0.

Next, using the fact

D (y, 1) = − (v, u)− (u, x) , D (v, u) = (v, xy)

D (u, x) =− (v, xy) , D (v, xy) = 0.

We deduce that

0→ 〈(y, 1)〉 D−−−−→ 〈(v, u) , (u, x)〉 D−−−−→ 〈(v, xy)〉 → 0

is a short exact sequence, which implies that

H2m+1 (Der (ΛV )) = H2m (Der (ΛV )) = H2m−1 (Der (ΛV )) = 0.

Furthermore, we have

D (y, x) = − (v, xu) and D (v, xu) = 0

Therefore
D (x, 1) = (u, y) and D (u, y) = 0.

We conclude that

Hi (Der (ΛV )) = 0 for i = 2m− 2n, 2m− 2n− 1, 2n+ 1 and 2n.

Now, applying Theorem 6 in conjunction with 4 we obtain the following

πi (Baut1(Xm,n)) 'Q Q for i = 4m+ 1, 4m+ 2n+ 2 and zero otherwise.

Hence, we must have

Baut1(Xm,n) 'Q K (Q, 4m+ 1)×K (Q, 4m+ 2n+ 2) .

When n< m<2n+ 1.
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Observe that we have |(x, 1)| > |(u, y)| ≥ |(y, x)| > |(v, xu)| . So we come back
to the table above and we change the derivations (y, x) by (x, 1) and (v, xu) by
(u, y) and vice versa and the other generators will not be changed. Note that, in
this case the differential D will not be changed, then we have the same result as
above.

When m = n.

Here there is more coalescing of degrees of the various terms. We have
4m + 1 = |(u, 1)| > |(v, x)| = |(v, y)| = 4m, |(y, 1)| = |(x, 1)| = 2m + 1 and
|(u, x)| = |(v, u)| = |(u, y)| = 2m, on the other hand we have 2m− 2n = 0 and
2m − 2n − 1< 0, so both derivations (y, x) and (v, xu) will not be considered.
This makes no difference to our calculation. �

Remark 29. Note that the restriction m ≥ n is necessary. Indeed, if n > m, in
this case we have another derivation cycle (x, y) , which does not bound. It follows
that π∗ (Baut1 (X)) is of dimension ≥ 3.

For our last results, we will need to the following

Claim 30. Let X be a simply connected space of finite type with minimal Sullivan
model (ΛV, d) = (Λ (W ⊕ y) , d) and let x ∈ ΛW , then the derivation (y, x) is a
D-cycle if x is a d-cycle.

Proof: We have D (y, x) = d ◦ (y, x) ± (y, x) ◦ d. When this is evaluated on y,
we find that D (y, x) = dx = 0. �

It would be interesting to know whether there are other examples which are realized
as Dold-Lashof classifying spaces. The last goal of this sub-section is to extend
the Lupton-Smith Theorem 3.3 [16], see also Theorem 13 i).

Theorem 31. For every r ≥ 1 and s ≥ 1, there exists a simply connected, π-finite
space Xr,s with

K (Q, 4r − 1)×K (Q, 4r + 2s) 'Q Baut1(Xr,s).

Proof: We will discuss two cases:
First case: r ≥ s + 1. We define the minimal Sullivan model associated to Xr,s as
(ΛV, d) = (Λ (x, y, z, t, u, v) , d) where degrees and differential are described by

|x| = 2s+ 1, dx = 0

|y| = |z| = 2r, dy = dz = 0

|t| = |u| = 2r + 2s, dt =xy, du = xz

|v| = 4r + 2s− 1, dv = yu− zt.
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We assume that s+1 < r ≤ 2s and we do our reasoning in this case. For r ≥ 2s+1
and r = s+ 1, as in the proof of Theorem 28 we can have some minor differences
due to the fact that, for these low end cases, the degrees of some of the generators
or the differences between the degrees of some of the terms coincide. This makes
no difference to our calculation.

In the style of the above examples, we may write a basis for Der∗ (ΛV ) as follows

∗ Der∗ (ΛV )

4r + 2s− 1 (v, 1)

4r − 2 (v, x)

2r + 2s (t, 1) , (u, 1)

2r + 2s− 1 (v, z) , (v, y)

2r (y, 1) , (z, 1)

2r − 1 (t, x) , (v, u) , (v, t) , (u, x)

2r − 2 (v, xz) , (v, xy)

2s+ 1 (x, 1)

2s (u, z) , (u, y) , (t, y) , (t, z)

2s− 1 (v, yz) ,
(
v, y2

)
,
(
v, z2

)
2r − 2s− 1 (z, x) , (y, x)

2r − 2s− 2 (v, xt) , (v, xu)

Let us calculate H∗ (Der (ΛV ))

It is easily verified that (v, 1) and (v, x) are non-bounding D-cycles. Then

H4r+2s−1 (Der (ΛV )) = Q {[(v, 1)]} and H4r−2 (Der (ΛV )) = Q {[(v, x)]} .

Since

D (t, 1) = (v, z) , D (u, 1) = − (v, y) and D (v, z) = D (v, y) = 0.

It follows that

H2r+2s (Der (ΛV )) = H2r+2s−1 (Der (ΛV )) = 0.

Furthermore, we have

D (z, 1) = (v, t)− (u, x) and D (y, 1) = − (t, x)− (v, u)

D (v, t) = (v, xy) , D (u, x) = (v, xy) and D (v, xy) = 0

D (t, x) = − (v, xz) , D (v, u) = (v, xz) and D (v, xz) = 0.
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Hence, we deduce that

H2r (Der (ΛV )) = H2r−1 (Der (ΛV )) = H2r−2 (Der (ΛV )) = 0.

Next, since

D (x, 1) = (u, z) + (t, y) D (u, z) = − (v, yz)

D (t, y) = (v, yz) , D (v, yz) = 0.

Furthermore, we have

D (u, y) = −
(
v, y2

)
, D (t, z) =

(
v, z2

)
and D

(
v, y2

)
= D

(
v, z2

)
= 0

D (y, x) = (v, xu) , D (z, x) = − (v, xt) and D (v, xu) = D (v, xt) = 0.

So, we deduce that

Hi (Der (ΛV )) = 0 for i = 2s+ 1, 2s, 2s− 1, 2r − 2s− 1, 2r − 2s− 2.

Finally, we have shown that

πi (Baut1(Xr,s)) ∼= Q for i = 4r − 1, i = 4r + 2s and zero otherwise.

Second case: r ≤ s. Here, we have (ΛV, d) = (Λ (y, z, x, t, u, v) , d) with the
same degrees and differential as in the previous case. Recall we need to prove that
πi (Baut1(Xr,s)) is concentrated in degrees 4r− 1 and 4r+ 2s. Instead we prove
that the rank of Hi (Der (ΛV )) is equal to 1 for i = 4r − 2, 4r + 2s − 1 and is
equal to zero for other i’s. As in the previous case, although here we have

D (y, 1) = − (t, x)− (v, u) , D (t, x) = − (v, xz) and D (v, u) = (v, xz)

D (z, 1) = − (u, x) + (v, t) , D (u, x) = (v, xy) and D (v, t) = (v, xy) .

Further for β1, β2 ≥ 1 and β1 + β2 ≤
2s− 1

2r
+ 2 we have

D
(
x, yβ1−1zβ2−1

)
=
(
u, yβ1−1zβ2

)
+
(
t, yβ1zβ2−1

)
D
(
u, yβ1−1zβ2

)
= −

(
v, yβ1zβ2

)
and D

(
t, yβ1zβ2−1

)
=
(
v, yβ1zβ2

)
.

Next, from the above computation and by claim 30 we deduce that the elements
which could be cycles in Der∗ (ΛV ) are on the form: (v, 1), (v, x) , (v, yx) ,
(v, zx) , (v, yα) , (v, zα) ,

(
v, yβ1zβ2

)
, (t, x)+(v, u) , (u, x)−(v, t) ,

(
u, yβ1−1zβ2

)
+
(
t, yβ1zβ2−1

)
for 1 ≤ α ≤ 2s−1

2r + 2, β1, β2 ≥ 1 and β1 + β2 ≤
2s− 1

2r
+ 2.
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On the other hand, it is clear that (v, 1) and (v, x) are non-bounding D-cycles.
Now again from the computation above and

D
(
u, yα−1

)
= (v, yα) and D

(
t, zα−1

)
= (v, zα)

We obtain
H∗ (Der (ΛV )) = Q {[(v, x)]} ⊕Q {[(v, 1)]} .

Using Theorem 6 completes this proof. �

There is another situation in which a similar approach gives the following

Theorem 32. For r ≥ 1 and s ≥ 2r − 1, suppose Xr,s is the space with minimal
Sullivan model (Λ (y, z, x, t, u, v) , d) where degrees of the generators given by
|y| = |z| = 2r, |x| = 2s, |t| = |u| = 2r + 2s − 1 and |v| = 4r + 2s − 2. The
differential is defined as follows: dy = dz = 0, dx = 0, dt = xy, du = xz,
dv = yu− zt. Then

Baut1(Xr,s) 'Q K (Q, 4r − 1)×K (Q, 4r + 2s− 1) .

Proof: We will prove that πi(Baut1(Xr,s)) is concentrated in degrees 4r − 1 and
4r + 2s− 1. Also, since

D (y, 1) = − (t, x)− (v, u) , D (t, x) = − (v, xz) and D (v, u) = (v, xz)

D (z, 1) = − (u, x) + (v, t) , D (u, x) = (v, yx) and D (v, u) = (v, yx) .

Further for β1, β2 ≥ 1 and β1 + β2 ≤
s− 1

r
+ 2 we have

D
(
x, yβ1−1zβ2−1

)
= −

(
u, yβ1−1zβ2

)
−
(
t, yβ1zβ2−1

)
D
(
u, yβ1−1zβ2

)
=
(
v, yβ1zβ2

)
and D

(
t, yβ1zβ2−1

)
= −

(
v, yβ1zβ2

)
.

We deduce that the elements which could be cycles in Der∗ (ΛV ) are on the form:
(v, 1) , (v, x) , (v, yx) , (v, zx) , (v, yα) , (v, zα) ,

(
v, yβ1zβ2

)
, (t, x) + (v, u) ,

(u, x)− (v, t) ,
(
u, yβ1−1zβ2

)
+
(
t, yβ1zβ2−1

)
for 1 ≤ α ≤ s− 1

r
+ 2, β1, β2 ≥ 1

and β1 + β2 ≤
s− 1

r
+ 2.

Finally, from the computation above and the fact

D
(
u, yα−1

)
= (v, yα) and D

(
t, zα−1

)
= (v, zα) for 1 ≤ α ≤ s− 1

r
+ 2.
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We conclude that

H∗ (Der (ΛV )) ∼= Q {[(v, x)]} ⊕Q {[(v, 1)]} .

�

We finish this section with some comments on the constructions above:

i) Note that the restriction s ≥ 2r − 1 in Theorem 32 is necessary. Indeed, if
s < 2r−1, then the derivations on the forme

(
v, xλ

)
for λ ≥ 2 are non-exact

D-cycles.

ii) If we take |z| odd, then the derivation (t, z) is a non-exact D-cycle and if |y|
is odd, (u, y) is a non-exact D-cycle.

iii) If |y| and |z| are even and |y| 6= |z| , we will have |u| 6= |t| and one of the
derivations (u, t) + (z, y) or (t, u)− (y, z) is a non-exact D-cycle.
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