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ELECTRIC FIELDS CREATED BY POINT CHARGES:
SOME GEOMETRICAL AND TOPOLOGICAL RESULTS
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Abstract. We study some geometrical and topological properties of the electric
fields created by point charges on Riemannian manifolds. Particularly, we char-
acterize the spaces on which the electric lines emanating from a point charge are
geodesics, and describe the topological properties of the basin boundary for N

point charges. Several open problems will be posed.

1. Introduction

The discovery of the inverse-square law for Newtonian and Coulomb interac-
tions is a milestone in the Physics of the XVII and XVIII centuries. The central
claim [1, 14] is that, for both electric and gravitational interactions, the force per
unit mass or charge experimented by a test particle situated at a point x ∈ R

3 is
given by the field

E(x) =
q

4π

x − p

|x − p|3 .

Here q ∈ R is the charge (or minus the mass) of the point particle originating the
interaction, p ∈ R

3 is its position and we have chosen Heaviside–Lorentz units.

Since then, the study of the electrostatic fields generated by N point charges qi

(i = 1, . . . , N ) in Euclidean space has become a classical problem in mathemat-
ical physics and potential theory [6]. When all the charges are negative, this is
equivalent to studying the Newtonian field created by N point masses −qi. In
modern treatments, one usually defines the potential function V : R

3 → R of a
unit point charge, which is a fundamental solution of the Poisson equation

−∆V = δp

and obtains the electric field as E = −∇V . Here δp stands for the Dirac dis-
tribution centered at p. The field of several charges can be calculated using the
superposition principle.

14
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A natural generalization of this problem is the study of electrostatic fields on Rie-
mannian spaces. In Theoretical Physics, this problem arises when studying static
solutions to Maxwell’s equations

dF = 0 , δF = J

in spacetimes of the form (M̃, g̃) = (M, g) × (R,−dt2). Here F is the field
two-form and J is the current one-form. Poisson’s equation

−∆V = ρ (1)

where ∆ is the Laplace–Beltrami operator of the spatial manifold (M, g), is read-
ily obtained using the ansatz

F = dA , A = −V dt , J = −ρ dt , V, ρ ∈ Cω(M) .

Equation (1) is usually tackled via fundamental solutions, which involve the analy-
sis of the electric fields generated by static point charges on the space manifold
(M, g).

There is a vast literature on the fundamental solutions of the Poisson equation on
manifolds, e.g., on the existence of positive fundamental solutions [4, 10, 17, 18,
21], the study of upper and lower estimates for these functions [12, 19, 24], and
the connection of these fundamental solutions with the heat kernel [11, 20, 26].
Nevertheless, the geometric properties of the gradient of the fundamental solu-
tions, i.e., the orbits of the electric fields created by a point charge, have received
comparatively little attention. In this paper we will focus on the study of this as-
pect from the viewpoint of the theory of dynamical systems. Thus the concept of
electric line, as Faraday used to visualize the electric fields in the XIX century, is
extended to the framework of general Riemannian spaces. As a spin-off, interest-
ing connections between the structure of the electric lines and the topology of the
manifold will be shown.

In the next section we will state several geometrical and topological properties
of the orbits of the electric field. To the best of our knowledge, both the results
and the approach are new in the literature. The proofs of these statements will be
published elsewhere [7]. The paper finishes with a section discussing some open
problems.

2. Statement of Results

Let (M, g) be an open Riemannian n-manifold without boundary, which we will
assume to be complete, analytic, connected, finitely generated (i.e., all the homo-



16 Al. Enciso and D. Peralta-Salas

topy groups of M have finite rank) and such that all its ends are collared. For an
arbitrary point p ∈ M , let Vp be a fundamental solution of the Poisson equation

−∆Vp = δp (2)

∆ standing for the Laplace–Beltrami operator. Li and Tam [17] provided a geo-
metric construction of symmetric decreasing solutions of this equation for any
Riemannian manifold (M, g). Their technique consisted in considering a se-
quence of solutions (V k

p )∞k=1
of the Dirichlet problem

−∆V k
p = δp in Mk

V k
p = 0 on ∂Mk

in an exhaustion of M by compact sets p ∈ M1 ⊂ M2 ⊂ · · · . Li and Tam’s solu-
tion of equation (2), which is essentially unique in certain cases, can be obtained
as

Vp(x) = lim
k→∞

V k
p (x) − ck

for some sequence of non-negative constants (ck), and is analytic in M \ {p}.

When inf Vp = −∞, Vp is called a non-positive Green function, or an Evans func-
tion. This property only depends on the end structure of (M, g), not on the point
p ∈ M , and in this case the Riemannian manifold is said to be parabolic. Oth-
erwise, Vp is called a (positive) Green function, and (M, g) is hyperbolic. This
terminology, which is standard in potential theory, is not related to the signature
of the Riemannian metric on M , which is always positive definite. There is ex-
tensive literature on geometric conditions characterizing hyperbolic and parabolic
spaces, e.g., [4, 10, 12, 19].

A configuration of point charges on M is a set C = {(qi, pi)}N
i=1

, where N is the
number of charges, and (qi, pi) ∈ (R \ {0}) × M represents the magnitude and
position of the i-th charge of the configuration.

Definition 1. The electric field E created by the charge configuration C is de-
fined as E = −∇V , whence the potential function V is given by

V =
N

∑

i=1

qi Vpi

Vp standing for a solution to equation (2) obtained via Li and Tam’s procedure.
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The electric field is obviously an analytic, divergence-free vector field on the man-
ifold M \ {⋃N

i=1
pi}, and satisfies Maxwell’s equations there. Observe that the

definition of the electric field does not require (M, g) to be hyperbolic. In fact,
since we will be interested in the properties of the orbits of E (which from now on
will be called electric lines), the hyperbolicity or parabolicity of the manifold will
not be especially relevant. Actually, recall that even the Euclidean plane (R2, δ)
is a parabolic space. One should also note that Li and Tam’s solutions to equa-
tion (2) are physically admissible in both cases, since they are symmetric and
decreasing, which are in fact the only properties of the potential that will be used
in this article.

The analytical local behavior of the electric field near a point charge is well
known [9]. Calling r the geodesic distance to a charge situated at pi, there ex-
ists a real constant c such that

E =
c

rn−1
∂r + O

( 1

rn−3

)

in a neighborhood of pi. However, the topological structure of the electric field is
not well understood as a dynamical system, neither locally (e.g., portrait near the
charges and the zeros of the electric field) nor its global aspects (e.g., topology of
the attracting or repelling basins).

Let us concentrate on these topological issues. In the following theorem we will
gather several general properties of the electric lines.

Theorem 2. For the electric field E created by the charge configuration C, the
following statements hold:

1. pi is a local attractor or repeller, so its neighboring equipotential hypersur-
faces V −1(c) (c ∈ R) are topological spheres.

2. (Analytic finiteness.) In a neighborhood of pi, the electric trajectories are
non-oscillating, i.e., if A is an analytic subset of M then the electric lines
either stay in A, or intersect it in a finite number of points. Hence all the
orbits have well defined unit tangent at pi.

3. If qi < 0 for all i, the electric trajectories point inward at the infinity (more
precisely, at any end E of M). In other terms, the ends of the manifold
are local maxima and the equipotential hypersurfaces “near” each end are
“tubes” around it.

4. There exist no invariant closed sets without charge with non-empty interior.
5. E cannot have any closed orbits, but it can have saddle connections.
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Properties 1 and 2 provide a quite detailed description of the electric lines near the
charges modulo analytic (local) diffeomorphisms. The existence of a well-defined
unit tangent along an orbit of a gradient vector field as one approaches a critical
point, as in Property 2, has been extensively studied in the context of analytic
dynamics [16,23]. Properties 3, 4 and 5 provide information on the portrait of the
electric lines in the large.

From now on, we will assume that all the charges are negative, i.e., qi < 0. Thus
in this case the electric field can be also interpreted as the Newtonian gravitational
field created by N point masses of magnitude −qi and situated at pi, which also
coincides with the first order approximation to the gravitational field in General
Relativity [22].

Definition 3. The (attracting) basin associated to the i-th charge is defined as

Di = {x ∈ M ; ω(x) = pi}

where ω(x) denotes the ω-limit of the orbit of E passing through x. The (attracting)
basin of C is

D =
N
⋃

i=1

Di .

We will call F = ∂D the basin boundary of C.

Thus Di consists of the electric lines falling into pi, and the boundary is composed
of points which are not dragged into any charge along E. It can be proved that Di

is an open, invariant submanifold of M diffeomorphic to R
n, and therefore D and

F are disjoint.

In the following theorem we provide a topological characterization of the basin
boundary.

Theorem 4. The following statements hold:

1. F is closed and invariant.

2. M = D ∪ F .

3. 1 ≤ dimF ≤ n − 1.

4. F 6= ∅ if M 6= R
n or N > 1.

5. F consists of the union of the zeros of E and their stable components.
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Property 5 describes how the stable components of the critical points of E gener-
ate the basin boundary. Property 2 implies that M \ {F} is diffeomorphic to N

disjoint copies of R
n. When N = 1, removing F from M makes the manifold

diffeomorphic to R
n, and this suggests that the boundary should contain some

information on the topology of the space, as the following theorem shows. Here
E(M) denote the set of ends of M , and M̂ = M ∪E(M) is the collared end com-
pactification of M [13], which is also a topological manifold since M is finitely
generated. Furthermore, we shall denote F̂ = F ∪ E(M).

Theorem 5. For each k < n − 1, the k-th homotopy group πk(M̂) (respectively
homology group Hk(M̂)) of the compactified space is isomorphic to the k-th
shape group π̌k(F̂) (respectively Čech homology group Ȟk(F̂)) of the compact-
ified basin boundary. Furthermore, there exists a monomorphism πn−1(M̂) →
π̌n−1(F̂), and the groups Hn−1(M̂) ⊕ Z

N−1 and Ȟn−1(F̂) are isomorphic.

An interesting observation is that this result would allow an observer to obtain
the homology groups (up to order n − 1) of the physical space M by measuring
the points where the electric field vanishes and following the incoming electric
lines. One should recall [2, 5] that the singular homology (respectively homo-
topy) groups and Čech homology (respectively shape) groups are isomorphic for
absolute neighborhood retracts, e.g. topological manifolds.

From now on we will assume N = 1, and that the only charge is situated at p and
of magnitude −1. In this case, the topological properties of the basin boundary
resemble those of the cut locus C(p) of (M, g) at p. Thus we will now focus on
the relationship between the cut locus and the boundary, and the geodesics and
the electric lines.

Theorem 6. There exists an analytic diffeomorphism D → M \{C(p)} mapping
the electric lines into the geodesics starting at p.

However, the boundary is not generally homeomorphic to the cut locus, and the
electric lines do not coincide with the geodesics. Therefore, the electric lines arise
as a new kind of curves with geometrical meaning on a Riemannian manifold.

In the following theorem we provide the necessary and sufficient condition for the
electric lines to be geodesics.

Theorem 7. The electric lines emanating from p are geodesics if and only if the
cut locus of p is empty and (M, g) is harmonic with respect to p.
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Recall a space is harmonic [25] with respect to p when the volume density func-
tion in normal Riemann coordinates centered at p depends only on the geodesic
distance to p.

Example 8. Under the hypotheses of Theorem 7, the electric field is given by

E =
cn√

G rn−1
∂r

where r denotes the geodesic distance to p, G is the determinant of the metric in
normal Riemann coordinates, and c−1

n is the area of the unit round (n−1)-sphere.
For instance, in the hyperbolic space H

n

E =
cn

sinhn−1 r
∂r .

3. Open Problems

A major open problem is to establish whether the electric field created by an arbi-
trary configuration of point charges is generically Morse–Smale, i.e., the critical
points and periodic orbits are hyperbolic, the stable manifold of a critical element
and the unstable manifold of another critical element intersect transversally, and
the non-wandering set only consists of critical points and periodic orbits. It can
be proved that this is the case in (R2, g), but otherwise the problem is still open.
Morse–Smale electric fields are structurally stable, and hence small perturbations
of the magnitudes or positions of the charges would not modify the portrait of the
electric lines for generic configurations.

Even in the Euclidean space R
n there are important unsolved questions. For in-

stance, Eremenko [8] offers $200 for the following problem: Does the electric
field

E =

∞
∑

i=1

qi

x − pi

|x − pi|n

vanish somewhere for any infinite configuration of positive point charges C =
{(qi, pi)}∞i=1

in R
n satisfying certain convergence conditions?

Another open question is the celebrated Morse–Cairns problem [3]: Is there a
configuration of positive point charges C = {(qi, pi)}N

i=1
in R

3 such that the
electric field

E =
N

∑

i=1

qi

x − pi

|x − pi|3
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vanishes on a curve? It is not difficult to check that the critical points of the
electric field on a two-manifold are always isolated as a consequence of Cauchy–
Kowalewski’s theorem, but the three dimensional case has proved to be much
harder. It is known [15] that such critical curves (which must be compact and
without endpoints for analyticity reasons) can appear when one allows positive
and negative charges. We would happily pay another $200 to anyone providing a
full solution to this problem.
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