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Abstract. In this paper we present a new notion of a smooth manifold with cor-
ners and relate it to the commonly used concept in the literature. We also introduce
complex manifolds with corners show that if M is a compact (respectively, com-
plex) manifold with corners and K is a smooth (respectively, complex) Lie group,
then C∞(M,K) (respectively, O(M,K)) is a smooth (respectively, complex) Lie
group.

1. Introduction

We introduce the notion of a smooth manifold with corners, which is an exten-
sion of the existing notion of smooth manifolds with corners or boundary for the
finite-dimensional case (cf. [6] or [7, Ch. 2]). The notation presented here is the
appropriate notion for a treatment of mapping spaces and Whitney’s extension
theorem [9] implies that for finite-dimensional smooth manifolds our definition
coincides with the one given in [6]. We give an alternative proof of a similar
statement by elementary methods from real Analysis (cf. also [4, Theorem 22.17]
and [4, Proposition 24.10]).

We also introduce complex manifolds with corners and derive several properties
of the spaces C∞(M, K) and O(M, K). Eventually it turns out that these map-
ping spaces are smooth (respectively, complex) Lie groups. This is in particular
interesting since it seems to be the only way to put a complex or even smooth
structure onto spaces of holomorphic mappings since the Open Mapping Theo-
rem implies that in the case of a closed compact manifolds all holomorphic maps
are constant. With the results of this paper a Lie theoretic treatment of groups
like O(M, K) for non-compact M becomes possible as a projective limit of Lie
groups.
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2. Notions of Differential Calculus

In this section we present the elementary notions of differential calculus on locally
convex spaces and for not necessarily open domains.

Definition 1. Let E and F be a locally convex spaces and U ⊆ E be open. Then
f : U → F is called continuously differentiable or C1 if it is continuous, for each
v ∈ E the differential quotient

df(x).v := lim
h→0

1

h
(f(x + hv) − f(x))

exists and the map df : U ×E → F is continuous. If n > 1 we recursively define

dnf(x).(v1, . . . , vn) :=

lim
h→0

1

h

(
dn−1f(x + h).(v1, . . . , vn−1) − dn−1f(x).(v1, . . . , vn)

)

and say that f is Cn if dkf : U × Ek → F exists for all k = 1, . . . , n and is
continuous. We say that f is C∞ or smooth if it is Cn for all n ∈ N. The cor-
responding sets of maps will be denoted by C1(U, E), Cn(U, E) and C∞(U, E).
This is the notion of differentiability used in [8] and [2] and it is equivalent to the
one used in [3] (cf. [2, Lemma 1.14]).

If E and F are complex vector spaces, then f is called holomorphic if it is C1 and
the map df(x) : E → F is complex linear map for all x ∈ U (cf. [8, p.1027]).
We denote the set of all holomorphic maps by O(U, F ).

Definition 2. From the above definition it is clear what the notions of a smooth
(respectively, complex) Lie group is, i.e. a group which is a smooth (respectively,
complex) manifold modelled on a locally convex (respectively, complex) space
such that the group operations are smooth (respectively, holomorphic).

Definition 3. Let E and F be locally convex spaces, and let U ⊆ E be a set
with dense interior. We say that a map f : U → F is C1 if it is continuous,
fint := f |int(U) is C1 and the map d(fint) extends to a continuous map on U × E,
which is called the differential df of f . If n > 1 we inductively define f to be Cn

if if is C1 and df is Cn−1 for n > 1. We say that f is C∞ or smooth if f is Cn

for all n ∈ N0.

Remark 4. Since int(U × En−1) = int(U) × En−1 we have for n = 1 that
(df)int = d (fint) and we inductively obtain (dnf)int = dn (fint). Hence the
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higher differentials dnf are defined to be the continuous extensions of the differ-
entials dn(fint) and thus we have that a map f : U → F is smooth if and only if
dn(fint) has a continuous extension dnf to U × En−1 for all n ∈ N.

Remark 5. Let f : U1 → U2 and g : U2 → F with f(int(U1)) ⊆ int(U2)
are C1, then the chain rule for locally convex spaces [2, Proposition 1.15] and
(g ◦ f)int = gint ◦ fint imply that g ◦ f : U1 → F is C1 and its differential is given
by d(g ◦ f)(x).v = dg(f(x)).df(x).v. In particular, g ◦ f is smooth if g and f
are so.

Definition 6. (cf. [6] for the finite-dimensional case) Let E be a locally convex
space, λ1, . . . , λn be continuous functionals and E+ :=

⋂n
k=1 λ−1

k (R+
0 ). If M is

a Hausdorff space, then a collection (Ui, ϕi)i∈I of homeomorphisms
ϕi : Ui → ϕ(Ui) onto open subsets ϕi(Ui) of E+ (called charts) defines a dif-
ferential structure on M of codimension n if ∪i∈IUi = M and for each pair of
charts ϕi and ϕj with Ui ∩ Uj 6= ∅ the coordinate change

ϕi (Ui ∩ Uj) 3 x 7→ ϕj

(
ϕ−1

i (x)
)
∈ ϕj(Ui ∩ Uj)

is smooth in the sense of Definition 3. Furthermore, M together with a differential
structure (Ui, ϕi)i∈I is called a smooth manifold with corners of codimension n.

Remark 7. Note that the previous definition of a smooth manifold with corners
coincides for E = R

n with the one given in [6] and in the case of codimension
one and a Banach space E with the definition of a manifold with boundary in [5],
but our notion of smoothness differs. In both cases a map f defined on a non-open
subset U ⊆ E is said to be smooth if for each point x ∈ U there exists an open
neighbourhood Vx ⊆ E of x and a smooth map fx defined on Vx with f = fx

on U ∩ Vx. However, it will turn out that for finite-dimensional smooth manifolds
with corners the two notions coincide.

Lemma 8. If M is a smooth manifold with corners modelled on the locally convex
space E and ϕi and ϕj are two charts with non-empty intersection, i.e., Ui∩Uj 6=
∅, then ϕj ◦ ϕ−1

i (int(ϕi(Ui ∩ Uj))) ⊆ int(ϕj(Ui ∩ Uj)).

Proof: Denote by α : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj), x 7→ ϕj(ϕ
−1
i (x)) and

β = α−1 the corresponding coordinate changes. We claim that dα(x) : E → E
is an isomorphism if x ∈ int(ϕi(Ui ∩ Uj)). Since β maps a neighbourhood Wx

of α(x) into int(ϕi(Ui ∩ Uj)), we have dα(β(y)).
(
dβ(y).v

)
= v for v ∈ E and

y ∈ int(Wx) (cf. Remark 5). Since (y, v) 7→ dα(β(y)).
(
dβ(y).v

)
is continuous

and int(Wx) is dense in Wx, dβ(α(x)) is a continuous inverse of dα(x).
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Now suppose x ∈ int(ϕi(Ui∩Uj)) and α(x) /∈ int(ϕj(Ui∩Uj)). Then λi(α(x)) =
0 for some i ∈ {1, . . . , n} and thus there exists a v ∈ E such that α(x) + tv ∈
ϕj(Ui ∩Uj) for t ∈ [0, 1] and α(x) + tv /∈ ϕj(Ui ∩Uj) for t ∈ [−1, 0). But then
v /∈ im(dα(x)), contradicting the surjectivity of dα(x). �

Definition 9. The preceding Lemma shows that the points of int(E+) are invari-
ant under coordinate changes and thus the interior int(M) =

⋃
i∈I ϕ−1

i (int(E+))
is an intrinsic property of M . We denote by ∂M := M\int(M) the boundary of
M .

A map f : M → N between smooth manifolds with corners is said to be Cn

(respectively, smooth) if f (int(M)) ⊆ int(N) and the corresponding coordinate
representation

ϕi(Ui ∩ f−1(Uj)) 3 x 7→ ϕj

(
f

(
ϕ−1

i (x)
))

∈ ϕj(Uj)

is Cn (smooth) for each pair ϕi and ϕj of charts on M and N . We again denote
the corresponding spaces of mappings by Cn(M, N) (C∞(M, N)).

Definition 10. If M is a smooth manifold with corners and differentiable struc-
ture (Ui, ϕi)i∈I , which is modelled on the locally convex space E, then the tan-
gent space in m ∈ M is defined to be TmM := (E × Im) / ∼, where Im :=
{i ∈ I; m ∈ Ui} and (x, i) ∼

(
d

(
ϕj ◦ ϕ−1

i

)
(ϕi(m)).x, j

)
. The set TM :=

∪m∈M{m} × TmM is called the tangent bundle of M .

Proposition 11. The tangent bundle TM is a smooth manifold with corners and
the map π : TM → M , (m, [x, i]) 7→ m is smooth.

Proof: This can be shown exactly as in the non-boundary case. �

Lemma 12. If M and N are two smooth manifolds with corners, then the map
f : M → N is C1 if f(int(M)) ⊆ int(N), fint := f |int(M) is C1 and
Tfint : T (int(M)) → T (int(N)) ⊆ TN extends continuously to TM . If, in
addition, f is Cn for n ≥ 2, then the map

Tf : TM → TN, (m, [x, i]) 7→
(
f(m), [d

(
ϕj ◦ f ◦ ϕ−1

i

)
(ϕi(m)) .x, j]

)

is well-defined and Cn−1.

Definition 13. If M is a smooth manifold with corners, then for n ∈ N0 the
higher tangent bundles T nM are the inductively defined smooth manifolds with
corners T 0M := M and T nM := T

(
Tn−1M

)
. If N is a smooth manifold with
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corners and f : M → N is Cn map, then the higher tangent maps T mf : TmM
→ TmN are the maps defined inductively by T 0f := f and Tmf := T (Tm−1f)
if 1 < m.

3. Extensions of Smooth Maps

This section draws on a suggestion by H. Glöckner and was inspired by [1, Ch.
IV]. We relate the notions introduced in Definition 3 to the usual notion of differ-
entiability on a non-open subset U ⊆ R

n (cf. Remark 7).

Definition 14. If M is a smooth manifold with corners and F is a locally convex
space, then we endow C∞(M, F ) with the topology making the canonical map

C∞(M, F ) ↪→
∏

n∈N0

C(TnM, F ), f 7→ dnf

a topological embedding, where dnf := pr2n ◦ Tnf (note T nF ∼= F 2n

) and
C(TnM, F ) is endowed with the topology of compact convergence (cf. [3, Defin-
ition 3.1]).

Remark 15. This defines a locally convex vector topology on C∞(M, F ). Fur-
thermore, if M is a second countable finite-dimensional smooth manifold with
corners and F is a Fréchet space, then C∞(M, F ) is a Fréchet space since then
C∞(int(M), F ) and C(M, F ) are Fréchet spaces. Note that this is not immediate
if one uses the notion of smoothness on M from [6] or [5].

Proposition 16. If E, F are Fréchet spaces, U1 ⊆ E and U2 ⊆ R
n have dense

interior, then we have a linear isomorphism

∧ : C∞(U1 × U2, F ) → C∞(U1, C
∞(U2, F )), f∧(x)(y) = f(x, y).

Proof: First we check that f∧ actually is an element of C∞(U1, C
∞(U2, F )).

Since for Fréchet spaces, the notion of differentiability from Definition 1 and
the one used in the convenient setting coincide, [4, Lemma 3.12] implies that
f∧(x)|int(U2) ∈ C∞(int(U2), F ) if x ∈ int(U1). Since dnf extends continuously
to the boundary, so does dn(f∧(x)). So f∧|int(U1)

defines a map to C∞(U2, F )
which is continuous since C(X×Y, Z) ∼= C(X, C(Y, Z)) if Y is locally compact.
Next we show that we can extend it to a continuous map on U1. If x ∈ ∂U1 ∩ U1,
then there exists a sequence of points (xi)i∈N in int(U1) with xi → x and thus
(dn(f∧(xi)))i∈N

is a Cauchy sequence in C(T nU2, F ) since dnf is continuous.
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Since the space C∞(U2, F ) is complete, the sequence (f∧(xi))i∈N
converges to

some f∧(x)∈C∞(U2, F ), and this extends f∧|int(U1)
continuously. Since in-

clusion C∞(U2, F ) ↪→ C(U2, F ) is continuous and continuous extensions are
unique we know that this extension is actually given by f∧. With Remark 4,
the smoothness of f∧ follows in the same way as the continuity. It is immediate
that∧ is linear and injective, and surjectivity follows directly from C(X×Y, Z) ∼=
C(X, C(Y, Z)). �

Lemma 17. If E is a locally convex space and (fn)n∈N0
is such sequence in

C1(R, E) that (f ′

n)n∈N0
converges uniformly on compact subsets to some element

f̄ ∈ C(R, E), then (fn) converges to some f ∈ C1(R, E) with f ′ = f̄ .

Proof: This can be proved as in the case E = R (cf. [1, Proposition IV.1.7]). �

Lemma 18. Let F be a Fréchet space. If (vn)n∈N0
is an arbitrary sequence in F ,

then there exists an f ∈ C∞(R, F ) such that f (n)(0) = vn for all n ∈ N0.

Proof: (cf. [1, Proposition IV.4.5] for the case F = R). Let ζ ∈ C∞(R, R) be
such that supp(ζ) ⊆ [−1, 1] and ζ(x) = 1 if − 1

2 ≤ x ≤ 1
2 and put ξ(x) :=

x ζ(x). Then supp(ξ) ⊆ [−1, 1] and ξ|[− 1

2
, 1
2
] = id[− 1

2
, 1
2
]. Since ξk is com-

pactly supported, there exists for each n ∈ N an element Mn,k ∈ R such that

|
(
ξk

)(n)
(x)| ≤ Mn,k for all x ∈ R. Now let (pm)m∈N be a sequence of semi-

norms defining the topology on F with p1 ≤ p2 ≤ . . .. We now choose ck > 1
such that pk(vk)c

n−k
k Mn,k < 2−k if n < k. Note that this is possible since there

are only finitely many inequalities for each k. Set fm :=
∑m

k=0 vk

(
c−1
k ξ(ck · )

)k.
We show that f := limm→∞ fm has the desired properties. If ε > 0 and ` ∈ N

we let mε,` > ` be such that 2−mε,` < ε. Thus

p`(f
(n)
m − f (n)

mε,`
) = p`

( m∑

k=1+mε,`

vkc
−k
k (ξ(ck · )k)(n)

)

≤
m∑

k=1+mε,`

pk(vk)c
n−k
k Mn,k ≤ 2−mε,` < ε

for all m > mε,` and n < `. It follows for n < ` that the sequence (f
(n)
m )m∈N

converges uniformly to some fn ∈ C∞(R, F ) and the preceding lemma implies
(fn−1)′ = fn, whence f (n) = fn. Since ` was chosen arbitrarily, f is smooth.
We may interchange differentiation and the limit by the preceding lemma and
since ckξ(ck · ) equals the identity on a zero neighbourhood, we have f (n)(0) =(
limm→∞

f
(n)
m

)
(0) = limm→∞

(
f

(n)
m (0)

)
= vn. �



124 Christoph Wockel

Corollary 19. If F is a Fréchet space, then for each f ∈ C∞ ([0, 1], F ) there
exists an f̄ ∈ C∞(R, F ) with f̄

∣∣
[0,1]

= f .

Theorem 20. If F is a Fréchet space and f ∈ C∞([0, 1]n, F ), then there exists
an f̄ ∈ C∞(Rn, F ) with f̄

∣∣
[0,1]n

= f .

Proof: This is a direct consequence of Proposition 16 and Corollary 19. �

Corollary 21. If U ⊆ (Rn)+ is open, F a Fréchet space and f : U → F is
smooth in the sense of Definition 3, then there exists an open subset Ũ ⊆ R

n, with
U ⊆ Ũ , such that for each f ∈ C∞(U, F ) there exists an f̃ ∈ C∞(Ũ , F ) with
f̃
∣∣∣
U

= f .

4. Spaces of Mappings

In this section we prove several results on mapping spaces like C∞(M, K) or
O(M, K). Since many proofs carry over from case of closed compact manifolds,
we provide here only the necessary changes and extensions to the statements in [3,
pp. 366-375].

Definition 22. If E and F are locally convex complex vector spaces and U ⊆ E
has dense interior, then a smooth map f : U → F is called holomorphic if
fint is holomorphic, i.e., that each map dfint(x) : E → F is complex linear
(cf. [8, p. 1027]). We denote the space of all holomorphic functions on U by
O(U, F ).

Remark 23. Note that in the above setting df(x) is complex linear for all x ∈ U
due to the continuity of the extension of dfint.

Definition 24. A smooth manifold with corners is called a complex manifold with
corners if it is modelled on a complex vector space E and the coordinate changes
in Definition 6 are holomorphic. A smooth map f : M → N between complex
manifolds with corners is said to be holomorphic if and for each pair of charts
on M and N the corresponding coordinate representation is holomorphic (cf.
Definition 9). We denote the space of holomorphic mappings from M to N by
O(M, N).

Remark 25. If M is a complex manifold with corners and F is a locally convex
complex vector space, then O(M, F ) is a closed subspace of C∞(M, F ) since the
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requirement on df(x) being complex linear is a closed condition as an equational
requirement on df(x) in the topology defined in Definition 14.

Proposition 26. a) If M is a compact smooth manifold with corners, E and F
are locally convex spaces, U ⊆ E is open and f : M × U → F is smooth, then
the mapping f] : C∞(M, U) → C∞(M, F ), γ 7→ f ◦ (idM , γ) is smooth.

b) If, in addition, E and F are complex vector spaces and f(m) : U → F is
holomorphic for all m ∈ M , then f] is holomorphic.

Proof: a) Since the Lemmas referred to in [3, Proposition 3.10] carry over to the
case of manifolds with corners in exactly the same way, we obtain the smoothness
of f] as in loc.cit.

b) The formula d(f]) = (d2f)] derived in [3, Proposition 3.10] shows that d(f])
is complex linear. �

Corollary 27. If M is a compact smooth manifold with corners, E and F are
locally convex spaces, U ⊆ E are open and f : U → F is smooth (respectively,
holomorphic), then the push forward f∗ : C∞(M, U) → C∞(M, F ), γ 7→ f ◦ γ
is a smooth (respectively, holomorphic) map.

Theorem 28. Let M be a compact smooth manifold with corners, K be a Lie
group and let ϕ : W → ϕ(W ) ⊆ k := L(K) be a chart of K around e with
ϕ(e) = 0. Furthermore let ϕ∗ : C∞(M, W ) → C∞(M, k), γ 7→ ϕ ◦ γ.

a) If M and K are smooth, then ϕ∗ induces a smooth manifold structure on
C∞(M, K), turning it into a smooth Lie group w.r.t. pointwise operations.

b) If M is smooth and K is complex, then ϕ∗ induces a complex manifold
structure on C∞(M, K), turning it into a complex Lie group w.r.t. point-
wise operations.

c) If M and K are complex, then the restriction of ϕ∗ to O(M, W ) induces
a complex manifold structure on O(M, K), turning it into a complex Lie
group w.r.t. pointwise operations, modelled on O(M, k).

Proof: Using Corollary 27 and Proposition 26, the proof of the smooth case in [3,
3.2] also yields a). Since Proposition 26 also implies that the group operations
are holomorphic, b) is now immediate. Using the same argument as in a), we
deduce c) since ϕ∗ maps O(M, W ) bijectively to O(M, ϕ(W )), which is open in
O(M, k). �



126 Christoph Wockel

Acknowledgements

The work on this paper was funded by a doctoral scholarship from the Technische
Universität Darmstadt and the participation in the “XXIV Workshop on Geometric
Methods in Physics” was financially supported by the organising committee of the
conference. The author would also like to thank Karl-Hermann Neeb and Helge
Glöckner for giving several hints to the results of this paper.

References

[1] Bröcker T., Analysis I, BI-Wissenschaftsverlag, 1992.
[2] Glöckner H., Infinite-Dimensional Lie Groups without Completeness Restric-

tions, Geometry and Analysis on Lie Groups (A. Strasburger et al, Eds.),
Banach Center Publications vol. 53, 2002, pp. 43–59.

[3] Glöckner H., Lie Group Structures on Quotient Groups and Universal Com-
plexifications for Infinite-Dimensional Lie Groups, J. Funct. Anal. 194 (2002)
347–409.

[4] Kriegl A. and Michor P., The Convenient Setting of Global Analysis, Math.
Surveys and Monographs vol. 53, Amer. Math. Soc., 1997.

[5] Lang S., Foundations of Differential Geometry, Graduate Texts in Mathemat-
ics, vol. 191, Springer, 1999.

[6] Lee J., Introduction to Smooth Manifolds, Graduate Texts in Mathematics,
vol. 218, Springer, 2003.

[7] Michor P., Manifolds of Differentiable Mappings, Shiva Publishing Ltd, 1980.
[8] Milnor J., Remarks on Infinite-dimensional Lie Groups, Proc. Summer school

on Quantum Gravity, B. De Witt (Ed.), 1983, pp. 1008–1057.
[9] Whitney H., Analytic Extensions of Differentiable Functions Defined on

Closed Subsets, Trans. AMS 36 (1934) 63–89.

Christoph Wockel
Department of Mathematics
Darmstadt University of Technology
Schlossgartenstraße 7
64289 Darmstadt, GERMANY
E-mail address: wockel@mathematik.tu-darmstadt.de


